燃气燃烧方法(完整篇)
燃气燃烧方法范文
燃气燃烧方法范文燃气燃烧方法是指将燃气作为燃料,在燃烧过程中释放出的热能用于各种工业和家庭用途。
燃气通常指的是天然气或液化石油气等,由于其低污染、高效率和易于调控的特点,越来越受到人们的青睐。
本文将详细介绍燃气燃烧方法及其应用。
首先,燃气燃烧的基本原理是通过供给燃气和氧气,在合适的温度和压力条件下,经过燃烧反应产生热能。
燃气和空气的混合比例、供气温度、压力、气体流速等因素都会影响燃烧的效果。
燃气燃烧可以分为直接燃烧和间接燃烧两种形式。
直接燃烧是指将燃气直接喷入燃烧室,并与空气混合后燃烧。
间接燃烧则是通过燃烧炉或锅炉等设备,将燃气燃烧后的热能传递给工作介质(如水蒸气或油)。
在实际应用中,燃气燃烧有多种常见方法。
以下是其中一些常见的方法:1.高温空燃法:这是一种将燃气与空气在燃烧室内进行混合燃烧的方法。
燃气由喷嘴进入燃烧器,经过预混后与预热的空气混合,形成可燃气体。
然后,可燃气体进一步与燃烧室内的剩余空气混合,并点火进行燃烧,产生高温燃气。
该方法具有燃烧稳定、热效率高和热负荷调控方便等优点,广泛用于燃气锅炉等应用中。
2.浓度燃烧法:这是指通过调节燃气和空气的供气比例,使可燃气体的浓度达到最佳燃烧浓度范围的方法。
这种方法要求较高的控制技术和设备,但能实现燃烧的高效率和低污染排放。
浓度燃烧法广泛应用于工业炉、燃气轮机等设备中。
3.逆流燃烧法:这是指将燃气和空气从燃烧室的两端同时喷入,使燃气和空气在燃烧室内互相交叉流动,并产生逆流的方法。
逆流燃烧法具有燃烧稳定、燃烧温度均匀分布、热传递效率高等特点,特别适用于高温和超高温燃烧过程。
4.分层燃烧法:这是指通过将燃气和空气分别喷射到燃烧室的不同位置,使燃气和空气形成分层的燃烧过程。
这种方法可以实现燃烧的高效率和低污染排放,特别适用于大型工业炉和电厂锅炉等应用。
需要注意的是,不同的燃气燃烧方法适用于不同的应用场景和要求。
在具体应用中,还需要考虑燃气的性质、供气压力、温度控制等因素,进行合适的燃气燃烧方式选择和设备设计。
燃气燃烧方法(正式)
编订:__________________单位:__________________时间:__________________燃气燃烧方法(正式)Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-6024-92 燃气燃烧方法(正式)使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。
燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。
根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种:1.扩散式燃烧法将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。
2.完全预混式燃烧法按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。
由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。
3.部分预混式燃烧法在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。
从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段:(1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间;(2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热;(3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。
天然气燃烧的过程及其原理
天然气燃烧的过程及其原理天然气是一种常见的化石燃料,它在各种应用领域中广泛使用,包括家庭取暖、炊事,以及工业和发电等领域。
了解天然气燃烧的过程和原理对于科学安全地使用天然气至关重要。
本文将介绍天然气燃烧的过程以及背后的原理。
一、天然气燃烧的过程天然气主要成分是甲烷(CH4),它的燃烧与氧气(O2)发生化学反应产生二氧化碳(CO2)、水蒸气(H2O)和释放能量。
在正常情况下,天然气燃烧的过程可以分为三个主要阶段:起燃阶段、燃烧阶段和熄灭阶段。
1. 起燃阶段:当天然气与空气混合时,需要提供一定的能量才能使燃料与氧气发生反应。
这一能量通常来自于火花、火柴或其他起火源。
一旦燃料点燃,它会产生一颗小的火焰,称为初始火焰。
2. 燃烧阶段:在燃烧阶段,初始火焰会在氧气的参与下迅速蔓延。
天然气的甲烷分子与氧气分子相撞并发生反应,产生二氧化碳和水蒸气。
该反应是一个放热反应,释放出大量的能量,使火焰持续燃烧。
燃烧过程中,火焰会散发出明亮的光和热能。
3. 熄灭阶段:当没有足够的可燃气体或氧气供应时,火焰会逐渐熄灭。
这可能是由于天然气耗尽、氧气不足或被外部因素(如灭火器)阻断供应。
一旦燃料或氧气不再供应,火焰将停止燃烧。
二、天然气燃烧的原理天然气燃烧的原理是通过甲烷分子与氧气分子间的氧化反应来释放能量。
该反应可以概括为:甲烷加氧气生成二氧化碳、水蒸气和能量。
CH4 + 2O2 → CO2 + 2H2O + 能量在这个过程中,甲烷(CH4)作为燃料,氧气(O2)作为氧化剂。
当燃料与氧化剂混合时,它们中的分子会发生碰撞反应,产生新的化合物和释放能量。
天然气燃烧的热能能够提供热量,用于取暖和烹饪等各种应用。
三、安全使用天然气的注意事项使用天然气时,需要注意以下几点以确保安全:1. 定期维护和检查:定期对家庭、商业或工业用途的天然气设备进行维护和检查,以确保设备运行正常,预防泄漏和其他问题。
2. 检查气体泄漏:注意天然气泄漏的迹象,如臭鸡蛋味道、嘶嘶声或其他异常嗅觉或听觉。
燃气燃烧方法
编号:SM-ZD-19906 燃气燃烧方法Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.编制:____________________审核:____________________批准:____________________本文档下载后可任意修改燃气燃烧方法简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。
燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。
根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种:1.扩散式燃烧法将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。
2.完全预混式燃烧法按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。
由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。
3.部分预混式燃烧法在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。
从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段:(1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间;(2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热;(3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。
燃气燃烧方法
第五章 燃气燃烧方法第一节 扩散式燃烧二、层流扩散火焰的结构将管口喷出的燃气点燃进行燃烧,如果燃气中不含氧化剂(即'0α=)则燃烧所需的氧气将依靠扩散作用从周围大气获得。
这种燃烧方式称为扩散式燃烧。
dC M DFdr∝ (5-1)式中 D ——扩散系数;F ——垂直于扩散方向两股气流的接触面积;dCdr——径向浓度梯度。
对于上述两种相似情况,扩散率之比为:11112222dC D F M dr dC M D F dr ⎛⎫ ⎪⎝⎭=⎛⎫⎪⎝⎭ (5-2)111222F d L = (5-3)1212dC d dr dC d dr ⎛⎫ ⎪⎝⎭=⎛⎫⎪⎝⎭(5-4)11112112222122M D d L d D L M D d L d D L =⨯⨯= 2111122222D L v d D L v d = 或者2DLvd=常数2vd L D∝(5-5)三、层流扩散火焰向紊流扩散火焰的过渡10.700.29g C asC r=+ (5-6)式中 s ——距出口的轴向距离; a ——紊流结构系数; r ——射流喷口的半径。
1g gC C n=- 或111g C C n =+ (5-7)0.70110.29f al n r=++[0.70(1)0.29]f rl n a=+-(5-8)四、扩散火焰中的多相过程E RTW Be-= (5-9)式中 W ——反应速度;B ——试验系数,取决于气相组成、固相表面积等因素; E ——活化能; R ——气体常数; T ——绝对温度。
dC W DFdr=- (5-10)式中 D ——扩散系数; F ——接触表面积;dCdr——浓度梯度。
五、燃气火焰的辐射第二节 部分预混式燃烧一、部分预混层流火焰在燃烧器出口的周边上,存在一个稳定的水平焰面,它是空气-燃气混合物的点火源,又称点火环。
二、部分预混层流火焰的确定如果燃烧强度不断加大,由于v S =的点更加靠近管口,点火环就逐渐变窄。
燃气燃烧方法部分预混式燃烧
燃气燃烧方法部分预混式燃烧燃气燃烧时,一次空气过剩系数a‘在0〜1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。
静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:sn二vn二vcos® (5 —5)式中®——预混气流方向与焰面上该点法线方向之间的夹角。
余弦定律表明了层流火焰传播速度与迎面来的气流速度在火焰稳定情况下的平衡关系,火焰虽有向内传播的趋势,但仍能稳定在该点。
另一方面,蓝色锥体焰面上各点,还有一个气流切向分速度,使该处的质点要向上移动。
室内燃气点火操作方法
室内燃气点火操作方法
1. 关掉燃气阀门:在点火之前,先要确保燃气阀门已经全部关闭。
2. 打开燃气器具:打开需要点火的燃气器具,如热水器、炉灶等。
3. 准备火柴或点火器:在点火前,准备好可以点火的工具,如火柴、打火机或点火器等。
4. 将工具靠近燃气口:将准备好的工具放到燃气口附近,但不要直接触碰。
5. 打开点火器:如果使用点火器,则需要将点火器拉出来,按下按钮,将火花产生。
6. 点燃气体:将工具接近燃气口,同时打开点火器,点燃燃气。
7. 确认燃气点燃:点燃燃气后,要看到火苗在燃气器具的炉眼或者燃烧室中,确认点燃成功。
8. 关闭点火器:点燃成功后,需要关闭点火器,让其缩回机身。
9. 调整火苗大小:根据需要,可以使用燃气器具的调节旋钮,调节火苗大小。
10. 关环境门窗:点燃燃气后,要确保环境内没有通风,关闭室内外的门窗,避免燃气泄漏。
ch5 燃气燃烧方法
5.1.3 层流扩散火焰向紊流扩散火焰的过渡
扩散火焰长度的确定,实质上就是确定火焰锋
面的位置。火焰锋面的近似确定方法是在燃气+空
气的混合气流中去找寻燃气浓度与氧气浓度符合
化学当量比的点的轨迹。经过整理得到火焰长度
的公式为:
lf
r 0.701 n 0.29
a
(5-8)
– 随着加入重油百分比的提高,火焰的辐射率显著增大 。
– 在相同条件下,加入重油和加入焦油两种情况的比较 ,结果是加入焦油辐射能力更强。
5.2 部分预混式燃烧
扩散式燃烧容易产生煤烟,燃烧温度也相当低;但当预 先混入一部分燃烧所需空气后,火焰变得清洁,燃烧得以强 化,火焰温度也提高了。这种燃烧方式就是部分预混式燃烧。
第五章 燃气燃烧方法
扩散式燃烧 部分预混式燃烧 完全预混式燃烧 燃烧过程的强化与完善
5.1 扩散式燃烧
• 5.1.1 燃烧的动力区和扩散区
燃料燃烧所需要的全部时间通常有两部分合成,即氧化 剂和燃料之间发生物理变化所需要的时间 p和h 进行化学反应
所需要的时间 。 ch即
ph ch
燃烧的动力区 燃烧的扩散区 燃烧的中间区
5.2.2.2火焰拉伸理论
周边速度理论在40年代提出后被大量实验所证实,但在60 年代后期吕特发现用该理论解释脱火现象存在一定的矛盾和局 限性。为此,他提出了火焰拉伸理论来解释脱火现象。
K—卡洛维兹拉伸系数。
火焰拉伸理论认为:K的极限值应首先发生在接近气流边 界的火焰稳定区,脱火是由于火焰稳定区的K值达到了极限值 Kb,导致火焰熄灭而引起的。
5.1.3 层流扩散火焰向紊流扩散火焰的过渡
分子扩散 紊流扩散
第七章 燃气的燃烧方法
2、紊流扩散火焰的长度 在燃气紊流自由射流中,由实验公式,轴线上的燃气浓度 Cg与射流出口处的原始浓度C1之比为:
Cg C1 0.70 as 0.29 r
α—紊流结构系数; s—轴向距离; r—射流喷口的半径。
射流中各点的燃气浓度与空气浓度之和应该是一样的,它等 于出口处的浓度和 :
C1 0 C1
13
思考:如何消除层流扩散火焰中的煤烟?
在火焰的内侧高温区:扩散区燃烧,可从内部提供足够多的 氧气。(例如部分预混式,完全预混式燃烧)
在火焰的外侧低温区:动力区燃烧,外部保温。如马灯、煤
油灯的玻璃罩,起到防风、保温作用。
14
3、层流扩散的长度 采用相似关系来分析层流扩散火焰的基本规律。
扩散燃烧装臵 :管1、管2 ;
家庭用燃气用具大都属于此类。如燃气灶、热水器。日 常生活中常见:打火机、煤油灯。
25
燃气在一定压力下, 以一定流速从喷嘴流 出,进入吸气收缩管, 燃气靠本身能量吸入 一次空气。在引射器 内燃气和一次空气混 合,然后经头部火孔 流出,进行燃烧,形 成本生火焰。
26
27
根据气流喷出速度的不同,部分预混火焰又可分为层流和紊流。
但氧气向焰面扩散的速度基本未变,焰面的收缩点离喷
口越来越远,火焰长度不断增加。这时,火焰表面积增加,
单位时间内燃烧的燃气量↑。
b、当Vm↑→临界值时,
流动状态从层流→紊流→火焰顶点跳动。
19
c、随Vm继续↑,
火焰绝大部分均扰动起来,这时扩散转变为紊流扩散, 混合加剧,燃烧强化→火焰变短。
d、随着扰动程度的加剧,混合时间↓↓,当 在动力区进行。
29
3、点火环 思考:管道上气流的速度按抛物线分布,中心大,四周小, 管壁处为0。火焰会不会传到燃烧器里去? 不会,火焰传播速度受管壁散热的影响,该处的火焰传播 速度因为管壁散热也减小了。 思考:在焰面任一点上,Sn=Vn, 火焰在该点是否能完全稳定? 不能,只是在火焰面法向上稳定, 由于存在切向分速度,使质点向上移 动。
4.1.燃气燃烧方法
•离开管口,气流速度会逐渐变小;而越靠近管口,则管口 壁的散热作用越明显,从而使火焰传播速度降低。 •在离开管口处,必定存在气流速度大于火焰传播速度的1 点及气流速度小于火焰传播速度的2点。 •在1点处,气流法向分速度大于该点的法向火焰传播速度, vn>Sn,气流切向分速度将使焰面向上移动;而在2点处, 气流法向分速度小于该点的法向火焰传播速度,vn<Sn, 焰面将向下移动。 •在点1和点2之间必定存在一个气流速度与法向火焰传播速 度相等的点3,在点3上焰面稳定,而且没有分速度,φ=0。 •这就是说,在燃烧器出口的周边上,存在一个稳定的水平 焰面,它是燃气-空气预混气流的点火源,又称点火环。 部分预混火焰内焰 表面上的速度分析
1.扩散式燃烧
•点燃前,燃气与空气不相接触(’=0),燃烧所需的氧气完全依靠扩 散作用从周围大气获得,燃气与空气在接触面处边混合边燃烧。 •流态不同,扩散的方式也不同。
•层流状态下,扩散燃烧依靠分子扩散作用使周围氧气进入燃烧区;
•紊流状态下,则主要依靠紊流扩散作用来获得燃烧所需的氧气。 •两种流态下的火焰结构有很大的差异。
•燃气的火焰传播速度越大,脱火和回火曲线的位臵就越高。 所以火焰传播速度较大的人工燃气容易回火,而火焰传播 速度较小的天然气则容易脱火。
•对于同一种燃料,一次空气系数’与火孔热强度q则集中 反映了二者的变化情况,是影响火焰稳定的主要因素。
•相同火孔热强度下,’=1时,火焰传播速度达最大值,回火极 限速度也达最大值; •无论增大或减小,火焰传播速度都将减小,从而导致回火极限 速度减小。’增大,点火环的点火能力将减弱,从而脱火极限速 度下降。 •在相同一次空气系数下,火孔热强度q增大将导致气流速度增大, 脱火性增强;同时导致燃烧温度升高,火焰传播速度增大,从而 使回火与离焰曲线的位臵上移。 •火焰稳定性还受周围空气组成的影响。如周围大气被惰性气体污染, 由于空气中氧含量较正常少,使混合气体的燃烧速度降低,从而脱火 的可能性就增加了。 •火焰周围空气的流动对火焰的稳定有不利的影响。
第四章 燃气燃烧方法
入一部分空气 (0 ' 1) ,然后进行燃烧。
2. 特点: ① 、 火焰为不发光的清洁火焰,火焰温度高。 ② 、火焰由内焰和外焰组成。 内焰为不发光的蓝色火焰,由预混空气和部分可燃成分
燃烧形成,其余部分按扩散方式在外焰燃烧。 ③ 、预混空气量越少,外锥体就越大。
◆研究表明(国际火焰研究基金会),燃料中的碳:氢重量比 (R=C/H)增加,火焰辐射率呈直线增加。所以燃气中添加液 体燃料,可提高火焰辐射能力。液体燃料种类对火焰辐射有 很大影响。
六、小结
➢ 扩散式燃烧容易产生煤烟,燃烧温度也相当 低,污染受热面和环境,热强度不能满足生 产需要。
第二节 部分预混式燃烧
① 全部或部分气流沿切向进入主通道。 ② 在轴向管道中设置导向叶片,使气流旋转。 ③ 采用旋转的机械装置,如转动叶片或转动管子等,使
通过其中的气流旋转。
第四节 燃烧过程的强化与完善
三、燃烧污染控制
SO燃3等气。燃烧后会产生有害物质如CO2,CO,NOX,SO2和 1. NOX的生成机理:
燃烧中心所组成的一个燃烧层。燃烧层厚度取决于质点燃尽 所需时间。
三、部分预混紊流火焰
④紊流火焰可分为三个区:
●焰核区:混合物尚未点着的冷区。焰核区长度取决
于火焰传播过程(流速,火焰传播速度,出流半径)
●着火和燃烧区:约90%的燃气燃烧。厚度取决于火 焰紊流特性和混合物性质,用强化燃烧的办法难以 缩小火焰厚度
燃烧热量40%以热辐射散发, 也叫燃气红外线辐射板。
天然气和空气在多孔陶瓷板上 燃烧时的温度变化曲线
L0为小孔式火道长度
第三节 完全预混式燃烧
燃气燃烧方法-部分预混式燃烧(最新版)
燃气燃烧方法-部分预混式燃烧(最新版)Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety.( 安全管理)单位:_______________________部门:_______________________日期:_______________________本文档文字可以自由修改燃气燃烧方法-部分预混式燃烧(最新版)燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
燃气燃烧方法——部分预混式燃烧.doc
燃气燃烧方法——部分预混式燃烧燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。
一、部分预混层流火焰产生部分预混层流火焰的典型装置就是本生灯。
如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。
这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。
为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。
蓝色的预混火焰锥体出现是有条件的。
若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。
若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。
氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。
蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。
层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。
静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:sn=vn=vcosψ (5—5)式中ψ——预混气流方向与焰面上该点法线方向之间的夹角。
余弦定律表明了层流火焰传播速度与迎面来的气流速度在火焰稳定情况下的平衡关系,火焰虽有向内传播的趋势,但仍能稳定在该点。
另一方面,蓝色锥体焰面上各点,还有一个气流切向分速度,使该处的质点要向上移动。
燃气燃烧方法正式样本
文件编号:TP-AR-L6363There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party.(示范文本)编制:_______________审核:_______________单位:_______________燃气燃烧方法正式样本燃气燃烧方法正式样本使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。
燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。
根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种:1.扩散式燃烧法将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。
2.完全预混式燃烧法按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。
由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。
3.部分预混式燃烧法在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。
从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段:(1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间;(2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热;(3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:SY-AQ-06648
( 安全管理)
单位:_____________________
审批:_____________________
日期:_____________________
WORD文档/ A4打印/ 可编辑
燃气燃烧方法(完整篇)
Gas combustion method
燃气燃烧方法(完整篇)
导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。
在安全管
理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关
系更直接,显得更为突出。
燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。
燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。
根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种:
1.扩散式燃烧法
将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。
2.完全预混式燃烧法
按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。
由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。
3.部分预混式燃烧法
在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~
0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。
从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段:
(1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间;
(2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热;
(3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。
所以,燃气燃烧过程所需的时间,包括氧化剂与燃气混合预热所需的时间τph
和进行化学反应所需的时间τch
,即:
τ=τPh
+τch
按燃烧阶段所需时间不同,也可区别出以上不同类型的燃烧方
法。
如果τph
远大于τch
,则τ≈τph
,燃烧在扩散区进行,物理因素是影响燃烧全过程的主要因素:反之,τph
远小于τch
,则τ≈τch
燃烧在动力区进行,化学动力学因素是影响燃烧全过程的主要因素;若τph
≈τch。
燃烧在中间区进行。
这里填写您的公司名字
Fill In Your Business Name Here。