九年级人教版24章圆知识点
人教版九年级数学上册第24章第1节《圆》课件
A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
人教版九年级上册第24章:圆的知识点归纳总结大全
圆的知识点归纳总结大全一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:➢平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
➢平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O 的半径为r ,OP=d 。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。
29、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。
则AB=221221)()(y y x x -+- 10、圆的切线判定。
人教版九年级数学上册第二十四章圆知识点总结
第二十四章 圆24.1 圆24.1.1 圆知识点一 圆的定义圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。
固定的端点O叫作圆心,线段OA叫作半径。
第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。
比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。
知识点二 圆的相关概念(1) 弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。
(2) 弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
(3) 等圆:等够重合的两个圆叫做等圆。
(4) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。
24.1.2 垂直于弦的直径知识点一 圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
知识点二 垂径定理(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
如图所示,直径为CD,AB是弦,且CD⊥AB,AM=BM垂足为M AC=BCAD=BDD垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧如上图所示,直径CD与非直径弦AB相交于点M,CD⊥ABAM=BM AC=BCAD=BD注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。
24.1.3 弧、弦、圆心角知识点 弦、弧、圆心角的关系(1) 弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(2) 在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。
(3) 注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。
人教版九年级数学上册第24章《圆》知识小结与复习
A
A.140°B.135°C.130°D.125°
DF
∠BOC=90°+ 1∠A 2
R
E
BM
Q
O
G
P
NC
3、边长分别为3,4,5的三角形的内切圆半径与外 接圆半径的比为( )
A.1∶5 B.2∶5 C.3∶5 D.4∶5
4.已知△ABC,AC=12,BC=5,AB=13。则 △ABC的外接圆半径为 。内切圆半径____ 5. 正三角形的边长为a,它的内切圆和外接圆的半 径分别是______, ____
O1
AM
O
B
如图,在矩形ABCD中,AB=20cm,BC=4cm,点 ⊙p从A开始折线A—B—C—D以4cm/秒的速度 移动,点⊙Q从C开始沿CD边以1cm/秒的速度移 动,如果点⊙P, ⊙Q分别从A,C同时出发,当其中一 点到达D时,另一点也随之停止运动,设运动的时 间t(秒) 如果⊙P和⊙Q的半径都是2cm,那么t 为何值时, ⊙P和⊙Q外切?
(2)若C△ABC= 36, S△ABC=18,则r内=_1____; (3)若BE=3,CE=2, △ABC的周长为18,则AB=_7___;
A
D
8
F
4
o
B
6E
C
1 S △ABC= 2 C △ABC·r内
2.△ABC中, ∠A=70°,⊙O截△ABC三条边所得的
弦长相等.则 ∠BOC=__D__.
3.两圆相切,圆心距为10cm,其中一个圆的半径为 6cm,则另一个圆的半径为_____.
4. 已知圆O1与圆O 2的半径分别为12和2,圆心O1的 坐标为(0,8),圆心O2 的坐标为(-6,0),则两圆的位置 关系是______.
人教版九年级数学复习:第二十四章 圆的知识点总结及典型例题
圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2 圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质
在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:
•
垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O
•
r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质
•
垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.
人教版九年级上册二十四章《圆》单元知识点
人教版九年级上册二十四章《圆》单元知识点知识点一:圆的两种定义(动态、静态)1、圆的表示2、圆心确定圆的位置、半径确定圆的大小3、通过定义2证明几点共圆(难点)知识点二:圆有关的概念(弦、弧、半圆、等圆、等弧)知识点三:垂径定理及推论(过圆心、垂直弦、平分弦(不是直径)、平分弦所对的优弧、平分弦所对的劣弧)知二推三在解决圆中半径、弦长时,一般通过过圆心作弦的垂线、连半径构造直角三角形,再通过勾股定理解决。
知识点四:弧、弦、圆心角之间的关系在同圆或等圆中:两个圆心角、两条弧、两条弦中有一组量相等,则它们所对的其余各组量都相等(知一推二)知识点五:圆周角的定义:特别注意顶点在圆周上,两边和圆相交知识点六:弧、圆周角、圆心角的对应关系一条弧所对的圆心角等于它所对的圆心角的一半知识点七:圆周角定理及推论同弧或等弧所对的圆周角相等半径(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径知识点八:圆内接四边形性质:圆内接四边形的对角互补圆内接四边形的一个外角等于它的内对角知识点九:点和圆的位置关系通过点到圆心的距离与半径之间的大小关系,判断点和圆的位置关系点到圆心的距离小于半径----------点在圆内点到圆心的距离等于半径----------点在圆上点到圆心的距离大于半径----------点在圆外知识点十:外接圆、外心知识点十一:外心的位置锐角三角形--三角形内部直角三角形--直角顶点钝角三角形--三角形外部知识点十二:反证法1、假设命题的结论不成立2、从假设出发,经过逻辑推理与定义、定理或已知条件相矛盾的结论3、由矛盾判定假设不成立,从而得原命题正确知识点十三:直线和圆的位置关系直观法:通过直线与圆的交点个数判定直线和圆的位置关系没有交点-------相离一个交点-----相切两个交点---相交数据分析法:通过圆心到直线的距离判定直线和圆的位置关系圆心对直线的距离大于半径--------相离圆心对直线的距离等于半径--------相切圆心对直线的距离小于半径--------相交知识点十四:切线的判定定理证明思想:连半径、证垂直作垂直、证半径知识点十五:切线的性质:圆的切线垂直与过切点的半径知识点十六:切线长定理、三角形的内切圆及内心、三角形内切圆的半径知识点十六:正多边形和圆1、有关概念2、圆内接(外切正多边形的有关计算3、圆内接正多边形的画法知识点十七:弧长的计算公式、弧长公式的运用、求旋转过程中点的轨迹的长知识点十八:扇形面积公式(两个公式之间的相互应用)、不规则图形面积的计算知识点十九:圆锥的有关概念、圆锥额侧面展开图、圆锥的侧面积和全面积计算公式。
人教版九年级数学第24章圆基础知识点(圆讲义)(无答案)
人教版九年级数学第24章圆基础知识点(圆讲义)(无答案)板块一:圆的有关概念一、圆的定义:1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O⊙”,读作“圆O”.3 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.二、弦和弧1. 弦:连结圆上任意两点的线段叫做弦.2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.3. 弦心距:从圆心到弦的距离叫做弦心距.4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作AB,读作弧AB.5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.8. 弓形:由弦及其所对的弧组成的图形叫做弓形.任意一条直线.2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心.3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合.二、垂径定理1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3. 推论2:圆的两条平行弦所夹的弧相等.练习题;1.判断:(1)直径是弦,是圆中最长的弦。
()(2)半圆是弧,弧是半圆。
()(3)等圆是半径相等的圆。
()(4)等弧是弧长相等的弧。
()(5)半径相等的两个半圆是等弧。
()(6)等弧的长度相等。
人教版九年级上册第24章圆的有关性质知识点课件
A. 8
B. 10
C. 4 3
D. 4 5
A
垂径定理
勾股定理
5O
B 4D
C
【巩固】
1. 下列说法不正确的是( C ) A. 圆既是轴对称图形又是中心对称图形 B. 圆有无数条对称轴 C. 圆的每一条直径都是它的对称轴 D. 圆的对称中心是它的圆心
【巩固】 2. 如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5 cm,CD=8 cm,则 AE的长为( A)
劣弧: 小于半圆的弧叫做劣弧.如 BC . 优弧: 大于半圆的弧叫优弧.用三个字母表示,如 ABC . 等圆: 能够重合的两个圆叫做等圆. 容易看出:半径相等的两个圆叫做等圆;
反过来,同圆或等圆的半径相等.
等弧: 在同圆或等圆中,能够互相重合的弧叫做等弧.
【例1】如图,在Rt△ABC中,∠C=90°,AB=10,若以点 C 为圆心、CB 长 为半径的圆恰好经过 AB 的中点 D,则 AC 的长为_____5__3_______.
B
C
A
O
D
【巩固】
1. 如图,在⊙O 中,∠AOB=∠COD,那么AC 和 BD 的大小关系是(C )
A. AC > BD C. AC = BD
B. AC < BD
D. 无法确定
C D
B A
O
【巩固】 2. 如图,C是⊙O上的点,CD⊥OA于点 D,CE⊥OB于点 E,且CD=CE, 则 AC 与 BC 的关系是(A )
直角三角形斜边上的中线的性质
同一个圆中的所有半径都相等, “连半径”是常用的辅助线
C
B
D
A
【巩固】 1. 如图,AB是⊙O的直径,点 C 在圆上,∠ABC=65°,那么∠OCA 的度 数是( A)
人教版九年级上第二十四章 圆 知识归纳
第二十四章 圆 知识归纳24.1 圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O 表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d 表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r 表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r 或r=二分之d 。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C 表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积.用字母S 表示。
S=πr 2一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
周长计算公式 1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:d=cπ4、圆周长的一半:21周长(曲线) 5、半圆的长:21周长+直径 面积计算公式: 1、已知半径:S=πr 22、已知直径:S=π(2d )2 3、已知周长:S=π(π2c )224.2 点、直线、圆和圆的位置关系1. 点和圆的位置关系 (d为点到圆心的距离,r为半径)①点在圆内点到圆心的距离小于半径②点在圆上点到圆心的距离等于半径③点在圆外点到圆心的距离大于半径2. 过三点的圆不在同一直线上的三个点确定一个圆。
人教版第24章圆的知识点及典型例题
圆知识点总结一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;#2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.*3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.…圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.【圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半. 5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. :五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 2.其它正确结论:⑴ 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. ⑶ 圆的两条平行弦所夹的弧相等. \3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径. 4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT △,用勾股,求长度;⑵有弧中点,连中点和圆心,得垂直平分. 相关题目: {1.平面内有一点到圆上的最大距离是6,最小距离是2,求该圆的半径 2.(08郴州)已知在O ⊙中,半径5r =,AB CD ,是两条平行弦,且86AB CD ==,,则弦AC 的长为__________.. 六.点与圆的位置关系 1.点与圆的位置有三种:⑴点在圆外⇔d r >;⑵点在圆上⇔d r =;⑶点在圆内⇔d r <.》2.过已知点作圆⑴经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. ⑵经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. ⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆. —注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. ⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.|⑶锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).图3图2图1CBCC五.直线和圆的位置关系的定义、性质及判定从另一个角度,直线和圆的位置关系还可以如下表示:四.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.、2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3. 切线长和切线长定理:⑴在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.:五.三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.六.圆和圆的位置关系的定义、性质及判定设O O、⊙⊙的半径分别为(其中),两圆圆心距为,则两圆位置关系如下表:|位置关系图形定义性质及判定外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部.—d R r>+⇔两圆外离外切两个圆有唯一公共点,并且除了这个公共点之外,每个圆上的点都在另一个圆的外部.d R r=+⇔两圆外切相交#两个圆有两个公共点.R r d R r-<<+⇔两圆相交内切两个圆有唯一公共点,并且除了这个公共点之外,一个圆上的点都在另一个圆的内部.d R r=-⇔两圆内切内含>两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,两圆同心是两圆内含的一种特例.0d R r≤<-⇔两圆内含说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆,1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.⑵正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.⑶正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.⑷正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.~3. 正多边形的性质:⑴正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;⑵正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算的相关公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,、1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。
九年级数学人教版第二十四章圆整章知识详解图文结合(同步课本结合例题精讲)
【解析】选D.延长AO交BC于点D,连接OB, 根据对称性知AO⊥BC,则BD=DC=3.
又△ABC为等腰直角三角形,∠BAC=90°, 则AD= 1 BC =3,∴OD=3-1=2,
2
∴OB= 22 32 13.
九年级数学第24章圆
4.(毕节·中考)如图,AB为⊙O的弦,⊙O的半径为5, OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是 . 【解析】如图所示,连接OB,则OB=5,OD=4,利用勾股定
(2)若旋转角度不是180°,而是旋转任意角度,则旋转 过后的图形能与原图形重合吗?
B
Oα
A
圆绕圆心旋转任意角度α ,都能够与原来的图形重合. ___圆__具__有__旋__转__不__变__性___.
九年级数学第24章圆
(二) 圆心角、弧、弦、弦心距之间的关系
(1)相关概念
圆__心__角___:顶点在圆心的角
2.如图,一根5m长的绳
子,一端栓在柱子上,
另一端栓着一只羊,请
5
画出羊的活动区域.
九年级数学第24章圆
【解析】
九年级数学第24章圆
1.判断下列说法的正误:
(1)弦是直径;(
)
(2)半圆是弧;(
)
(3)过圆心的线段是直径;( )
(4)长度相等的弧是等弧;( )
(5)半圆是最长的弧;(
)
(6)直径是最长的弦;(
问题:你知道赵州桥吗?它是1300多年前我国隋代建造的 石拱桥,是我国古代人民勤劳与智慧的结晶,它的主桥拱 是圆弧形,它的跨度(弧所对的弦的长)为37.4 m,拱高 (弧的中点到弦的距离)为7.2 m,你能求出赵州桥主桥 拱的半径吗?
九年级数学第24章圆
人教版九年级数学上册第二十四章圆全章总复习及知识梳理
第二十四章 圆
旋转对称、中心 对称、轴对称
对称性
垂径定理及其推论(注意推论中“不是直径 的弦”的条件) 基本性质 弧、弦、圆心角 关系定理及其推 论 前提条件:在 同圆或等圆中
圆周角定理及其推论
第二十四章 圆
正多边形与圆
等分圆周
有关计算
第二十四章 圆
位置关系 切线的性质 直线与圆的 位置关系 切线的判定 切线的作用
且OM=3, 则⊙O的半径为( C ).
A.10 B. 8 C. 5 D.2
第二十四章 圆
分析
第二十四章 圆
相关题2 如图24-Z-4, 已知AB是⊙O的直径, 且AB=12.
弦CD⊥AB于点M, 且M是半径OB的中点, 则弦CD的长是
6 3 结果保留根号). ______(
第二十四章 圆
解析
【要点指导】一条弧所对的圆周角等于它所对的圆
心角的一半, 在解有关圆的问题时常常借助这个定理
进行角度转化.
第二十四章 圆
例 1 如图24-Z-1, 某珠宝店有一圆形货柜, 为了
增加珠宝的光彩, 在其圆形边缘上的点A处安装了
一台小灯, 它所发出的光线形成的最大张角是65°.
为了使整个货柜里的珠宝都能被灯光照射到, 最少 需在圆形边缘上安装这样的小灯( A.3台 B. 4台 C.5台
A
).
D.6台
第二十四章 圆
分析 ∵∠A=65°,
∴该圆周角所对的弧所对的圆心角是130°.
∵360°÷130°≈2.8, ∴至少要安装3台这样的小灯. 故选A.
第二十四章 圆
相关题1
如图24-Z-2, B, C是⊙A上的两点, AB的垂直平分
线与⊙A交于E, F两点,与线段AC交于点D.若∠BFC=20°, 则
人教版九年级数学上册第24章 圆3 弧、弦、圆心角
化的数学思想解决问题.
天圆地方是我国古人朴素的世界观,圆很早就被运用于中国传统
建筑的设计之中.可以说,没有圆就没有中式设计,比如北京天坛
的圜丘坛就是典型的圆形建筑,还有中式园林中的“洞门”.
上节课我们学习了圆是轴对称图形,你还能观察出圆的什么性质
呢?
开火车,以小组为单位循环接龙.
1.我们熟悉的既是轴对称图形,又是中心对称图形的有哪些?
【题型三】利用弧、弦、圆心角证明
= ,
⊥ 于点D,CE⊥
例5:如题图,在⊙O中,
OB于点E,求证:AD=BE.
证明:如答图,连接OC.
= ,
∴ ∠ = ∠.
∵
∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90° .
又∵CO=CO,∴△COD≌△COE,∴OD=OE.
(分别相等)
你能用文字语言归纳你得到的结论吗?
(在同圆或等圆中,如果两条弧相等,那么它们所对的圆心
角相等,所对的弦相等)
4.在同圆或等圆中,画任意两条等弦,它们所对的圆心角、所对的弧
有什么关系?
(分别相等)
自主探究
你能用文字语言归纳你得到的结论吗?
(在同圆或等圆中,如果两条弦相等,那么它们所对的圆
(圆的旋转不变性;圆心角的定义;圆心角、弧、弦之间的
关系)
2.我们研究圆心角、弧、弦之间的关系,大前提是什么?
(在同圆或等圆中)
3.你掌握了哪些数学思想方法?
(分类讨论、转化)
【教材习题】完成课本85页练习1,2题.
【作业本作业】完成 对应练习.
【实践性作业】请画出两个大小不同的圆,在两个圆中分别找
= ,
∵
∵ = , ∴ ∠ = ∠,
人教版初中数学第二十四章圆知识点
第二十四章 圆24.1 圆的有关性质24.1.1 圆1.平面内到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为圆心,定长称为半径,以点O 为圆心的圆记作“☉O”,读作“圆O ”.2.确定圆的基本条件:(1)、圆心:定位置,具有唯一性,(2)、半径:定大小.3.半径相等的两个圆叫做等圆,两个等圆能够完全重合.4.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.5.圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“⋂”表示,圆的任意一条直径的两个端点分圆成为两条等弧,每一条弧都叫做半圆,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.6.在同圆或等圆中,能过重合的两条弧叫做等弧.24.1.2 垂直于弦的直径垂径定理:垂直于弦的直径平分弦且平分弦所对的弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论.推论2:圆的两条平行弦所夹的弧相等. 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD24.1.3 弧、弦、圆心角1.顶点在圆心的角叫做圆心角.圆心角的度数与他所对的弧的度数相等.2.圆心角定理:在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等. 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等.BD在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,那他们所对的优弧劣弧分别相等.24.1.4 圆周角1.顶点在圆上,并且两边都和圆相交的角叫做圆周角.2.圆周角定理:同弧所对的圆周角等于它所对的圆心角(或弧的度数)的一半. 即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径.即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理.注:忽略一条弦所对的弧有两条,所对的圆周角边有两种不同的角.4.一般的,如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆的内接多边形,这个圆叫做多边形的外接圆.圆的内接四边形定理:圆的内接四边形的对角互补. 推论:圆内接四边形任何一个外角都等于他的内对角. 即:在⊙O 中, ∵四边形ABCD 是内接四边形 ∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒DAE C ∠=∠24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系1.点与圆的位置关系是由这个点到圆心的距离d 与半径r 的大小关系决定的.BABAO(1)点在圆内⇒d r<⇒点C在圆内;(2)点在圆上⇒d r=⇒点B在圆上;(3)点在圆外⇒d r>⇒点A在圆外;2.不在同一直线上的三个点确定一个圆且唯一一个.3.三角形的三个顶点确定一个圆,经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.4.与三角形三边都相切的圆叫做这个三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内切圆是三角形内面积最大的圆,圆心是三个角的角平分线的交点,他到三条边的距离相等:内心到三顶点的连线平分这三个角.24.2.2 直线与圆的位置关系1.如果圆O的半径为r,圆心O到直线l的距离为d,那么:(1)直线与圆相离⇒d r>⇒无交点;(2)直线与圆相切⇒d r=⇒有一个交点;(3)直线与圆相交⇒d r<⇒有两个交点;2.直线和圆有唯一公共点(即直线和圆相切)时,这条直线叫做圆的切线,这个唯一的公共点叫做切点.(1)切线的判定定理:过半径外端且垂直于半径的直线是圆的切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA⊥且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:圆的切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点.推论2:过切点垂直于切线的直线必过圆心.以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个.连接圆心与切点间的线段是解圆的切线问题时常用的辅助线,通常叙述为:“见切点连半径得垂直”.解决与圆的切线有关的问题时,常需要补充的线是作过切点的半径.3.切线长定理在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长.A切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和圆外这一点的连线平分两条切线的夹角. 即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠ 4.圆的公切线两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 .24.3 正多边形和圆各边相等,各角也相等的多边形叫做正多边形.把一个圆分成相等的弧,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做正多边形的外接圆.经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切多边形,这个圆叫做多边形的内切圆. 正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心.正多边形外接圆的半径叫做正多边形的半径.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正多边形内切圆半径叫做正多边形的边心距. 正n 边形的半径R 与边心距r 把正n 边形分成2n 个全等的直角三角形.00n 0222n n n 360180=a =2sin ;n 1801cos ;(a );C a ;211=a n=C .22n n n n n n n R n r R R r n n S r r α==+=••关系式:中心角;边长边心距周长面积(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =; (2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.24.4 弧长和扇形面积1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积lO。
人教版九年级数学第二十四章《圆》单元知识点总结
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
最新人教版初中九年级上册数学第二十四章《圆》知识点
第二十四章圆24.1 圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
周长计算公式1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径面积计算公式:1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方24.2 点和圆、直线和圆的位置关系1. 点和圆的位置关系① 点在圆内⇔点到圆心的距离小于半径 ② 点在圆上⇔点到圆心的距离等于半径 ③ 点在圆外⇔点到圆心的距离大于半径 2. 过三点的圆不在同一直线上的三个点确定一个圆。
人教版九年级上册第24章《圆》小结与复习
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于 这条弦,并且平分这条弦所对的两条弧; 平分弧的直径垂直平分这条弧所对的弦.
侵权必究
要点梳理 2.圆周角定理 (1)圆周角定理:圆周角的度数等于它所对弧上的 圆心角度数的一半. (2)推论1:在同圆或等圆中,同弧或等弧所对的 圆周角相等;相等的圆周角所对弧相等. [注意] “同弧”指“在一个圆中的同一段弧”; “等弧”指“在同圆或等圆中相等的弧”;“同弧
A
D
O
侵权必究
BM
C
考点精讲 方法归纳
(1)证切线时添加辅助线的解题方法有两种: ①有公共点,连半径,证垂直; ②无公共点,作 垂直,证半径;有切线时添加辅助线的解题方法 是:见切点,连半径,得垂直; (2)设未知数,通常利用勾股定理建立方程.
侵权必究
考点精讲 已知:如图,PA,PB是⊙O的切线,A、B为切点,
2 的面积等于___3____.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
圆的概念
圆是中心对称图形
圆的对称性 圆是轴对称图形,任意一 条直径所在直线都是它的
圆的性质
对称轴 圆心角、圆周角、弧与弦之间的关系
圆
垂径定理
四边形的内接圆、三角形的外接圆
与圆有关的 位置关系
直线与圆的 位置的关系
或等弧”不能改为“同弦或等弦”.
(3)推论2:90°的圆周角所对的弦是直径. (4)推论3:圆的内接四边形的对角互补.
侵权必究
要点梳理 3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这 条半径的直线是圆的切线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆
1圆:在一个平面内,线段OA绕它固定的一个端点O ,另一个端点A所叫做圆。
其固定的端点O叫做,线段OA叫做。
圆既是图形,又是图形,任何一条都是圆的对称轴。
2.圆弧和弦:连接圆上的线段叫做。
经过圆心的弦叫做。
弦的取值范围:;
圆上的部分叫做,简称。
大于半圆的弧称为,小于半圆的弧称为。
以A、B为端点的劣弧记作,读作;
等圆:能够的两个圆叫做;同圆或等圆的相等;
等弧:在中,能够的弧叫做。
3.垂径定理:垂直于弦的直径,并且;
几何语言:如图
垂径定理的推论:平分弦()的直径,
并且平分两条弧。
几何语言:如图
4.圆心角和圆周角:顶点在上的角叫做圆心角。
顶点在,并且两边都与
圆的角叫做圆周角。
圆心角定理:在,相等的圆心角相等,也相等。
几何语言:如图
推论:①在,如果相等,
那么它们,。
几何语言:如图
②在,如果相等,
那么它们,。
几何语言:如图
圆周角定理:一条弧所对的等于它所对的的一半。
∠
几何语言如图:∵∴∠=∠=1
2
推论:①同弧或等弧所对的相等。
如图:∵∴∠=∠
②半圆()所对的圆周角是,90°的圆周角所对的弦是直径。
几何语言:如图几何语言:如图
5.圆内接多边形:如果一个多边形的都在同一个圆上,这个多边形叫做;
这个圆叫做这个。
圆内接四边形的一个性质:圆内接四边形的。
几何语言:
6.点和圆的位置关系:设圆O的半径为r,点P到圆心的距离OP=d,则有
①圆内:点P在圆<=>
②圆上:点P在圆<=>
③圆外:点P在圆<=>
圆的确定:①和;②不在的三个点确定一个圆。
7.反证法:假设命题的不成立,由此经过推理得出矛盾,由矛盾断定所作
,从而得到原命题成立,这种方法叫做反证法。
8.三角形外接圆,内切圆
经过三角形的三个可以作一个圆,这个圆叫做三角形的,其圆心叫做三角形的。
三角形的外心到三角形的的距离相等。
与三角形各边都的圆叫做这个三角形的,其圆心叫做三角形的。
三角形的内心到三角形的的距离相等。
(直角三角形内切圆半径r= )
9.直线和圆的位置关系:设圆O的半径为r,圆心O到直线l的距离为d,则有
①相交:有公共点;直线l和圆<=> ;这条直线叫做圆的;
②相切:有公共点;直线l和圆<=> ;这条直线叫做圆的;这个点叫做;
③相离:有公共点;直线l和圆<=> ;
10.切线的判定方法:①,即
②,即
③
切线的判定定理:经过半径的并且垂直于的直线是圆的;
几何语言:如图
切线的性质定理:圆的切线垂直于过的。
几何语言:如图
(证切线的两种常见思路①有切点,,
②无切点,,)
11.切线长:
经过圆外一点的圆的上,这点和之间线段的长,叫做这点到圆的。
切线长定理:从圆外一点可以引圆的,它们的切线长,这点和圆心的连线平分的夹角。
几何语言:如图特征:∠3=∠4;
OP垂直平分线段AB 12.正多边形和圆
把一个正多边形的外接圆的叫做这个正多边形的;外接圆的半径叫做正多边形的;正多边形每一边所对的叫做正多边形的;(中心角= )中心到正多边形的一边的距离叫做正多边形的。
(正多边形的内角= = )13.弧长和扇形面积
圆周长公式:;1°的圆心角所对的弧长是,即。
弧长公式:n°的圆心角所对的弧长为;
扇形:由组成圆心角的两条半径和圆心角所对的弧叫做。
圆面积公式:;圆心角是1°的扇形面积是。
扇形面积公式:圆心角为n°的扇形面积是。
用弧长表示扇形的面积:(其中l是扇形的弧长,R为半径)
14.圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的。
圆锥侧面展开图扇形的弧长等于。
圆锥侧面展开图扇形的半径等于。
15.作图(S
圆锥侧面积=1
2
弧长×半径= = ;其中l是扇形的,r为)
(1)画出经过点A、B、C的圆(2)画出三角形ABC的外接圆
(3)画出三角形ABC的内切圆(4)确定弧AB的圆心和半径。