阵列感应测井基础理论
阵列感应测井仪讲义
![阵列感应测井仪讲义](https://img.taocdn.com/s3/m/5edb655f964bcf84b9d57bd8.png)
1.前 言 2. 理论基础、测量原理 3. 仪器性能 4. 仪器刻度 5.测 井 6. 仪器电路描述 7. 仪器常规检查 8. 信号处理 9. 地质应用简介
前言
传统聚焦型感应测井仪存在如下问题:
•电阻率测量范围小,测量精度低。 •聚焦线圈系的探测深度与垂直分辨率难以调和, 只能折中兼顾,造成仪器的两个主要技术指标不 能满足生产需要。 •常规聚焦型感应仪器只提供深、中、浅三条电阻 率曲线,测量信息不够丰富,不能确定侵入深度, 更不能对复杂侵入剖面做出正确解释。 •浅电阻率测量仪器(八侧向或球形聚焦测井仪) 不能用于油基泥浆测井。
理论基础、测量原理
电磁感应原理为理论基础
线圈系结构
6
•三线位于
4
它们之间的补偿线圈;接收线圈和相应的补偿
线圈构成一个接收阵列
3
•多阵列
7个接收阵列(源距为6~94英寸)
2
•多频率
1
8种频率(10、30、50、70、90、
110、130、150KHz)
0
地面信号处理流程
进行傅立叶变 上传8道时间域 换,在频域中 采样,每道信号 得到8个频率
96个采样点 的实部与虚部 分量,共
7*8*2+1*8*2 =128个分量
计算视电 导率,得
到 7*8*2=11
2个视电导 率值
进行趋 肤效应 校正, 得到7条
视电导 率曲线
进行井 眼校 正,得 到7条视
电导率 曲线
T
仪器的总体结构、测量原理
指数 令据
编码译码 电路
控制测量 电路
前置放大 电路
控制信号
参考信号
接收线圈阵列ROR7
阵列感应测井原理及应用
![阵列感应测井原理及应用](https://img.taocdn.com/s3/m/4d90d5320722192e4536f698.png)
阵列感应测井原理及应用摘要:本文探讨了阵列感应测井原理,论述了在判断地层水矿化度方面的应用效果,阵列感应在使用中也存在一些缺陷,阵列感应在处理中,人为因素较大,不同的参数处理结果差异较大,这就造成了阵列感应在使用过程中对解释有一定的误导,引起对阵列感应可靠性的怀疑,这在以后的处理方法中有待改进。
关键词:阵列感应测井矿化度应用效果一、阵列感应测井原理简介阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。
它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。
在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。
高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。
在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。
这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。
发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。
而且它具有宽的频谱,它包括了方波频率(约等于10KHZ)及所有的奇次谐波的能量,因此每个线圈可以在10、30、50、70、90、110、130、150KHZ共8个频率下同时进行工作。
感应测井基本原理
![感应测井基本原理](https://img.taocdn.com/s3/m/8f14c9d0aa00b52acfc7caf6.png)
趋肤效应
0.100
0.010
0.001 0.001
0.010
0.100
1.00010.000地层电导率 (S/m)
1米双线圈系视电导率与地层电导率的关系
2016/10/31
产生趋肤效应的原因: 电磁波在导电媒质中传播时电磁感应产生的涡
流导致的能量损耗和相位改变。
2016/10/31
趋肤效应影响因素 频率选择考虑的因素
k 2 is
(2) 直耦电动势(直耦信号)
iI T AT N T AR N R Vm 3 2L
2016/10/31
(3) 视电导率(测量信号)
定义
V Vm sa K
2 2 AT AR N T N R I T K 4L
仪器常数
一般表达式
2i ikL 1 ikLe 1 sa 2 L
(4)趋肤深度
(2 (s ))
12
结论:均匀地层中,视电导率是L/δ的函数。
2016/10/31
(5)多线圈系的视电导率计算公式
sa
j 1 i 1 M
M
N
Ni N j
j 1 i 1
Lij N N N i j Lij
s aij
式中,M是发射线圈个数,N是接收线圈个数, Ni和Nj分别是发射线圈和接收线圈匝数,Lij是发射 与接收线圈间距。
2016/10/31
N B N R
3
(3) 视电导率
NT NR NT NB s aTR + s aTB LTR LTB sa NT NR NT NB + LTR LTB
2i 1 ikL ikL sa ( 1 ikL ) e ( 1 ik L ) e L2 1 2
阵列声波测井技术基础和应用
![阵列声波测井技术基础和应用](https://img.taocdn.com/s3/m/fdc6580aa31614791711cc7931b765ce04087a41.png)
四、阵列声波测井基础
P-波:也就是纵波,它取“Primary”的字首,表示初至波的 意思。(也叫 Compressional Wave) S-波:就是横波,它取“Secondary”的字首,表示次到波的 意思。(也叫 Shear Wave)
四、阵列声波测井基础
斯通利波(Stoneley Wave):是一种沿井壁传播的、在井 壁和声波探头之间环状空间中的流体(一般是井内泥浆)中 产生的导波,即当声波脉冲与井壁和井内流体的界面相遇时 就会产生斯通利波。斯通利波在全波列上具有波幅相对较 大、频率较低、速度低于井内的流体纵波声速等突出的特 点。斯通利波的相速度一般为纵波速度的0.89-0.96倍,其频 率小于5000Hz,斯通利波在流体和固体交界面处波幅最大, 在流体介质中斯通利波的衰减最快。 应用:利用它的衰减可以进行地层渗透率的评价。
(MIRL 3206)
PA
小探头 ———
——— ———
9.0″ 5.5″
24″
550
井眼居中测量
五、阵列声波测井仪
三大测井公司 1、斯仑贝谢公司:DSI 2、阿特拉斯公司:MAC、XMAC 3、哈里伯顿公司:WaveSonic
六、声波慢度的提取
波形区分方法:
(1)、在声波全波列图上,横波幅度大于纵波幅度; (2)在声波全波列图上,纵波和横波首波相位是相反的,即相位相差180°; (3)从到达时间上区分速度较快的纵波和速度较慢的横波及其它速度更慢的 斯通利波。
增加井内液柱压力,将减小井眼周围的应力集中,当有 效切向应力变为拉伸并达到岩石的抗拉强度时,地层容易 张性破裂,在井壁上产生裂缝。当岩石受最大切向应力 时,θ应为90°,得到地层破裂时
3σ x − σ y − Pm − α Pp = −St
高分辨率阵列感应测井评价技术多媒体2002
![高分辨率阵列感应测井评价技术多媒体2002](https://img.taocdn.com/s3/m/926dce1659eef8c75fbfb31c.png)
测量信息进行井眼环境影响
校正,然后进行优化合成, 可以形成多种纵向分辨率电 阻率曲线曲线。
多种径向探测深度
常规感应采用硬件聚焦, 其探测深度随地层的电导率 的变化而变化,在高电导率 地层,探测深度降低。而
HDIL采用先进的数字处理
技术,可以同时获得六种不
同径向探测深度的电阻率曲
zh4x2hdil_subarray4_1400_wrong
zh4x2hdil_curve_1400_wrong
zh105x1hdil_subarray0_2920_ok
zh105x1hdil_subarray3_2920_ok
zh105X1Hdil_curve_2920_OK
HDIL测井资料的应用
六种探测深度、 四组纵向 深、中两种探测深度曲 分辨率曲线 线 10in、 20in、 30in、 60in、 90in、120in 中感应:0.81 米 深感应:1.63 米 中感应:0.81 米 深感应:1.63 米 0.2-200Ω ·m
1ft、2ft、4ft 和实际分 纵向分辨率 辨率 测量范围 0.2-2000Ω ·m
原状地层电阻率
率。常规感应是在代表特定模拟
条件的点之间进行插值,其模拟 采用“台阶剖面”三参数(Rxo、
侵入半径
侵入带地层电阻率
di、Rt)模型。HDIL1、r2、Rt)模型
侵入剖面
计算Rxo、Rt、侵入半径。
多种纵向分辨率
常规感应测井响应是径 向聚焦和纵向聚焦的一种折 中结果,提高纵向分辨率就 增大了对井眼附近地层的影 响,即扩大了井眼影响。而 HDIL测井曲线是通过对阵列
高分辨率阵列感应几何因子示意图 HDIL采用的新的趋肤影响校正 方法是建立在操作频率上的一个函 数,其信号变化的比例随频率而变 化。新的趋肤影响校正降低了噪音 的影响,平滑了不同阵列、不同频 率之间的影响。
高分辨率阵列感应测井的原理及应用
![高分辨率阵列感应测井的原理及应用](https://img.taocdn.com/s3/m/0e7bac2aed630b1c59eeb59d.png)
一、地层水矿化度在阵列 实例一 感应曲线上的反映
地层水矿化度 14000ppm
增阻侵入
地层水矿化度 14000ppm
减阻侵入
地层水矿化度
无侵入
3000ppm
一、不同地层水矿化度在阵列 感应曲线上的反映
地层水矿化度 14000ppm
增阻侵入
地层水矿化度 14000ppm 日产油 9吨
减阻侵入
地层水矿化度
密度没 Ω•m
有明显 变化
阵列感应120in 电阻率为
13Ω •m
二、在咸水泥浆中应用
解释失误原因: 1.侧向电阻率上
下没有差别
2.三孔隙度没有 明显含气指示 3.阵列感应120in 21462148m试油, 日产气 108143方
曲线有异常假像
二、在咸水泥浆中应用
海水泥浆(矿化
度30000ppm)
1英尺深探测阵 薄层电阻率 曲线
列感应曲线
分辨率: 薄层电阻率>阵列 感应电阻率>深侧 向电阻率
深侧向电阻率 曲线
基本应用
在泥岩层和非渗
透性储层,阵列 感应曲线基本重 合
渗透性府层
在渗透性储层, 阵列感应曲线呈 增阻或减阻侵入
泥岩层
致密层
基本应用
当泥浆滤液矿化
度小于地层水矿 化度时,在水层 一般呈现增阻侵 入特征
无侵入
3000ppm
二、在咸水泥浆中应用
1.海上储层物性较好 2.海上地层水矿化度较高,造成储层电
阻率相对较低
3.海上一般使用咸水泥浆,泥浆侵入较
深,常规电阻率测井很难测到地层真电
阻率
二、在咸水率为 40Ω •m 侧向电 侧向电 阻率约 阻率约 为5-6 为5-6 Ω•m Ω•m 度时差 侧向电 有差别, 阻率约 中子、 为5-6
高分辨率阵列感应测井资料应用研究
![高分辨率阵列感应测井资料应用研究](https://img.taocdn.com/s3/m/b8f22f0fbb68a98271fefa11.png)
第1章高分辨率阵列感应测量原理1.1 感应测井的回顾感应测井是利用电磁感应原理测量地层电导率,基本测量单元是双线圈系,一个发射线圈和一个接收线圈。
常规感应测井采用复合线圈系结构,根据电磁场的叠加原理,采用多个基本测量单元进行组合,即多个发射线圈和多个接收线圈进行串联,产生具有直藕信号近似为零的多个测量信号矢量叠加,实现硬件聚焦的效果,从而测量具有一种或两种探测深度的地层电导率。
感应测井主要存在以下几方面的问题。
a. 感应测井不能用来划分薄层b. 对高电率地层求得的地层真电阻率误差较大c. 对减阻侵入较深的油层不能如实反映地层电阻率1.2 高分辨率阵列感应测量原理高分辨率阵列感应测井仪仍以电磁感应原理为理论基础,其线圈系采用三线圈系结构(一个发射,两个接收基本单元)。
它运用了两个双线圈系电磁场叠加原理,实现消除直藕信号影响的目的,线圈系由七组基本接收单元(其源距为6-94英寸)组成,共用一个发射线圈,使用八种频率(10KHz、30KHz、50KHz、70KHz、90KHz、110KHz、130KHz、150KHz)同时工作(其测量电路图示意如图1-1),共测量112个原始实分量和虚分量信号。
采用软件进行数字聚焦和环境校正,可获得三种纵向分辨率、六种探测深度的测井曲线。
第2章高分辨率阵列感应测井的数字处理高分辨率阵列感应测井在采用多种频率阵列测量的同时,应用软件数字聚焦、环境校正、和反演技术。
通过对资料的数字处理可以大大提高其测量效果。
2.1新的趋肤影响校正感应仪器是假设在均质环境中测量,其校正方法只适应于同步信号的计算,在高电导率地层该方法存在一定问题。
在双相量感应(DPIL)、阵列感应(AIT)仪器中是使用积分曲线进行趋肤影响校正,该方法克服了高电导率的影响,但在低电导率时积分信号变得不可靠。
高分辨率阵列感应数字处理采用一种新的趋肤影响校正方式,即是建立在操作频率上的一个函数,其信号变化的比例随频率而变化,该方法类似于积分法但克服了低电导率的影响。
第二章 第二节阵列感应成像测井仪AIT
![第二章 第二节阵列感应成像测井仪AIT](https://img.taocdn.com/s3/m/492e9a25482fb4daa58d4b7f.png)
6ft分辨率,曲线符号AS10、AS20、 AS30、 AS60、 AS90 6ft分辨率 曲线符号AS10、AS20、 AS30、 AS60、 分辨率,
现在的AIT有三种垂向分辨率:1ft、2ft、4ft,它们的探测深度 现在的AIT有三种垂向分辨率:1ft、2ft、4ft,它们的探测深度
仍然是10in 20in、30in、60in、90in。 仍然是10in、20in、30in、60in、90in。 10in、 Atlas:1ft垂向分辨率是设计在光滑井眼中使用、2ft分辨率曲线组 Atlas:1ft垂向分辨率是设计在光滑井眼中使用、2ft分辨率曲线组 垂向分辨率是设计在光滑井眼中使用 孔洞效应不甚敏感、4ft或6ft垂向分辨率曲线组对孔洞效应 垂向分辨率曲线组对孔洞效应极不 对孔洞效应不甚敏感、4ft或6ft垂向分辨率曲线组对孔洞效应极不 敏感。 敏感。
1990年,阿特拉斯研制出了向量双感应测井仪,测量R分量和X分 年 阿特拉斯研制出了向量双感应测井仪,测量 分量 分量和 分 研制出了向量双感应测井仪 地面进行反褶积 采用了10、 、 反褶积, 工作频率改变探测半 量,地面进行反褶积,采用了 、20、30khz工作频率改变探测半 工作频率改变 同时扩大了电阻率测量的动态范围。 电阻率测量的动态范围 径,同时扩大了电阻率测量的动态范围。
90年代,斯伦貝谢研制出了阵列感应测井仪(AIT)。采用几种工作 年代,斯伦貝谢研制出了阵列感应测井仪( 年代 。采用几 频率来控制探测深度 采用阵列线圈测量R分量 同时提取X分量 探测深度, 分量, 分量, 频率来控制探测深度,采用阵列线圈测量 分量,同时提取 分量 获得几组具有相同纵向分辨率, 探测深度不同的电阻率曲线 几组具有相同纵向分辨率 的电阻率曲线。 获得几组具有相同纵向分辨率,但探测深度不同的电阻率曲线。可 得到一幅径向含水饱和度的垂直剖面,并能看到侵入带的全貌。 径向含水饱和度的垂直剖面 得到一幅径向含水饱和度的垂直剖面,并能看到侵入带的全貌。
感应测井原理
![感应测井原理](https://img.taocdn.com/s3/m/06cd3111bf23482fb4daa58da0116c175f0e1e30.png)
感应测井原理感应测井是一种利用电磁感应原理来获取地下岩石物性参数的方法。
它通过在井眼中放置感应线圈,利用感应线圈与地层中导电性不同的岩石之间的相互作用,来获取地层中的电性参数。
感应测井原理是基于电磁感应定律和麦克斯韦方程组的物理原理,通过对地下岩石的电导率和介电常数进行测量,从而得到地层的孔隙度、渗透率、水含量等重要参数。
感应测井的基本原理是利用感应线圈在地层中激发电磁场,当地层中存在导电性不同的岩石时,这些岩石对电磁场的响应也不同。
感应测井仪器通过测量地下岩石对电磁场的响应,可以得到地层中的电性参数。
感应测井主要包括电阻率测井、自然电位测井和感应极化测井等方法,通过这些方法可以获取地下岩石的电性参数,从而推断地层的物性。
在实际应用中,感应测井广泛用于石油勘探和地质勘探领域。
通过感应测井可以获取地层的电性参数,从而识别地层中的含油、含水和含气等不同类型的岩石。
感应测井还可以帮助地质学家了解地下岩石的物性,为石油勘探和开发提供重要的地质信息。
感应测井原理的核心是电磁感应定律和麦克斯韦方程组。
电磁感应定律指出,当导体在磁场中运动或者磁场的强度发生变化时,导体中就会产生感应电流。
而麦克斯韦方程组则描述了电磁场的基本规律,通过这些方程可以推导出感应测井仪器的工作原理和测量方法。
总的来说,感应测井原理是一种利用电磁感应原理来获取地下岩石物性参数的方法。
通过对地下岩石的电性参数进行测量,可以获得地层的孔隙度、渗透率、水含量等重要参数,为石油勘探和地质勘探提供重要的地质信息。
感应测井原理的应用将会在地质勘探领域发挥越来越重要的作用。
《阵列感应讲》PPT课件
![《阵列感应讲》PPT课件](https://img.taocdn.com/s3/m/8cc3285631126edb6e1a102a.png)
ppt课件
5
测井原理
4ft
2ft
1ft
4英尺
2英尺
1英尺
可获得三种纵向分辨率(1ft、2ft、4ft)、5—6种探测 深度(10in、20in、30in、6p0pti课n件、90in、120in)的测井曲线。 6
测井原理
仪器性能指标
AIT-H
HDIL
HARI
长度
16.0ft(4.88m)
27ft(8.27m)
纵向分辨率匹配:将浅探测的曲线特征组合到深探测曲线时,浅探测 信号的平均影响被消除,这样既没有改变深探测曲线分辨远离井眼地 层的电导率变化的能力(探测深度未变),又使得其纵向分辨率与浅 探测曲线匹配,得到相同的视纵向分辨率,形成“分辨率匹配曲线”。
合成双感应曲线、倾角校正
ppt课件
9
资料处理
一维电阻率反演处理
3
测井原理
根据电磁感应原理提出的感应测井,在
测量时通过对发射线圈供给交流电,在其周 围地层中形成交变电磁场;这种交变电磁场
接收线圈
既可在导电介质中传播,也可在非导电介质
中传播。在感应几何因子理论中,设想把地
层分成许多以井轴为中心的圆环,每个圆环
相当于一个导电环;在交变电磁场的作用下,
涡流
这些导电环就会产生感应电流,感应电流是
原状地层电阻率(Rt)、冲洗带
电阻率(Rxo)及侵入带的侵入
深度。
ppt课件
10
资料处理
二维电阻率反演处理
二维电阻率反演同时考虑地
层电阻率在纵向和径向上的变化, Rt,n-1
但目前在测井资料处理中还没有
一种技术能够实现与测井数据完 Rt,n
全吻合的反演。在实际反演中,
阵列感应测井原理
![阵列感应测井原理](https://img.taocdn.com/s3/m/a71530357ed5360cba1aa8114431b90d6c8589a8.png)
阵列感应测井原理阵列感应测井(Array Induction Logging)是一种用于获取地下水文和岩性信息的测井方法。
其原理是基于电磁感应,利用工具中的多个感应线圈和测量电磁场的变化来研究地层的性质和含水情况。
本文将详细介绍阵列感应测井的原理及其应用。
一、阵列感应测井的原理阵列感应测井通过感应线圈测量地下电磁场的变化来分析地层的性质和含水情况。
其原理是基于法拉第定律和麦克斯韦方程组的电磁感应现象。
当工具经过地下时,感应线圈感应到的电磁场的变化反映了地层的电导率和磁导率的变化,从而获得地层的相关信息。
阵列感应测井工具通常由多个线圈组成,分别位于测井仪内部和侧向。
内部线圈用于感应地层中电流的分布情况,而侧向线圈则用于测量地层中电流的方向。
通过对这些电磁数据的处理和解释,可以获得地下地层的电导率和磁导率等信息。
二、阵列感应测井的应用阵列感应测井广泛应用于地下水文和岩性信息的研究。
其主要应用有以下几个方面:1. 地层电导率的研究地层的电导率是阵列感应测井的主要目标。
电导率反映了地层中的含水量和盐度等参数。
通过测量电磁场的变化,可以推断地下含水层和非含水层的位置,进而判断地下水的分布情况。
2. 岩性分析阵列感应测井还可以用于岩性分析。
不同的岩石有着不同的电导率和磁导率,因此可以通过测量电磁场的变化来判断地下岩石的类型和性质。
这对于油田勘探和开发具有重要意义。
3. 水文地质研究阵列感应测井能够提供水文地质研究中的许多重要参数,如含水层的渗透率、饱和度和盐度等。
这对于地下水资源的评估和管理非常关键。
4. 油气勘探阵列感应测井在油气勘探中也有重要的应用。
通过测量地下油气层中电磁场的变化,可以推断油气层的位置、厚度和含量等信息。
这对于油气勘探和储量评估非常重要。
总之,阵列感应测井是一种重要的地球物理勘探方法,可以提供地下水文和岩性的信息。
通过测量电磁场的变化,可以研究地层的电导率和磁导率等参数,为地下水资源评估、油气勘探和岩性分析等提供有力的支持。
第二章 第二节阵列感应成像测井仪AIT要点
![第二章 第二节阵列感应成像测井仪AIT要点](https://img.taocdn.com/s3/m/183871f34afe04a1b071de91.png)
阵列感应成像测井仪AIT
本节主要内容有:
一、AIT的仪器结构
二、AIT测井原理
三、数据处理
四、测井解释 五、资料应用
一、阵列感应测井的提出
双感应存在的问题
•采用单一的工作频率,只测R分量,测量电阻率动态范围小,低阻 探测深度小,主要反映冲洗带。 •中深感应线圈系不匹配,探测深度和垂向分辨率也不同,使其受邻 层影响不同。 •对渗透性好的储集层,当减阻侵入时,中深感应的探测范围均超 不出侵入带,深感应的电阻率值不能反映原始地层的真电阻率。
计算钻井液侵入体积:用ARCHIE公式计算
解释时注意: •Rxo和Rt差别很小时,不能很好地反映侵入特性 •图像上给出的都是对称剖面,实际大多数是不是圆的, 在井周侵入不是均匀的,侵入剖面可能是不对称的。
•要考虑到Rmf的明显变化对侵入界面和泥浆滤液体积的 影响
•井眼直径突变和Rt和Rxo差别很大时,在界面处会使计 算的参数产生假象。
1983年,斯伦貝谢研制出了向量双感应测井仪,测量R分量,同时 提取X分量
1990年,阿特拉斯研制出了向量双感应测井仪,测量R分量和X分 量,地面进行反褶积,采用了10、20、30khz工作频率改变探测半 径,同时扩大了电阻率测量的动态范围。
90年代,斯伦貝谢研制出了阵列感应测井仪(AIT)。采用几种工作 频率来控制探测深度,采用阵列线圈测量R分量,同时提取X分量, 获得几组具有相同纵向分辨率,但探测深度不同的电阻率曲线。可 得到一幅径向含水饱和度的垂直剖面,并能看到侵入带的全貌。
斯伦貝谢径向电阻率变化图像
径向响应函数对一组匹配良好的纵向分辨率的AIT 曲线进行反褶积,得到径向电阻率变化的详细描 述。有两种模型确定径向电阻率的变化。
最新钻井地球物理勘探教案——第四章感应测井.docx
![最新钻井地球物理勘探教案——第四章感应测井.docx](https://img.taocdn.com/s3/m/bf0b0ab452ea551810a687ca.png)
第四章感应测井感应测井可在井眼不导电的情况下(如油基泥浆井,空气钻井等)测量地层的电导率。
这种方法对低阻层反应灵敏,因此更适合区分低阻油、水层和油水过渡带。
第一节感应测井的基本理论一、基本原理感应测井是利用交变电磁场研究岩石导电性的一种方法。
发射线圈T,通以20kHz交变电流,该电流在周围介质中产生交变电磁场中。
φ 1在介质中适应出环形电流i 1 ,同时在接收线圈R 中,产生感应电动势 E 1 。
环形电流 i 1 ,在介质中亦将引起二次磁场φ2,φ 1 在 R 中引起适应由动势 E 2。
φ 1在 R 中引起的电动势为无用信号,而φ2在 R中引起的感应电动势 E 2与 i 1有关, i 1 又与地层导电能力有关,因而,通过测量 E 2的大小,便可测量介质的导电能力。
在均匀无限介质的条件下,通过求解电磁场的基本方程可得出,接收线圈中,总适应电动势的表达式:该式展开后,可简化为:上式中,虚部是无用信号,实部与σ成正比,是有用信号,二者相位上差90°。
这就是感应测井的基础。
上式的得出是忽略了三次方以上的高次项的结果,是忽略了趋肤效应影响的一种近似方法。
这样就可把有用信号看作是介质各部分所引起的感应由动势线性相加的结果,这种方法就是“几何因子”理论。
几何因子理论要点:①认为发射电磁场与每个单元环电磁场之间互不发生作用(即幅度衰减和相位移动场可忽略)②认为电磁波瞬间便可通过地层,(而实际地层中电磁波传播速度仅为自由空间的0.15% )。
根据几何因子理论,得到的接收线圈中的有用信号为:dE 2 = kgσ· ds几何因子 g 的物理意义:在均匀无限介质中,任意一点上截面积为一个单位的单元介质环对总信号的相对供献。
二、均匀介质双线圈系感应测井的电磁理论1.传播效应(趋肤效应)2.麦克斯韦方程组及其解3.感应测井信号的虚、实分量第二节感应测井线圈系特性空间各部分介质对总的感应电动势贡献大小是由每部分介质的电导率与它的几何因子两部分因素决定的,因此,必须研究几何因子的空间分布,才能研究各部分介质对感应电动势的贡献,而几何因子的空间分布与线圈系结构有关,因而必须研究线圈系的特性。
阵列感应测井方法和技术进展
![阵列感应测井方法和技术进展](https://img.taocdn.com/s3/m/a506d0025f0e7cd184253629.png)
阵列感应测井方法和技术进展前言:就目前而言,测井的方法种类繁多,并且趋于系列化。
其基本的方法有电、声、放射性测井三种。
此外还有特殊方法,如电缆地层测试、地层倾角、成像、核磁共振测井。
当然还存在其他形式的测井方法,如随钻测井。
然而每种方法都只能反映岩层地质特性的某一侧面。
在实际运用中应当综合地应用多种测井方法。
[1] 阵列感应测井技术始于20世纪90年代初。
阵列感应测井技术的原理是利用阵列在接受线圈集中在一侧的好处可大大缩短仪器长度。
目前广泛应用的阵列感应测井有斯仑贝谢的AIT-A和AIT-H、Baker Altas的HDIL以及哈里伯顿的HRIA等。
与传统的双感应和双侧向相比,具有测量信息多、分辨率高、探测深度大、反映侵入直观等优点。
一、国内外研究及应用现状感应测井仪器经历了双感应测井、聚焦感应测井、阵列感应测井仪器等几个发展阶段[2]。
感应测井解决了淡水和油基泥浆井中的电阻率测量问题,由于早期的普通电阻率测井、侧向测井,只能在导电的泥浆中进行测量,有时为了获取地层原始含油饱和度信息,需要用油基泥浆或空气钻井,针对这个问题,1949年Doll提出了感应测井及其在油基泥浆井中的应用理论,该理论的根据是电磁感应原理。
如果忽略趋肤效应的影响,则依据电磁场Maxwell方程就可以推导出Doll几何因子表达式。
1962年研制出具有商用价值的双感应测井仪器,但是该测井仪器在实际应用中出现了很多问题,例如不能进行薄层分析,分辨率低,受井眼、侵入、围岩以及趋肤效应环境影响严重等,这些不足导致测井曲线不能反映实际的地层信息。
作为一维的测量和处理方法,传统的聚焦感应测井方法不能有效地消除二维的井眼、围岩,侵入等环境影响以及趋肤效应的影响。
为了解决测井方面遇到的问题,二十世纪九十年代出现了新的测井方法和测井仪器——阵列感应测井方法和阵列感应测井器。
该测井方法在测井过程中易于获取丰富的井下地层信息。
这种测井方法不仅能有效地消除二维的环境影响,获取地层的真电导率[3],而且使感应测井的应用范围更广泛,进行薄层分析和复杂的侵入解释,对油气储藏的准确评价具有重要的作用。
《测井储层评价方法》阵列感应成像测井AIT
![《测井储层评价方法》阵列感应成像测井AIT](https://img.taocdn.com/s3/m/5161f678ad02de80d4d84056.png)
Vertical resolution
90% of vertical response function
AIT 2英尺分辨率曲线径向几何因子
几何因子,GF
1.1
0.9
0.7
0.5
AT10
AT20
0.3
(二) 阵列感应成像测井
AIT Array Induction Imager Tool
传统感应测井仪器的基本组成单元
Schlumberger
1、AIT 线圈系 (1 个发射线圈/8组接收线圈)
啊
R8
R7 R5 R3 R1 T
R2 R4 R6
72”
39பைடு நூலகம்
21 15 6 0
9 15 27
Two frequencies: 20kHz, 40kHz R(电阻) & X(电抗) signals
第一道: r1为冲洗带半径,r2为过 渡带半 径; 第二道: 合成曲线及Rt、Rxo反演结果 第三道: 计算得到的侵入地层的泥浆滤 液体积。
由相同AlT的测井数据 生成的三种图像: 左:地层电阻率 中:视地层水电阻率 右:含油气饱和度
AIT Permeable Zone
Permeable Zones
3、AIT 信号处理结果
——获得3种分辨率、5种探测深度共15条曲线
探测深度(英寸)
分辨率(英尺)
10 20 30 60 90
1
AO10 AO20 AO30 AO60 AO90
2
AT10 AT20 AT30 AT60 AT90
4
AF10 AF20 AF30 AF60 AF90
11阵列感应测井解析
![11阵列感应测井解析](https://img.taocdn.com/s3/m/7185e17948d7c1c709a14505.png)
公司 斯伦 贝谢
仪器 型号
AIT-B AIT-H
推出时 间
1990’初 1995
发射 频率
3种 1种
接收子 阵列
8个 8个
原始 曲线
28条 16条
径向探测深度 (cm)
25,50,75,150,225 25,50,75,150,225
纵向分辨率 (cm)
30,60,120 30,60,120
阿特 拉斯
27号线圈测量低频实部信号 39号线圈测量中频实部信号 39号线圈测量低频实部信号 72号线圈测量中频实部信号 72号线圈测量低频实部信号
A27MX
A27LX A39MX A39LX A71MX A72LX
27号线圈测量中频虚部信号
27号线圈测量低频虚部信号 39号线圈测量中频虚部信号 39号线圈测量低频虚部信号 72号线圈测量中频虚部信号 72号线圈测量低频虚部信号
哈里 伯顿 中国 石油 俄罗 斯
HDIL
HRAI
1997
2000
8种
2种
7个
10个
112条
40条
30,60,90,150,225, 300
30,60,90,150,225,300
30,60,120
30,60,120
MIT
2003
3种
8个
28条
25,50,75,150,225
30,60,120
HIL
2002(国 内应用)
1种
1个(+4 发射)
8条
72,123,182,297
60,100,110, 140
2 、 阵列感应仪器优点
阵列感应与双感应相比,具有以下优点:
(完整版)《测井仪器原理》第三章阵列感应测井仪器
![(完整版)《测井仪器原理》第三章阵列感应测井仪器](https://img.taocdn.com/s3/m/4748d9002a160b4e767f5acfa1c7aa00b52a9d34.png)
(1)与地面计算机通信(包括对控制命令的解码、发送和 接收数据)。
(2)采集信号并处理。
(3)与发射电路通信。
二、主要电路分析
1.发送控制电路 2. 预处理电路 3. 发射驱动电路 4. 通信接口电路 5. 信号采集电路 6. C30主控制电路
+5V +15V C36
.1 8
OP1776S C14
4 5 U18 6
.1 -15V
NC74HC860
9 10
U18
8
NC74HC860 12 13 U18 11
NC74HC860
+5V R64 1K
NR
500KHZ
SER_TX SER_RX
NR
80 81 82 83 84 85 86 87 88 89 90 91 92 95
+
+
预处理
模数转换
堆垛处理
图3-5 子阵列处理框图
每个子阵列的信号经预处理通道处理后 经屏蔽双绞线传送到其上部的EA短节, 然后由EA短节中的七个DSP采集模块对 每个子阵列的信号进行采集和处理,这 个处理过程形象的称之为“栈式存储”, 从而得到对应每个子阵列的七个特性信 息,每个特性信息占用96个缓冲区,每 个缓冲区字长为32位。
图3-3 HDIL阵列感应测井仪器组成框图
经由地层传来的R-信号由多组线圈接收。每组线圈,包括 发送线圈,都是测量部分的子阵列,发射线圈是所有子阵 列的基础。仪器共有7个子阵列。都具有靠近发射线圈的接 收线圈。每组接收线圈都由两个线圈组成,一个线圈是辅 助线圈(靠近发射线圈),另一个线圈是主接收线圈,图3-4 给出了每个子阵列的工作方式。
INC+ INC-