初中化学50道基础题,包含80%的考试知识点
清华同方空调电子样本
户式中央空调SG商用风管道式中央空调制冷量:7。
3KW—26.9KW适用范围:70—10000平方米茶楼、餐馆、娱乐、超市、展厅、生产车间等大面积、人流密集的场所.机组特点舒适健康◎可直接从户外引入新风,改善室内空气品质,且没有冷却水系统被污染的担忧,彻底摆脱军团菌的危害,可有效预防空调病。
功能完备◎六种基本运行模式;四种风速挡调节体感温度;红外线远距离遥控,蜂鸣声响提示;12小时内开关机智能设置更具人性化。
静音设计◎采用低噪音风机及先进降噪结构设计,工作噪音远低于国家标准,充分保证室内机组运行安静、平稳.灵活设计◎送回风口自由配置,款式任意选择,可满足众多用户的不同室内装潢风格。
安装便捷◎室内机直接隐蔽安装在天花板内,风管道布置简单,无需水泵、水管道和阀门等冷水系统,设计周期短、安装灵活、维护方便。
◎单程30m超长室内外机组连接配管,使得空调机组安装位置更加随意.室外机机组性能参数配套室内机暗藏吊顶式室内机组性能参数水管道式户式中央空调HA水管道式户式中央空调制冷量:9。
7KW-46KW适用范围:80m2—600m2的公寓、别墅、小型商用和工业用空调场合。
机组特点健康舒适◎具有温差小,风量大的特点;以水调节温度,使室内空气更柔和,与人体感觉舒适温度曲线完美结合,完全避免传统家用空调冷热不均引起的空调病,老人与儿童同样可以安全享受。
技术先进◎独特节流设计配合专用控制软件,精确控制温度;采用动态除霜技术,降低系统压力,减小温度波动◎专利技术排水方式,杜绝化霜水结冰,排除隐患。
设计灵活◎可与城市热网、燃气炉、电加热、地板采暖等设备配合.◎主机根据结构不同分为立式、卧式、分体式,不仅简化安装,更利于管路设计和建筑物外形美观,分体式还可满足重霜区域、高寒地区等全国范围内不同气候地区使用。
智能控制◎网络智能远程监控系统,通讯遥控系统对空调的启停、温度、时间等进行控制调节,联动功能更可实现室内风机盘管对主机的启停控制,使温度更精准、节能更有效。
三丰千分表
543-691 543-695 543-692 543-696 543-693 543-682 543-683
543-691B 543-695B 543-692B 543-696B 543-693B 543-682B 543-683B
.5" .5" .5" .5" .5" .5" .5"
.00012" .00012" .00012" .00012" .00012" .0008" .0008"
• 电源开关 • 数据输出 • 数据保持
三大按钮
F
(当连接外部设备时) (当没有连接外部设 备时)
11mm
• 参数设置方式
测量方向转换,公差调整设置,分辨 率转换,刻度因子设置和函数锁设置
• ABS (预置) 和 INC
(调零) 测量方式 之间的转换
实际尺寸
• 公制 / 英制转换功能
F-4
显示表盘可以旋转 330°,可以从所需角度轻松读取测量 结果。
和电池耗尽后,都无需重新设置。
• 采用小型化,以及耐用型电池设计是一
种理想的测量装置。
技术参数
精度 : 参见性能参数 (不包括量化偏差) 分辨率 : 0.01mm 或 .0005"/0.01mm, 显示 : 液晶显示字符高度 8mm 长度基准 : ABSOLUTE 静电线性编码器 最大反应速度 : 无限制 参见性能参数 测力 : 轴套直径 : 8mm (ISO/JIS 型) 或 3/8"(ANSI/AGD型) 测针 : 带有 M2.5x0.45 螺纹的硬质合金球 (ISO/JIS型) 或带有 #4-48UNF 螺纹的硬质合金球 (ANSI/AGD型) 电池 : SR44 (一个), 938882 电池寿命 : 正常使用情况下约为 20,000 小时 尘/水防护等级 : 达到 IP42 防护标准
SMC样本
导线引出方式
DC24V、 12V、 6V、 5V、 3V/AC100V、 110V、 200V、 220V 直接出线式 L形插座式 M形插座式
G: 导线 长300mm L: 带导线 (长300mm) M: 带导线 MN: 不带导线 (长300mm)
++-
DC24V、 12V AC100V、 110V、 200V、 220V
R
pvPMM M KRMM M KTMM M KVMMM pvPMMM RMMM TMMM
!"
海外规格适合型号详见 SMC原来样本有关页。
!
型号表示方法
SY 5 1 20
系列
3 5 7 9 SY3000 SY5000 SY7000 SY9000
5
L
01
托架 A ・ B通口接管口径
螺纹配管 记号 M5 01 02 02 03 接管口径 M5×0.8
1 8 18
型号/SY9000系列
阀的 型号 接管口径 流量特性 质量g 1→4/2(P→A/B) 4/2→5/3(A/B→EA/EB) L形、 W形 1、 5、 3 4、 2 DIN形 直接 3 3 (P、EA、EB) (A、 B) C[dm / b Cv C[dm / b Cv 出线式 M形 插座式 M8 插座式 接头 (s ・ bar)] (s ・ bar)] 单电控 241 244 265 269 2位 7.0 0.33 1.7 7.6 0.35 2.0 双电控 260 266 308 316 机能 中封式 3位 中泄式 中压式 单电控 2位 双电控 SY9□20 -□-03 中封式 3位 中泄式 中压式 单电控 2位 双电控 SY9□20 -□-C8 中封式
14 14
E+H 质量流量计80F 80M技术说明书
TI067D/06/en 50108972Technical InformationProline Promass 84F, 84MCoriolis Mass Flow Measuring SystemThe universal and multivariable flowmeter for liquids and gasesfor custody transferApplicationsThe Coriolis measuring principle operates independently of the physical fluid properties, such as viscosity and density.•Extremely accurate, verified measurement of liquids (other than water) and for gases under high pressure (> 100 bar)•Fluid temperatures up to +200 °C •Process pressures up to 350 bar•Mass flow measurement up to 2200 t/h Approvals for custody transfer:•PTB, NMiApprovals for hazardous area:•ATEX, FM, CSA, TIISApprovals in the food industry/hygiene sector:•3A, FDAConnection to process control system:•HARTRelevant safety aspects:•Secondary containment (up to 100 bar), Pressure Equipment DirectiveFeatures and benefitsThe Promass measuring devices make it possible to simultaneously record several process variables (mass/density/temperature) for various process conditions during measuring operation.The Proline transmitter concept comprises:•Modular device and operating concept resulting in a higher degree of efficiency•Diagnostic ability and data back-up for increased process qualityThe Promass sensors, tried and tested in over 100000 applications, offer:•Multivariable flow measurement in compact design •Insensitivity to vibrations thanks to balanced two-tube measuring system•Efficient protection against forces from piping thanks to robust construction•Easy installation without taking inlet and outlet runs into accountProline Promass 84F, 84M2Endress+HauserTable of contentsFunction and system design. . . . . . . . . . . . . . . . . . . . .3Measuring principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Measuring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5Measured variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Measuring range in non-custody transfer mode . . . . . . . . . . . . . . . 5Measuring range in custody transfer mode . . . . . . . . . . . . . . . . . . 6Operable flow range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Signal on alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Low flow cut off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Galvanic isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Power supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Electrical connection Measuring unit . . . . . . . . . . . . . . . . . . . . . . 8Electrical connection, terminal assignment . . . . . . . . . . . . . . . . . . 9Electrical connection Remote version . . . . . . . . . . . . . . . . . . . . . . 9Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Switching on the power supply in custody transfer mode . . . 9Cable entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Cable specifications,remote version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Power supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Potential equalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Performance characteristics. . . . . . . . . . . . . . . . . . . .10Reference operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 10Maximum measured error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Influence of medium temperature . . . . . . . . . . . . . . . . . . . . . . . . 12Influence of medium pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Operating conditions: Installation . . . . . . . . . . . . . . .13Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Inlet and outlet runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Length of connecting cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17System pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Operating conditions: Environment. . . . . . . . . . . . . .18Ambient temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Degree of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Shock resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Vibration resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Electromagnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . 18Operating conditions: Process. . . . . . . . . . . . . . . . . .18Medium temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Medium pressure range (nominal pressure) . . . . . . . . . . . . . . . . 18Limiting flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Pressure loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Custody transfer measurement . . . . . . . . . . . . . . . . .22Custody transfer variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Suitability for custody transfer measurement, approval by the Standards Authorities, repeated calibration due to legal metrology controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Definition of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Verification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Stamp points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Mechanical construction . . . . . . . . . . . . . . . . . . . . . .25Design / dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Material load curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Process connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Human interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .61Display elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Unified control concept for both types of transmitter: . . . . . . . . . 61Language groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Remote operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Certificates and approvals . . . . . . . . . . . . . . . . . . . . .61CE mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Ex approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Sanitary compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Other standards and guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 61Pressure device approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Approval for custody transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Suitability for custody transfer measurement . . . . . . . . . . . . . . . . 62Ordering information. . . . . . . . . . . . . . . . . . . . . . . . .63Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63Registered trademarks. . . . . . . . . . . . . . . . . . . . . . . .63Proline Promass 84F, 84MEndress+Hauser 3Function and system designMeasuring principleThe measuring principle is based on the controlled generation of Coriolis forces. These forces are always present when both translational and rotational movements are superimposed.F C = 2 · ∆m (v · ω)F C = Coriolis force ∆m = moving mass ω = rotational velocityv = radial velocity in rotating or oscillating systemThe amplitude of the Coriolis force depends on the moving mass ∆m, its velocity v in the system, and thus on the mass flow. Instead of a constant angular velocity ω, the Promass sensor uses oscillation.In the Promass F and M sensors, two parallel measuring tubes containing flowing fluid oscillate in antiphase, acting like a tuning fork. The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillations (see illustration):•At zero flow, in other words when the fluid is at a standstill, the two tubes oscillate in phase (1).The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet.System balance is ensured by the antiphase oscillation of the two measuring tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.Density measurementThe measuring tubes are continuously excited at their resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tubes and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. Resonance frequency is thus a function of fluid density. The microprocessor utilises this relationship to obtain a density signal.Temperature measurementThe temperature of the measuring tubes is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output.The temperature measurement cannot be used to generate data for invoicing in applications subject to legal metrology controls.Proline Promass 84F, 84M Measuring system The measuring system consists of a transmitter and a sensor. Two versions are available:•Compact version: transmitter and sensor form a single mechanical unit.•Remote version: transmitter and sensor are installed separately.4Endress+HauserProline Promass 84F, 84MEndress+Hauser 5InputMeasured variable•Mass flow (proportional to the phase difference between two sensors mounted on the measuring tube to register a phase shift in the oscillation)•Fluid density (proportional to resonance frequency of the measuring tube)•Fluid temperature (measured with temperature sensors)Measuring range in non-custody transfer modeMeasuring ranges for liquids (Promass F, M):Measuring ranges for gasesThe full scale values depend on the density of the gas. Use the formula below to calculate the full scale values:g max(G) = g max(F) ⋅ ρ(G) / x [kg/m 3]g max(G) = Max. full scale value for gas [kg/h]g max(F) = Max. full scale value for liquid [kg/h]ρ(G) = Gas density in [kg/m 3] for process conditionsx = 160 (Promass F DN 8...100, M); x = 250 (Promass F DN 150...250)Here, g max(G) can never be greater than g max(F)Calculation example for gas:•Sensor type: Promass F, DN 50•Gas: air with a density of 60.3 kg/m 3 (at 20 °C and 50 bar)•Measuring range: 70000 kg/h •x = 160 (for Promass F DN 50)Max. possible full scale value:g max(G) = g max(F) ⋅ ρ(G) / x [kg/m 3] = 70000 kg/h ⋅60.3 kg/m 3 ÷ 160 kg/m 3 = 26400 kg/h Recommended full scale values See →Page 19ff. (“Limiting flow”)DN Range for full scale values (liquids) g min(F)...g max(F)80...2000 kg/h 150...6500 kg/h 250...18000 kg/h 400...45000 kg/h 500...70000 kg/h 800...180000 kg/h 100 (only Promass F)0...350000 kg/h 150 (only Promass F)0...800000 kg/h 250 (only Promass F)0...2200000 kg/hProline Promass 84F, 84M6Endress+HauserMeasuring range in custody transfer modeMeasuring ranges for liquids in mass flow (Promass F, M):Measuring ranges for liquids in volume flow (also LPG) (Promass F, M):Measuring ranges for high pressure fuel gases CNG (Promass M):Operable flow range Over 20 : 1 for verified device Input signalStatus input (auxiliary input):U = 3...30 V DC, R i = 5 k Ω, galvanically isolated.Configurable for: totalizer reset, positive zero return, error message reset, start zero point adjustmentDN Range for mass flow (liquids) Q min [kg/min]...Q max [kg/min]Smallest measured quantity[kg]8 1.5...300.515 5...10022515...30054035...700205050 (10005080)150...3000100100 (only Promass F)200...4500200150 (only Promass F)350...12000500250 (only Promass F)1500 (35000)1000DN Promass FDN Promass MRange for volume flow (liquids)(with P = 1 kg/dm 3)Q min [l/min]...Q max [l/min]Smallest measured quantity[l]88* 1.5...300.51515* 5...10022525*15...30054040*35...700205050*50 (1000508080)150...3000100100200...4500200150350 (12000500250)1500 (35000)1000* NMi approval onlyDNRange for mass flow (liquids)Q min [kg/min]...Q max [kg/min]Smallest measuredquantity [kg]Maximum pressure[bar]80.1...100.2160 / 350*150.3...400.5160 / 350*251.0 (100)2.0160 / 350** High pressure versionProline Promass 84F, 84MEndress+Hauser 7OutputOutput signalCurrent output:Active/passive selectable, galvanically isolated, time constant selectable (0.05...100 s), full scale value selectable, temperature coefficient: typically 0.005% o.r./°C, resolution: 0.5 µA •Active: 0/4...20 mA, R L < 700 Ω (for HART: R L ≥ 250 Ω)•Passive: 4...20 mA; supply voltage V S 18...30 V DC; R i ≥ 150 ΩPulse / frequency output:For custody transfer measurement, two pulse outputs can be operated, phase-shifted 90°.Passive, galvanically isolated, open collector, 30 V DC, 250 mA•Frequency output: full scale frequency 2...10000 Hz (f max = 12500 Hz), on/off ratio 1:1, pulse width max. 2 s. For phase-shifted double pulse max. 5000 Hz.•Pulse output: pulse value and pulse polarity selectable, pulse width configurable (0.05…2000 ms)Signal on alarmCurrent output:Failsafe mode selectable (for example, according to NAMUR recommendation NE 43)Pulse / frequency output:Failsafe mode selectableStatus output:De-energised by fault or power supply failureLoadSee “Output signal”Low flow cut offSwitch points for low flow cut off are selectable.Galvanic isolation All circuits for inputs, outputs, and power supply are galvanically isolated from each other.Nominal diameter Low flow cutoff / factory settings (v ∼ 0.04 m/s)[mm]SI units [kg/h]US units [lb/min]88.000.3001526.00 1.0002572.00 2.60040180.00 6.60050300.0011.00080720.0026.0001001200.0044.0001502600.0095.0002507200.00260.000Proline Promass 84F, 84M8Endress+HauserPower supplyElectrical connection Measuring unitConnecting the transmitter, cable cross-section: max. 2.5 mm2A View A (field housing)B View B (stainless steel field housing)C View C (wall-mount housing)aCable for power supply: 85...260 V AC, 20...55 V AC,16...62 V DC Terminal No. 1: L1 for AC, L+ for DC Terminal No. 2: N for AC, L- for DCb Signal cable: Terminals No. 20–27 →Page 9c Ground terminal for protective earth d Ground terminal for signal cable shielde Service connector for connecting service interface FXA 193 (FieldCheck, FieldTool)fCover of the connection compartmentProline Promass 84F, 84MEndress+Hauser9Electrical connection, terminal assignmentPromass 84Replacements for modules which are defective or which have to be replaced can be ordered as accessories.Electrical connection Remote versionSupply voltage85...260 V AC, 45...65 Hz 20...55 V AC, 45...65 Hz 16...62 V DCSwitching on the power supply in custody transfer modeIf the device is started in custody transfer mode, for example also after a power outage, system error No. 271 “POWER BRK. DOWN” flashes on the local display. The fault message can be acknowledged or reset using the "Enter" key or by means of the status input configured accordingly.!Note!For correct measuring operation, it is not mandatory to reset the fault message.Cable entryPower supply and signal cables (inputs/outputs):•Cable entry M20 x 1.5 (8...12 mm)•Threads for cable entries, 1/2" NPT, G 1/2"Connecting cable for remote version:•Cable entry M20 x 1.5 (8...12 mm)•Threads for cable entries, 1/2" NPT, G 1/2"Cable specifications,remote version•6 x 0.38 mm 2 PVC cable with common shield and individually shielded cores •Conductor resistance: ≤ 50 Ω/km •Capacitance core/shield: ≤ 420 pF/m •Cable length: max. 20 m•Permanent operating temperature: max. +105 °COperation in zones of severe electrical interference:The measuring device complies with the general safety requirements in accordance with EN 61010, the EMC requirements of EN 61326/A1, and NAMUR recommendation NE 21/43.Terminal No. (inputs/outputs)Order variant 20 (+) / 21 (-)22 (+) / 23 (-)24 (+) / 25 (-)26 (+) / 27 (-)84***-***********MStatus inputFrequency output 2Frequency output 1Current output HARTProline Promass 84F, 84M10Endress+HauserPower consumptionAC: <15 VA (including sensor)DC: <15 W (including sensor)Switch-on current•max. 13.5 A (< 50 ms) at 24 V DC •max. 3 A (< 5 ms) at 260 V ACPower supply failureLasting min. 1 power cycle:•EEPROM or HistoROM T-DAT saves measuring system data if power supply fails.•HistoROM/S-DAT: exchangeable data storage chip which stores the data of the sensor (nominal diameter, serial number, calibration factor, zero point, etc.)•See Note on Page 9 (switching on the power supply in custody transfer mode)Potential equalisationNo measures necessary.Exception: explosion protected equipment must be included in the potential equalization.Performance characteristics!Note!The accuracy solely refers to the measuring device suitable for custody transfer measurement and not to the measuring system.Reference operating conditionsError limits following ISO/DIS 11631:•20...30 °C; 2...4 bar•Calibration systems as per national norms•Zero point calibrated under operating conditions•Field density calibrated (or special density calibration)Maximum measured errorThe following values refer to the pulse/frequency output. Deviation at the current output is typically ±5 µA.Mass flow (liquid):±0.10% ± [(zero point stability / measured value) x 100]% o.r.Mass flow (gas):Promass F:±0.35% ± [(zero point stability / measured value) x 100]% o.r.Promass M:±0.50% ± [(zero point stability / measured value) x 100]% o.r.Volume flow (liquid)Promass F:±0.15% ± [(zero point stability / measured value) x 100]% o.r.Promass M:±0.25% ± [(zero point stability / measured value) x 100]% o.r.o.r. = of readingZero point stability (Promass F, M):Sample calculationMaximum measured error in % of reading (example: Promass 84 F / DN 25)Calculation example (mass flow, liquid):Given: Promass 84 F / DN 25, measured value flow = 8000 kg/hMax. measured error: ±0.10% ± [(zero point stability / measured value) x 100]% o.r.Maximum measured error → ±0.10% ±0.54 kg/h ÷ 8000 kg/h ⋅ 100% = ±0.107%Density (liquid)Standard calibration (1g/cc = 1 kg/l):Promass F ±0.01 g/cc Promass M ±0.02 g/ccDNMax. full scale value [kg/h] or [l/h]Zero point stabilityPromass F [kg/h] or [l/h]Promass M [kg/h] or [l/h]820000.0600.1001565000.2000.32525180000.5400.904045000 2.25 2.255070000 3.50 3.50801800009.009.0010035000014.00−150********.00−250220000088.00−Special density calibration (optional), not for high temperature versionPromass F±0.001 g/ccPromass M±0.002 g/ccAfter field density calibration or under reference conditions:Promass F±0.0005 g/ccPromass M±0.0010 g/ccTemperaturePromass F, M:±0.5 °C ±0.005 x T (T = fluid temperature in °C)Repeatability Mass flow (liquid):±0.05% ± [1/2 x (zero point stability / measured value) x 100]% o.r.Mass flow (gas):±0.25% ± [1/2 x (zero point stability / measured value) x 100]% o.r.Volume flow (liquid):Promass F:±0.05% ± [1/2 x (zero point stability / measured value) x 100]% o.r.Promass M:±0.10% ± [1/2 x (zero point stability / measured value) x 100]% o.r.o.r. = of readingZero point stability: see “Max. measured error”Calculation example (mass flow, liquid):Given: Promass 84 F / DN 25, measured value flow = 8000 kg/hRepeatability: ±0.05% ± [(1/2 x zero point stability / measured value) x 100]% o.r.Repeatability → ±0.05% ±1/2 ⋅ 0.54 kg/h ÷ 8000 kg/h ⋅ 100% = ±0.053%Density measurement (liquid)Promass F:±0.00025 g/cc (1 g/cc = 1 kg/l)Promass M:±0.0005 g/ccTemperature measurement±0.25 °C ±0.0025 x T (T = fluid temperature in °C)Influence of medium temperature When there is a difference between the temperature for zero point adjustment and the process temperature, the typical measured error of the Promass sensor is ±0.0002% of the full scale value / °C.Influence of medium pressureThe table below shows the effect on accuracy of mass flow due to a difference between calibration pressure and process pressure.Operating conditions: InstallationInstallation instructionsNote the following points:•No special measures such as supports are necessary. External forces are absorbed by the construction of the instrument, for example the secondary containment.•The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by pipe vibrations.•No special precautions need to be taken for fittings which create turbulence (valves, elbows, T-pieces, etc.), as long as no cavitation occurs.•For mechanical reasons and in order to protect the pipe, it is advisable to support heavy sensors.•Please refer to the verification ordinances for the installation conditions of the approval for custody transfer in question.!Note!The necessary steps for creating a measuring system and obtaining approval from the Standards Authorities must be clarified with the authority for legal metrology controls responsible.Mounting locationEntrained air or gas bubbles in the measuring tube can result in an increase in measuring errors Avoid the following locations:•Highest point of a pipeline. Risk of air accumulating.•Directly upstream of a free pipe outlet in a vertical pipeline.Mounting locationDN Promass F [% o.r./bar]Promass M [% o.r./bar]Promass M / (high pressure)[% o.r./bar]8No influence 0.0090.00615No influence 0.0080.00525No influence 0.0090.00340-0.0030.005-50-0.008No influence -80-0.009No influence−100-0.012−−150-0.009−−250-0.009−−o.r. = of readingThe proposed configuration in the following diagram, however, permits installation in a vertical pipeline. Pipe restrictors or the use of an orifice plate with a smaller cross-section than the nominal diameter prevent the sensor from running empty during measurement.Installation in a vertical pipe (e.g. for batching applications)1Supply tank2Sensor3Orifice plate, pipe restrictions (see Table)4Valve5Batching tankDN815254*********)1501)2501)∅ Orifice plate, pipe6 mm10 mm14 mm22 mm28 mm50 mm65 mm90 mm150 mm restriction1) only Promass FOrientationMake sure that the direction of the arrow on the nameplate of the sensor matches the direction of flow (direction in which the fluid flows through the pipe).VerticalRecommended orientation with upward direction of flow (View V). When fluid is not flowing, entrained solids will sink down and gases will rise away from the measuring tube. The measuring tubes can be completely drained and protected against solids build-up.HorizontalThe measuring tubes must be horizontal and beside each other. When installation is correct the transmitter housing is above or below the pipe (View H1/H2). Always avoid having the transmitter housing in the same horizontal plane as the pipe.Please note the special installation instructions! see Page16In order to ensure that the maximum permissible ambient temperature for the transmitter (–20...+60 °C, optional –40...+60 °C) is not exceeded, we recommend the following orientations:m = For fluids with low temperatures, we recommend the horizontal orientation with the transmitter head pointing upwards (Fig. H1) or the vertical orientation (Fig. V).n = For fluids with high temperatures, we recommend the horizontal orientation with the transmitter head pointing downwards (Fig. H2) or the vertical orientation (Fig. V).Special installation instructions for Promass F"Caution!The two measuring tubes for Promass F are slightly curved. The position of the sensor, therefore, has to be matched to the fluid properties when the sensor is installed horizontally .Promass F, installed horizontally1Not suitable for fluids with entrained solids. Risk of solids accumulating.2Not suitable for outgassing fluids. Risk of air accumulating.HeatingSome fluids require suitable measures to avoid loss of heat at the sensor. Heating can be electric, e.g. with heated elements, or by means of hot water or steam pipes made of copper. "Caution!•Risk of electronics overheating! Consequently, make sure that the adapter between the sensor andtransmitter and the connection housing of the remote version always remain free of insulating material. Note that a certain orientation might be required, depending on the fluid temperature see Page15.•When using electrical heat tracing whose heat is regulated using phase control or by pulse packs, it cannot be ruled out that the measured values are influenced by magnetic fields which may occur, (i.e. at valuesgreater than those permitted by the EC standard (Sinus 30 A/m)). In such cases, the sensor must bemagnetically screened (except for Promass M).The secondary containment can be shielded with tin plates or electric sheets without privileged direction(e.g. V330-35A) with the following properties:–Relative magnetic permeability µr≥ 300–Plate thickness d ≥ 0.35 mm•Information on permissible temperature ranges →Page18Special heating jackets which can be ordered as accessories from Endress+Hauser are available for the sensors.Thermal insulationSome fluids require suitable measures to avoid loss of heat at the sensor. A wide range of materials can be used to provide the required thermal insulation.Zero point adjustmentAll Promass measuring devices are calibrated with state-of-the-art technology. The zero point determined inthis way is imprinted on the nameplate. Calibration takes place under reference operating conditions.→Page10ff.Consequently, the zero point adjustment is generally not necessary for Promass!Experience shows that the zero point adjustment is advisable only in special cases:•To achieve highest measuring accuracy also with very small flow rates.•Under extreme process or operating conditions (e.g. very high process temperatures or very high viscosityfluids).Note the following before you perform a zero point adjustment:•A zero point adjustment can be performed only with fluids that contain no gas or solid contents.•Zero point adjustment is performed with the measuring tubes completely filled and at zero flow(v = 0 m/s). This can be achieved, for example, with shut-off valves upstream and/or downstream of thesensor or by using existing valves and gates.–Normal operation → valves 1 and 2 open–Zero point adjustment with pump pressure → Valve 1 open / valve 2 closed–Zero point adjustment without pump pressure → Valve 1 closed / valve 2 openZero point adjustment and shut-off valvesInlet and outlet runs There are no installation requirements regarding inlet and outlet runs.Length of connecting cable Max. 20 meters (remote version)System pressure It is important to ensure that cavitation does not occur, because it would influence the oscillation of themeasuring tube. No special measures need to be taken for fluids which have properties similar to water undernormal conditions.In the case of liquids with a low boiling point (hydrocarbons, solvents, liquefied gases) or in suction lines, it isimportant to ensure that pressure does not drop below the vapour pressure and that the liquid does not startto boil. It is also important to ensure that the gases that occur naturally in many liquids do not outgas. Sucheffects can be prevented when system pressure is sufficiently high.Consequently, it is generally best to install the sensor:•downstream from pumps (no danger of vacuum),•at the lowest point in a vertical pipe.。
2016新版工程力学习题库
工程力学习题集第一篇 静力学第一章 静力学公理及物体的受力分析一、判断题1.二力杆是指在一构件上只受两个力作用下的构件,对吗? (×)2.刚体的平衡条件对变形体平衡是必要的而不是充分的,对吗? (√)3.三力平衡汇交定理是三力平衡的充要条件,对吗? (×)4.如图所示两个力三角形的含义一样,对吗? (×)5,如图所示,将作用于AC 杆的力P 沿其作用线移至BC 杆上而成为P ′,结构的效应不变,对吗? (×)6.如图所示物体所受各力作用线在同一平面内,且各作用线彼此汇交于同一点,则该力系是一平衡力系,对吗? (×)7.所谓刚体就是在力的作用下,其内部任意两点之间的距离始终保持不变的物体。
(√) 8.力的作用效果,即力可以使物体的运动状态发生变化,也可以使物体反生变形。
(√) 9.作用于刚体上的平衡力系,如果移到变形体上,该变形体也一定平衡。
(×) 10.在两个力作用下处于平衡的杆件称为二力杆,二力杆一定是直杆。
(×) 二、填空题1.力对物体的作用效果取决于力的大小、方向和作用点。
2.平衡汇交力系是合力等于零且力的作用线交于一点的力系;物体在平衡力系作用下总是保持静止或匀速运动状态;平面汇交力系是最简单的平衡力系。
3.杆件的四种基本变形是拉伸(压缩)、剪切、扭转和弯曲。
4.载荷按照作用范围的大小可分为集中力和分布力。
F1F3F3F1F2 F25.在两个力作用下处于平衡的构件称为二力杆(或二力构件),此两力的作用线必过这两力作用点的连线。
6.力对物体的矩正负号规定一般是这样的,力使物体绕矩心逆时针方向转动时力矩取正号,反之取负号。
7.在刚体上的力向其所在平面内一点平移,会产生附加矩。
8.画受力图的一般步骤是,先取隔离体,然后画主动力和约束反力。
c(a)10.关于材料的基本假设有均匀性、连续性和各向同性。
三、选择题1、F1 ,F2两力对某一刚体作用效应相同的充要条件是(B)。
长沙理工大学材料力学练习册答案-章
长沙理工大学材料力学练习册答案1-5章材料力学分析与思考题集第一章绪论和基本概念一、选择题1.关于确定截面内力的截面法的适用范围,有下列四种说法:【D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普通情况。
2.关于下列结论的正确性:【C 1.同一截面上正应力?与剪应力?必须相互垂直3.同一截面上各点的剪应力必相互平行。
】3.下列结论中那个是正确的:【B.若物体各点均无位移,则该物体必定无变形】4.根据各向同性假设,可认为构件的下列量中的某一种量在各方向都相同:【B 材料的弹性常数】5.根据均匀性假设,可认为构件的下列量中的某个量在各点处都相同:【C 材料的弹性常数】6.关于下列结论:【C 1.应变分为线应变?和切应变? 2.应变为无量纲量 3.若物体的各部分均无变形,则物体内各点的应变均为零】7.单元体受力后,变形如图虚线所示,则切应变?为【B 2?】二、填空题1.根据材料的主要性能作如下三个基本假设连续性假设,均匀性假设和各向同性假设。
2.构件的承载能力包括强度、刚度和稳定性三个方面。
3.图示结构中,杆1发生轴向拉伸变形,杆2发生轴向压缩变形,杆3发生弯曲变形。
4.图示为构件内A点处取出的单元体,构件受力后单元体的位置为虚线表示,则称du/dx为A点沿x方向的线应变,dv/dy为【A点沿y方向的线应变】,(a1?a2)为【A在xy平面内的角应变】。
5.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为连续性假设。
根据这一假设,构件的应力、应变和位移就可以用坐标的连续性函数来表示。
6.在拉(压)杆斜截面上某点处分布内力集度称为应力(或全应力),它沿着截面法线方向的分量称为正应力,而沿截面切线方向的分量称为切应力。
第二章杆件的内力分析一、选择题1.单位宽度的薄壁圆环受力如图所示,p为径向压强,其n-n截面上的内力【B FN有四个答案:pD/2】2.梁的内力符号与坐标系的关系是:【B 剪力、弯矩符号与坐标系无关】3.梁的受载情况对于中央截面为反对称(如图)。
实德聚酯合金80门窗系统顺利获得PHI认证证书
信息贰零壹陆年第拾贰期71宝科技将以此为契机,坚定不移地推进创新驱动发展战略,促进和完善以市场为导向、产学研相结合的技术创新体系建设,增强企业核心竞争力,积极发挥行业标杆企业的示范引领作用,为推进有机硅密封胶行业技术进步与行业可持续健康发展做出积极贡献。
(来源:硅宝科技)实德聚酯合金80门窗系统顺利获得PHI认证证书大连实德科技发展有限公司聚酯合金80门窗系统顺利获得德国能源署被动门窗研究所颁发的PHI认证证书。
产品ID Componentid:0930wi03。
大连实德科技发展有限公司与德国巴斯夫公司在技术革新与模式创新上相互合作。
采用了高强度复合聚酯材料一次共挤增强技术,替代了传统的金属(钢衬)或其他工程塑料嵌件增强方式。
经国家检测中心测试具有高强度,高节能、高隔声等优异性能。
该聚酯合金门窗系统的热工性能经PHI的严格计算和认证,满足了被动式低能耗建筑对被动式窗的要求。
经省级鉴定该技术成果填补了国际空白,实德拥有11项专利技术,其中2项发明专利,聚酯型材系统生产方法专利已分别在韩国、美国、日本、欧洲等国家授权保护。
PHI认证证书的获得,使实德门窗系统的品质和技术水平进一步提升,代表了实德科技公司在行业技术中的领先创新理念,将为国内外被动式低能耗建筑发展贡献实德人的力量。
(来源:大连实德)硅宝1077弹性体防腐材料被认定为防腐蚀业新技术、新产品11月18日,中国工业防腐蚀技术协会根据《防腐蚀业新技术、新产品推广应用管理办法(试行)》规定公布:认定成都硅宝科技股份有限公司“硅宝1077弹性体防腐材料”为防腐蚀业新技术、新产品。
经评定,中国工业防腐蚀技术协会对该产品的创新点、工艺水平、应用技术给予了充分肯定,同时建议硅宝科技加快该产品在防腐蚀行业的推广应用,促进我国防腐行业健康有序发展。
作为中国工业防腐蚀技术协会副会长单位,硅宝科技是胶粘剂行业唯一通过中国电力认证(CECC)的企业,依托其在中国电力防腐行业的技术优势和品牌地位,硅宝防腐公将继续坚持“科技防腐、绿色防腐”的理念,为客户提供高效优质的防腐系统整体解决方案、筑精品工程,为促进防腐行业的可持续发展保驾护航。
高速公路施工组织设计完整版
(此文档为word格式,下载后您可任意编辑修改!)目录高速公路施工组织设计 (8)第一章编制依据 (8)第二章工程概况 (8)第一节工程简介 (8)第二节工程范围及设计构造 (8)一、桥梁设计里程 (8)二、桥梁部分设计概况 (9)三、桥梁主要结构工程量汇总 (9)四、道路、下水道主要工程量汇总 (9)第三节现场及周边建(构)物,道路交通及地下管线状况 (10)第四节业主招标的工期要求 (10)第三章工程主要施工技术关键 (10)第一节路基和桥台后填筑控制 (10)第二节立交桥梁结构清水砼的施工 (11)第三节空心板梁板底起拱度质量控制 (11)第四节现场搅拌砼的质量控制 (11)第五节预应力施工操作控制 (11)第四章施工的总体组织规划 (11)第一节施工区域划分和各区域现状 (11)一、章节126 (12)二、道路下水道部分: (12)第二节各施工区域的施工流程安排 (12)第三节劳动力资源计划 (13)第四节材料资源投入计划 (13)第五节主要施工机械、仪器设备的选型 (14)一、施工机械、仪器设备的选择依据 (14)二、主要设备、器具配备表 (14)第五章各分项工程的施工顺序和主要施工方法 (16)第一节各主要分项工程施工工序流程图 (16)第二节施工程序网络图 (16)第三节本工程拟采用的主要施工方法 (16)一、下部结构 (16)二、上部结构 (17)三、桥面附属系 (17)四、地面道路 (18)五、下水道 (18)第六章施工期间道路交通组织方案 (18)第一节××路的围场及交通组织 (18)第二节××路围场及交通组织 (18)第三节板梁吊装时的交通组织 (19)第七章建(构)筑物、地下管线的保护措施 (19)第一节组织落实 (19)第二节措施制订与执行 (19)第八章结构施工支架体系 (21)第九章主要工程项目的施工方案 (21)第一节测量定位放样 (21)一、轴线测设 (21)二、标高测设 (23)三、测量仪器的检测 (23)第二节桩基施工 (23)一、前期准备 (23)二、PHC管桩的予制及运输 (24)三、PHC管桩打桩施工 (24)四、水上PHC管桩打设 (25)五、质量保证措施和质量检验标准 (25)六、打桩工程安全技术措施 (26)第三节承台(桥台)施工 (26)一、施工顺序 (26)二、承台围护 (26)三、承台挖土 (27)四、垫层施工 (27)五、桩顶截凿 (27)六、承台钢筋 (28)七、承台模板 (28)八、承台砼 (28)九、基坑回填 (29)十、质量保证措施质量检验标准 (30)第四节立柱施工 (30)一、施工顺序 (30)二、前期准备 (30)三、模板选型加工 (31)四、立柱定位、高程控制 (31)五、立柱钢筋 (31)六、立柱模安装与拆除 (31)七、立柱砼 (32)八、清水砼施工工艺控制 (32)九、现场搅拌砼质量控制 (33)十、质量保证措施和质量检验标准................................... 错误!未定义书签。
广州数控设备 GSK218M 数控系统 编程及说明书
第二章 零件程序的构成·································································································· 10
6-卡箍橡胶密封圈选型设计报告及力学性能试验报告
灌浆卡箍力学实验及分析研究系列报告(六):卡箍橡胶密封圈设计报告及力学性能试验报告哈尔滨工程大学黑龙江省重点实验室水下作业技术与装备实验室王茁孙立波目录卡箍橡胶密封圈选型设计报告及力学性能试验报告 (1)0、引言 (1)1、密封圈材料分析及选择 (1)1.1、密封圈材料的性能分析 (1)1.2、密封圈材料的选择 (4)2、O型密封圈的分析 (5)2.1、灌浆卡箍中O型密封圈有限元分析计算模型 (5)2.1.1、橡胶材料有限元分析及本构模型 (6)2.1.2、O型密封圈有限元分析模型 (6)2.2、O型密封圈失效模式与失效判据 (7)2.2.1、最大应力 (7)2.2.2、最大接触应力 (7)2.2.3、剪应力 (7)2.3、计算结果与数据分析 (8)2.3.1、预紧状态时108mm ×2mm规格O型密封圈变形及 Von Mises 应力分布 (8)2.3.2、不同水压时O型密封圈变形及 Von Mises 应力分布 (9)2.3.3、预紧状态时108mm × 2.6mm规格O型密封圈变形及 Von Mises 应力分布 (11)2.3.4、不同水压时O型密封圈变形及 Von Mises 应力分布 (12)2.3.5、不同压缩率时O型密封圈最大 Von Mises 应力、最大接触压力与水压的关系 (14)2.4、结论 (14)3、卡箍密封实验分析及密封圈的选择 (15)3.1、卡箍密封实验 (15)3.1.1、实验目的 (15)3.1.2、实验装置 (15)3.1.3、实验步骤 (15)3.1.4、小的直管卡箍密封实验结果分析 (16)3.1.5、小的K管卡箍密封试验结果分析 (17)3.1.6、小的直管径向加填料密封的实验结果分析 (18)3.1.7、液压伸缩式直管卡箍和大的K管卡箍的密封实验结果分析 (20)3.2、密封圈的选择 (24)4、密封圈的力学性能实验 (24)4.1、实验目的 (24)4.2、实验装备 (24)4.3、实验结果 (25)4.4、卡箍橡胶密封圈的选型及卡箍沟槽尺寸 (27)5、总结 (28)卡箍橡胶密封圈选型设计报告及力学性能试验报告0、引言随着人类对海洋资源不断地开拓利用,应用于水下的设备也越来越多样化。
海华 HAWA 滑动门螺纹杆 80 2 - 80 3 - 40 4 商品说明书
18Ferrure pour le coulissement simultané de 4 portes pesant jusqu’à 40 kg ou de 2–3 portes pesant jusqu’à 80 kg par vantail.L a f e r r u r eLorsqu’elles sont utilisées en combinaison avec la technique éprouvée HAWA-Junior 80/Z et la ferrure HAWA-Telescopic 80/2 ou 80/3, il est possible de déplacer simultanément deux ou trois portes vers la gauche ou vers la droite. Le modèle équipé de la garniture HAWA- Telescopic 40/4 permet en outre l’ouverture simultanée de 2 portes coulissantes vers la gauche et vers la droite.D o n n ée s s p éc i f i q u e sH A W A -Te l e s c o p i c 80/2 – 80/3 – 40/4• poids maximum par porte 80/2, 80/3 : 80 kg • largeur de porte 80/2, 80/3 : 500–1200 mm • épaisseur de porte 80/2 : 32–47 mm • épaisseur de porte 80/3 : 40–47 mm • poids maximum par porte 40/4 : 40 kg • largeur de porte 40/4 : 500–800 mm • épaisseur de porte 40/4 : 40–47 mm• présente toutes les qualités des produits HAWA-Junior 80/Z • ouverture télescopique de 2–3 portes coulissantes • ouverture symétrique de 4 portes coulissantes • permet de grandes ouvertures• des courroies dentées renforcées par fibre de verre assurent unegrande résistance à la rupture avec une extension minimale2 vantaux: STB =(2 x P) + LMB23 vantaux: STB =(3 x P) + LMB3Sous réserve de modifications techniques.19Garniture partielle no 20657 pour HAWA-Telescopic 80/2 (2 vantaux)Garniture partielle no 20765 pour HAWA-Telescopic 80/3 (3 vantaux)Garniture partielle no 20658 pour HAWA-Telescopic 40/4 (4 vantaux)A p r éc i se r à l a c o m m a n d e• nombre et types de garnitures partielles • nombre de garnitures HAWA-Junior 80/Z •longueurs des rails de roulementP l a n i f i c a t i o n /e x éc u t i o nPour la planification et l’exécution, veuillez utiliser les instructions de montage suivantes:• HAWA-Telescopic 80/2 no 23167 • HAWA-Telescopic 80/3 no 23168 • HAWA-Telescopic 40/4 no 23169 (→ www.hawa.ch → HAWA-Productfinder)。
数控加工编程习题
数控加工编程与操作习题集一、选择题1、数控系统之所以能进行复杂的轮廓加工,是因为它具有( C )。
A)位置检测功能 B)PLC功能C)插补功能D)自动控制2、数控编程人员在数控编程和加工时使用的坐标系是( C )。
A)右手直角笛卡尔坐标系 B)机床坐标系 C)工件坐标系D)直角坐标系3、在编制加工中心的程序时应正确选择( D)的位置,要避免刀具交换时与工件或夹具产生干涉。
A)对刀点B)工件原点C)参考点 D)换刀点4、一般而言,增大工艺系统的( A )才能有效地降低振动强度。
A)刚度B)强度C)精度D)硬度5、( A )是指机床上一个固定不变的极限点。
A)机床原点B)工件原点C)换刀点D)对刀点6、数控机床的旋转轴之一B轴是绕( B )直线轴旋转的轴。
A)X轴B)Y轴C)Z轴D)W轴7、机床坐标系判定方法采用右手直角的笛卡尔坐标系。
增大工件和刀具距离的方向是( B )。
A)负方向B)正方向C)任意方向D)条件不足不确定8、加工中心用刀具与数控铣床用刀具的区别( A )。
A)刀柄B)刀具材料C)刀具角度D)拉钉9、选择数控机床的精度等级应根据被加工工件( A )的要求来确定的。
A)关键部位加工精度B)一般精度C)长度D)外径10、下列哪项工作不属于数控编程的范畴( D )。
A)数值计算B)键入程序、制作介质C)确定进给速度和走刀路线D)对刀、设定刀具参数11、ISO标准规定增量尺寸方式的指令为( B )。
A) G90 B) G91 C) G92 D)G9312、沿刀具前进方向观察,刀具偏在工件轮廓的左边是 B 指令,刀具偏在工件轮廓的右边是( C ) 指令。
A) G40 B) G41 C) G4213、刀具长度正补偿是( A ) 指令,负补偿是( B ) 指令,取消补偿是( C ) 指令。
A) G43 B) G44 C) G4914、在铣削工件时,若铣刀的旋转方向与工件的进给方向相反称为( B )。
中文力士乐03系列DKC伺服驱动器参数手册
德国力士乐伺服驱动器参数说明书
ECODRIVE03 设备一般自动化 本机具有串行实时通信系统,模拟和并行接口。
版权所有
INDRAMAT 有限公司,1999 传输,以及本文件复制,商业 使用或将其内容不得沟通无 明确的书面许可。违反这些规定将要求 赔偿。为实施专利或者发行版权所有 注册外观设计。 (德国工业标准 34-1) 保留所有权利就这个文件的内容 和可用性的产品。 INDRAMAT 有限公司· Bgm.,博士,纳贝尔- STR 基因。 2 ·的 D – 97816 加尔各答 电话 09352/40-0 ·发送 689421 ·传真 09352/40-4885 部完(OS/TH) 本文件印在无氯漂白纸。
前言
本说明书由 779K 于 2010 年 11 月 15 日用谷歌翻译 系统完成翻译,对于翻译之准确不做保证,仅供各位同 行在不急需时参考。在本说明书的后半部分,附有英文 原版说明书,如遇到不能理解之词汇,读者可以再次翻 译更正。翻译此说明书耗时 30 多小时,时间匆促,书中 错误部分希望各位同仁继续更正发布,因为目前参数中 文说明书网上基本没有。
有效期
出版
注意:
总结文件 - 概述
Hale Waihona Puke 内容1 一般资料 1-1 使用本手册............................................... ................................ 1-1 定义................................................. ............................................ 1-2 2 月 2 日至 1 日
斐雪派克 DD90 SDF(H)TX2 设计师型 DishDrawer 洗碗机 安装说明书
7a 固定侧面安装托架
用一字螺丝刀把所有四个
B
侧面安装托架卡入插槽。
确保把侧面安装托架固
定好,再把洗碗机滑进
橱柜。
B A
A
B
A
安装插槽是成对的,洗碗机对 角线每边一个安装插槽。A安 装托架必须插入A插槽,B安 装托架必须插入B插槽。
A
A
B
8a 把水管穿过橱柜搁板
重要!
确保正确的机箱位置。在产品功能, 橱柜不能阻止对底盘硬关闭的抽屉 前。
在橱柜上。 切勿损坏橡胶密封条。
9
1
把灰色橡胶塞装回 装饰条上,确保密 封条面向前方。
3
针对所有四个 安装托架重复 上述步骤。
10
替代方法(b) — 取出抽屉固定
7b 把水管穿过橱柜搁板
重要!
确保正确的机箱位置。在产品功能, 橱柜不能阻止对底盘硬关闭的抽屉 前。
在把洗碗机推进安装位置时,拉水管和电源 线,确保水管和电源线不打结或缠绕在一起。
排D水ra管in h—ose15- 10500m0mmm 进Inl水et 管hos—e - 397530⁄8m" m950 mm P电ow源e线r c(or不d (包ex括cl. 插plu头g))- 4—00 m40m0mm
选择哪种安装方法(a)或(b)
8
更适合你的橱柜...
建议的方法(a) — 在不取出抽屉的情况下固定(仅无框架橱柜)
如果空间太小不 便固定,把水管 推过排水管支撑 至要求的高度
最ma大x. 1mm122mm00
38 mm
2
随机提供的排水管接头 19mm污水三通管
3
如果空间太小不 便固定,把水管 推过排水管支撑 至要求的高度
Q500C钢板切割,Q500C钢板规格尺寸,Q500C高强钢板
Q500C钢板切割,Q500C钢板规格尺寸,Q500C高强钢板
Q500C是高强度结构用调质钢板,Q500D钢板牌号表示,“Q”:表示结构钢;“500”:表示厚度≤50mm规定小屈服强度为500MPa;“C”:表示钢板质量等级,做常温冲击试验。
Q500C钢板库存:#舞阳孙凡#
Q500C钢板执行标准为:GB/T 16270-2009 专用技术条件。
Q500C钢板化学成分分析
碳含量C:≤0.2硅含量Si:≤0.8锰含量Mn:≤1.7
铜含量Cu:0.5铬含量Cr:≤1.5钛含量Ti:≤0.05
镍含量Ni:≤2磷含量P:≤0.025硫含量S:≤0.015
钼含量Mo:≤0.7铌含量Nb:≤0.06硼含量B:≤0.005
Q500C钢板可用于制造厂房,一般修建及各类工程机械,如矿山和各类工程施工用的钻机、电铲、电动轮翻斗车、矿用轿车、挖掘机、装载机、推土机、各类起重机、煤矿液压支架等机械设备及其他结构件。
Q500C钢板规格尺寸:
Q500C 20*2500*12000
Q500C 30*2500*12000
Q500C 40*2500*12000
Q500C 50*2500*12000
Q500C 60*2500*12000
Q500C 80*2500*12000
Q500C钢板切割,Q500C钢板数控切割,Q500C钢板等离子切割,Q500C钢板激光切割
工程机械用高强结构钢
耐磨钢
高层建筑用结构钢
桥梁结构用钢
锅炉及压力容器用钢
水电用钢
核电用钢
风电用钢。
EUROSTOP 蝶阀 DN 150-800说明书
Butterfly Valve EUROSTOP NGL2 Epoxy seat - Manual VersionField of applicationButterfly valves are isolating valves used on water supply networks, hydroelectric plants, industrial plants, pumping stations, fire protection networks.Butterfly valves can be used both for drinking water and for untreated or irrigation water where a suitable filtering system is present.Butterfly valves have limited head losses when the valve is fully open and ensure perfect tightness when the valve is fully closed in both directions. They can also be used as safety valves.RangeButterfly valve EUROSTOP epoxy seat is available in manual version for DN150-800 with PN10 and 16 operating pressures (other versions or diameters are available upon request).DN Closing directionPN10 PN16 mm150 Clockwise (refer to PN16) 265565200 Clockwise265566 265567250 Clockwise265569 265571300 Clockwise265572 265574350 Clockwise265577 265578400 Clockwise265579 265583450 Clockwise265584 265586500 Clockwise265587 265588600 Clockwise265589 265590700 Clockwise265592 265593800 Clockwise265594 -Materials and coatingDN150-800 PN10 and 16 manual versionItem Description Materials Coating1 Body Ductile iron GJS 500-7 Epoxy powder, minimum thickness 250 micron, RAL 5005, according to EN 149012 Disc Ductile iron GJS 500-73 Spring clip (*) Carbon steel SR235JR5 Rear shaft STAINLESS steel EN 10088 X30Cr13 (420) -6 Drive shaft STAINLESS steel EN 10088 X30Cr13 (420) - 8 Cylindrical ring (rear shaft) STAINLESS steel EN 10088-3 X5CrNiCuNb 16-4 (630) - 9 Cylindrical ring (drive shaft)STAINLESS steel EN 10088-3 X5CrNiCuNb 16-4 (630)- 10 Bush Bronze EN 1982 CuSn12 - 11 Screw STAINLESS steel A2 - 12 Spring washer STAINLESS steel A2- 13 keyfeather Steel C40 - 14 Gasket EPDM - 15-16 O-ring EPDM- 17CirclipsSTAINLESS steel EN 10088-3 X5CrNi 18-10-(*) DN150-200: STAINLESS steel AISI 316LDimensions and weightsManual version PN 10DN G H I J K L M D R Weightmm mm mm mm mm mm mm mm mm mm kg150 210 204 136 249 143 52 150 285 100 35200 230 229 165 249 170 52 180 340 100 46250 250 293 208 284 200 71 230 400 150 67300 270 317 232 284 228 71 250 455 150 86350 290 336 251 284 253 71 260 505 150 111400 310 367 303 319 283 71 310 565 250 139450 330 412 330 307 308 86 340 615 250 183500 350 443 355 348 335 104.5 320 670 250 215600 390 497 409 348 390 104.5 300 780 350 302700 430 575 482 350 448 53 440 895 300 453800 470 655 556 419 508 130 480 1,015 250 640 Manual version PN 16DN G H I J K L M D R Weightmm mm mm mm mm mm mm mm mm mm kg150 210 204 136 249 143 52 150 285 100 35200 230 229 165 249 170 52 180 340 100 46250 250 293 208 284 200 71 230 400 150 67300 270 317 232 284 228 71 250 455 150 88350 290 336 272 319 260 71 260 520 250 132400 310 392 310 307 290 86 310 580 300 170450 330 418 330 348 320 104.5 340 640 250 207500 350 451 355 350 358 53 320 715 250 265600 390 531 438 350 420 53 300 840 350 414700 430 607 508 419 455 130 440 910 250 543Gearbox type and handwheel Manual type PN10DNGearbox ROTORK type Handwheel ØNumber of turns at 90°Operating torque Input shaftmm mm Nm mm 150AB210 (37:1) F10 V2002009.31115 200AB210 (37:1) F10 V2002009.31815 250AB550 (34:1) F10 V3003008.52920 300AB550 (34:1) F10 V300300 8.5 42 20 350AB550 (34:1) F12 V3003008.55520 400AB550 (34:1) F12 V5005008.58320 450AB880 (38:1) F14 V5005009.59720500AB1250 (55:1) F14V50050013.88620600AB1250 (55:1) F16V70070013.813120700AB2000 106:1 F16 V60060026.511220 800AB1950/PR4 217:1 F2550054.38520Manual type PN16DNGearbox ROTORK type Handwheel ØNumber of turns at 90°Operating torque Input shaftmm mm Nm mm 150AB210 (37:1) F10 V2002009.31115 200AB215 (37:1) F10 V2002009.32415 250AB550 (34:1) F10 V3003008.54020 300AB550 (34:1) F12 V3003008.55920 350AB550 (34:1) F12 V5005008.58220 400AB880 (38:1) F14 V6006009.511420450AB1250 (55:1) F14V50050013.89620500AB2000 106:1 F14V50050026.57120600AB2000 106:1 F16 V70070026.512620DN Gearbox ROTORK type Handwheel ØNumber of turns at 90°Operating torqueInput shaftmm mm Nm mm 700AB1950/PR4 217:1 F2550054.39320Applicable StandardsHydraulic testEvery single butterfly valve is subjected to hydraulic final test with the purpose of verifying the accordance with the prescriptions ISO 5208:• Body test at 1,5 time the PFA (open valve); • Seat test at 1,1 time the PFA (closed valve). Product test• Control of manoeuvre torque (MOT and mST) as defined in the EN1074 • Control of coating: test of thickness, holiday test, impact test, MIBK test Conformity to the standards Product:• EN 1074 – 1 and 2 • EN 593 • ISO 10631 Test in Works:• EN 12266-1 (ISO 5208) Flanges dimension: • ISO 5752 series 14 Flanges drilling: • EN 1092-2 • ISO 7005-2Suitability for potable water:• Italian CM 102 of 02/12/78• Conformity to foreign norms: KTW (Germany), WRC (U.K.), ACS (France)MarkingOn the body like EN19:• Nominal diameter in mm (DN); • Nominal pressure in bar (PN); • Type of ductile iron;• Manufacturer’s logo;• Model code;• Fusion date.On the label like EN19:• Nominal diameter in mm (DN);• Nominal pressure in bar (PN);• Maximum operating pressure (PFA);• Closing direction;• Model code;• Manufacturing order, Order confirmation;• Manufacturer’s logo.On the disc:• Nominal diameter in mm (DN);• Nominal pressure in bar (PN);• Type of ductile iron;• Manufacturer’s logo;• Model code.The marking of the valves manufactured by Saint-Gobain refers to the EN 1074-2 and EN 19 international standards. Markings are either integral markings, cast in the body, or markings made on plates, securely fixed to the body, in accordance with the EN 19 standard specifications.Specifications EN19Saint-Gobain valves process Table1–Valve markings Requirements1DNEN 19 § 4.2.1Mandatory markingsShall be integral markings or on amarking plateIntegral 2PN Integral3Material Integral4Manufacturer's name or trade mark Plate11Reference to StandardEN 19 § 4.3Supplementary markingsItems 7 to 21 in Table 1 are optionalIntegral 12Melt identification Integral16Quality test Printed on body18Manufacturing date Plate21Closing direction Plate + sticker on bodyValve selectionThe butterfly valves are generally used as isolating devices type on/off. In some particular case, in which there’s low differences of pressure and low flow rate variation can be used like regulating devices, considering the hydraulic parameters necessary to avoid the cavitation risk.To do the right dimensioning of butterfly valve it’s necessary to know the followings parameters:• Upstream hydrostatic pressure (that is the hydrostatic pressure with valve in closed position)• The maximum speed in water pipe (generally expressed in l/s) or the nominal diameter and the project flow rate from which it is gained the speed V=Q/AMoreover it’s necessary to control that the maximum speed in water pipe have to be equal or inferior to 5m/s, and the exercise temperature have to be between 0°C and 50 °C.Hydraulic featuresThe head loss Δh are variable in function of valve open degree and can be calculated with the following expression:Δh = head loss (m)ζ = head loss coefficient (dimensional)v = nominal speed (m/s)g = 9,81 (m/s²)The head loss coefficient can be estimated from this diagram:Determinates the head loss Δh it’s possible to calculate the flow rate Q in m3/h with the following expression (the same expression can be used to, having the project flow rate Q, to determinate the head loss Δh without using the head loss coefficient):In which 10,2 is a corrective factor in meters, and Kv is the flow rate coefficient in m3/h, determinable from the following diagram in function of valve open degree:Example: Valve DN600 mm - Δh = 3 mFrom the diagram with valve open to 100% the coefficient Kv is 20000 m3/h. Using this date in the flow rate expression:m3/hOtherwise it’s possible to calculate the head loss with valve completely open, having the project flow rate Q, in function of DN, using the following diagram:CavitationIf the butterfly valve is used only like isolating device there’s not cavitation risk.In the particular case in which it’s used like regulating device, this can be possible only respecting the following parameters:• The valve open degree have to be between 30° and 90° (valve completely open)• The downstream pressure P2 have to be: with P1 upstream pressure.Instructions for useStorageThe butterfly valve will have to be held (if possible) in covered places, the most possible protected from the sun (minimum allowable temperature 0°C and maximum allowable temperature 70°C in accordance to EN 1074), from the rain and generally from the atmospheric agents. Moreover it will have to be avoided that the seal of the same air valves come to contact with powder or earth.InstallationThe butterfly valves are generally installed with retaining ring mounted in the opposite way respect to the direction of flow rate to permit the substitution of gasket without dismounting the valve from pipeline. In any case it is possible to install the butterfly valve with flow rate in opposite direction and also, if required, in vertical position. We recommend to install the butterfly with the operating device on the hydraulic right side of pipeline.It’s possible to install the butterfly valve both in chamber valve that underground (choosing the right configuration).We recommend to insert a dismounting joint for the operation of maintenance.MaintenanceThe butterfly valve does not require a particular maintenance, all parts subjected to wear are perfectly auto-lubricating. In any case, if for a long time will be not used, it is necessary to evaluate the functioning of valve doing (at least one time for year) some manoeuvre of opening-closing.All the maintenance operation have to be do after the total emptying of pipeline (no flow rate and pressure) to avoid every risk to the people during this operation.In presence of particularly exercise condition or damage due to external cause, it will be necessary some maintenance operation. In this case the particular shape of EUROSTOP butterfly valve permits the simple gasket substitution without the dismounting of valve from pipeline (if the dismounting joint is present).AccessoriesTo adapt the butterfly valves to the different exercise and installation conditions required, they can be equipped with particular accessories used in combination with control devices: please refer to data sheet for accessories.The technical features in this document are not contractual and can be changed without preliminary notification due to the continuous technical progress of product.NOTESaint-Gobain PAM Italia:- reserves the right to modify the products anyway fully respecting the Laws in force.- always use products fully complying with the European Directives to which the products themselves have to comply with.FOR ANY FURTHER POSSIBLE TECHNICAL INFORMATION PLEASE CONSULT SAINT-GOBAIN PAM ITALIA AND/OR OTHER PAM SISTER COMPANIES。
中外钢管管件材质对照表
STPG42 G3454
STPT42 G3456 20
STB42 G3461
16Mn
15MnV
16Mn 15MnV 09Mn2V
(06A1NbCuN)
(20Mn23A1)
STS42 G3455
STS49 G3455 STPT49 G3456
STBL39 G3464
STPL39 G3460 STBL39 G3464
A334-3.4 A333-8
A334-8
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
海南迅捷1U系列纤薄式水化磁闸产品简介说明书
SL1005C2BTA1SL1010C2BTA1SL1040C2BT SL1045C3BTA1SL1050C2BTA1 SL1020C2BTA1SL1035C2BTA1SL1040C2BTA2Increase Your Power DensityWith Eaton’s new Heinemann 1U Series Slimline Hydraulic Magnetic Circuit Breaker you can increase your power density without sacrificing performance. The 1U Series Slimline offers the precision performance of a full size hydraulic magnetic breaker in a miniaturized package.Designed specifically for rack-mount applications,the Slimline's reduced height is ideal for tight spaces and the protection of the latest 1U devices.The 1U Series Slimline is the first hydraulic magnetic breaker to use a snap action mecha-nism which improves reliability,safety and performance. With snap action, the contacts are controlled by a stored energy mechanism that closes in one swift action when the operator switches the handle to the ON position. This advanceddesign prevents premature contact failure, improvesefficiency and allows for higher current ratings.The 1U Series Slimline com-pact size allows greater design flexibility and saves valuablerack space without sacrificing performance. All configurations are UL ா489 listed for branch circuit protection and conform to IEC standards. Available with an integral auxiliary switch, the breaker allows for integration into the most complex systems.Take your equipment to a new level of power density and protection, never before possible. Learn about how the new Eaton 1U Series Slimline is revolutionizing the dc power protection market today.1U Series Slimline Product Highlights•Proven reliability of the Heinemann Hydraulic Magnetic Trip Unit.•Patented snap action technology for improved performance and reliability.•World’s first circuit breaker designed for 1U height rack-mount applications.•Ambient compensating trip unit from -40˚ to +80˚C.•1.0 – 100 ampere continuous current ratings (100% rated).•80 Vdc rating.•UL 489 listed.•CE mark. •Integral auxiliary switch option.•Bullet, screw or stud terminals.•Panel removal tool.•Standard distribution panel configurations available.Eaton Electrical Inc.1000 Cherrington Parkway Moon Township, PA 15108United Statestel: 1-800-525-2000© 2006 Eaton Corporation All Rights Reserved Printed in USAPublication No. PA01106001E / Z4344April 2006UL is a federally registered trademark of Underwriters Laboratories Inc. Heinemann is a federally registered trademark of Eaton Corporation.Typical DimensionsPERFORMANCE DATACurrent Range 1 – 100 A 1Continuous (100% Rated)VoltageUp to 80 Vdc or up to 240 Vac 1Interruption Rating 10 kA @ 80 Vdc 1or 10 kA @ 240 Vac 1Delay Curves Medium, Short, Instantaneous Operating Temperature -40 to + 80ºCTerminals Screw, Stud or Bullet ApprovalsUL 489 Listed, CE MarkAuxiliary Switch Rating 100 mA @ 80 Vdc or 300 mA @ 30 Vdc1Phase I Launch 5 – 60 A, 80 Vdc, 5 kA, UL 489. Consult Customer Service for availability of future releases.Catalog Number Configuration GuideUse the table below to select the correct standard catalog number for your application. Standard configuration consists of Series Trip,Imperial Mounting Inserts, UL 489 Listing and Screw Terminals. We also offer custom configurations and assembled DC distribution panels. To get additional technical assistance or for more information about custom applications, call +1 800 356 1243 (Americas), +41 21 841 92 11 (EMEA) or +86 512 6716 3397 (Asia).Auxiliary Switch OptionCATALOG NUMBERING SYSTEMNote:Catalog number example — SL1005C2.2Phase I Launch 5 – 60 A, 80 Vdc, 5 kA, UL 489. Consult Customer Service for availability of future releases.3No catalog designation is required for a standard catalog configuration.SL1005C2BTA1SL1010C2BTA1SL1040C2BT SL1045C3BTA1SL1050C2BTA1 SL1020C2BTA1SL1035C2BTA1SL1040C2BTA2。