八年级数学上册第十四章检测卷及答案

合集下载

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)一、单选题1.下列多项式:①244x x +;②2224x xy y -+;③2214a ab b -+;④224a b -+中,能用公式法分解因式的有( ).A .1个B .2个C .3个D .4个 2.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .23.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b 的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ).A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++4.若a+b=1,则22a b 2b -+的值为( )A .4B .3C .2D .1 5.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 6.如果(x -2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-67.下列各式子的运算,正确的是( )A .(3a +2b )(3a ﹣2b )=3a 2﹣2b 2B .222(2)44x y x xy y -+=-+C .221136222x y xy xy xy x y ⎛⎫⎛⎫-+÷-=-+ ⎪ ⎪⎝⎭⎝⎭ D .(a +2)(a ﹣3)=a 2﹣68.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣69.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .aB .2()a b +C . 2()a b -D .22a b -10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,411.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题12.分解因式:24xy x -=__________.13.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________.14.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为___.15.若多项式225a ka ++是完全平方式,则k 的值是______.16.已知2310a a -+=,求441a a +的值为____.17.若2260x x --=,则()()()22321212x x x x -++--的值为__________.三、解答题18.因式分解(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+ 19.计算:(1)(﹣2a 2b )2•ab 2÷(﹣a 3b );(2)(x ﹣1)(x +1)(x 2+1);(3)20202﹣2022×2018(用乘法公式计算);(4)(a ﹣b ﹣3)(a ﹣b +3).20.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.21.(1)先化简,再求值:x 2﹣3x ﹣5=0,求代数式(x ﹣3)2+(x +y )(x ﹣y )+y 2的值;(2)已知x +y =4,xy =3,求x 2+y 2,(2x ﹣2y )2的值.22.我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如|x -2|+(y +3)2=0,因为|x -2|,(y +3)2都是非负数,则x -2=0,y +3=0,即可求x =2,y =-3,应用知识解决下列各题:(1)若(x +4)2+(y -3)2=0,求x ,y 的值.(2)若x 2+y 2-2x+4y=-5,求y x .(2)若2x 2+3y 2+8x -6y =-11,求(x +y )2020的值.23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

八年级数学上册第十四章检测卷含答案

八年级数学上册第十四章检测卷含答案

八年级数学上册第十四章检测卷时间:120分钟 满分:120分 题号一 二 三 总分 得分一、选择题(每小题3分,共30分)1.(-2)0等于( )A .-2B .0C .1D .22.计算(-x 2y )2的结果是( )A .x 4y 2B .-x 4y 2C .x 2y 2D .-x 2y 23.下列运算错误的是( )A .-m 2·m 3=-m 5B .-x 2+2x 2=x 2C .(-a 3b )2=a 6b 2D .-2x (x -y )=-2x 2-2xy4.下列四个多项式,能因式分解的是( )A .a 2+b 2B .a 2-a +2C .a 2+3bD .(x +y )2-45.如果x 2-(m -1)x +1是一个完全平方式,则m 的值为( )A .-1B .1C .-1或3D .1或36.若(x +4)(x -2)=x 2+mx +n ,则m ,n 的值分别是( )A .2,8B .-2,-8C .-2,8D .2,-87.若m =2100,n =375,则m 、n 的大小关系正确的是( )A .m >nB .m <nC .相等D .大小关系无法确定8.若a 、b 、c 为一个三角形的三边长,则式子(a -c )2-b 2的值( )A .一定为正数B .一定为负数C .可能是正数,也可能是负数D .可能为09.图①是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是CA .abB .(a +b )2C .(a -b )2D .a 2-b 210.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S =1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S =6+62+63+64+65+66+67+68+69+610②,②-①得6S -S =610-1,即5S =610-1,所以S =610-15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2016的值?你的答案是( )二、填空题(每小题3分,共24分)11.计算:-x 2·x 3=________;⎝⎛⎭⎫12a 2b 3=________;⎝⎛⎭⎫-122017×22016=________.12.已知a +b =3,a -b =5,则代数式a 2-b 2的值是________.13.若关于x 的代数式(x +m )与(x -4)的乘积中一次项是5x ,则常数项为________.14.因式分解:(1)xy -y =________;(2)4x 2-24x +36=________.15.计算:2016×512-2016×492的结果是________.16.已知2a 2+2b 2=10,a +b =3,则ab =________.17.若3m =2,3n =5,则32m +3n -1的值为________.18.请看杨辉三角①,并观察下列等式②:根据前面各式的规律,则(a +b )6=________________.三、解答题(共66分)19.(8分)计算:(1)x ·x 7; (2)a 2·a 4+(a 3)2;(3)(-2ab 3c 2)4; (4)(-a 3b )2÷(-3a 5b 2).20.(8分)化简:(1)(a +b -c )(a +b +c );(2)(2a +3b )(2a -3b )-(a -3b )2.21.(7分)若关于x 的多项式(x 2+x -n )(mx -3)的展开式中不含x 2和常数项,求m ,n 的值.22.(8分)因式分解:(1)6xy 2-9x 2y -y 3; (2)(p -4)(p +1)+3p .23.(8分)先化简,再求值:(1)(9x 3y -12xy 3+3xy 2)÷(-3xy )-(2y +x )(2y -x ),其中x =1,y =-2;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎪⎨⎪⎧m +2n =1,3m -2n =11.24.(9分)(1)已知a -b =1,ab =-2,求(a +1)(b -1)的值;(2)已知(a+b)2=11,(a-b)2=7,求ab;(3)已知x-y=2,y-z=2,x+z=4,求x2-z2的值.25.(8分)小红家有一块L形菜地,要把L形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a=10,b=30时,面积是多少平方米?26.(10分)先阅读下列材料,再解答下列问题:材料:因式分解:(x +y )2+2(x +y )+1.解:将“x +y ”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2.再将“A ”还原,得原式=(x +y +1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x -y )+(x -y )2=_______________;(2分)(2)因式分解:(a +b )(a +b -4)+4;(3)求证:若n 为正整数,则式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.参考答案与解析1.C 2.A 3.D 4.D 5.C 6.D7.B 解析:m =2100=(24)25=1625,n =375=(33)25=2725,∵16<27,∴1625<2725,即m <n .故选B.8.B9.C 解析:依题意可知每个小长方形的长是a ,宽是b ,则拼成的正方形的边长为(a +b ),中间空的部分的面积为(a +b )2-4ab =(a -b )2.故选C.10.B 解析:设S =1+a +a 2+a 3+a 4+…+a 2016①,在①式的两边都乘以a ,得a ·S =a +a 2+a 3+a 4+a 5+…+a 2017②,②-①得a ·S -S =a 2017-1,即(a -1)S =a 2017-1,所以S =a 2017-1a -1.故选B. 11.-x 5 18a 6b 3 -1212.15 13.-36 14.y (x -1) 4(x -3)2 15.403200 16.2 17.500318.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 619.解:(1)原式=x 8;(2分)(2)原式=a 6+a 6=2a 6;(4分)(3)原式=16a 4b 12c 8;(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分) 20.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2;(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)21.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n ,(2分)由展开式中不含x 2和常数项,得到m -3=0,3n =0,(4分)解得m =3,n =0.(7分)22.解:(1)原式=-y (y 2-6xy +9x 2)=-y (3x -y )2;(4分)(2)原式=p 2-3p -4+3p =(p +2)(p -2).(8分)23.解:(1)原式=-3x 2+4y 2-y -4y 2+x 2=-2x 2-y .当x =1,y =-2时,原式=-2+2=0.(3分)(2)⎩⎪⎨⎪⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.故方程组的解是⎩⎪⎨⎪⎧m =3,n =-1.(5分)(m -n )(m +n )+(m +n )2-2m 2=m 2-n 2+m 2+2mn +n 2-2m 2=2mn ,当m =3,n =-1时,原式=2×3×(-1)=-6.(8分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(3分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,①-②得4ab =4,∴ab =1.(6分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =4,∴原式=(x +z )(x -z )=16.(9分)25.解:(1)小红家的菜地面积共有:2×12×(a +b )(b -a )=(b 2-a 2)(平方米).(4分) (2)当a =10,b =30时,面积为900-100=800(平方米).(8分)26.(1)(x -y +1)2(2分);(2)解:令A =a +b ,则原式变为A (A -4)+4=A 2-4A +4=(A -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(6分)(3)证明:(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(10分)。

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。

人教版八年级数学上册第十四章章节检测试题及答案 - 副本

人教版八年级数学上册第十四章章节检测试题及答案 - 副本

人教版八年级数学上册第十四章章节检测试题及答案一、单选题1.计算(-2a 2b )3的结果是( ) A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 32.若x n =3,x m =6,则x m +n =( ) A .9B .18C .3D .63.如果 2(4)(5)x x x px q +-=++ ,那么p ,q 的值为( ) A .p=1,q=20B .p=-1,q=20C .p=-1,q=-20D .p=1,q=-204.下列从左到右的变形,属于因式分解的是( ) A .()()2111x x x +-=-B .24(3)(2)2m m m m +-=+-+C .()222x x x x +=+D .224(4)(4)x y x y x y -=+-5.长方形面积是3a 2-3ab+6a ,一边长为3a ,则它周长( )A .2a-b+2B .8a-2bC .8a-2b+4D .4a-b+26.下面是一位同学做的四道题:①2a+3b=5ab;②(3a 3)2=6a 6;③a 6÷a 2=a 3;④a 2•a 3=a 5,其中做对的一道题的序号是( ) A .①B .②C .③D .④7.如果 2283x y x y +=+=, ,则 xy = ( ) A .1B .12C .2D .12-8.设 125257()()m n m x y x y x y -+=,则 1()2nm - 的值为( ) A .18-B .C .1D .9.从边长为a 的正方形中剪掉一个边长为b 的正方形 ( 如图1所示 ) ,然后将剩余部分拼成一个长方形 如图2所示 ). 根据图形的变化过程,写出的一个正确的等式是( )A .()2222a b a ab b -=-+B .()2a ab a ab-=-C .()2b a b ab b-=-D .()()22a b a b a b -=+-10.如图,边长为a 的正方形中剪去一个边长为b 的小正方形,剩下部分正好拼成一个等腰梯形,利用这两幅图形面积,能验证怎样的数学公式?( )12-12(A .22()()a b a b a b -=+-B .22()-()=4a b a b ab +-C .222(+)+2a b a ab b =+D .222(-)-2a b a ab b =+二、填空题11.若 3210x y y y y y ⋅⋅⋅= ,则 x = .12.若x 、y 互为相反数,则 (5x )2·(52)y = .13.若a 3•a m ÷a 2=a 9,则m= 14.一批志愿者组成了一个“爱心团队”,专门到全国各地巡回演出,以募集爱心基金.第一个月他们就募集到资金1万元.随着影响的扩大,第n (n≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次完成突破10万元时,相应的n 的值为 .(参考数据:1.25≈2.5,1.26≈3.0,1.27≈3.6)15.已知: 4m x = , 2n x = ,求 34m n x - 的值为 .16.若 ()331x x -+= ,则 。

人教版初二数学上册《第十四章单元试卷》(详尽答案版)

人教版初二数学上册《第十四章单元试卷》(详尽答案版)

人教版初二数学上册第十四章检测题一、选择题1.计算x5·x3的结果是()A.x2B.x5C.x8D.x152.下列计算中正确的是()A.(x+2)(x-3)=x2-6B.a6÷a2=a3C.(-a2)3+(-a3)2=0D.(3a3)2=6a63.计算(2a)3·a2的结果是()A.2a5B.2a6C.8a5D.8a64.一个长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()A.4a-3bB.8a-6bC.4a-3b+1D.8a-6b+25.多项式a-b+c(a-b)因式分解的结果是()A.(a-b)(c+1)B.(b-a)(c+1)C.(a-b)(c-1)D.(b-a)(c-1)6.在单项式x2,-4xy,y2,2xy,4y2,4xy,-2xy,4x2中,任取三个相加,可以组成的不同完全平方式有()A.4个B.5个C.6个D.7个7.如果a-b=3,ab=1,那么a2+b2的值等于()A.11B.9C.7D.88.计算(x-1)(x+1)(x2+1)-(x4+1)的结果是()A.-2x2B.0C.-2D.-19.计算(a+m)错误!未找到引用源。

的结果不含关于字母a的一次项,那么m等于()A.2B.-2C.错误!未找到引用源。

D.-错误!未找到引用源。

10.已知a+b=2,则a2-b2+4b的值是()A.2B.3C.4D.6二、填空题11.计算错误!未找到引用源。

×950的结果是.12.分解因式:4x2-2x= .13.若(2x+3)0=1,则x .14.计算2x3·(-2xy)错误!未找到引用源。

的结果是.15.七年级一班教室的后墙上的“学习园地”是一个长方形,它的面积为(3x)3-6ax2-3x,其中一边长为3x,则这个“学习园地”的另一边长为.16.若x2+2(m-3)x+16是完全平方式,则m= .17.若a+b=5,ab=3,则a2+b2= .18.已知(x2+nx+3)(x2-3x+m)的展开式中不含x2和x3项,则m= ,n= .19.若整式A与m2-2mn+n2的和是(m+n)2,则A= .20.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解为2(x-1)(x-9);另一位同学因看错了常数项而分解为2(x-2)(x-4),则原多项式分解因式的正确结果是.三、解答题21.计算:(1)5a2b÷错误!未找到引用源。

人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)

人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)

人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。

八年级上册数学第十四章 14.3因式分解 测试卷(含答案)

八年级上册数学第十四章 14.3因式分解 测试卷(含答案)

八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

第十四章《整式乘法与因式分解》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题4分,共32分)三、解答题(本大题共6小题,共58分)19.(8分)计算:20.(8分)分解因式:21.(10分)(1)若,求的值;(2)已知,求的值.22.(10分)观察下列等式:…(1)根据以上等式写出______;(2)直接写出的结果(n 为正整数)______;2225,()9m n m n -=+=m n -()()2121y y y m +-+=224424y my m y m -+-+()()2111x x x -÷-=+()()32111xx x x -÷-=++()()432111xx x x x -÷-=+++()()511x x -÷-=()()11nx x -÷-(3)计算:.23.(10分)材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:.(1)分解因式:(2)若a ,都是正整数且满足,求的值;(3)若a ,b为实数且满足 , ,求S 的最小值.24.(12分)我们学习了完全平方公式,把它适当变形,可解决很多数学问题.2342023122222+++++⋅⋅⋅+()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++1ab a b +++()b a b >40ab a b ---=a b +50ab a b ---=22235S a ab b a b =+++-()()22222222a b a ab b a b a ab b +=++-=-+,例如:若,求的值.解∶又根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则___________;②若,则________________;(3)如图点C 是线段上的一点,以为边向线段的两侧作正方形,已知,两正方形的面积和20,求图中阴影部分的面积.42a b ab +==,²²a b +4a b += 2()16a b ∴+=22216a ab b ∴++=2ab = 2216216412a b ab ∴+=-=-=22626x y x y +=+=,xy 231m n mn +==,2m n -=()()456m m --=()()2245m m -+-=AB AC BC 、AB 5AB =12S S +=答案解析:一、单选题1.B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x 、y 的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:==展开后多项式不含x 、y 的一次项,,,,故选B .2.A【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法、乘法法则计算各式进行判断即可.【详解】(1)若,,则; 小明计算正确;(2);小明计算正确;(3);小明计算错误;(4);小明计算错误;(5).小明计算错误;故正确的有2个故答案为:A .3.D【分析】利用面积公式以及面积的和差将阴影面积表示出来即可.【详解】解:∵由图知阴影部分边长分别为(x -1),(x -2),()()2342x y x ay b +-++22422633844x axy bx xy ay by x ay b +++++---224(26)(28)(34)34x a xy b x b a y ay b+++-+-+- 280340b b a -=⎧∴⎨-=⎩34a b =⎧∴⎨=⎩1a b ∴-=-3m a =7n a =3721m n m n a a a +==⨯= ()()2020202020210.12580.125888-⨯=-⨯⨯=()222221a b ab ab a b ab ab ab a -÷=÷-÷=-()3328a a -=-()()22321263253x x x x x x x -+=+--=--连接,则阴影部分的面积,BD ()()1122a a b b a b =+++()212a b =+10=(2)由题意得,故答案为:;(3)由题意得,23.(1);(2)由得,,,,,,,,,解得,,;(3)由得,,,()121(1)1,n n n x x x x x ---÷-=++++ 121n n x x x --++++ ()2342023202412222221++++++=-÷ 2024(21)2 1.-=-1ab a b +++1()()ab a b =+++(1)(1)a b b =+++11()()a b =++40ab a b ---=15ab a b --+=115()()a b b ---=(1)(1)5a b --=a b > 11a b ∴->-551=⨯ 15a ∴-=11b -=6a =2b =8a b ∴+=50ab a b ---=5ab a b =++22235S a ab b a b∴=+++-()222355a a b b a b=+++++-22233155a a b b a b=+++++-2228215a b a b =++++22288216a ab b =++++++()()222216a b =++++,,,当,时,,∴S 的最小值为6.24.(1)解:;(2)①,,,,;②(3)设,则,所以,()2220a +≥ ()210b +≥6S ∴≥2a =-1b =-6S =6x y += 222()236x y x y xy ∴+=++=2226x y += 210xy ∴=5xy ∴=231m n mn +== ,()2222449m n m mn n ∴+=++=2245m n ∴+=()2222441m n m n mn -=+-= 21m n ∴-=±4,5,m a m b -=-= 4(5)45a b m m m ∴-=---=--1m +=-(4)(5)6,m m --= 6,ab ∴=2222(4)(5)m m a b ∴-+-=+2()2a b ab=-+2(1)26=-+⨯112=+13,=,AC m BC n ==2212,S m S n ==221220S S m n +=+=。

华师大版八年级数学上册《第14章勾股定理》章节测试含答案(4套).doc

华师大版八年级数学上册《第14章勾股定理》章节测试含答案(4套).doc

第14章勾股定理一、选择题(共2小题〉1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A. 5B. 6C. 7D. 252.如图,在AABC 中,ZC二90° , AC=2,点 D 在BC±, ZADC二2ZB, AD=,则BC 的长为()A. - 1B. +1C. - 1D. +1点E是AD的中点,且AE=1, BE的垂直平分线MN恰好过点C.则3.如图,矩形纸片ABCD中,矩形的一边AB的长度为()A. 1B.C.D. 24. AABC中,AB二AC二5, BC二8,点P是BC边上的动点,过点P作PD丄AB于点D, PE丄AC于点E,则PD+PE的长是()A. 4. 8B. 4. 8 或 3. 8C. 3. 8 D・ 55. 如图,在RtAABC中,ZBAC二90° , ZABC的平分线BD交AC于点D, DE是BC的垂直平分线,点E是垂足.已知DC二8, AD二4,则图中长为4 的线段有()A. 4条B. 3条C. 2条D・1条6.如图,在四边形ABCD中,AD〃BC, DE±BC,垂足为点E,连接AC交DE于点F,点G为AF 的中点,ZACD 二2ZACB.若DG二3, ECh ,则DE 的长为()A. 2B.C. 2D.7. 在边长为正整数的AABC中,AB二AC,且AB边上的中线CD将AABC的周长分为仁2的两部分,贝OAABC面积的最小值为()A. B・C・ D.8. 如图,AABC中,BC二AC, D、E两点分别在BC与AC上,AD丄BC, BE丄AC, AD与BE相交于F 点.若AD二4, CD二3,则关于ZFBD、ZFCD、ZFCE的大小关系,下列何者正确?()A. ZFBD>ZFCDB. ZFBDVZFCDC. ZFCE>ZFCDD. ZFCEVZFCD9.如图,在RtAABC中,ZACB二90°,点D是AB的中点,且CD二,如果RtAABC的面积为1,则它的周长为()10.如图,AABC的顶点A、B、C在边长为1的正方形网格的格点上,BD丄AC于点D.则BD的长为()A. B. C. D.二、填空题(共15小题〉门.如图,在AABC中,AB二BC二4, A0二BO, P是射线C0上的一个动点,ZA0C二60°,则当Z\PAB 为直角三角形时,AP的长为・12. 在AABC 中,AB=13cm, AC二20cm, BC 边上的高为12cm,则Z\ABC 的面积为 _____ cml13. 如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF, DF二4.设AB二x, AD=y,贝lj x?+ (y-4)'的值为 .14. 正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若APBE是等腰三角形,则腰长为—・15. 如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为・16.如图,AABC中,CD丄AB于D, E是AC的中点.若AD二6, DE二5,则CD的长等于17. 等腰Z\ABC 中,AB二AC二10c叫BC=12cm,则BC 边上的高是cm.18. 已知直角三角形的两边的长分别是3和4,则第三边长为_・19. 如图,在等腰AABC中,AB=AC, BC边上的高AD二6cm,腰AB上的高CE二8cm,则Z\ABC的周长等于___ cm.20.如图,四边形ABCD 中,AB〃DC, ZB二90°,连接AC, ZDAC=ZBAC.若BC二4c叫AD二5c叫则AB 二cm.21.如图,点D在AABC的边BC上,ZC+ZBAD=ZDAC, tan Z BAD二AD 二,CD=13,则线段AC的长为22.如图,RtAABC 中,ZABC二90。

人教版数学八年级上册 第14章测试题含答案

人教版数学八年级上册 第14章测试题含答案

人教版数学八年级上册第14章测试题含答案14.1整式的乘法一.选择题1.若a x=2,a y=3,则a2x+3y=()A.108B.54C.36D.312.下列计算正确的是()A.3=x6C.x3+x3=2x6D.x2x3=x63.若(x+2)(x﹣3)=x2+mx﹣6,则m等于()A.﹣2B.2C.﹣1D.14.若(x2+px+8)(x2﹣3x+1)乘积中不含x2项,则p的值为()A.p=0B.p=3C.p=﹣3D.p=﹣15.下列计算正确的是()A.a4 +a5 =a9 B.a2a3=a5C.3=ab66.长方形的长为3x2y,宽为2xy3,则它的面积为()A.5x3y4B.6x2y3C.6x3y4D.7.下列式子中,正确的有()①m3m5=m15;②(a3)4=a7;③(﹣a2)3=﹣(a3)2;④(3x2)2=6x6.A.0个B.1个C.2个D.3个8.下列各式中,正确的是()A.m4+m4=m8B.m5m5=2m25C.﹣(﹣m3)2(﹣m2)=m12D.以上都不正确9.关于x的代数式(3﹣ax)(3+2x)的化简结果中不含x的一次项,则a的值为()A.1B.2C.3D.410.若m=272,n=348,则m、n的大小关系正确的是()A.m>n B.m<nC.m=n D.大小关系无法确定二.填空题11.x2x5=,(103)3=.12.计算:﹣32021×(﹣)2020=.13.已知x﹣y=7,xy=5,则(2﹣x)(y+2)的值为.14.如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要张C类卡片.15.将关于x的多项式x2+2x+3与2x+b相乘,若积中不出现一次项,则b=.三.解答题16.﹣15y4.17.计算下列各式(1)x(2x2y﹣3y);(2)(x+2y)(x﹣3y)+xy.18.代数计算:(1)求值:(﹣)÷(﹣)×|﹣2+(﹣3)2|;(2)化简:5x(x2+2x+1)﹣(2x+3)(x﹣5);(3)分解:(m2﹣1)2﹣6(m2﹣1)+9;(4)求解:;(5)求解:4﹣3|2x﹣1|=1;(6)求解:|x﹣|2x+1||=3.19.已知多项式x+2与另一个多项式A的乘积为多项式B.(1)若A为关于x的一次多项式x+a,B中x的一次项系数为0,直接写出a的值;(2)若B为x3+px2+qx+2,求2p﹣q的值.(3)若A为关于x的二次多项式x2+bx+c,判断B是否可能为关于x的三次二项式,如果可能,请求出b,c的值;如果不可能,请说明理由.参考答案与试题解析一.选择题1.【解答】解:∵a x=2,a y=3,∴a2x+3y=a2x a3y=(a x)2(a y)3=22×33=4×27=108,故选:A.2.【解答】解:A、(﹣2x)3=﹣8x3,故原题计算正确;B、(x3)3=x9,故原题计算错误;C、x3+x3=2x3,故原题计算错误;D、x2x3=x5,故原题计算错误;故选:A.3.【解答】解:∵(x+2)(x﹣3)=x2﹣x﹣6,又∵(x+2)(x﹣3)=x2+mx﹣6,∴x2﹣x﹣6=x2+mx﹣6.∴m=﹣1.故选:C.4.【解答】解:(x2+px+8)(x2﹣3x+1)=x4+px3+8x2﹣3x3﹣3px2﹣24x+x2+px+8=x4+(p﹣3)x3+(9﹣3p)x2+(p﹣24)x+8.∵(x2+px+8)(x2﹣3x+1)乘积中不含x2项,∴9﹣3p=0.∴p=3.故选:B.5.【解答】解:a4与a5不是同类项,不能合并,因此选项A不符合题意;a2a3=a2+3=a5,因此选项B符合题意;(﹣a3)4=a12,因此选项C不符合题意;(ab2)3=a3b6,因此选项D不符合题意;故选:B.6.【解答】解:3x2y2xy3=6x3y4,故选:C.7.【解答】解:①m3m5=m8;故①结论错误;②(a3)4=a12;故②结论错误;③(﹣a2)3=﹣(a3)2;故③结论正确;④(3x2)2=9x4;故④结论错误.所以正确的有1个.故选:B.8.【解答】解:A、m4+m4=2m4,故A错误;B、m5m5=m10,故B错误;C、﹣(﹣m3)2(﹣m2)=﹣m6(﹣m2)=m8,故C错误;故选:D.9.【解答】解:原式=9+6x﹣3ax﹣2ax2=﹣2ax2+(6﹣3a)x+9,由结果不含x的一次项,得到6﹣3a=0,解得:a=2.故选:B.10.【解答】解:m=272=(23)24=824,n=348=(32)24=924,∵8<9,∴m<n,故选:B.二.填空题(共5小题)11.【解答】解:x2x5=x2+5=x7;(103)3=103×3=109.故答案为:x7;109.12.【解答】解:﹣32021×(﹣)2020=﹣32020×3×(﹣)2020=﹣[3×(﹣)]2020×3=﹣1×3=﹣3,故答案为:﹣3.13.【解答】解:(2﹣x)(y+2)=2y+4﹣xy﹣2x=﹣xy﹣2(x﹣y)+4,把x﹣y=7,xy=5代入,原式=﹣5﹣2×7+4=﹣15.故答案为:﹣15.14.【解答】解:∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C 类7张.故答案为:7.15.【解答】解:根据题意得:(x2+2x+3)(2x+b)=2x3+(4+b)x2+(6+2b)x+3b,由积中不出现一次项,得到6+2b=0,解得:b=﹣3.故答案为:﹣3.三.解答题(共4小题)16.【解答】解:﹣15y4=4x4+20x3y+21x2y2+16x3y+80x2y2+84xy3+12x2y2+60xy3+63y4﹣15y4=4x4+36x3y+113x2y2+144xy3+48y4.17.【解答】解:(1)x(2x2y﹣3y)=x2x2y﹣x3y=x3y﹣xy;(2)(x+2y)(x﹣3y)+xy=x2﹣xy﹣6y2+xy=x2﹣6y2.18.【解答】解:(1)原式=(﹣)×(﹣6)×|﹣2+9|=1×7=7;(2)原式=5x3+10x2+5﹣2x2+10x﹣3x+15=5x3+8x2+7x+20;(3)原式=(m2﹣1﹣3)2=(m2﹣4)2=(m+2)2(m﹣2)2;(4)原方程组变形为:,②×15﹣①得﹣3y=14,解得y=﹣,把y=﹣代入②得,x=﹣,∴原方程组的解为:;(5)∵4﹣3|2x﹣1|=1,∴|2x﹣1|=1,∴2x﹣1=±1,∴2x﹣1=1或2x﹣1=﹣1,解得x=1或x=0;(6)∵|x﹣|2x+1||=3,∴x﹣|2x+1|=±3,∴|2x+1|=x﹣3,或|2x+1|=x+3,∴2x+1=±(x﹣3)或2x+1=±(x+3),解得x=﹣4或x=或x=2或x=﹣.19.【解答】解:(1)根据题意可知:B=(x+2)(x+a)=x2+(a+2)x+2a,∵B中x的一次项系数为0,∴a+2=0,解得a=﹣2.(2)设A为x2+tx+1,则(x+2)(x2+tx+1)=x3+px2+qx+2,∴,∴2p﹣q=2(t+2)﹣(2t+1)=3;(3)B可能为关于x的三次二项式,理由如下:∵A为关于x的二次多项式x2+bx+c,∴b,c不能同时为0,∵B=(x+2)(x2+bx+c)=x3+(b+2)x2+(2b+c)x+2c.当c=0时,B=x3+(b+2)x2+2bx,∵b不能为014.2乘法公式一.选择题1.如果x2+6xy+m是一个完全平方式,则m的值为()A.9y2B.3y2C.y2D.6y2 2.若M(5x﹣y2)=y4﹣25x2,那么代数式M应为()A.﹣5x﹣y2B.﹣y2+5x C.5x+y2D.5x2﹣y2 3.下列运算正确的是()A.a2+2a=3a3B.A.x3x2=x6B.x(x﹣3)=x2﹣3xC.=x2+y2D.﹣2x3y2÷xy2=2x47.下列各式中,不能用平方差公式计算的是()A.B.C.D.8.已知4﹣8x+mx2是关于x的完全平方式,则m的值为()A.2B.±2C.4D.±49.如果x2﹣6x+N是一个完全平方式,那么N是()A.11B.9C.﹣11D.﹣910.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.B.C.D.二.填空题11.已知a+b=2,ab=1,则a2+b2=.12.已知:a+b=6,ab=﹣10,则a2+b2=.13.若x2﹣10x+m2是一个完全平方式,那么m的值为.14.若(x+y)2=11,(x﹣y)2=1,则x2﹣xy+y2的值为.15.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长为20,宽为10的长方形,如图2,则图2中(1)部分的面积是.三.解答题16.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.17.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.18.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.19.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.参考答案与试题解析一.选择题1.【解答】解:∵x2+6xy+m是一个完全平方式,∴m==9y2.故选:A.2.【解答】解:∵M(5x﹣y2)=y4﹣25x2=(y2+5x)(y2﹣5x)=(5x﹣y2)(﹣5x﹣y2),∴M=﹣5x﹣y2.故选:A.3.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.4.【解答】解:A、原式=2m2,不符合题意;B、原式=m2+4m+4,不符合题意;C、原式=8m3n6,不符合题意;D、原式=m8,符合题意.故选:D.5.【解答】解:A.结果是a5,故本选项不符合题意;B.结果是﹣8a9,故本选项不符合题意;C.结果是a2,故本选项符合题意;D.结果是a2+2ab+b2,故本选项不符合题意;故选:C.6.【解答】解:A、x3x2=x5,原计算错误,故此选项不符合题意;B、x(x﹣3)=x2﹣3x,原计算正确,故此选项符合题意;C、=x2﹣y2,原计算错误,故此选项不符合题意;D、﹣2x3y2与xy2不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.7.【解答】解:A、=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.8.【解答】解:∵4﹣8x+mx2是关于x的完全平方式,∴﹣8=﹣2×2,解得:m=4,故选:C.9.【解答】解:∵x2﹣6x+N=x2﹣2x3+N是一个完全平方式,∴N=32=9.故选:B.10.【解答】解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为,故选:A.二.填空题11.【解答】解:∵a+b=2,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=4+2=6,故答案为:6.12.【解答】解:∵a+b=6,ab=﹣10,∴a2+b2=(a+b)2﹣2ab=62﹣2×(﹣10)=56,故答案为:56.13.【解答】解:∵x2﹣10x+m2是一个完全平方式,∴m=±5,故答案为:±5.14.【解答】解:∵(x+y)2=x2+y2+2xy=11①,(x﹣y)2=x2+y2﹣2xy=1②,∴①+②得:2(x2+y2)=12,即x2+y2=6,①﹣②得:4xy=10,即xy=2.5,则原式=6﹣2.5=3.5.故答案为:3.5.15.【解答】解:根据题意得,a+b=20,a﹣b=10,解得,a=15,b=5,图2中(1)的面积为a(a﹣b)=15×10=150,故答案为:150.三.解答题16.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.17.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=333.18.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.19.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块C型卡片的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2)14.3整式的除法一.选择题1.计算﹣2a3b4÷3a2bab3正确答案是()A.B.ab C.﹣a6b8D.a2b62.下列运算正确的是()A.3=6x6C.2x2+4x3=6x5D.x5÷x=2x43.已知a≠0,下列运算中正确的是()A.3a+2a2=5a3B.6a3÷2a2=3aC.A.x3x4=x7B.3=x6D.2x2÷x=2x5.下列计算正确的是()A.10a4b3c2÷5a3bc=ab2cB.÷3xy=3x﹣2yD.=﹣2b﹣c6.已知:(12a3﹣6a2+3a)÷3a﹣2a=0且b=2,则式子(ab2﹣2ab)ab的值为()A.﹣B.C.﹣1D.27.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b8.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b9.设a,b是实数,定义关于“*”的一种运算如下a*b=(a+b)2﹣(a﹣b)2.则下列结论:①a*b=0,则a=0或b=0;②不存在实数a,b,满足a*b=a2+4b2;③a*(b+c)=a*b+a*c;④a*b=8,则(10ab3)÷(5b2)=4其中正确的是()A.①②③B.①③④C.①②④D.②③④10.太阳到地球的距离约为1.5×108km,光的速度约为3.0×105km/s,则太阳光到达地球的时约为()A.50s B.5×102s C.5×103s D.5×104s二.填空题11.(8a3b﹣4a2b2)÷2ab=.12.计算15a5b3÷5a4b的结果等于.13.已知,一个长方形的面积为6a2﹣4ab+2a,且它的一条边长为2a,则与这条边相邻的边的长度为.14.若2m×8n=32,,则的值为.15.已知一个长方形的面积是2a2﹣8b2(a>2b),其中一边的长为a+2b,则另一边的长为.三.解答题16.计算:(5a3b2﹣6a2)÷(3a)17.(2x﹣1);(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2).18.计算:(1)|1﹣|+﹣;(2)÷×;(3)(2x+1)(x﹣3);(4)(4x3﹣6x2+2x)÷(﹣2x).19.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.参考答案与试题解析一.选择题1.【解答】解:﹣2a3b4÷3a2bab3=﹣2×(a3﹣2+1b4﹣1+3)=﹣a2b6,故选:D.2.【解答】解:A、(﹣a2n)3=﹣a6n,故此选项错误;B、(2x2)3=8x6 ,故此选项错误;C、2x2+4x3,无法合并,故此选项错误;D、x5÷x=2x4,正确.故选:D.3.【解答】解:由于a和a2不是同类项,不能合并,故选项A错误;6a3÷2a2=3a,计算正确,故选项B正确;(3a3)2=9a6≠6a6,故选项C错误;3a3÷2a2=1.5a≠5a5,故选项D错误.故选:B.4.【解答】解:(C)原式=x9,故C错误,故选:C.5.【解答】解:A、10a4b3c2÷5a3bc=2ab2c,故此选项错误;B、(a2bc)2÷abc=a4b2c2÷abc=a3bc,故此选项错误;C、(9x2y﹣6xy2)÷3xy=3x﹣2y,正确;D、=﹣2b+c,故此选项错误;故选:C.6.【解答】解:∵(12a3﹣6a2+3a)÷3a﹣2a=0,∴4a2﹣2a+1﹣2a=0,故(2a﹣1)2=0,解得:a=,(ab2﹣2ab)ab=a2b3﹣a2b2把a=,b=2代入上式得:原式=×()2×23﹣()2×22=﹣1=﹣.故选:A.7.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.8.【解答】解:根据题意,得纸盒底部长方形的宽为=4a,∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.9.【解答】解:①∵a*b=0,∴(a+b)2﹣(a﹣b)2=0,a2+2ab+a2﹣a2﹣b2+2ab=0,4ab=0,∴a=0或b=0,故①正确;②∵a*b=(a+b)2﹣(a﹣b)2=4ab,又a*b=a2+4b2,∴a2+4b2=4ab,∴a2﹣4ab+4b2=(a﹣2b)2=0,∴a=2b时,满足条件,∴存在实数a,b,满足a*b=a2+4b2;故②错误,③∵a*(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4ac,又∵a*b+a*c=4ab+4ac∴a*(b+c)=a*b+a*c;故③正确.④∵a*b=8,∴4ab=8,∴ab=2,∴(10ab3)÷(5b2)=2ab=4;故④正确.故选:B.10.【解答】解:∵太阳到地球的距离约为1.5×108km,光的速度约为3.0×105km/s,∴太阳光到达地球的时约为:(1.5×108)÷(3.0×105)=5×102(s).故选:B.二.填空题11.【解答】解:(8a3b﹣4a2b2)÷2ab=8a3b÷2ab﹣4a2b2÷2ab=4a2﹣2ab.故答案为:4a2﹣2ab.12.【解答】解:15a5b3÷5a4b=3ab2.故答案为:3ab2.13.【解答】解:∵一个长方形的面积为6a2﹣4ab+2a,且它的一条边长为2a,∴与这条边相邻的边的长度为:(6a2﹣4ab+2a)÷2a=3a﹣2b+1.故答案为:3a﹣2b+1.14.【解答】解:∵2m×8n=2m×23n=2m+3n=32=25,2m÷4n=2m÷22n=2m﹣2n==2﹣4,∴m+3n=5,m﹣2n=﹣4,两式相加得:2m+n=1,则原式=(2m+n)=.故答案为:.15.【解答】解:∵一个长方形的面积是2a2﹣8b2(a>2b),其中一边的长为a+2b,∴(2a2﹣8b2)÷(a+2b)=2(a+2b)(a﹣2b)÷(a+2b)=2(a﹣2b)=2a﹣4b.故答案为:2a﹣4b.三.解答题16.【解答】解:(5a3b2﹣6a2)÷(3a)=5a3b2÷3a﹣6a2÷3a=﹣2a.17.【解答】解:(2x﹣1)=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2)=15x3y5÷(﹣5x3y2)﹣10x4y4÷(﹣5x3y2)﹣20x3y2÷(﹣5x3y2)=﹣3y3+2xy2+4.18.【解答】解:(1)|1﹣|+﹣=﹣1+2﹣3=﹣2;(2)÷×==;(3)(2x+1)(x﹣3)=2x2﹣6x+x﹣3=2x2﹣5x﹣3;(4)(4x3﹣6x2+2x)÷(﹣2x)=4x3÷(﹣2x)﹣6x2÷(﹣2x)+2x÷(﹣2x)=﹣2x2+3x﹣1.19.【解答】解:(1)A=(4x4﹣x2)÷x2=4x2﹣1,B=(2x+5)(2x﹣5)+1=4x2﹣25+1=4x2﹣24。

八年级数学上册《第十四章 勾股定理》单元测试卷及答案(华东师大版)

八年级数学上册《第十四章 勾股定理》单元测试卷及答案(华东师大版)

八年级数学上册《第十四章 勾股定理》单元测试卷及答案(华东师大版)一、选择题1.下列各组数据中是勾股数的是( )2.有一直角三角形纸片,∠C =90°BC =6,AC =8,现将∠ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .7B .74C .72D .43.在∠ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件中,能判断∠ABC 是直角三角形的是( )A .a =32,b =42,c =52B .a =b ,∠C =45° C .∠A :∠B :∠C =6:8:10D .a 3b 7,c =24.在∠ABC 中,已知4AB =,5BC =和41AC =)A .∠ABC 是锐角三角形B .∠ABC 是直角三角形且90C ∠= C .∠ABC 是钝角三角形D .∠ABC 是直角三角形且90B ∠=5.要说明命题“若a 2>b 2,则a >b”是假命题,能举的一个反例是( )A .a =3,b =2B .a ﹣3,b =2C .a ﹣=3,b =﹣1D .a =﹣1,b =36.如图,在∠ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )A .6B .7C .8D .97.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是9cm ,则图中所有正方形的面积的和是( )A .264cmB .281cmC .2162cmD .2243cm8.将直角三角形的三条边长做如下变化,得到的新三角形仍是直角三角形的是( )A .同加一个相同的数B .同减一个相同的数C .同乘以一个相同的正整数D .同时平方9.如图,在ABC 中AB AC =,点P 为ABC 内一点,连接PA 、PB 、PC 且APB APC ∠≠∠求证:PB PC ≠用反证法证明时,第一步应假设( )A .AB AC ≠ B .PB PC = C .APB APC ∠=∠D .PBC PCB ∠≠∠10.如图,圆柱的底面周长是24,高是5,—只在A 点的蚂蚁沿侧面爬行,想吃到B 点的食物,需要爬行的最短路径是( )A .9B .13C .14D .245π+ 二、填空题11.6,一条直角边长为1,则另一条直角边长为 . 12.如图,每个小正方形的边长为1,则∠ABC 的度数为 度.13.反证法证明命题“同旁内角不互补的两条直线不平行”时,应先假设 .14.如图是某滑雪场U 型池的示意图,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为3的半圆,其边缘16AB CD ==,点E 在CD 上,4CE =一名滑雪爱好者从A 点滑到E 点时,他滑行的最短路程约为 (π取3).三、解答题15.如图,在ABC 中,AB=AC ,AD 平分BAC ∠,已知BC 10=,AD=12,求AC 的长.16.如图,在ABC 中,D 为AB 边上一点,已知AC=13,CD=12,AD=5,AB=BC .请判断ACD 的形状,并求出BC 的长.17.求证:对顶角相等(请画出图形,写出已知、求证、证明.)18.一个零件的形状如图所示,按规定BAC ∠应为直角,工人师傅测得90ADC ∠=︒,AD=3,CD=4,AB=12,BC=13请你帮他看一下,这个零件符合要求吗?为什么.四、综合题19.如图,在ABC 中60BAC ∠=︒,45B ∠=︒且AD 是BAC ∠的平分线,且3AC =CH AB ⊥于点H ,交AD 于点O .(1)求证:ACD 是等腰三角形; (2)求线段BD 的长.20.如图,ABC 的三边分别为5AC =,12BC =和13AB =,如果将ABC 沿AD 折叠,使AC恰好落在AB 边上.(1)试判断ABC 的形状,并说明理由; (2)求线段CD 的长.21.综合与实践美丽的弦图中蕴含着四个全等的直角三角形.(1)如图1,弦图中包含了一大一小两个正方形,已知每个直角三角形较长的直角边为a ,较短的直角边为b ,斜边长为c ,结合图1,试验证勾股定理;(2)如图2,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为243OC = 求该飞镖状图案的面积;(3)如图3,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123S S S ,,,若12342S S S ++=,求2S 的值.答案解析部分1.【答案】C【解析】【解答】解:A 、不是正整数,故不是勾股数,不符合题意;B 、(32)2+(42)2≠(52)2,故不是勾股数,不符合题意;C 、92+122=152,三边是整数,同时能构成直角三角形,故正确,符合题意;D 、不是正整数,故不是勾股数,不符合题; 故答案为:C.【分析】勾股数就是可以构成一个直角三角形三边的一组正整数,据此判断.2.【答案】B【解析】【解答】解:在Rt∠ACB 中,AC=8,BC=6∴2222=68AC BC ++. 根据翻折不变性得∠EDA∠∠EDB ∴EA=EB∴在Rt∠BCE 中,设CE=x ,则BE=AE=8-x ∴BE 2=BC 2+CE 2 ∴(8-x )2=62+x 2 解得x=74. 故答案为:B .【分析】在Rt∠ACB 中,利用勾股定理算出AB ,根据折叠性质得EA=EB ,在Rt∠BCE 中,设CE=x ,则BE=AE=8-x ,利用勾股定理建立方程,求解可得x 的值,从而得出答案.3.【答案】D【解析】【解答】解:A 、∵22337a b +=,2625c = ∴222+a b c ≠,不是直角三角形,故A 不符合题意;B 、 a =b ,∠C =45°∴∠A=∠B=180=67.5452︒︒-︒,不是直角三角形,故B 不符合题意;C 、∠A :∠B :∠C =6:8:10,解得∠C=180°×10=7524︒,不是直角三角形,故C 不符合题意; D 、 ∵2223277+==,∴是直角三角形,∠B 是直角,故D 符合题意故答案为:D .【分析】A 、分别计算a 2+b 2和c 2的值,是否满足a 2+b 2=c 2,根据勾股定理的逆定理即可判断求解;B 、由等边对等角可得∠A=∠B ,然后用三角形内角和定理可判断求解;C 、由三角形内角和定理并结合∠A 、∠B 、∠C 的比值计算即可判断求解;D 、分别计算a 2+b 2和c 2的值,是否满足a 2+b 2=c 2,根据勾股定理的逆定理即可判断求解.4.【答案】D【解析】【解答】解:由题意知216AB =,225BC =和241AC =∵222AB BC AC +=∴ABC 是直角三角形,且90B ∠=︒ 故答案为:D .【分析】利用勾股定理的逆定理逐项判断即可。

八年级上册数学第十四章测试题及b答案

八年级上册数学第十四章测试题及b答案

八年级上册数学第十四章测试题及b答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. \(\sqrt{4}\)B. \(\sqrt[3]{8}\)C. \(\sqrt{-1}\)D. \(\sqrt{2x}\)答案:A2. 计算 \((-3)^2\) 的结果是:A. 9B. -9C. 3D. -3答案:A3. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 2答案:A4. 计算 \(\sqrt{16} + \sqrt{9}\) 的结果是:A. 5B. 4C. 7D. 3答案:C5. 一个数的立方根是它本身的数是:A. 0B. 1C. -1D. 8答案:A6. 计算 \((-2)^3\) 的结果是:A. -8B. 8C. -2D. 2答案:A7. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 非负数D. 非正数答案:C8. 计算 \(\sqrt{25} - \sqrt{4}\) 的结果是:A. 3B. 5C. 1D. 2答案:C9. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 2答案:A10. 计算 \((-3)^3\) 的结果是:A. -27B. 27C. -9D. 9答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。

答案:±52. 一个数的立方是-8,这个数是______。

答案:-23. \(\sqrt{49}\) 的值是______。

答案:74. \(\sqrt[3]{27}\) 的值是______。

答案:35. \(\sqrt{2} + \sqrt{2} = 2\sqrt{2}\),那么 \(\sqrt{2} \times \sqrt{2} = \)______。

答案:2三、解答题(每题10分,共50分)1. 计算 \((-2)^2 + (-3)^2\)。

解:\((-2)^2 + (-3)^2 = 4 + 9 = 13\)答案:132. 计算 \(\sqrt{36} - \sqrt{4}\)。

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章整式乘法与因式分解》单元测试卷-附带有答案学校:班级:姓名:考号:一、单选题1.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a32.下列因式分解错误的是()A.a2+4a−4=(a+2)2B.2a−2b=2(a−b)C.x2−9=(x+3)(x−3)D.x2−x−2=(x+1)(x−2)3.将-12a2b-ab2提公因式-12ab后,另一个因式是()A.a+2b B.-a+2b C.-a-b D.a-2b4.已知x2+y2=4,xy=2那么(x+y)2的值为()A.6B.8C.10D.125.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为()A.10B.12C.14D.166.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁二、填空题7.若a=b+2,则代数式a2−2ab+b2的值为.8.若a+b=5,ab=6,则(a+2)(b+2)的值是。

9.若(2x﹣3)x+5=1,则x的值为.10.观察下列各式的规律:1×3=22−1:3×5=42−1:5×7=62−1:7×9=82−1…请将发现的规律用含n的式子表示为.11.若m2=n+2023,n2=m+2023,且m≠n,则代数式m3−2mn+n3的值为.三、计算题12.计算:(1)(−12ab)(23ab2−2ab+43b)(2)(2x+y)(2x-y)+(x+y)2-2(2x2-xy)13.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)214.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣12.四、解答题15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?16.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.17.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+ 10.请你计算出a、b的值各是多少,并写出这道整式乘法的符合题意结果.18.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.19.阅读材料,解决后面的问题:若m2+2mn+2n2−6n+9=0,求m−n的值.解:∵m2+2mn+2n2−6n+9=0∴(m2+2mn+n2)+(n2−6n+9)=0即:(m+n)2+(n−3)2=0,∴m+n=0,n−3=0解得:m=−3,n=3∴m−n=−3−3=−6.(1)若x2+y2+6x−8y+25=0,求x+2y的值;(2)已知等腰△ABC的两边长a,b,满足a2+b2=10a+12b−61,求该△ABC的周长;(3)已知正整数a,b,c满足不等式a2+b2+c2+36<ab+6b+10c,求a+b−c的值.参考答案和解析1.【答案】B【解析】【解答】解:∵2a•3a=6a2∴选项A不正确;∵(﹣a3)2=a6∴选项B正确;∵6a÷2a=3∴选项C不正确;∵(﹣2a)3=﹣8a3∴选项D不正确.故选:B.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.2.【答案】A【解析】【解答】A、原式不能分解,故答案为:A错误,符合题意;B、2a−2b=2(a−b)故答案为:B正确,不符合题意;C、x2−9=(x+3)(x−3)故答案为:C正确,不符合题意;D、x2−x−2=(x+1)(x−2)故答案为:D正确,不符合题意.故答案为:A.【分析】A、a2+4a-4不是完全平方式,不能用完全平方公式进行因式分解,即可判断A错误;B、利用提公因式法进行因式分解,即可判断B正确;C、利用平方差公式进行因式分解,即可判断C正确;D、利用十字相乘法进行因式分解,即可判断D正确.3.【答案】A【解析】【解答】解:∵−12a2b−ab2=−12ab(a+2b),∴将−12a2b−ab2提公因式−12ab后,另一个因式是a+2b.故答案为:A.【分析】利用提公因式的方法对−12a2b−ab2进行因式分解即可.4.【答案】B【解析】【解答】∵x2+y2=4∴(x+y)2=x2+2xy+y2=4+2×2=8故答案为:B.【分析】将x2+y2=4,xy=2代入(x+y)2=x2+2xy+y2计算即可.5.【答案】B【解析】【解答】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2设大正方形边长为a,小正方形的边长为b,∴a-b+2=b如图2,阴影部分面积=a2-2b2+(b-a−b2)2=44,解得b=6,∴a=10如图3,两个小正方形重叠部分的面积=b[(a-b)]=12.故答案为:B.【分析】根据图1重叠图形及已知条件,可得重叠部分的边长为2,设大正方形边长为a,小正方形的边长为b,可得a-b+2=b,根据图2阴影部分面积为44建立方程,从而求出b值,即得a值,根据图3两个小正方形重叠部分的面积=b[(a-b)]即可求出结论.6.【答案】A【解析】【解答】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米设运输的运费每吨为z元/千米①设在甲处建总仓库则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库∵a+d=5y,b+c=7y∴a+d<b+c则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适故答案为:A.【分析】根据比例分别设甲基地的产量为4x吨,可得乙、丙、丁基地的产量分别为5x吨、4x吨、2x 吨;设a=2y千米,可得b、c、d、e分别为3y千米、4y千米、3y千米、3y千米.接着设设运输的运费每吨为z元/千米,然后分别求出设在甲处、乙处、丙处、丁处的总费用,最后比较即可.7.【答案】4【解析】【解答】解:∵a=b+2∴a−b=2∴a2−2ab+b2=(a−b)2=22=4。

人教版数学八年级上册 第14章测试题含答案

人教版数学八年级上册 第14章测试题含答案

人教版数学八年级上册第14章测试题含答案14.1整式的乘法一.选择题1.若a x=2,a y=3,则a2x+3y=()A.108B.54C.36D.312.下列计算正确的是()A.3=x6C.x3+x3=2x6D.x2x3=x63.若(x+2)(x﹣3)=x2+mx﹣6,则m等于()A.﹣2B.2C.﹣1D.14.若(x2+px+8)(x2﹣3x+1)乘积中不含x2项,则p的值为()A.p=0B.p=3C.p=﹣3D.p=﹣15.下列计算正确的是()A.a4 +a5 =a9 B.a2a3=a5C.3=ab66.长方形的长为3x2y,宽为2xy3,则它的面积为()A.5x3y4B.6x2y3C.6x3y4D.7.下列式子中,正确的有()①m3m5=m15;②(a3)4=a7;③(﹣a2)3=﹣(a3)2;④(3x2)2=6x6.A.0个B.1个C.2个D.3个8.下列各式中,正确的是()A.m4+m4=m8B.m5m5=2m25C.﹣(﹣m3)2(﹣m2)=m12D.以上都不正确9.关于x的代数式(3﹣ax)(3+2x)的化简结果中不含x的一次项,则a的值为()A.1B.2C.3D.410.若m=272,n=348,则m、n的大小关系正确的是()A.m>n B.m<nC.m=n D.大小关系无法确定二.填空题11.x2x5=,(103)3=.12.计算:﹣32021×(﹣)2020=.13.已知x﹣y=7,xy=5,则(2﹣x)(y+2)的值为.14.如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要张C类卡片.15.将关于x的多项式x2+2x+3与2x+b相乘,若积中不出现一次项,则b=.三.解答题16.﹣15y4.17.计算下列各式(1)x(2x2y﹣3y);(2)(x+2y)(x﹣3y)+xy.18.代数计算:(1)求值:(﹣)÷(﹣)×|﹣2+(﹣3)2|;(2)化简:5x(x2+2x+1)﹣(2x+3)(x﹣5);(3)分解:(m2﹣1)2﹣6(m2﹣1)+9;(4)求解:;(5)求解:4﹣3|2x﹣1|=1;(6)求解:|x﹣|2x+1||=3.19.已知多项式x+2与另一个多项式A的乘积为多项式B.(1)若A为关于x的一次多项式x+a,B中x的一次项系数为0,直接写出a的值;(2)若B为x3+px2+qx+2,求2p﹣q的值.(3)若A为关于x的二次多项式x2+bx+c,判断B是否可能为关于x的三次二项式,如果可能,请求出b,c的值;如果不可能,请说明理由.参考答案与试题解析一.选择题1.【解答】解:∵a x=2,a y=3,∴a2x+3y=a2x a3y=(a x)2(a y)3=22×33=4×27=108,故选:A.2.【解答】解:A、(﹣2x)3=﹣8x3,故原题计算正确;B、(x3)3=x9,故原题计算错误;C、x3+x3=2x3,故原题计算错误;D、x2x3=x5,故原题计算错误;故选:A.3.【解答】解:∵(x+2)(x﹣3)=x2﹣x﹣6,又∵(x+2)(x﹣3)=x2+mx﹣6,∴x2﹣x﹣6=x2+mx﹣6.∴m=﹣1.故选:C.4.【解答】解:(x2+px+8)(x2﹣3x+1)=x4+px3+8x2﹣3x3﹣3px2﹣24x+x2+px+8=x4+(p﹣3)x3+(9﹣3p)x2+(p﹣24)x+8.∵(x2+px+8)(x2﹣3x+1)乘积中不含x2项,∴9﹣3p=0.∴p=3.故选:B.5.【解答】解:a4与a5不是同类项,不能合并,因此选项A不符合题意;a2a3=a2+3=a5,因此选项B符合题意;(﹣a3)4=a12,因此选项C不符合题意;(ab2)3=a3b6,因此选项D不符合题意;故选:B.6.【解答】解:3x2y2xy3=6x3y4,故选:C.7.【解答】解:①m3m5=m8;故①结论错误;②(a3)4=a12;故②结论错误;③(﹣a2)3=﹣(a3)2;故③结论正确;④(3x2)2=9x4;故④结论错误.所以正确的有1个.故选:B.8.【解答】解:A、m4+m4=2m4,故A错误;B、m5m5=m10,故B错误;C、﹣(﹣m3)2(﹣m2)=﹣m6(﹣m2)=m8,故C错误;故选:D.9.【解答】解:原式=9+6x﹣3ax﹣2ax2=﹣2ax2+(6﹣3a)x+9,由结果不含x的一次项,得到6﹣3a=0,解得:a=2.故选:B.10.【解答】解:m=272=(23)24=824,n=348=(32)24=924,∵8<9,∴m<n,故选:B.二.填空题(共5小题)11.【解答】解:x2x5=x2+5=x7;(103)3=103×3=109.故答案为:x7;109.12.【解答】解:﹣32021×(﹣)2020=﹣32020×3×(﹣)2020=﹣[3×(﹣)]2020×3=﹣1×3=﹣3,故答案为:﹣3.13.【解答】解:(2﹣x)(y+2)=2y+4﹣xy﹣2x=﹣xy﹣2(x﹣y)+4,把x﹣y=7,xy=5代入,原式=﹣5﹣2×7+4=﹣15.故答案为:﹣15.14.【解答】解:∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C 类7张.故答案为:7.15.【解答】解:根据题意得:(x2+2x+3)(2x+b)=2x3+(4+b)x2+(6+2b)x+3b,由积中不出现一次项,得到6+2b=0,解得:b=﹣3.故答案为:﹣3.三.解答题(共4小题)16.【解答】解:﹣15y4=4x4+20x3y+21x2y2+16x3y+80x2y2+84xy3+12x2y2+60xy3+63y4﹣15y4=4x4+36x3y+113x2y2+144xy3+48y4.17.【解答】解:(1)x(2x2y﹣3y)=x2x2y﹣x3y=x3y﹣xy;(2)(x+2y)(x﹣3y)+xy=x2﹣xy﹣6y2+xy=x2﹣6y2.18.【解答】解:(1)原式=(﹣)×(﹣6)×|﹣2+9|=1×7=7;(2)原式=5x3+10x2+5﹣2x2+10x﹣3x+15=5x3+8x2+7x+20;(3)原式=(m2﹣1﹣3)2=(m2﹣4)2=(m+2)2(m﹣2)2;(4)原方程组变形为:,②×15﹣①得﹣3y=14,解得y=﹣,把y=﹣代入②得,x=﹣,∴原方程组的解为:;(5)∵4﹣3|2x﹣1|=1,∴|2x﹣1|=1,∴2x﹣1=±1,∴2x﹣1=1或2x﹣1=﹣1,解得x=1或x=0;(6)∵|x﹣|2x+1||=3,∴x﹣|2x+1|=±3,∴|2x+1|=x﹣3,或|2x+1|=x+3,∴2x+1=±(x﹣3)或2x+1=±(x+3),解得x=﹣4或x=或x=2或x=﹣.19.【解答】解:(1)根据题意可知:B=(x+2)(x+a)=x2+(a+2)x+2a,∵B中x的一次项系数为0,∴a+2=0,解得a=﹣2.(2)设A为x2+tx+1,则(x+2)(x2+tx+1)=x3+px2+qx+2,∴,∴2p﹣q=2(t+2)﹣(2t+1)=3;(3)B可能为关于x的三次二项式,理由如下:∵A为关于x的二次多项式x2+bx+c,∴b,c不能同时为0,∵B=(x+2)(x2+bx+c)=x3+(b+2)x2+(2b+c)x+2c.当c=0时,B=x3+(b+2)x2+2bx,∵b不能为014.2乘法公式一.选择题1.如果x2+6xy+m是一个完全平方式,则m的值为()A.9y2B.3y2C.y2D.6y2 2.若M(5x﹣y2)=y4﹣25x2,那么代数式M应为()A.﹣5x﹣y2B.﹣y2+5x C.5x+y2D.5x2﹣y2 3.下列运算正确的是()A.a2+2a=3a3B.A.x3x2=x6B.x(x﹣3)=x2﹣3xC.=x2+y2D.﹣2x3y2÷xy2=2x47.下列各式中,不能用平方差公式计算的是()A.B.C.D.8.已知4﹣8x+mx2是关于x的完全平方式,则m的值为()A.2B.±2C.4D.±49.如果x2﹣6x+N是一个完全平方式,那么N是()A.11B.9C.﹣11D.﹣910.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.B.C.D.二.填空题11.已知a+b=2,ab=1,则a2+b2=.12.已知:a+b=6,ab=﹣10,则a2+b2=.13.若x2﹣10x+m2是一个完全平方式,那么m的值为.14.若(x+y)2=11,(x﹣y)2=1,则x2﹣xy+y2的值为.15.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长为20,宽为10的长方形,如图2,则图2中(1)部分的面积是.三.解答题16.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.17.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.18.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.19.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.参考答案与试题解析一.选择题1.【解答】解:∵x2+6xy+m是一个完全平方式,∴m==9y2.故选:A.2.【解答】解:∵M(5x﹣y2)=y4﹣25x2=(y2+5x)(y2﹣5x)=(5x﹣y2)(﹣5x﹣y2),∴M=﹣5x﹣y2.故选:A.3.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.4.【解答】解:A、原式=2m2,不符合题意;B、原式=m2+4m+4,不符合题意;C、原式=8m3n6,不符合题意;D、原式=m8,符合题意.故选:D.5.【解答】解:A.结果是a5,故本选项不符合题意;B.结果是﹣8a9,故本选项不符合题意;C.结果是a2,故本选项符合题意;D.结果是a2+2ab+b2,故本选项不符合题意;故选:C.6.【解答】解:A、x3x2=x5,原计算错误,故此选项不符合题意;B、x(x﹣3)=x2﹣3x,原计算正确,故此选项符合题意;C、=x2﹣y2,原计算错误,故此选项不符合题意;D、﹣2x3y2与xy2不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.7.【解答】解:A、=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.8.【解答】解:∵4﹣8x+mx2是关于x的完全平方式,∴﹣8=﹣2×2,解得:m=4,故选:C.9.【解答】解:∵x2﹣6x+N=x2﹣2x3+N是一个完全平方式,∴N=32=9.故选:B.10.【解答】解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为,故选:A.二.填空题11.【解答】解:∵a+b=2,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=4+2=6,故答案为:6.12.【解答】解:∵a+b=6,ab=﹣10,∴a2+b2=(a+b)2﹣2ab=62﹣2×(﹣10)=56,故答案为:56.13.【解答】解:∵x2﹣10x+m2是一个完全平方式,∴m=±5,故答案为:±5.14.【解答】解:∵(x+y)2=x2+y2+2xy=11①,(x﹣y)2=x2+y2﹣2xy=1②,∴①+②得:2(x2+y2)=12,即x2+y2=6,①﹣②得:4xy=10,即xy=2.5,则原式=6﹣2.5=3.5.故答案为:3.5.15.【解答】解:根据题意得,a+b=20,a﹣b=10,解得,a=15,b=5,图2中(1)的面积为a(a﹣b)=15×10=150,故答案为:150.三.解答题16.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.17.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=333.18.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.19.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块C型卡片的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2)14.3整式的除法一.选择题1.计算﹣2a3b4÷3a2bab3正确答案是()A.B.ab C.﹣a6b8D.a2b62.下列运算正确的是()A.3=6x6C.2x2+4x3=6x5D.x5÷x=2x43.已知a≠0,下列运算中正确的是()A.3a+2a2=5a3B.6a3÷2a2=3aC.A.x3x4=x7B.3=x6D.2x2÷x=2x5.下列计算正确的是()A.10a4b3c2÷5a3bc=ab2cB.÷3xy=3x﹣2yD.=﹣2b﹣c6.已知:(12a3﹣6a2+3a)÷3a﹣2a=0且b=2,则式子(ab2﹣2ab)ab的值为()A.﹣B.C.﹣1D.27.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b8.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b9.设a,b是实数,定义关于“*”的一种运算如下a*b=(a+b)2﹣(a﹣b)2.则下列结论:①a*b=0,则a=0或b=0;②不存在实数a,b,满足a*b=a2+4b2;③a*(b+c)=a*b+a*c;④a*b=8,则(10ab3)÷(5b2)=4其中正确的是()A.①②③B.①③④C.①②④D.②③④10.太阳到地球的距离约为1.5×108km,光的速度约为3.0×105km/s,则太阳光到达地球的时约为()A.50s B.5×102s C.5×103s D.5×104s二.填空题11.(8a3b﹣4a2b2)÷2ab=.12.计算15a5b3÷5a4b的结果等于.13.已知,一个长方形的面积为6a2﹣4ab+2a,且它的一条边长为2a,则与这条边相邻的边的长度为.14.若2m×8n=32,,则的值为.15.已知一个长方形的面积是2a2﹣8b2(a>2b),其中一边的长为a+2b,则另一边的长为.三.解答题16.计算:(5a3b2﹣6a2)÷(3a)17.(2x﹣1);(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2).18.计算:(1)|1﹣|+﹣;(2)÷×;(3)(2x+1)(x﹣3);(4)(4x3﹣6x2+2x)÷(﹣2x).19.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.参考答案与试题解析一.选择题1.【解答】解:﹣2a3b4÷3a2bab3=﹣2×(a3﹣2+1b4﹣1+3)=﹣a2b6,故选:D.2.【解答】解:A、(﹣a2n)3=﹣a6n,故此选项错误;B、(2x2)3=8x6 ,故此选项错误;C、2x2+4x3,无法合并,故此选项错误;D、x5÷x=2x4,正确.故选:D.3.【解答】解:由于a和a2不是同类项,不能合并,故选项A错误;6a3÷2a2=3a,计算正确,故选项B正确;(3a3)2=9a6≠6a6,故选项C错误;3a3÷2a2=1.5a≠5a5,故选项D错误.故选:B.4.【解答】解:(C)原式=x9,故C错误,故选:C.5.【解答】解:A、10a4b3c2÷5a3bc=2ab2c,故此选项错误;B、(a2bc)2÷abc=a4b2c2÷abc=a3bc,故此选项错误;C、(9x2y﹣6xy2)÷3xy=3x﹣2y,正确;D、=﹣2b+c,故此选项错误;故选:C.6.【解答】解:∵(12a3﹣6a2+3a)÷3a﹣2a=0,∴4a2﹣2a+1﹣2a=0,故(2a﹣1)2=0,解得:a=,(ab2﹣2ab)ab=a2b3﹣a2b2把a=,b=2代入上式得:原式=×()2×23﹣()2×22=﹣1=﹣.故选:A.7.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.8.【解答】解:根据题意,得纸盒底部长方形的宽为=4a,∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.9.【解答】解:①∵a*b=0,∴(a+b)2﹣(a﹣b)2=0,a2+2ab+a2﹣a2﹣b2+2ab=0,4ab=0,∴a=0或b=0,故①正确;②∵a*b=(a+b)2﹣(a﹣b)2=4ab,又a*b=a2+4b2,∴a2+4b2=4ab,∴a2﹣4ab+4b2=(a﹣2b)2=0,∴a=2b时,满足条件,∴存在实数a,b,满足a*b=a2+4b2;故②错误,③∵a*(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4ac,又∵a*b+a*c=4ab+4ac∴a*(b+c)=a*b+a*c;故③正确.④∵a*b=8,∴4ab=8,∴ab=2,∴(10ab3)÷(5b2)=2ab=4;故④正确.故选:B.10.【解答】解:∵太阳到地球的距离约为1.5×108km,光的速度约为3.0×105km/s,∴太阳光到达地球的时约为:(1.5×108)÷(3.0×105)=5×102(s).故选:B.二.填空题11.【解答】解:(8a3b﹣4a2b2)÷2ab=8a3b÷2ab﹣4a2b2÷2ab=4a2﹣2ab.故答案为:4a2﹣2ab.12.【解答】解:15a5b3÷5a4b=3ab2.故答案为:3ab2.13.【解答】解:∵一个长方形的面积为6a2﹣4ab+2a,且它的一条边长为2a,∴与这条边相邻的边的长度为:(6a2﹣4ab+2a)÷2a=3a﹣2b+1.故答案为:3a﹣2b+1.14.【解答】解:∵2m×8n=2m×23n=2m+3n=32=25,2m÷4n=2m÷22n=2m﹣2n==2﹣4,∴m+3n=5,m﹣2n=﹣4,两式相加得:2m+n=1,则原式=(2m+n)=.故答案为:.15.【解答】解:∵一个长方形的面积是2a2﹣8b2(a>2b),其中一边的长为a+2b,∴(2a2﹣8b2)÷(a+2b)=2(a+2b)(a﹣2b)÷(a+2b)=2(a﹣2b)=2a﹣4b.故答案为:2a﹣4b.三.解答题16.【解答】解:(5a3b2﹣6a2)÷(3a)=5a3b2÷3a﹣6a2÷3a=﹣2a.17.【解答】解:(2x﹣1)=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2)=15x3y5÷(﹣5x3y2)﹣10x4y4÷(﹣5x3y2)﹣20x3y2÷(﹣5x3y2)=﹣3y3+2xy2+4.18.【解答】解:(1)|1﹣|+﹣=﹣1+2﹣3=﹣2;(2)÷×==;(3)(2x+1)(x﹣3)=2x2﹣6x+x﹣3=2x2﹣5x﹣3;(4)(4x3﹣6x2+2x)÷(﹣2x)=4x3÷(﹣2x)﹣6x2÷(﹣2x)+2x÷(﹣2x)=﹣2x2+3x﹣1.19.【解答】解:(1)A=(4x4﹣x2)÷x2=4x2﹣1,B=(2x+5)(2x﹣5)+1=4x2﹣25+1=4x2﹣24。

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。

初中八年级数学上册第十四章综合测试卷3套及答案

初中八年级数学上册第十四章综合测试卷3套及答案

D.
x
1 2
2
x2
1 4

B. 962 (95 1)(95 1) 952 1 9 024
C. 962 (90 6)2 902 62 8 136
D. 962 (100 4)2 1002 2 100 4 42 9 216
6.下列等式从左到右的变形是因式分解的是( )
(1)该同学第二步到第三步的因式分解利用的是().
A.提取公因式
B.平方差公式
C.两数和的完全平方公式
D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?__________.(填“彻底”或“不彻底”)若不彻底,因式分解的
最后结果为__________.
(3)请你模仿以上方法尝试对多项式 x2 2x x2 2x 2 1 进行因式分解。
第十四章综合测试
答案解析
一、 1.【答案】D 【解析】A 选项,原式 a5 ,所以 A 选项错误;B 选项,原式 3a2 ,所以 B 选项错误;C 选项,原式 8a6 , 所以 C 选项错误.D 选项,原式 a4 a2 a2 ,所以 D 选项正确.故选 D. 2.【答案】B 【解析】原式 2 2100 0.5100 2 (2 0.5)100 2 . 3.【答案】A 【解析】∵ 2n 2n 2n 2n 2 ,∴ 4 2n 2 ,∴ 2 2n 1 ∴ 21n 1 ,∴1 n 0 ,∴ n 1.故选 A. 4.【答案】A 【解析】A 选项,原式 9x2 y2 ,正确; B 选项,原式 x2 81 ,错误; C 选项,原式 x2 2xy y2 ,错误; D 选项,原式 x2 x 1 ,错误,故选 A.
y2 8y 16 (第二步)
( y 4)2
(第三步)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章检测卷
(时间:40分钟分值:100分)
一、选择题(每小题3分,共24分)
1.下列计算中正确的是().
A.a 2+b 3=2a 5B.a 4÷a =a
4C.a 2·a 4=a 8D.(-a 2)3=-a 6
2.(x -a )(x 2+ax +a 2)的计算结果是().
A.x 3+2ax 2-a 3B.x 3-a
3C.x 3+2a 2x -a 3D.x 3+2ax 2+2a 2-a
33.下面是某同学在一次测验中的计算摘录,其中正确的个数有().
①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2.
A.1个B.2个
C.3个D.4个
4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是().
A.x 2+3x -1B.x 2+2x
C.x 2-1D.x 2-3x +1
5.下列各式是完全平方式的是().
A.x 2-x +
14B.1+x 2
C.x +xy +1D.x 2+2x -1
6.把多项式ax 2-ax -2a 分解因式,下列结果正确的是().
A.a (x -2)(x +1)B.a (x +2)(x -1)
C.a (x -1)2D.(ax -2)(ax +1)
7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为().
A.-3B.3
C.0D.1
8.若3x =15,3y =5,则3x -y 等于().
A.5B.3
C.15D.10
二、填空题(每小题3分,共24分)9.计算(-3x 2
y )·(213xy )=__________.10.计算:22()()33m n m n -+--=__________.11.计算:223()32x y --=__________.12.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________.
13.当x __________时,(x -4)0=1.
14.若多项式x 2+ax +b 分解因式的结果为(x +1)(x -2),则a +b 的值为__________.
15.若|a -2|+b 2-2b +1=0,则a =__________,b =__________.
16.已知a +1a =3,则a 2+21a
的值是__________.三、解答题(共52分)
17.(12分)计算:
(1)(ab 2)2·(-a 3b )3÷(-5ab );
(2)x 2-(x +2)(x -2)-(x +
1x )2;(3)[(x +y )2-(x -y )2]÷(2xy ).
18.(16分)把下列各式因式分解:
(1)3x -12x 3;
(2)-2a 3+12a 2-18a ;
(3)9a2(x-y)+4b2(y-x);
(4)(x+y)2+2(x+y)+1.
19.(6分)先化简,再求值.
2(x-3)(x+2)-(3+a)(3-a),其中,a=-2,x=1.
20.(8分)已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.
21.(10分)在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)·(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,请你写出用上述方法产生的密码.
参考答案
1.D 2.B
3.B 点拨:①②正确,故选B.
4.B 5.A 6.A
7.A 点拨:(x +m )(x +3)=x 2+(m +3)x +3m ,若不含x 的一次项,则m +3=0,所以m =-3.
8.B
9.-x 3y
310.
22
49m n -11.22
49294x xy y ++12.a 6
13.≠4
14.-3
15.21点拨:由|a -2|+b 2-2b +1=0,得
|a -2|+(b -1)2=0,所以a =2,b =1.
16.7点拨:a +
1a =3两边平方得,a 2+2·a ·1a +(1a )2=9,所以a 2+2+21a =9,得a 2+21a =7.17.解:(1)原式=a 2b 4·(-a 9b 3)÷(-5ab )
=-a 11b 7÷(-5ab )=10615
a b ;(2)原式=x 2-(x 2-4)-(x 2+2+
21x )=x 2-x 2+4-x 2-2-
21x =2-x 2-2
1x ;(3)原式=[(x 2+2xy +y 2)-(x 2-2xy +y 2
)]÷(2xy )
=(x 2+2xy +y 2-x 2+2xy -y 2)÷(2xy )
=4xy ÷(2xy )=2.
18.解:(1)3x -12x 3=3x (1-4x 2)=3x (1+2x )(1-2x );
(2)-2a 3+12a 2-18a =-2a (a 2-6a +9)
=-2a (a -3)2;
(3)9a 2(x -y )+4b 2(y -x )=9a 2(x -y )-4b 2(x -y )=(x -y )(9a 2-4b 2)=(x -y )(3a +2b )·(3a -2b );
(4)(x +y )2+2(x +y )+1=(x +y +1)2.
19.解:2(x -3)(x +2)-(3+a )(3-a )
=2(x 2-x -6)-(9-a 2)
=2x 2-2x -12-9+a
2=2x 2-2x -21+a 2,
当a =-2,x =1时,原式=2-2-21+(-2)2=-17.
20.解:△ABC 是等边三角形.证明如下:
因为2a 2+2b 2+2c 2=2ab +2ac +2bc ,所以2a 2+2b 2+2c 2-2ab -2ac -2bc =0,a 2-2ab +b 2+a 2-2ac +c 2+b 2-2bc +c 2=0,
(a -b )2+(a -c )2+(b -c )2=0,
所以(a -b )2=0,(a -c )2=0,(b -c )2=0,得a =b 且a =c 且b =c ,即a =b =c ,所以△ABC 是等边
三角形.
21.解:4x 3-xy 2=x (4x 2-y 2)
=x (2x -y )(2x +y ),
再分别计算:x=10,y=10时,x,(2x-y)和(2x+y)的值,从而产生密码.故密码为:101030,或103010,或301010.。

相关文档
最新文档