热力学基础 ppt课件
大学物理热力学基础PPT课件

d Q 微小热量 :
> 0 表示系统从外界吸热; < 0 表示系统向外界放热。
等价
2
精选PPT课件
上页 下页 返回 退出
二、热力学第一定律 (The first law of thermodynamics)
某一过程,系统从外界吸热 Q,对外界做功 W,系 统内能从初始态 E1变为 E2,则由能量守恒:
循环过程
V
1. 热力学第一定律适用于任何系统(固、液、气);
2. 热力学第一定律适用于任何过程(非准静态过程亦 成立)。
6
精选PPT课件
上页 下页 返回 退出
四、 W、Q、E的计算
1.W的计算(准静态过程,体积功)
F
(1)直接计算法(由定义)
系统对外作功,
2
W=1
Fdx
=
2
1
PS
dx
V2
W = PdV
W = 1 P dV =
RT
2
1
dV V
W
RTl nV( 2 ) V1
P1V1
ln(V2 V1
)
P1V1
ln(P1 P2
)
系统吸热全部用来对外做功。
思考:CT ( 等温摩尔热容量)应为多大?
15
精选PPT课件
上页 下页 返回 退出
§7.4 理想气体的绝热过程 (Adiabatic process of the ideal gas)
吸热一部分用于对外做功,其余用于增加系统内能。
14
精选PPT课件
上页 下页 返回 退出
三.等温过程(isothermal process) P
2024《化学热力学基础》PPT课件

《化学热力学基础》PPT课件目录CONTENCT •引言•热力学基本概念与定律•热化学与化学反应的热效应•熵与熵增原理•自由能与化学平衡•相平衡与相图•结论与展望01引言化学热力学的定义与重要性定义化学热力学是研究化学变化过程中热量和功的相互转化以及有关热力学函数的科学。
重要性化学热力学是化学、化工、材料、能源等领域的重要基础,对于理解化学反应的本质、优化化学反应条件、开发新能源等具有重要意义。
化学热力学的发展历史早期发展19世纪初,随着工业革命的发展,热力学理论开始形成,并逐步应用于化学领域。
经典热力学建立19世纪中叶,经典热力学理论建立,包括热力学第一定律、热力学第二定律等基本定律被提出。
现代热力学发展20世纪以来,随着量子力学、统计力学等理论的发展,化学热力学在微观层面上的研究取得了重要进展。
课程目标与学习内容课程目标掌握化学热力学的基本概念、基本原理和基本方法,能够运用热力学知识分析和解决实际问题。
学习内容包括热力学基本概念、热力学第一定律、热力学第二定律、化学平衡、相平衡、化学反应热力学等。
通过学习,学生将了解热力学在化学领域的应用,培养分析和解决化学问题的能力。
02热力学基本概念与定律80%80%100%系统与环境系统是指我们研究对象的那一部分物质或空间,具有明确的边界。
环境是指与系统发生相互作用的其他部分,是系统存在和发展的外部条件。
系统与环境之间通过物质和能量的交换而相互影响。
系统的定义环境的定义系统与环境的相互作用状态是系统中所有宏观物理性质的集合,用于描述系统的状况。
状态的概念状态函数的定义常见状态函数状态函数是描述系统状态的物理量,其值只取决于系统的始态和终态,与路径无关。
温度、压力、体积、内能等。
030201状态与状态函数热力学第一定律热力学第一定律的表述热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
热力学第一定律的数学表达式ΔU=Q+W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示外界对系统所做的功。
化学热力学基础PPT课件

§2.1 热力学第一定律
第2章 化学热力学基础
(Thermochemistry)
§2.1 热力学第一定律
§2.2 热化学
§2.3 化学反应的方向
1
第2章 化学热力学基础
§2.1 热力学第一定律
研究化学反应必须研究的四个问题:
1. 化学反应中能量是如何转化的?
(第3章)
2. 该反应能否自发进行?
(第3章)
(3)孤立系统(Isolated System) 系统和环境之间即无能量交换又无物质交换的 系统。
9
第2章 化学热力学基础
如:
§2.1 热力学第一定律
Zn + 2HCl → ZnCl2 + H2
系统
绝热
HCl
HCl
HCl
Zn
Zn
Zn
敞开系统
封闭系统
孤立系统
10
第2章 化学热力学基础
§2.1 热力学第一定律
1mol反应
表示消耗 0.5mol N2,1.5mol H2,生成 1mol NH3。
离开化学方程式谈反应进度是毫无意义的
36
第2章 化学热力学基础
νB
有一反应
N2(g) + 3H2(g)→ 2NH3(g)
t=0: n1(B)/mol 3.0 10.0
0.0
t=t´:n2(B)/mol 2.0 7.0
2.0
Δn(B)/mol -1.0 -3.0
2.0
33
第2章 化学热力学基础
§2.2 热化学
即消耗了 1.0 mol N2,3.0 mol H2,生成了 2.0 mol NH3,那么反应进度变化等于
定 压 过 程
大学物理-热力学基础-课件

Wa
CV m (T2
T1)
p1V1 p2V2
1
本题用 Wa E 计算较方便
关键用绝热方程
T2
T1
( V1 V2
)
1
先求出 T2
p
p2
2 T2
T2' T1
Q0
p2'
2'
p1
TC
T1
1
o V2 V2' V1 10 V1 V
18.
*四. 多方过程 — 实际过程( 满足 PV n C)
绝热 n = ( CPm / CVm )
等温 n = 1 等压 n = 0
W p1V1 p2V2 n 1
满足 E CV (T2 T1)
Q Cn (T2 T1)
等体 n = ∞
p
可以证明
n= n=∞
n=1
Cn
(
n
n 1
)CV
n=0
o
V
19.
13 – 5 循环过程 卡诺循环
一. 循环过程
1. 特点 E 0 W = Q ( 热功转换 )
1
2
W
(2)热一定律 dQP dE PdV
o V1
V2 V
QP
E
V2 PdV
V1
v
i 2
R(T2
T1 )
P(V2
V1 )
7.
2.摩尔定压热容 CPm
1mol
:
CPm
dQp dT
理论值:
CPm
dE pdV dT
CVm
R
i2R 2
(近似)
实验值:查表 (精确)
QP
dQP
热力学基础PPT课件

REPORTING
目录
• 热力学基本概念与定律 • 热力学过程与循环 • 热力学第二定律与熵增原理 • 理想气体状态方程及应用 • 热力学在能源利用和环境保护中应用
PART 01
热力学基本概念与定律
REPORTING
热力学系统及其分类
孤立系统
与外界没有物质和能量交换的系统。
一切实际过程都是不可逆过程。
热力学温标及其特点
热力学温标 热力学温标是由热力学第二定律引出的与测温物质无关的理想温标。
热力学温度T与摄氏温度t的关系为:T=t+273.15K。
热力学温标及其特点
01
02
03
04
热力学温标的特点
热力学温标的零点为绝对零度 ,即-273.15℃。
热力学温标与测温物质的性质 无关,因此更为客观和准确。
01
可逆过程
02
系统经过某一过程从状态1变到状态2后,如果能使系统 和环境都完全复原,则这样的过程称为可逆过程。
03
可逆过程是一种理想化的抽象过程,实际上并不存在。
04
不可逆过程
05
系统经过某一过程从状态1变到状态2后,无论采用何种 方法都不能使系统和环境都完全复原,则这样的过程称为 不可逆过程。
06
PART 03
热力学第二定律与熵增原 理
REPORTING
热力学第二定律表述及意义
热力学第二定律的两种表述
01
04
热力学第二定律的意义
克劳修斯表述:热量不能自发地从低温物 体传到高温物体。
02
05
揭示了自然界中宏观过程的方向性。
开尔文表述:不可能从单一热源取热,使 之完全变为有用功而不产生其他影响。
热学基础知识.ppt

无摩擦准静态过程,其特点是没有摩擦力,外界在准静态过 程中对系统做的功,可以用系统本身的状态参量来表示。 外界在准静态过程中对系统做的功等于系统对外界做的功的负值
设气缸内的气体进行膨胀过程,当活塞移动微小ห้องสมุดไป่ตู้移dl 时,气
体对外界所作的元功为(系统对外作功为正) V是系统体积
dA
pS
dl
pdV
系统体积由V1变为V2,系统对外界作总功
为:
V2
面积
A pdV 体积功 V1
p
pe
形状不规则的容器(例如充气袋)中的气体作功呢?
p1
a
b
功的数值不仅与初态和末态有关,而且还 依赖于所经历的中间状态,功与过程的路 2 径有关。
功是过程量
0
V1
V V2
求准静态过程的功,即 为求虚线部分的面积
无法用统一的状态参量来描述其状态.
一个过程,如果任意时刻的中间态都无限接近于一个
平衡态,则此过程为准静态过程。显然,这种过程只 有在进行的 “ 无限缓慢 ” 的条件下才可能实现。
对于实际过程则要求系统状态发生变化的时间 △t 远远大于弛豫时间τ才可近似看作准静态过程 。
举例1:外界对系统做功
非平衡态到平衡态的过渡时间,
RT
vi RT
(i 1,2, , n)
n
其中,M mi为n种理想气体的总质量
1
pi 为第i种理想气体单独存在时的压强
n个方程相加得:
( p1 p2 pn )V (v1 v2 vn )RT
n
n
令 p pi v vi
1
1
道尔顿分压定理
pV vRT
大学物理热学第十三章 热力学基础 PPT

Mayer公式
•摩尔热容比
CP,m i 2
CV ,m i
泊松比
CV ,m
i 2
R
Cp,m
CV ,m
R
i
2 2
R
单原子分子理想气体 i 3 1.67
双原子分子理想气体 i 5 1.40
多原子分子理想气体 i 6 1.33
pV m RT RT
M
Q CV ,m (T2 T1)
•过程曲线: p b T2
0
a T1 V
吸收得热量全部用来内能增加;或向外界放热以内能减小为代 价;系统对外不作功。
3、理想气体定体摩尔热容 CV ,m
•定义:1mol、等体过程升高1度所需得热量
•等体过程吸热 QV CV ,m (T2 T1)
•等体过程内能得增量
E
QV
i 2
R
T2
T1 CV ,m T2
13-1 准静态过程 功 热量
一、准静态过程
可用P-V 图上得一条有
方向得曲线表示。
二、功
准静态过程系统对外界做功:
元功: dW Fdl pSdl pdV
dl
系统体积由V1变 为V2,系统对外 界作总功为:
V2
W= pdV
V1
p F S pe
光滑
注意:
V2
W= pdV
V1
1、V ,W>0 ;V ,W<0或外界对系统作功 ,V不变时W=0
V2 PdV
V1
i CV ,m 2 R
CP,m
CV ,m
CP,m CV ,m R
等容 等压
WV 0
QV CV ,m (T2 T1) E
QP Cp,m (T2 T1) CV ,m (T2 T1) P(V2 V1) WP P(V2 V1) R(T2 T1)
大学化学热力学基础ppt课件

01
耗散结构理论
研究非平衡态系统中自组织现象的理论 框架,探讨系统如何通过自组织形成有 序结构。
02
03
协同学
研究非平衡态系统中各部分之间协同 作用的理论,揭示系统如何通过协同 作用实现自组织过程。
谢谢聆听
03
开放系统
与外界既有能量交换又有物质交换的系统。
热力学平衡态与过程
平衡态
在不受外界影响的条件下,系统各部 分的宏观性质不随时间变化的状态。
热力学过程
系统由一个平衡态转变到另一个平衡 态的经过。
热力学第一定律
内容
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值 保持不变。
热力学性质的计算
热容
系统在某一过程中,温度升高(或降低)1K 所吸收(或放出)的热量,称为该系统在该过 程中的“热容”,用C表示。
热力学温度
热力学温标所表示的温度叫做热力学温度,用T表示, 单位是开尔文(K)。
焓变与熵变
在化学反应中,反应前后物质的焓的差值称为 焓变,用ΔH表示;反应前后物质的熵的差值 称为熵变,用ΔS表示。
03
热化学方程式的书写与计算
04
生成焓与燃烧焓的概念及应用
盖斯定律及应用
盖斯定律的内容与意义 利用盖斯定律计算反应热
热化学方程式的加和与相 减
盖斯定律在工业生产中的 应用
化学反应方向判据
焓变与熵变对反应方向 的影响
沉淀溶解平衡与溶度积 常数
01
02
03
自由能变化与反应方向 的关系
04
影响沉淀溶解平衡的因 素
实际循环效率分析
循环效率定义
评价热机或制冷机性能的重要指标,表示有用功与输入功的比值。循环效率越高,表示 机器性能越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:系统(初始温度 T1)从外界吸热
系统T1
从 T1 到 T2 是准静态过程
T为 小 量
T1+T T1+2T T1+3T
T2
因为状态图中任何一点都代表系统的一个平衡态,
故准静态过程可以用系统的状态图,如p-V图(或p-T 图,V-T图)中一条曲线表示,反之亦如此。
三、功 热量 内能
1.气体体积变化所作的功 以气体膨胀过程为例 气体对外界作元功为
1
第六章 热力学基础
§6-1 热力学第零定律和第一定律 §6-2 热力学第一定律对于理想气体准静态过程的应用 §6-3 循环过程 卡诺循环 §6-4 热力学第二定律 §6-5 可逆过程与不可逆过程 卡诺定理 §6-6 熵 玻耳兹曼关系 §6-7 熵增加原理 热力学第二定律的统计意义 *§6-8 耗散结构 信息熵
第六章 热力学基础
§6-1 热力学第零定律和第一定律 §6-2 热力学第一定律对于理想气体准静态过程的应用 §6-3 循环过程 卡诺循环 §6-4 热力学第二定律 §6-5 可逆过程与不可逆过程 卡诺定理 §6-6 熵 玻耳兹曼关系 §6-7 熵增加原理 热力学第二定律的统计意义 *§6-8 耗散结构 信息熵
解:因过程是等压的,得
A M RT 371J M mol
因i=5,所以CV=iR/2=20.8J/(molK),可得
M E M mol CV T 929J
Q
=
p
E
2
E1
A
1300J
三、等温过程
系统温度在状态变化过程中始终保持不变。
dT 0 E 0
p1
QT A
V2 V1
pdV
V2 V1
绝热膨胀过程中,系统对外作的功,是靠内能减
少实现的,故温度降低;
绝热过程方程:
pV C1 TV 1 C2
T p 1 C3
气体绝热自由膨胀
Q=0, A=0,E=0
气体 真空
绝热线与等温线比较
等温 pV C
pdV Vdp 0
dp dV
T
p V
绝热 pV C
p V 1dV V dp 0
§6-2 热力学第一 定律对于理想气体 准静态过程的应用
一、 等体过程 气体的摩尔定体热容
1. 等体过程:
dV 0
p
p2
2
A0或dA0
p1
dQV
dE M Mmol
i RdT 2
O
1
VV
Q VE2E 1EM M m ol 2 iRT
2. 摩尔定体热容 —— 1 mol气体在体积不变时,温度改变1K时所吸 收或放出的热量。
dp dV
S
p V
p
pA
pS
p T
A
等温线
V
绝热线
O
VA
V
dp dV
S
A
dp dV
T
A
绝热线比等温线更陡。
p
物理意义:
等温过程
V n p
pA
pS
p T
A
V
绝热过程
O
VA
V n
A 0 E0T
p
膨胀相同的体积绝热比等温压强下降得快
等温线 绝热线
V
绝热过程系统对外作功: 系统从1-2为绝热过程
§6-1 热力学第零定律和第一定律
一、热力学第零定律
如果物体A和物体B 热接触而处于热平衡,另 有物体C和此物体B热接触也处于热平衡,那么,物 体A和物体C热接触就必定也处于热平衡。
二、 热力学过程
热力学系统从一个平衡态过渡到另一个平衡 态所经过的变化历程就称为热力学过程。
准静态过程:在过程中每一时刻,系统都处于平 衡态,这是一种理想过程。
M M mol
RT1
dV V
2
O
M M mol
RT1
ln
V2 V1
M M mol
RT1 ln
p1 p2
V
在等温过程中,理想气体吸热全部用于对外作功 ,或外界对气体作功全转换为气体放出的热。
四、绝热过程
系统在状态变化过程中始终与外界没有热交换。
Q0或dQ0
A(E2E 1)M M m olC V(T2T1)
p(V2
V1)
M M mol
R(T2 T1 )
QpEp(V2V1)
Q p EAM M m ol(C VR )(T 2T 1)
Mi2 Q p EAM m ol( 2R)(T2T 1)
在等压过程中,理想气体吸热的一部分用于增 加内能,另一部分用于对外作功。
2. 摩尔定压热容: 1 mol气体在压力不变时,温度改变1K时所吸收或放 出的热量。
由过程方程: pV C1
p V p1V1 V p2V2
1 dQ 1dE i
CV=(dT)VdT2R
CV
i 2
R
等体吸热
QV
M Mmol
CV
(T2
T1)
等体内能增量
E M Mmol
CV
(T2
T1)
——此内能改变公式适应于所有过程
二、 等压过程 气体的摩尔定压热容
1. 等压过程:
dp 0
p 12
E
M M mol
CV
(T2
T1)
O
V
A
V2 V1
pdV
O V1
V2 V
功的大小等于p-V 图上过程曲线 p(V)下的面积。
功的数值与过程的实际路径有关。
2.气体的内能 理想气体内能: E M i RT
M mol 2
内能是状态量,是状态参量T的单值函数。
做功 3.改变内能的两种方式 热传递
热功当量: 1卡=4.2焦耳
四、热力学第一定律
Q (E 2 E 1) A E A
——热力学第一定律,实质上体现了能量守恒。
Q 0 系统从外界吸热;Q dE dA
对于准静态过程: dQ dE pdV
热力学第一定律另一表述: 制造第一类永动机(能对外不断自动作功而不需
要消耗任何燃料、也不需要提供其他能量的机器)是 不可能的。
Cp
1(ddQ T)p
i RR 2
Cp
i
2 2
R
Cp CV R ——迈耶公式
注意:1 mol气体温度改变1K时,在等压过程中比在 等体过程中多吸收8.31J 的热量用来对外作功。
Cp i 2 1 ——比热容比
CV i
例题6-1 一汽缸中贮有氮气,质量为1.25kg。在标准大气 压下缓慢地加热,使温度升高1K。试求气体膨胀时所作 的功A、气体内能的增量E以及气体所吸收的热量Qp。 (活塞的质量以及它与汽缸壁的摩擦均可略去。)
dA Fdl pSdl pdV
准静态过程(状态1到状态2) 气体对外界作功为
A dA V2 pdV V1
u
F
dl
p1 2
O V1
V2 V
A dA V2 pdV V1
p1
dV 0, dA 0, 系统对外作正功;
2
dV 0, dA 0, 系统对外作负功; dV 0, dA 0, 系统不作功。