1.1.3 集合的基本运算 第2课时 补集及综合应用

合集下载

高中数学《补集及集合运算的综合应用》导学案

高中数学《补集及集合运算的综合应用》导学案

1.1.3集合的基本运算第2课时补集及集合运算的综合应用1.全集(1)全集定义:□1如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)全集符号表示:□2全集通常记作U.2.补集的定义(1)自然语言:□3对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A.(2)符号语言:∁U A=□4{x|x∈U且x∉A}.(3)图形语言:□5用Venn图表示,如下图阴影部分所示,表示∁A.U□61.判一判(正确的打“√”,错误的打“×”)(1)一个集合的补集一定含有元素.()(2)集合∁B C与∁A C相等.()(3)集合A与集合A在全集U中的补集没有公共元素.()答案(1)×(2)×(3)√2.做一做(1)(教材改编P11T4)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M 等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}(2)(教材改编P11T4)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}(3)设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案(1)C(2)D(3)C『释疑解难』1.全集理解全集不是固定不变的,是相对于研究的问题而言的,如在整数范围内研究问题,Z是全集,而在实数范围内研究问题,R是全集.如若只讨论大于0小于5的实数,可选{x|0<x<5}为全集.通常也把给定的集合作为全集.2.补集理解(1)补集是相对于全集而言的,它与全集不可分割.一方面,若没有定义全集,则不存在补集的说法;另一方面,补集的元素逃不出全集的范围.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A的补集的前提是A为全集U的子集,随着所选全集的不同,得到的补集也是不同的.(3)集合的补集运算与实数的减法运算可进行类比:实数集合被减数a被减集合(全集)A减数b减集合B差a-b补(余)集∁A B(4)符号∁U A有三层意思:①A是U的子集,即A⊆U;②∁U A表示一个集合,且(∁U A)⊆U;③∁U A是U中不属于A的所有元素组成的集合,即∁U A={x|x∈U,且x∉A}.(5)若x∈U,则x∈A或x∈∁U A,二者必居其一.探究1补集的简单运算例1(1)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A =________;(2)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.解析(1)将集合U和集合A分别表示在数轴上,如图所示. 由补集定义可得∁U A={x|x<-3或x=5}.(2)解法一:A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二:借助V enn图,如图所示.由图可知B={2,3,5,7}.答案(1){x|x<-3或x=5}(2){2,3,5,7}拓展提升求集合补集的基本方法及处理技巧(1)基本方法:定义法.(2)两种处理技巧①当集合用列举法表示时,可借助Venn图求解;②当集合是用描述法表示的连续数集时,可借助数轴,利用数轴分析求解.【跟踪训练1】(1)设集合U={1,2,3,4,5,6},M={1,3,5},则∁M=()UA.{2,4,6} B.{1,3,5}C.{1,2,4} D.U(2)若全集U={x∈R|-2≤x≤2},则集合A={x∈R|-2≤x≤0}的补集∁U A为()A.{x∈R|0<x<2} B.{x∈R|0≤x<2}C.{x∈R|0<x≤2} D.{x∈R|0≤x≤2}答案(1)A(2)C解析(1)因为集合U={1,2,3,4,5,6},M={1,3,5},所以∁U M={2,4,6}.(2)借助数轴(如图)易得∁U A={x∈R|0<x≤2}.探究2交、并、补集的综合运算例2已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁U(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-3<x≤-2或x=3}.拓展提升1.补集的性质及混合运算的顺序(1)A∪(∁U A)=U,A∩(∁U A)=∅.(2)∁U(∁U A)=A,∁U U=∅,∁U∅=U.(3)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).2.当集合是用列举法表示时,如数集,可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助数轴求解.3.集合的交、并、补运算是同级运算,因此在进行集合的混合运算时,有括号的先算括号内的,然后按照从左到右的顺序进行计算.【跟踪训练2】 已知集合A ={x ||x |≤2},B ={x |-3<x <0},C ={x |x ≤1}.求:A ∩C ,A ∪B ,(∁R A )∩B .解 A ∩C ={x |-2≤x ≤2}∩{x |x ≤1}={x |-2≤x ≤1};A ∪B ={x |-2≤x ≤2}∪{x |-3<x <0}={x |-3<x ≤2}; (∁R A )∩B ={x |x <-2或x >2}∩{x |-3<x <0}={x |-3<x <-2}. 探究3 利用集合间的关系求参数例3 已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围.解 ∁R B ={x |x ≤1或x ≥2}≠∅,∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论.①若A =∅,此时有2a -2≥a ,∴a ≥2.②若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a ,a ≤1或⎩⎨⎧ 2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2.[条件探究] 本例中若把“A ∁R B ”换成“A ∩∁R B =∅”,则a 的取值范围为多少?解 ①若A =∅,则a ≥2满足题意.②若A ≠∅,则需满足⎩⎪⎨⎪⎧ 2a -2<a ,2a -2≥1,a ≤2,解得32≤a <2,综上所述a ≥32.拓展提升 利用补集求参数问题的方法(1)解答本题的关键是利用A ∁R B ,对A =∅与A ≠∅进行分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.(3)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行集合的交、并、补运算时,常借助数轴求解.【跟踪训练3】 已知集合A ={x |x <a },B ={x |1<x <3}.(1)若A ∪(∁R B )=R ,求实数a 的取值范围;(2)若A ∁R B ,求实数a 的取值范围.解 (1)∵B ={x |1<x <3},∴∁R B ={x |x ≤1或x ≥3},因而要使A ∪(∁R B )=R ,结合数轴分析(如图),可得a ≥3.(2)∵A ={x |x <a },∁R B ={x |x ≤1或x ≥3}.要使A ∁R B ,结合数轴分析(如图),可得a ≤1.探究4 补集思想的应用——正难则反例4 若集合A ={x |ax 2+3x +2=0}中至多有1个元素,求实数a 的取值范围.解 假设集合A 中含有2个元素,即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧ a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则此时实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪ a <98且a ≠0.在全集U =R 中,集合⎩⎨⎧⎭⎬⎫a ⎪⎪⎪ a <98且a ≠0的补集是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪ a ≥98或a =0 .所以满足题意的实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≥98或a =0. 拓展提升运用补集思想解题的方法当从正面考虑情况较多,问题较复杂的时候,往往考虑运用补集思想.其解题步骤为:(1)否定已知条件,考虑反面问题;(2)求解反面问题对应的参数范围;(3)取反面问题对应的参数范围的补集.【跟踪训练4】 已知集合A ={y |y >a 2+1或y <a },B ={y |2≤y ≤4},若A ∩B ≠∅,求实数a 的取值范围.解 因为A ={y |y >a 2+1或y <a },B ={y |2≤y ≤4},我们不妨先考虑当A ∩B =∅时a 的取值范围,在数轴上表示集合A ,B ,如图所示.由⎩⎨⎧ a ≤2,a 2+1≥4,得⎩⎨⎧ a ≤2,a ≥3或a ≤-3,故a ≤-3或3≤a ≤2.即A ∩B =∅时,a 的取值范围为a ≤-3或3≤a ≤2,故A ∩B ≠∅时,a 的取值范围为a >2或-3<a < 3.1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z 就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A 的补集的前提是A 是全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A 的数学意义包括两个方面:首先必须具备A ⊆U ;其次是定义∁U A ={x |x ∈U ,且x ∉A },补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U ,求子集A ,若直接求A 困难,可先求∁U A ,再由∁U (∁U A )=A 求A .1.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}答案D解析由题,知A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=()A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}答案C解析由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁A)∩(∁U B)=()UA.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}答案C解析∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.4.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A )∪(∁U B )=________.答案 {1,2,3,6,7}解析 由题可得∁U A ={1,3,6},∁U B ={1,2,6,7},∴(∁U A )∪(∁U B )={1,2,3,6,7}.5.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,求实数m 的值.解 A ={-1,2},B ∩(∁U A )=∅等价于B ⊆A .当m =0时,B =∅⊆A ;当m ≠0时,B =⎩⎨⎧⎭⎬⎫-1m . ∴-1m =-1或-1m =2,即m =1或m =-12.综上,m 的值为0,1,-12.A 级:基础巩固练一、选择题1.设集合U ={1,2,3,4},A ={1,2},B ={2,4},则∁U (A ∪B )=( )A .{2}B .{3}C .{1,2,4}D .{1,4}答案 B解析 集合U ={1,2,3,4},A ={1,2},B ={2,4},则∁U (A ∪B )={3},故选B.2.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥3},则下图中阴影部分所表示的集合为( )A.{1} B.{1,2}C.{1,2,3} D.{0,1,2}答案B解析由题意得A∩B={3,4,5},阴影部分所表示的集合为集合A去掉集合A∩B中的元素所组成的集合,所以为{1,2}.3.M={x|x<-2或x>2},N={x|x≤m},若(∁R M)∩N≠∅,则实数m的取值范围为()A.m<2 B.m≥-2C.m>-1 D.-2≤m≤2答案B解析∁R M={x|-2≤x≤2},再利用数轴来解决(∁R M)∩N≠∅时m的取值范围,易知m≥-2.4.下列四个命题中,设U为全集,则不正确的命题是()A.若A∩B=∅,则(∁U A)∪(∁U B)=UB.若A∪B=∅,则A=B=∅C.若A∪B=U,则(∁U A)∩(∁U B)=∅D.若A∩B=∅,则A=B=∅答案D解析由图易知,A正确;由A∪B=∅,得A=B=∅,B正确;由Venn图易知C正确.故选D.5.已知U=R,A={x|x>0},B={x|x≤-1},则(A∩∁U B)∪(B∩∁U A)=()A.∅B.{x|x≤0}C.{x|x>-1} D.{x|x>0或x≤-1}答案D解析∵A∩∁U B={x|x>0},B∩∁U A={x|x≤-1},∴(A∩∁U B)∪(B∩∁U A)={x|x>0或x≤-1}.二、填空题6.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.答案{7,9}解析∵U={n∈N|1≤n≤10}={1,2,3,4,5,6,7,8,9,10},A={1,2,3,5,8},∴∁U A={4,6,7,9,10},又∵B={1,3,5,7,9},∴(∁U A)∩B={7,9}.7.已知集合A={1,3,x},B={1,x2},若B∪(∁U B)=A,则∁U B =________.答案{-3}或{3}或{3}解析因为B∪(∁U B)=A,所以A=U.①当x2=3时,x=±3,B={1,3},∁U B={3}或{-3}.②当x2=x时,x=0或1.当x=0时,B={0,1},∁U B={3};而当x=1时不合题意,舍去.8.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.答案12解析设两项运动都喜欢的人数为x,画出Venn图得到方程15-x+x+10-x+8=30⇒x=3,所以喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).三、解答题9.已知集合A={x|-4≤x≤-2},集合B={x|x+3≥0}.求:(1)A∩B;(2)A∪B;(3)∁R(A∩B).解由已知得B={x|x≥-3},(1)A∩B={x|-3≤x≤-2}.(2)A∪B={x|x≥-4}.(3)∁R(A∩B)={x|x<-3或x>-2}.B级:能力提升练10.已知集合M={x∈N*|1≤x≤15},集合A1,A2,A3满足:①每个集合都恰有5个元素;②A1∪A2∪A3=M.集合A i中元素的最大值与最小值之和称为集合A i的特征数,记为X i(i=1,2,3),求X1+X2+X3的最小值和最大值.解∵集合A1,A2,A3满足:①每个集合都恰有5个元素;②A1∪A2∪A3=M,∴A1,A2,A3中一定各包含五个数值.当X1+X2+X3取得最小值时,集合A1,A2,A3中的最小值分别是1,2,3,最大值是15,11,7,和最小,如:A1={1,12,13,14,15},A2={2,8,9,10,11},A3={3,4,5,6,7}时,X1+X2+X3最小,最小值为39,当集合A1,A2,A3中的最小值分别是1,5,9,最大值是15,14,13时,和最大,如:当A1={1,2,3,4,15},A2={5,6,7,8,14},A3={9,10,11,12,13}时,X1+X2+X3最大,最大值为57.。

1.3 第2课时 补集及其应用课件ppt

1.3 第2课时 补集及其应用课件ppt

A∩B,A∪B,(∁UA)∩(∁UB),A∩(∁UB),(∁UA)∪B.
解 (方法1)直接法
由已知易求得
A∩B={4},A∪B={3,4,5,7,8},∁UA={1,2,6,7,8},∁UB={1,2,3,5,6},
则(∁UA)∩(∁UB)={1,2,6},A∩(∁UB)={3,5},(∁UA)∪B={1,2,4,6,7,8}.
A.
探究二
交集、并集与补集的混合运算
例2(2021浙江宁波高一期末)集合U={1,2,3,4,5},S={1,4,5},T={2,3,4},则
S∩(∁UT)=(
)
A.{1,5}
B.{1}
C.{1,4,5}D.{12,3,4,5}答案 A
解析 由集合U={1,2,3,4,5},S={1,4,5},T={2,3,4}可知
是直角的菱形}.
(2)解 ①把集合S和A表示在数轴上,如图所示,
由图知∁SA={x|x<-1,或x≥1}.
②把集合S和A表示在数轴上,如图所示,
由图知∁SA={x|x<-1,或1≤x≤2}.
③把集合S和A表示在数轴上,如图所示,
由图知∁SA={x|-4≤x<-1,或x=1}.
反思感悟 求集合的补集的方法
答案 C
解析 已知全集U={1,2,3,4},集合A={1,2,3},B={2,3,4},∴A∩B={2,3},因
此,∁U(A∩B)={1,4}.故选C.
3.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合
∁U(A∪B)中元素的个数为
.
答案 2
【规范答题】
解 (方法1)因为A∩B={4,5},(∁SB)∩A={1,2,3},所以

1.1.3 集合的基本运算 补集教案

1.1.3 集合的基本运算 补集教案

1.1.3 集合的基本运算第二课时 补集及综合应用一、全集的定义及表示1、定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.2、符号表示:全集通常记作U.3、对全集概念的理解“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R 看作全集,而当我们在整数范围内研究问题时,就把整数集Z 看作全集.二、补集1、定义:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对全集U 的补集,简称为集合A 的补集,记作——A U C2、符号语言:AU C ={x| x ∈U ,且x ∉A}3、图形语言:4、性质:(1)A U C ⊆U ;(2)U U C =∅,φU C =U ;(3)()AU C U C =A ;(4)A ∪(A U C )=U ;A ∩(A U C )=∅ 5、理解补集应关注三点(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A 的补集的前提是A 是全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(2)∁U A 包含三层意思:①A ⊆U ;②∁U A 是一个集合,且∁U A ⊆U ;③∁U A 是由U 中所有不属于A 的元素构成的集合.(3)若x ∈U ,则x ∈A 或x ∈∁U A ,二者必居其一.题型一、补集的运算[例1] (1)设全集U =R ,集合A ={x |2<x ≤5},则∁U A =________.(2)设U ={x |-5≤x <-2,或2<x ≤5,x ∈Z},A ={x |x 2-2x -15=0},B ={-3,3,4},则∁U A=________,∁U B =________.[解析] (1)用数轴表示集合A 为图中阴影部分∴∁U A ={x |x ≤2或x >5}.(2)法一:在集合U 中,∵x ∈Z ,则x 的值为-5,-4,-3,3,4,5,∴U ={-5,-4,-3,3,4,5}.又A ={x |x 2-2x -15=0}={-3,5},∴∁U A={-5,-4,3,4},∁U B={-5,-4,5}.[活学活用]设全集U={1,3,5,7,9},A={1,|a-5|,9),∁U A={5,7},则a的值为________.解析:∵A={1,|a-5|,9},∁U A={5,7},A∪(∁U A)={1,5,7,9,|a-5|}=U,∴|a-5|=3.解得a-5=±3,即a=8或a=2.题型二、集合的交、并、补的综合运算[例2]已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁A)U∪B,A∩(∁U B),∁U(A∪B).[解]如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3}.∁U(A∪B)={x|x<-3,或3≤x≤4}.[活学活用]已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求∁U(A∪B),∁U(A∩B),(∁U A)∩(∁B),(∁U A)∪(∁U B).U解:∵A∪B={1,2,3,4,5,8},U={1,2,3,4,5,6,7,8,9},∴∁U(A∪B)={6,7,9}.∵A∩B={5,8},∴∁U(A∩B)={1,2,3,4,6,7,9}.∵∁U A={1,3,6,7,9},∁U B={2,4,6,7,9}.∴(∁U A)∩(∁U B)={6,7,9},(∁U A)∪(∁U B)={1,2,3,4,6,7,9}.作出Venn图,如图所示,由图形也可以直接观察出来结果.题型三、补集的综合应用[例3]设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M∁P,求实数a的取U值范围.[解]∁P={x|x<-2,或x>1},∵M∁U P,U∴分M=∅,M≠∅两种情况讨论.(1)M ≠∅时,如图可得⎩⎪⎨⎪⎧ 3a <2a +5,2a +5≤-2或⎩⎪⎨⎪⎧3a <2a +5,3a ≥1. ∴a ≤-72或13≤a <5. (2)M =∅时,应有3a ≥2a +5⇒a ≥5.综上可知,a ≥13或a ≤-72. [活学活用]1、已知集合A ={x |x <a },B ={x <-1,或x >0},若A ∩(∁R B )=∅,求实数a 的取值范围.解:∵B ={x |x <-1,或x >0},∴∁R B ={x |-1≤x ≤0},因而要使A ∩(∁R B )=∅,结合数轴分析(如图),可得a ≤-1.2、已知集合A ={x |2m -1<x <3m +2},B ={x |x ≤-2,或x ≥5},是否存在实数m ,使A ∩B ≠∅?若存在,求实数m 的取值范围;若不存在,请说明理由.解:若A ∩B =∅,分A =∅和A ≠∅讨论:(1)若A =∅,则2m -1≥3m +2,解得m ≤-3,此时A ∩B =∅.(2)若A ≠∅,要使A ∩B =∅,则应有⎩⎪⎨⎪⎧ 2m -1<3m +2,2m -1≥-2,3m +2≤5,即⎩⎪⎨⎪⎧ m >-3,m ≥-12,m ≤1.所以-12≤m ≤1. 综上,当A ∩B =∅时,m ≤-3或-12≤m ≤1. 所以当m >1或-3<m <-12时,A ∩B ≠∅. 课堂练习1.已知U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={2,4,5},则∁U(A ∪B)=( )A .{6,8}B .{5,7}C .{4,6,7}D .{1,3,5,6,8}解析:A ∪B ={1,2,3,4,5,7},则∁U(A ∪B)={6,8},选A.答案:A2.已知全集U =R ,集合A ={x|-2≤x ≤3},B ={x|x <-1,或x>4},那么集合A ∩(∁UB)等于 ( )A .{x|-2≤x <4}B .{x|x ≤3,或x ≥4}C .{x|-2≤x <-1}D .{x|-1≤x ≤3}解析:由题意可得,∁UB={x|-1≤x≤4},A={x|-2≤x≤3},所以A∩(∁UB)={x|-1≤x ≤3}.答案:D3.已知集合A={3,4,m},集合B={3,4},若∁AB={5},则实数m=________.解析:∵∁AB={5},∴5∈A,且5∉B.∴m=5.答案:54.已知全集U=R,M={x|-1<x<1},∁UN={x|0<x<2},那么集合M∪N=________.解析:∵U=R,∁UN={x|0<x<2},∴N={x|x≤0或x≥2}∴M∪N={x|-1<x<1}∪{x|x≤0或x≥2}={x|x<1或x≥2}.5.设U=R,已知集合A={x|-5<x<5},B={x|0≤x<7},求(1)A∩B;(2)A∪B;(3)A∪(∁UB);(4)B∩(∁UA);(5)(∁UA)∩(∁UB).解:如图(1).(1)A∩B={x|0≤x<5}.(2)A∪B={x|-5<x<7}.(3)如图(2).∁U B={x|x<0,或x≥7},∴A∪(∁U B)={x|x<5,或x≥7}.(4)如图(3).(3)∁U A={x|x≤-5,或x≥5},B∩(∁U A)={x|5≤x<7}.课时跟踪检测(五) 补集及综合应用一、选择题1.设全集U={1,2,3,4,5},A={1,3,5},B={2,4,5},则(∁U A)∩(∁U B)=( ) A.∅B.{4}C.{1,5} D.{2,5}2.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为( )A.3 B.4C.5 D.63.已知三个集合U,A,B及集合间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}4.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C)) B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B) D.(∁U(A∩C))∪B5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为( )A.1 B.2C.3 D.4二、填空题6.设全集U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________7.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是________.8.全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合C={x|-1<x<2}=________(用A、B或其补集表示).三、解答题9.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.10.已知全集U={不大于20的素数},M,N为U的两个子集,且满足M∩(∁U N)={3,5},(∁U M)∩N={7,19},(∁U M)∩(∁U N)={2,17},求M,N.答案课时跟踪检测(五)1.选A ∵∁U A={2,4},∁U B={1,3},∴(∁U A)∩(∁U B)=∅,故选A.2.选B 因U=R,A={x|0<x<9},又因B={x∈Z|-4<x<4},所以∁U A={x|x≤0或x≥9},所以(∁U A)∩B={x∈Z|-4<x≤0}={-3,-2,-1,0}共4个元素.3.选C 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.4.选A 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)).故选A.5.选B A={1,2},B={x|x=2a,a∈A}={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5},故选B.6.解析:∵U=R,B={x|x>1},∴∁U B={x|x≤1}.又∵A={x|x>0},∴A∩(∁U B)={x|x>0}∩{x|x≤1}={x|0<x≤1}.答案:{x|0<x≤1}7.解析:∵B={x|1<x<2},∴∁R B={x|x≤1或x≥2}.又∵A∪(∁R B)=R,A={x|x<a}.观察∁R B与A在数轴上表示的区间,如图所示:可得当a≥2时,A∪(∁R B)=R.答案:{a|a≥2}8.解析:如图所示,由图可知C⊆∁U A,且C⊆B,∴C=B∩(∁U A).答案:B∩(∁U A)9.解:(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.10.解:法一:U={2,3,5,7,11,13,17,19},如图,∴M={3,5,11,13},N={7,11,13,19}.法二:∵M∩(∁U N)={3,5},∴3∈M,5∈M且3∉N,5∉N.又∵(∁U M)∩N={7,19},∴7∈N,19∈N且7∉M,19∉M.又∵(∁U M)∩(∁U N)={2,17},∴∁U(M∪N)={2,17},∴M={3,5,11,13},N={7,11,13,19}.。

高中数学《补集及集合运算的综合应用》课件

高中数学《补集及集合运算的综合应用》课件

A.{x∈R|0<x<2} B.{x∈R|0≤x<2}
C.{x∈R|0<x≤2} D.{x∈R|0≤x≤2}
17
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
解析 (1)因为集合 U={1,2,3,4,5,6},M={1,3,5},所 以∁UM={2,4,6}.
(2)借助数轴(如图)易得∁UA={x∈R|0<x≤2}.
18
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
探究2 交、并、补集的综合运算 例 2 已知全集 U={x|x≤4},集合 A={x|-2<x<3},B ={x|-3<x≤3}.求∁UA,A∩B,∁U(A∩B),(∁UA)∩B.
16
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
【跟踪训练 1】 (1)设集合 U={1,2,3,4,5,6},M=
{1,3,5},则∁UM=( )
A.{2,4,6}
B.{1,3,5}
C.{1,2,4}
D.U
(2)若全集 U={x∈R|-2≤x≤2},则集合 A={x∈R|-
2≤x≤0}的补集∁UA 为( )
6
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
2.做一做
(1)( 教 材 改 编 P11T4) 设 集 合 U = {1,2,3,4,5,6} , M =
{1,2,4},则∁UM 等于( )
A.U
B.{1,3,5}
C.{3,5,6} D.{2,4,6}

最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集

最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集
第一章 集合与常用逻辑用语
1.3 集合的基本运算
第2课时 补集及综合运算
学习目标 1.理解在给定集合中一个子集的补集的含义,会求给 定子集的补集 2.能运用Venn图表达补集运算
素养要求 数学运算 直观想象
|自学导引|
补集的概念
1.全集
(1)定义:如果一个集合含有我们所研究问题中涉及的_所__有__元__素_,那么就称这个集合为全集.
|素养达成|
1.补集定义的理解(体现了数学运算的核心素养).
(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如,当研 究数的运算性质时,我们常常将实数集R当做全集.
(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,还是一种数学思想. (3)从符号角度来看,若x∈U,A U,则x∈A和x∈∁UA二者必居其一.
U (2)记法:全集通常记作________.
2.补集
对于一个集合 A,由全集 U 中_不__属__于__集__合__A___的所有元素组成 文字语言 的集合称为集合 A 相对于全集 U 的补集,记作___∁_U_A___
符号语言
∁UA=_{_x_|x_∈__U__且__x_∉_A_}__
图形语言
A.{1,4}
B.{1}
C.{4}
D.∅
【答案】A
【解析】∁UA={0,1,4},B∩(∁UA)={1,4}.故选A.
2.(题型2)已知集合A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=
A.{-2,-1}
B.{-2}
()
C.{-1,0,1}
D.{0,1}
【答案】A
5.(题型2)已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁UA,∁UB, (∁UA)∩(∁UB).

高中数学 第一章 集合与函数概念 1.1.3 集合的基本运算 第2课时 全集、补集及综合应用课件 新

高中数学 第一章 集合与函数概念 1.1.3 集合的基本运算 第2课时 全集、补集及综合应用课件 新

B.{x|x≤1}
C.{x|0≤x≤1}
D.{x|0<x<1}
(2)设集合 U={1,2,3,4,5},A={2,4},B={3,4,
5},C={3,4},则(A∪B)∩(∁UC)=_{_2_,__5_}__.
解析:(1)因为 A={x|x≤0},B={x|x≥1},所以 A∪B={x|x≤0 或 x≥1},在数轴上表示如图.
(1)数集问题的全集一定是 R.(× )
(2)集合∁BC 与∁AC 相等.( × )
(3)A∩∁UA=∅.( √ )
2.若合集 M={1,2,3,4,5},N={2,4},则∁MN=( B )
A.∅
B.{1,3,5}
C.{2,4}
D.{1,2,3,4,5}
3.已知全集 U=R,集合 P={x|-1≤x≤1},那么∁UP=( D ) A.{x|x<-1} B.{x|x>1} C.{x|-1<x<1} D.{x|x<-1 或 x>1} 解析:因为 P={x|-1≤x≤1},U=R,所以∁UP=∁RP={x|x <-1 或 x>1}.
2.补集 对于一个集合 A,由全集 U 中不属于集合 A
文字 的__所__有__元__素____组成的集合称为集合 A 相对
语言 于全集 U 的补集,记作___∁_U_A__
符号 语言
∁UA=___{_x_|x_∈__U__,__且__x_∉_A_}__
图形 语言
1.判断(正确的打“√”,错误的打“×”)
(2)已知全集 U={x|x≤4},集合 A={x|-2<x<3},B={x|-
3≤x≤2},求 A∩B,(∁UA)∪B,A∩(∁UB).
[解] (1)因为∁UA={2,4,6,7,9},∁UB={0,1,3,7, 9},所以(∁UA)∩(∁UB)={7,9}.

推荐-高中数学(人教版A版必修一)配套课件第一章 集合与函数的概念 第一章 1.1.3 第2课时

推荐-高中数学(人教版A版必修一)配套课件第一章 集合与函数的概念 第一章 1.1.3 第2课时

(2)若B={x|2a<x<a+3},且B⊆∁UA,求a的取值范围. 解 若2a≥a+3,即a≥3,则B=∅⊆∁UA. 若2a<a+3,即a<3,要使B⊆∁UA, 需a2<a≥3,0, 解得 0≤a<3.
综上,a的取与感 悟
答案
规律与方法
1.全集与补集的互相依存关系 (1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而 言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究 整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研 究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子 集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互 相依存、不可分割的两个概念.
A.U
B.{1,3,5}
C.{3,5,6}
D.{2,4,6}
答案
1 23 45
2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于
(D )
A.{1,3,4}
B.{3,4}
C.{3}
D.{4}
答案
1 23 45
3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁RS)∪T等于( C ) A.{x|-2<x≤1} B.{x|x≤-4} C.{x|x≤1} D.{x|x≥1}
解析 A∩B={x|1<x≤2},A∪B={x|x≥0}, 由图可得A*B=∁A∪B(A∩B)={x|0≤x≤1或x>2}.
解析答案
类型三 集合的综合运算 例 3 设全集 U=R,A={x|1x<0}. (1)求∁UA; 解 A={x|1x<0}={x|x<0}, ∴∁UA={x|x≥0}.

补集及集合运算的综合应用

补集及集合运算的综合应用

第一章集合与函数概念1.1 集合1.1.3 集合的基本运算第2课时补集及集合运算的综合应用A级基础巩固一、选择题1.(2016·全国Ⅲ卷)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}解析:因为集合A={0,2,4,6,8,10},B={4,8},所以∁A B={0,2,6,10}.答案:C2.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2} B.{4,6}C.{1,3,5} D.{4,6,7,8}解析:由题图可知阴影部分表示的集合为(∁U A)∩B,由题意知∁U A ={4,6,7,8},所以(∁U A)∩B={4,6}.故选B.答案:B3.(2016·浙江卷)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}解析:因为∁U P={2,4,6},又Q={1,2,4},所以(∁U P)∪Q={1,2,4,6},故选C.答案:C4.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{ x | x≤-4}C.{ x | x≤1} D.{ x | x≥1}解析:因为S={x| x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.答案:C5.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是()A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)解析:因为A∪B={1,3,4,5,6},故∁U(A∪B)={2,7}.答案:D二、填空题6.设集合U ={1,2,3,4,5},A ={1,2,3},B ={3,4,5},则∁U (A ∩B )=________.解析:因为A ={1,2,3},B ={3,4,5},所以A ∩B ={3},故∁U (A ∩B )={1,2,4,5}.答案:{1,2,4,5}7.已知全集U ={1,2,3,4,5},A ={1,2,3},那么∁U A 的子集个数有________个.解析:∁U A ={4,5},子集有∅,{4},{5},{4,5},共4个. 答案:48.设U =R ,已知集合A ={x |x >1},B ={x |x >a },且(∁U A )∪B =R ,则实数a 的取值范围是________.解析:因为A ={x |x >1},所以∁U A ={x |x ≤1}.由B ={x |x >a },(∁U A )∪B =R 可知,a ≤1.答案:a ≤1三、解答题9.设全集是数集U ={2,3,a 2+2a -3},已知A ={b ,2},∁U A ={5},求实数a ,b 的值.解:因为∁U A ={5},所以5∈U 且5∉A .又b ∈A ,所以b ∈U ,由此得⎩⎨⎧a 2+2a -3=5,b =3,解得⎩⎨⎧a =2,b =3或⎩⎨⎧a =-4,b =3.经检验都符合题意.10.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.解:(1)因为A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|2<x<10}.因为A={x|3≤x<7},所以∁R A={x|x<3或x≥7},所以(∁R A)∩B={x|x<3或x≥7}∩{x|2<x<10}={x|2<x<3或7≤x<10}.(2)如图所示,当a>3时,A∩C≠∅.B级能力提升1.设全集U是实数集R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1} B.{x|-2≤x≤3}C.{x|x≤2,或x>3} D.{x|-2≤x≤2}解析:阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.故选A.答案:A2.已知集合A ={0,2,4,6},∁U A ={-1,1,-3,3},∁U B ={-1,0,2},则集合B =______________.解析:∵∁U A ={-1,1,-3,3},∴U ={-1,1,0,2,4,6,-3,3},又∁U B ={-1,0,2},∴B ={1,4,6,-3,3}.答案:{1,4,6,-3,3}3.已知集合A ={x |x 2-4mx +2m +6=0,x ∈R},B ={x |x <0,x ∈R},若A ∩B ≠∅,求实数m 的取值范围.解:设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}=⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m ≤-1或m ≥32. 若A ∩B =∅,则方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧m ∈U ,x 1+x 2=4m ≥0,解得m ≥32.x 1x 2=2m +6≥0,因为M =⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m ≥32关于U 的补集为∁U M ={m |m ≤-1}, 所以若A ∩B ≠∅,实数m 的取值范围为m ≤-1.。

高中数学第一章集合与函数概念1.1.3集合的基本运算第二课时补集及综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1.3集合的基本运算第二课时补集及综合应用课件新人教A版必修1

知识探究
1.全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集.通常记作 U .
2.补集
自然语言 符号语言
不属于集合A
对于一个集合A,由全集U中
的所有
元∁素UA 组{x成|.x的∈集U,合且称x∉为A}集合A相对于全集U的补集,记作
∁UA=
.
图形语言
探究:若集合A是全集U的子集,x∈U,则x与集合A的关系有几种? 答案:若x∈U,则x∈A或x∈∁UA,二者必居其一. 【拓展延伸】 德·摩根定律 设集合U为全集,集合A,B是集合U的子集. (1)如图(1),∁U(A∩B)=(∁UA)∪(∁UB);
误区警示 (1)利用数轴求集合的交、并、补集运算时需注意点的虚实情况 的变化. (2)通过改变原不等式的不等号方向取补集时,要防止漏解.如 A={x| 1 <0},
x
∁RA≠{x| 1 ≥0}={x|x>0}.应先求出 A={x|x<0},再求∁RA={x|x≥0}. x
即时训练2-1:(1)设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁U A)

B={2}时,
a 5
1 a
2, 2,
解得 a=3,综上所述,所求 a 的取值范围为{a|a≥3}.
题型四 易错辨析——概念认识不到位致误
【例4】 设全集U={2,3,a2+2a-3},A={|2a-1|,2},∁UA={5},求实数a的值.
错解:因为∁UA={5}, 所以5∈U,且5∉A, 所以a2+2a-3=5,且|2a-1|≠5, 解得a=2或a=-4. 故实数a的值为2或-4. 纠错:以上求解过程忽略了验证“A⊆U”这一隐含条件.

《 1.1.3 补集及综合应用》优秀教案

《 1.1.3  补集及综合应用》优秀教案

第2课时补集及综合应用1.了解全集的含义及其符号表示.易混点2.理解给定集合中一个子集的补集的含义,并会求给定子集的补集.重点、难点3.会用Venn图、数轴进行集合的运算.重点[基础·初探]教材整理补集阅读教材={∈U|2-5+={2,3},则实数={2,3},得M={1,4},即1和4是方程2-5+=0的两个解,则实数=1×4=42易知A={-3,-2,-1,0,1,2,3},所以∁A B={-3,-1,0,2}.【答案】1B2{-3,-1,0,2}集合并、交、补集的综合运算1已知全集图1-1-2A.{0,1,2} B.{0,1}C.{1,2} D.{1}2已知集合A={|≥-2},集合B={|-2≤≤2},则集合∁R B∩A=________【精彩点拨】1由图观察阴影部分所代表的集合,然后求解;2先求∁R B,借助于数轴求解.【自主解答】1由题意,阴影部分表示A∩∁U B.因为∁U B={|2},∁R B∩A={|>2}.【答案】1C2{|>2}1.集合的交、并、补运算是同级运算,因此在进行集合的混合运算时,有括号的先算括号内的,然后按照从左到右的顺序进行计算.2.当集合是用列举法表示时,如数集,可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助数轴求解.[再练一题]2.已知全集U={|1≤≤8且∈N*},集合A={1,2,5,7},B={2,4,6,7},求A∩B,∁U A∪B,A∩∁U B.【导学号:】【解】因为集合A={1,2,5,7},B={2,4,6,7},所以A∩B={2,7},因为全集U={|1≤≤8且∈N*},则∁U A={3,4,6,8},∁U B={1,3,5,8},所以∁U A∪B={2,3,4,6,7,8},A∩∁U B={1,5}.[探究共研型]根据补集的运算求参数的值或范围探究1U【提示】如果“a∈∁U B”,那么a∉B探究2若A≠∅,且A⊆∁U B,则集合A,B满足什么条件?【提示】若A⊆∁U B且A≠∅,则A∩B=∅1已知集合A={|2+a+12b=0}和B={|2-a+b=0},满足B∩∁U A={2},A∩∁U B={4},U =R,求实数a,b的值;2已知集合A={|2a-22a2a2a-1,则a2a2a-1}.由于A⊆∁U B,如图,则a+1>5,∴a>4∴实数a的取值范围为{a|a4}.1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A=A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅【解析】∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5}.【答案】B2.设全集U=R,集合A={|10},B={-2,-1,0,1},则∁R A∩B=A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【解析】因为集合A={|>-1},所以∁R A={|≤-1},则∁R A∩B={|≤-1}∩{-2,-1,0,1}={-2,-1}.【答案】 A4.已知全集U={|1≤≤5},A={|1≤<a},若∁U A={|2≤≤5},则a=________【解析】∵A={|1≤<a},∁U A={|2≤≤5},∴A∪∁U A=U={|1≤≤5},且A∩∁U A=∅,∴a=2【答案】 25.已知U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求A∩B,A∪B,∁U A∩∁U B,A∩∁U B,∁U A∪B【导学号:】【解】法一由已知易求得A∩B={4},A∪B={3,4,5,7,8},∁U A={1,2,6,7,8},∁U B={1,2,3,5,6},∴∁U A∩∁U B={1,2,6},A∩∁U B={3,5},∁U A∪B={1,2,4,6,7,8}.法二画出Venn图,如图所示,可得A∩B={4},A∪B={3,4,5,7,8},∁U A∩∁U B={1,2,6},A∩∁U B={3,5},∁U A∪B={1,2,4,6,7,8}.。

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

2.已知集合A={x|x<a},B={x|x<-1,或x> 0},若A∩(∁RB)=∅,求实数a的取值范围.
解:∵B={x|x<-1,或x>0},
∴∁RB={x|-1≤x≤0}. 因而要使A∩(∁RB)=∅,结合数轴分析(如下图), 可得a≤-1.
1.全集与补集的互相依存关系 (1)全集并非是包罗万象,含有任何元素的集合,它是对于 研究问题而言的一个相对概念,它仅含有所研究问题中涉及的 所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是 A是全集U的子集,随着所选全集的不同,得到的补集也是不 同的,因此,它们是互相依存、不可分割的两个概念.
解:∁RB={x|x≤1 或 x≥2}≠∅. ∵A ∁RB,∴分 A=∅和 A≠∅两种情况讨论. (1)若 A=∅,此时有 2a-2≥a,∴a≥2; (2)若 A≠∅,则有2aa≤-1,2<a, 或22aa- -22<≥a2,, ∴a≤1. 综上所述,a≤1 或 a≥2.
解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅进行分类 讨论,转化为等价不等式(组)求解,同时要注意区域端点的问 题.
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
25
谢谢欣赏!
求集合补集的基本方法及处理技巧
(1)基本方法:定义法.
(2)两种处理技巧:
①当集合用列举法表示时,直接套用定义或借助 Venn图求解.

必修一 1.1.3集合的基本运算 课时2补集及综合应用

必修一 1.1.3集合的基本运算 课时2补集及综合应用

必修一 1.1.3集合的基本运算课时2补集及综合应用一、选择题1、已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}2、已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是( )A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)3、如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是( )A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S4、设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是( )实用文档A.A=∁U P B.A=PC.A P D.A P5、设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于( )A.{2} B.{2,3}C.{3} D.{1,3}6、已知全集U=R,集合M={x|x2-4≤0},则∁U M等于( )A.{x|-2<x<2} B.{x|-2≤x≤2}C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}7、已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}二、填空题8、已知全集U,A B,则∁U A与∁U B的关系是____________________.实用文档9、设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.10、设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.三、解答题11、学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?12、已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.13、设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.实用文档以下是答案一、选择题1、D [借助于Venn图解,因为A∩B={3},所以3∈A,又因为(∁U B)∩A={9},所以9∈A,所以选D.]2、D [由A∪B={1,3,4,5,6},得∁U(A∪B)={2,7},故选D.]3、C [依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]4、B [由A=∁U B,得∁U A=B.又∵B=∁U P,∴∁U P=∁U A.即P=A,故选B.]5、D [由B={2,5},知∁U B={1,3,4}.实用文档A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]6、C [∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.]7、D [在集合U中,去掉1,5,7,剩下的元素构成∁U A.]二、填空题8、∁U B∁U A解析画Venn图,观察可知∁U B∁U A.9、{0,1,3,5,7,8} {7,8} {0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.10、-3解析∵∁U A={1,2},∴A={0,3},故m=-3.实用文档实用文档三、解答题11、解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .根据题意有⎩⎪⎨⎪⎧ a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.12、解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3}; 当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;实用文档 当x =0时,A ={1,3,0},B ={1,0}, U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}.13、解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧ a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧ a =-4,b =3经检验都符合题意.。

【新教材】2021学年高中数学人教B版必修第一册课件:1.1.3+第2课时+补集及其应用

【新教材】2021学年高中数学人教B版必修第一册课件:1.1.3+第2课时+补集及其应用

解析:(1)因为U={0,1,2,3}且∁UA={2},所以A={0,1,3},所以集合 A的真子集共有7个.
(2)借助数轴得∁UA={-3}∪(4,+∞).
类型 二
典例剖析
交集、并集、补集的综合运算
典例 2 (1)已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-
3<x≤3},求∁UA,A∩B,∁U(A∩B),(∁UA)∩B. (2)全集U={x|x<10,x∈N+},A⊆U,B⊆U,(∁UB)∩A={1,9},A∩B
解析:因为A={y|y>a2+1或y<a},B={y|2≤y≤4}, 我们不妨先考虑当A∩B=∅时a的取值范围, 在数轴上表示集合A,B,如图所示.
由aa≤2+21,≥4,
a≤2, 得a≥ 3或a≤-
3.
故 a≤- 3或 3≤a≤2,
即 A∩B=∅时,a 的取值范围为{a|a≤- 3或 3≤a≤2},
故 A∩B≠∅时,a 的取值范围为{a|a>2 或- 3<a< 3}.
易混易错警示
典例剖析
忽视全集
典例 5 已知集合A={x|x2-4mx+1=0,x∈R},B=(-∞,0),若 A∩B≠∅,求实数m的取值范围.
错因探究:本题容易忽略全集的范围,误认为 U=R,从而得到错误 答案:实数 m 的取值范围是 m<12.
(2)方法一:根据题意作出维恩图如图所示. 由图可知A={1,3,9},B={2,3,5,8}. 方法二:∵(∁UB)∩A={1,9}, (∁UA)∩(∁UB)={4,6,7},∴∁UB={1,4,6,7,9}. 又U={1,2,3,4,5,6,7,8,9},∴B={2,3,5,8}. ∵(∁UB)∩A={1,9},A∩B={3}. ∴A={1,3,9}.

2019-2020年高中数学《集合-1.1.3集合的基本运算 全集、补集》说课稿2 新人教A版必修1

2019-2020年高中数学《集合-1.1.3集合的基本运算 全集、补集》说课稿2 新人教A版必修1

2019-2020年高中数学《集合-1.1.3集合的基本运算全集、补集》说课稿2 新人教A版必修1从容说课本课是集合的运算,要求我们带领学生从日常生活中的现象中抽取用数学符号表示实际问题,再拓宽到数学化的问题.从学生的认知背景出发,培养学生学会从感性到理性来研究问题、认知世界的意识.本课主要是建立概念,让学生初步认识全集、补集的概念及表示方法,并逐步读懂集合的语言.三维目标一、知识与技能1.了解全集的意义,理解补集的概念.2.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.3.掌握补集的求法.二、过程与方法1.自主学习,了解全集、补集来源于生活、服务于生活,又高于生活.2.通过对全集、补集概念的讲解,培养学生观察、比较、分析、概括等能力,使学生认识由具体到抽象的思维过程.3.探究数学符号化表示问题的简洁美.三、情感态度与价值观发展学生抽象、概括事物的能力,培养学生对立统一的观点.教学重点补集的概念.教学难点补集的有关运算.教具准备投影仪、打印好的材料.教学过程一、创设情景,引入新课师:事物都是相对的,集合中的部分元素与集合之间的关系就是部分与整体的关系.请同学们由下面的例子回答问题:【例】A={班上所有参加足球队同学},B={班上没有参加足球队同学},U={全班同学},那么U、A、B三集合关系如何?生:集合B就是集合U中除去集合A之后余下来的集合,即为如下图阴影部分.师:这里,集合U恰好含有集合A、B中的所有元素,这样的集合在数学领域里常起着举足轻重的作用.二、讲解新课1.全集在研究问题时,我们经常需要确定研究对象的范围.例如,从小学到初中,数的研究范围逐步地由自然数到正分数,再由有理数,引进无理数后,数的研究范围扩充到实数.在高中阶段,数的研究范围将进一步扩充.在不同范围研究同一个问题,可能有不同的结果.例如方程(x-2)(x2-3)=0的解集,在有理数范围内只有一个解2,即{x∈Q|(x-2)(x2-3)=0}={2};在实数范围内有三个解:2,,-,即{x∈R|(x-2)(x2-3)=0}={2,,-}.一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.有时虽然没有指明全集,但实际上全集是存在的,全集因所研究的问题而异.例如,在考虑正整数的因数分解时,我们把正整数集作为全集;在解不等式时,我们把实数集作为全集.多项式的因式分解,没有附加说明,通常把有理数集作为全集.在研究数集时,常常把实数集作为全集.在研究图形的集合时常常把所有的空间图形的集合作为全集.2.补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作U A,即U A={x|x∈U,且xA}.其图形表示如上图所示的Venn图.补集既是集合之间的一种关系,又是集合的一种运算,利用定义可直接求出已知集合的补集,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合是U中子集A 的补集.3.例题讲解【例1】教科书P12例8.可以让学生自己动手完成,还可以要求学生利用Venn图表示A与U A、B与U B.【例2】教科书P12例9.除教材给出的解法外,还可以让学生求U A、U B.这样,可以使学生更深刻地体会补集的含义.对于基础较好的学生,还可以结合Venn图导出如下的重要性质:(A∩B)=(U A)∪(U B);U(A∪B)=(U A)∩(U B).U【例3】设U={2,4,1-a},A={2,a2-a+2},若U A={-1},求a.方法引导:此题既要用到补集的知识得知-1在U中而不属于A,又要注意集合元素的互异性,防止U或A中元素重复.解法一:∵U A={-1},∴-1∈U.∴1-a=-1.∴a=2.代入A,得A={2,4}.∴a=2.解法二:令a2-a+2=4,得a=2或a=-1.把a=-1代入U,得1-a=2不满足U中元素的互异性.故a=2.方法技巧:根据条件确定集合中的参数的值时,列方程是关键.解出方程后对每一个参数的值都应加以验证,特别要对集合中元素的互异性加以验证.如果在集合中有多个元素都含有参数,还应按照对应关系进行分类讨论.【例4】已知全集U={x|x取不大于30的质数},A、B是U的两个子集,且A∩(U B)={5,13,23},(U A )∩B ={11,19,29},(U A )∩(U B )={3,7},求集合A 、B .方法引导:由于涉及的集合个数较多,信息较多,因此可以用Venn 图直观地求解.解:∵U ={2,3,5,7,11,13,17,19,23,29},用下图表示出A ∩(U B )、(U A )∩B 及(U A )∩(U B ),得U (A ∪B )={3,7}、A ∩B ={2,17}.5、13、232、1711、19、293、7UA B ∴A ={2,5,13,17,23},B ={2,11,17,19,29}.方法技巧:将题中的信息汇集到Venn 图中,使抽象的集合运算建立在直观的形象思维基础之上,能帮助我们深刻理解、记忆集合的概念、运算及其相互关系,为问题解决创设有益情景.本题可以考虑采用元素分析的手法,可不妨让学生一试.三、课堂练习1.教科书P 12练习题5.2.已知全集U ={0,1,2,3,4},A ={0,1,2,3},B ={2,3,4},则(U A )∪(U B )等于A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}3.已知全集U (U ≠)和子集M 、N 、P ,且M =U N ,N=U P ,则M 与P 的关系是A.M =U PB.M =PC.M PD.M P4.如下图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分表示的集合是A.(M ∩P )∩SC.(M ∩P )∩(U S )答案:1.A ∩(U B )={2,4},(U A )∩(U B )={6}.2.C3.B4.C四、课堂小结1.本节学习的数学知识:全集的意义、补集的定义、全集与补集的符号表示和图形表示,会求一个集合的补集.2.本节学习的数学方法:归纳、定义法、数形结合法、分类讨论.五、布置作业1.已知A ={正方形},当U ={菱形}时,U A =________;当U ={矩形}时,U A =________.2.教科书P 14习题1.1 A 组第11题.3.教科书P 14习题1.1 A 组第12题.4.教科书P 14习题1.1 B 组第4题.5.已知集合U ={1,2,3,4,5},若A ∪B =U ,A ∩B ≠,且A ∩(U B )={1,2},试写出满足上述条件的集合A 、B .板书设计1.1.3 集合的基本运算(2)——全集、补集全集例2补集课堂练习定义例3符号表示例4图示例1 课堂小结.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【变式练习】
已知全集U={1,2,3,4,5,6,7},A={2,4,5}, B={1,3,5,7}, 求 A∩( UB),( UA)∩( UB). 解:由题意可知, UA ={1,3,6,7} UB={2,4,6}, 则 A∩( =UB{)2,4},
( UA)∩( UB) 6.
【例题分析】
例2 已知全集U=R,集合 A {x | x 3} , B { x | 2 x 4 } , 求 ( U A) B .
一般地,如果一个集合含有我们所研究问题 中涉及的所有元素,那么就称这个集合为全集 (universe set),通常记作U.
【补集的概念】
探究点2 补集 观察下列三个集合: S={高一年级的同学} A={高一年级参加军训的同学} B={高一年级没有参加军训的同学} 这三个集合之间有何关系? 显然,由所有属于集合S但不属于集合A的元素 组成的集合就是集合B.
课堂训练
B={x|x是钝角三角形},求 A B, U (A B) .
解:(1)根据题意可知,U 1, 2,3, 4,5,6,7,8,
所以 U A 4,5,6,7,8, U B 1,2,7,8.
(2)根据三角形的分类可知 A B , A∪B={x|x是锐角三角形或钝角三角形},
U (A B) {x∣x是直角三角形}.
A
5,13,23
U
2, B
17 11,19,29
Venn图 的灵活 运用
3,7
【变式练习】
设全集U { x | x 7, x N },已知
( U A) B {1, 6}, A ( U B) {2,3},
U ( A B) {0, 5},求集合A,B.
解:U={1,2,3,4,5,6,7} A={2,3,4,7},B={1,4,6,7}.
1.研究补集必须是在全集的条件下研究 2.全集因研究问题不同而不同 3.补集和交集、并集一样,也是集合的 一种“运算”
【例题分析】
例1 (1) 设U={x|x是小于9的正整数},A={1,2,3},
B={3,4,5,6},求 U A, U B. (2)设全集U={x|x是三角形},A={x|x是锐角三角形},
或x 5},求A∪B.
解: 由数轴得:
A∪B ={x|x <4,或x 5}
【学习目标】
1.理解全集和补集的概念,会求给定子集的补集 (重点) 2.补集的性质 3.能使用Venn图表示集合的关系和运算. 4.能够解决交集、并集、补集的综合运算问题
(难点)
【全集的概念】
探究点1 全集 思考1:方程(x-2)(x2-3)=0在有理数范围内的解 是什么?在实数范围内的解是什么?
求A∩B, A∪B 解:B= {y |y=2x-1, }= {1,3,5} A∩B= {1,3} A∪B= {1,2,3,5}
2.设集合A={x |1<x<3},集合B ={x|2<x<4},
求A∩B. 解:由数轴得: A∩B ={x |2<x<3} 3.设集合A={x |2<x<4},集合B ={x|x <3,
1.1.3集合的基本运算
(补集)
【复习】
文字语言
符号语言 图形语言
集合的 并集
由所有属于集合 A∪B ={x|x∈A,
A _或___ 集合B的 或x∈B} 元素组成的集合
由所有属于集合
集合的 A _且___集合B的 交集 元素组成的集合
A∩B={x|x∈A, 且x∈B }
【复习】
1.已知集合A={1,2,3},B= {y|y=2x-1, }
解: U A x x 3,
( U A) B x 3 x 4.
【变式练习】
已知全集U=R,集合A={x|1≤2x+1<9}, 求 UA.
解:A x 0 x 4,
U A x x 0或x 4.
【补集运算性质】
若全集为U,AU,则:
(1) UU
(2) U U
(3) U ( U A) A
U
2,3 4 ,5
课堂训练
1.设集合U={1,2,3,4,5,6},M={1,2,4},则 UM =( C ) A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}
2.已知集合A={x|x<3},B={1,2,3,4},( RA )∩B=( B )
A.{4}
B.{3,4}
U
A
(4) A ( U A) U (5) A ( U A)
ð U
A
【补集运算性质】
(1) U ( A B) ( U A) ( U B) 即“交之补”等于“补之并” (2) U ( A B) ( U A) ( U B) 即“并之补”等于“补之交”
U
【例题分析】
例3 已知全集U={所有不大于30的质数},A,B
都是U的子集,若 A ( U B) 5,13, 23 ,
A ( U B) 2,3,5,7,13,17, 23, ( U A) ( U B) 3,7,
你能求出集合A,B吗?
解: U 2,3,5,7,11,13,17,19, 23, 29 由Venn图得:A 2,5,13,17,23, B 2,11,17,19,29
{2}
{2, 3, 3}
思考2:不等式0<x-1≤3在实数范围内的解集是 什么?在整数范围内的解集是什么?
{ x | 1 x 4 } {2,3,4}
【全集的概念】
思考3:在不同范围内研究同一个问题,可能有 不同的结果.我们通常把研究问题前给定的范围 所对应的集合称为全集,如Q,R,Z等.那么全集 的含义如何呢?
【补集的概念】
文字对语于言一:个集合A,由全集U中_不__属__于__集合A的所
有元素组成的集合称为集合A相对于全集U的补集
(complementaryset),简称为集合A的补集,记
作 UA ,
符号语言:
UA {x | x U,且 x A}
图形语言:
U
可用Venn图表示为
A
ð U
A
注意:
C.{2,3,4}
D.{1,2,3}
解:∵A={x|x<3}, RA={x|x≥3}, ∴( )R∩A B={3,4}.
课堂训练
3.已知全集U={x|1≤x≤5},A={x|1≤x<a},若 A={x|2≤x≤5},则a=__2___.
U
解:∵A∪( A)=U, U
∴A={x|1≤x<2},∴a=2.
相关文档
最新文档