高中数学人教A版必修一 函数的表示法 教案
人教版高一数学函数的表示法教案
① “求平方”
②
③
④
(3)图中的图象所表示的函数的解析式为( )
A. B.
C. D.
4、已知函数 ,若 ,求 的值
作业:书P24习题A7-10
(3)题图
课后
反思
重 点
难 点
函数的三种表示方法,分段函数的概念
怎样根据不同的需要选择恰当的方法表示函数?分段函数的概念及其图象
教 学
用 具
教 学
主 线
教 学 过 程
一、基础知识回顾:
1、请同学们叙述一下函数的概念________________________。
2、根据预习的情况完成下列各题:
(1)用_________________________来表示函数的方法叫解析式法;
课时教案
年月日 第周 星 期
执教人
学 科
数学
高中年级班
课 题
(1)函数的表示法
课 型
新授课
教 学
目 标
(1)明确函数的三种表示方法
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数
(3)通过具体实例,了解简单的分段函数,并能简单应用
(4)培养学生数形结合的思想,提高利用数学知识分析和解决实际问题的能力
用_________________________来表示函数的方法叫图像法;
用_________________________来表示函数的方法叫列表法。
(2)比较一下这三种函数表示法的优缺点:
函数表示法
特 点
解析式法
图像法
列表法
(3)分段函数就是_________________________________________
3.1.2 函数的表示法(一)课件- 高一上学期数学人教A版(2019)必修第一册
∴ 2f
消去f
1
x
1
x
+f x
1
x
1
f
x
1
=
x
解得 = −2 + 1 .
= x x ≠ 0 ,求f x 的解析式.
=x x≠0 ,
Байду номын сангаас
x≠0 ,
,解得f x =
2x
3
−
1
,x
3x
≠ 0.
知识梳理·自主探究
师生互动·合作探究
方法总结
当同一个对应关系f 中的两个变量之间有互为相反数
1
(或互为倒数)关系时,可以用−x(或 )代替原式中的x
x
所得方程与原方程联立构造方程组求解.
,
知识梳理·自主探究
师生互动·合作探究
角度3 赋值法求函数解析式
例6:已知对任意实数x,y都有f x + y − 2f y = x 2 + 2xy − y 2 + 3x − 3y,
求函数f x 的解析式.
2
x
x
x
1
2
1
+ +1 −2 +1 +3
x2
x
x
2
1
1
+ 1 − 2 + 1 + 3,
x
x
1
1 2
1
f 1+ = 1+
− 2 1 + + 3,
x
x
x
1
2
f x = x − 2x + 3. 又∵ 1 + ≠ 1,
x
3.1.2函数的表示法+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册
教学课题:3.1.2 函数的表示法课型:新授课课时:2课时课标要求:1、在实际情境中,会根据不同的需要选择恰当的方法(如图象法,列表法、解析法)表示函数,理解函数图象的作用;2、通过具体实例,了解简单的分段函数,并能简单应用。
学习目标:1、在实际情境中,会根据不同的需要选择恰当的方法表示函数,理解函数图象和解析式之间相辅相成的关系;2、通过具体实例,了解简单的分段函数,并能简单应用;3、发展学生直观想象、逻辑推理核心素养。
重点:了解简单的分段函数,并能简单应用。
难点:在实际情境中,会根据不同的需要选择恰当的方法表示函数。
教学方法:启发式、自主探究式相结合教学准备教师:多媒体课件学生:教学过程一、复习旧知、引入新课引入1:(师)你还记得初中我们学习过的函数的表示方法有哪些?(生)解析法、列表法和图像法引入2:(师)你能分辨下列函数是用什么方法表示的吗?(1)3.1.1的问题3:北京市2016年11月23日空气质量指数(AQI) I和时间t的关系;(生)图象法,就是用图象表示两个变量之间的对应关系.(2)3.1.1的问题4:恩格尔系数r与年份y的对应关系;年份y2006200720082009201020112012201320142015恩格尔系r(%)36.6936.8138.1735.6935.1533.5333.8729.8929.3528.57(生)列表法,就是列出表格表示两个变量之间的对应关系.(3)3.1.1的问题1:路程和时间的对应关系,s=350t,t{00.5}∈≤≤t t(生)解析法,就是用数学表达式表示两个变量之间的对应关系.设计意图:学生对初中学过的三种函数表示方法已经比较熟悉了,但是接触的例子有所欠缺,所以教师应引导学生回顾具体的例子,为学生深入研究这3种方法打下基础。
二、创设情境、提出问题x x∈个笔记本需要y元,试用列表法和图情境1某种笔记本的单价是5元,买({1,2,3,4,5})像法表示函数y=f(x).解析:用列表法可将y=f(x)表示为笔记本数x12345钱数y510152025用图象法发可将y=f(x)表示为追问1(师)你发现图象上这些点有什么特征?(生)这些点好像都经过一条直线。
函数的表示法教案三篇
函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
人教版高一年级数学必修课程《函数的表示法》(第一课时)优质教案
1.2.2函数的表示法(第一课时)学习目标:1.了解函数的一些基本表示法(列表法、图象法、解析法)2.会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想. 学习重点:函数的三种表示方法学习难点:对函数解析法的理解学习过程:(一)导入新课我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(二)师生互动,新课讲解(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.例1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.例 2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80 赵磊68 65 73 72 75 82 班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀; 张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.例3.将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y 表示为x 的函数,用数学的方法解决,然后再回到实际中去. 解:设矩形一边长为x,则另一边长为21(a-2x),则面积y=21(a-2x)x=-x 2+21ax. 又⎩⎨⎧>>0,2x -a 0,x 得0<x<2a ,即定义域为(0,2a).由于y=-(x 4a -)2+161a 2≤161a 2, 如图1-2-2-4所示,结合函数的图象得值域为(0,161a 2].图1-2-2-4例4.已知2f(x)+f(-x)=3x+2,则f(x)=________.分析:由题意得⎩⎨⎧+=++=+2,-3x f(x)2f(-x)2,3x f(-x)2f(x)把f(x)和f(-x)看成未知数,解方程即得. (三)课堂练习1.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是( )图1-2-2-5 图1-2-2-6答案:B2.2007宁夏银川一模,理14已知f(x x +-11)=2211x x +-,则f(x)=________.分析:可设x x +-11=t,则有x=tt+-11, 所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+.答案:212xx+ 3.已知函数f(x)=273++x x ,写出函数的定义域和值域.(换元法)注意:讨论函数的值域要先考虑函数的定义域,换元后马上写出新元的取值范围 (四)课堂小结:本节课学习了函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数. (五)作业:1.车管站在某个星期日保管的自行车和电动车共有3 500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)若设自行车停放的辆次数为x,总的保管费收入为y 元,试写出y 关于x 的函数关系式;(2)若估计前来停放的3 500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.2.水池有2个进水口,1个出水口,每个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).图1-2-2-9给出以下三个论断: ①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水;其中一定正确的论断是( )A.①B.①②C.①③D.①②③3.求值域y=x4+ x2-2(六)教学反思:。
最新人教版高一数学必修1第一章《函数的表示法》教案1
《函数的表示法》教案1
教学目标:
1.明确函数的三种表示方法;会根据不同实际情境选择合适的方法表示函数.
2.学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.让学生感受到学习函数表示的必要性,渗透数形结合思想方法.
教学重点难点:
重点:函数的三种表示方法.
难点:根据不同的需要选择恰当的方法表示函数.
教法与学法:
1.教学方法:
(1)实例教学,让学生感悟到知识的生成.
(2)层层设问启发引导学生发现规律,总结规律.
(3)让学生在教师指导下通过动手实践自主探究解决问题.
2.学习指导:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.教学过程:
【创设情境导入新课】
【作法总结,变式演练】
【思维拓展,课堂交流】
【归纳小结,课堂延展】 y
d
教学设计说明
1.教材地位分析:
学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题.而且是加深理解函数概念的过程,同时基于高中阶段所接触的许多函数均可用几种不同的方式表示.因而使得学习函数的表示也同时向学生渗透数形结合的方法的重要过程.2.学生现实分析:
学生在初中已经学习了函数的基本概念和函数的两种表示方法――解析法和图象法(建立在一次函数和二次函数基础上).进入高中之后,又学习了函数的定义.本节课在此基础上
进一步学习函数的三种表示法.鉴于学生的应用能力不强,缺乏从生活实际抽象出数学问题的意识,在教学中以日常生活为背景抽象出函数的三种表示法,并应用于生活实际,将实际生活中的函数表示法互相转换,使问题具体化、数学化.。
统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计
1+x
所以所求函数的值域为(-1,1].
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
1.定义
3.1.1 函数的概念
例1 例2
例3 例4
例5
2.区间
七、作业
课本 67 页练习、72 页 1-5
本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的
题型三
区间
例 3 已知集合 A={x|5-x≥0},集合 B={x||x|-3≠0},则 A∩B 用区间可表示为
.
【答案】(-∞,-3)∪(-3,3)∪(3,5]
【解析】∵A={x|5-x≥0},∴A={x|x≤5}.
∵B={x||x|-3≠0},∴B={x|x≠±3}.
∴A∩B={x|x<-3 或-3<x<3 或 3<x≤5},
.
x+1
x+1
x+1
6
∵
4
≠0,∴y≠3,
x+1
3x-1
∴y=
的值域为{y|y∈R 且 y≠3}.
x+1
12 15
2
2
④(换元法)设 t= x-1,则 t≥0 且 x=t +1,所以 y=2(t +1)-t=2 t- + ,由 t≥0,再结合函
4 8
15
数的图象(如图),可得函数的值域为 ,+∞.
1.试判断以下各组函数是否表示同一函数: ①f(x)=
√x
x
x
,g(x)=x-1;
x
②f(x)= ,g(x)= ;
√x
2
③f(x)=√(x + 3) ,g(x)=x+3;
函数的概念及其表示(第三课时教学设计)-高中数学人教A版2019必修第一册
3.1函数的概念及其表示(第三课时)教学设计一、内容及内容解析(一)教学内容1.函数的表示法;2.分段函数。
(二)教学内容解析学生在初中阶段已经接触了函数的三种表示,本节课直接给出函数的三种表示方法,并通过典型例题训练学生选择适当的方法表示函数,并且通过例题引进分段函数。
学习函数的表示,不仅是研究函数本身和应用函数模型解决实际问题的需要,而且是进一步理解函数概念,深化对具体函数模型的认识需要。
同时,基于高中所涉及的函数大多数均可用几种不同的方式表示,因此学习函数的表示也是向学生渗透数形结合的思想,培养学生直观想象素养的重要过程。
(三)教学重点函数的三种表示法及各自的优缺点,分段函数。
二、教学目标1.通过研究实例,能总结出函数三种表示法各自的特点,体会数形结合的思想.2.通过用图象法表示一些函数,能利用函数图象探索解决问题的思路,体会利用图象简化代数运算的过程.3.通过具体实例,能认识分段函数,并能简单应用.三、教学问题诊断分析问题:提炼函数的三种表示法各自的优缺点。
突破:课本3.1.1中四个实例为学习函数的三种表示方法做了铺垫。
在实际教学中,先引导学生比较三种表示方法各自的特点,再师生一起进行评价并总结。
四、教学支持条件为了增加学生对分段函数的理解,可以利用GGB软件,作出图像,让学生观察各段图象函数解析式.五、教学过程设计上一节我们已经学习过了函数的概念,那么函数的具体表示方法有哪些呢,在不同的情境中函数如何表示呢?带着这样的疑问来深入学习一下本节课的内容吧.问题1:我们在初中已经接触过函数的三种表示法,分别是什么?如何表示?师生活动:教师提出问题,学生观察思考后回答问题.根据学生的回答,教师进行必要的补充.解析法,就是用数学表达式表示两个变量之间的对应关系.列表法,就是列出表格来表示两个变量之间的对应关系.图象法,就是用图象表示两个变量之间的对应关系.设计意图:本节课就是学习函数的三种表示方法,通过回顾初中函数表示的三种方法,为后面的学习奠定基础。
人教新课标版数学高一A版必修1 函数的表示法 教案
【点评】本例介绍了一个可以用三种表示方法来表示的函数.通过这个例子可以看到:(1)三种表示方法有各自的优点.(2)函数的图象可以是一些离散的点,这与一次函数、二次函数的图象是连续的曲线有很大的差别,y=7x(x∈R)是连续的直线,但y=7x(x∈{1,2,3,4,5})却是5个离散的点,由此又可看到,函数概念中,对应关系、定义域、值域是一个整体.要注意的是:(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;(2)解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;(3)图象法:根据实际情境来决定是否连线;(4)列表法:选取的自变量要有代表性,应能反映定义域的特征.2.分段函数图象的画法例2 画出下列函数的图象并求其值域(1)1,01,0x xyx x-≥⎧=⎨-+<⎩(2)||y x=【思路分析】通过对绝对值内部符号的讨论,将含有绝对值的解析式转化为不含绝对值的解析式,再画出图象,【解析】☆变式练习2 画出下列函数的图象并求其值域(1)1,01,0xyx≥⎧=⎨-<⎩(2)|1|y x=+3.分段函数求值 例1 已知函数32,0()3, 0x x f x x x -+≥⎧=⎨+<⎩,则(0)_______,(1)_____,f f ==((2))_______f f =,(2)_______,(( 2.5))_____,f f f -=-=【解析】☆变式练习1已知函数34,0()3, 0x x f x x x -≥⎧=⎨-+<⎩,则(0)_______,f =(1)_____,f =((1))_______f f =, (2)_______,((1))_____,f f f -=-=二、总结提升1、本节课你主要学习了 三、问题过关1、已知某函数()y f x =的自变量x 与函数值y 的关系如下表,x1 2 3 4 y4567则函数的表达式可能是 ( )A.4y x =B.3y x =+C.23y x =+ D.24y x =2、 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间的函数,其图像可能是( )3、函数|2|y x =-的图象是( )4、下列图形是函数||([2,2])y x x =-∈-的图象的是( )5、已知函数221,0()2, 0x x f x x x --≥⎧=⎨-<⎩,则(3)f -=( )(A )6 (B )7 (C )8 (D )96、下图是函数()y f x =的图象,从图象可知,此函数的定义为 ,值域为因材施教:。
人教版高中数学必修一教学案-函数及其表示方法
人教版高中数学必修一教学案年级:高二上课次数:学员姓名:辅导科目:数学学科教师:课题课型授课日期及时段函数及其表示方法□预习课□同步课■复习课□习题课教学内容函数及其表示方法【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。
2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:{x|a<x<b}=(a,b);{x|a≤x≤b}=[a,b];{x|a<x≤b}=(a,b];{x|a≤x<b}=[a,b);{x|x≤b}=(-∞,b];{x|a≤x}=[a,+∞).要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。
函数的表示法(第一课时)
3.1.2函数的表示法(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教学目标1.掌握函数的三种表示方法:列表法、图象法、解析法;2.了解分段函数,并能简单应用;3.会用描点法画出一些简单函数的图象,并应用函数的图象解决问题.二、教学重难点1.进一步理解函数概念,深化对具体函数模型的认识;2.渗透数形结合思想,培养学生发展逻辑推理,应用直观想象.三、教学过程1.对函数表示方法的认知1.1回望教材引例,了解函数常用表示方法【教材引例】再次阅读教材3.1.1(P60-61)四个引例问题1:这些实际的函数问题是如何表示的?【预设的答案】解析式,图象表示,表格表示.【设计意图】使学生了解针对不同的实际情境采用适当的函数表示法,便于直观或深入的研究,解决问题,学有用的数学.【活动预设】引导学生归纳概括出函数常见的三种表示法.问题2:(1)比较函数的三种表示法,它们各自的特点是什么? (2)所有函数都能用解析法表示吗?请举出实例加以说明.【设计意图】让学生体会总结三种表示法的各自优点与不足,为比较三种表示法提供机会;培养学生观察、总结、表达能力.【活动预设】(1)鼓励学生举生活中的函数例子,并阐述可以用哪种函数表示法,学生间可以讨论,教师可以引导.使学生灵活选用函数表示法来研究函数,进而使他们认识到三种表示法之间相辅相成,渗透数形结合思想.1.2归纳提炼,形成共识在学生举例、讨论的基础上,师生共同归纳概括:(1)“解析法”就是用数学表达式表示两个变量之间的对应关系.优点:一是简明、全面地概括了变量间的对应关系;二是可以通过解析式求出任意一个自变量所对应的函数值.缺点:有些实际问题中的函数关系很难用解析式表示或根本不存在解析式. 中学阶段研究的函数,主要是能够用解析法表示的函数. (2)“图象法”就是用“图形”表示两个变量之间的对应关系.优点:能直观形象的表示出随着自变量的变化,相应的函数值变化的趋势,有利于我们研究函数的某些性质,这是数形结合的好处.缺点:感性观察有时不够准确,画面局限性大.(3)“列表法”就是列出表格来表示两个变量之间的对应关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值 . 缺点:只能表示有限个元素时的函数关系且元素较多时也不方便. 【设计意图】使学生们在自己的理解基础上统一认识. 2.初步应用,理解概念例1某种笔记本的单价是0.5元,买{}()1,2,3,4,5x x ∈个笔记本需要y 元.试用函数的三种表示法表示函数()y f x =.【预设的答案】这个函数的定义域是{}1,2,3,4,5 解析式法:{}51,2,3,4,5y xx =∈列表法图象法【设计意图】(1)使学生体会到函数的三种表示法并不是相互独立的,它们可以相互转化,是有机的一个整体.进一步体会数形结合在理解、研究函数中的重要作用.(2)使学生感受到函数图象既可以象初中学习过的一、二次函数那样是连续的曲线 ,也可以是离散的点等.例2 画出函数y x =的图象 .【预设的答案】由绝对值的概念,我们有,0,0x x y x x x -<⎧==⎨≥⎩,所以函数y x =的图象如图所示问题3:利用函数的定义判断这是一个函数还是两个函数? 【设计意图】(1)深化函数定义的理解,使学生认识函数解析式的多样性,函数图象的多样性. (2)学生已经熟知,y x y x ==-所表达的数量间关系,使学生体会由数到形的过程. 教师讲授:(1)y x =是一个函数,对于定义域内的任意一个x ,都有唯一确定的函数值与之对应.(2)一些函数,在它的定义域中,对于自变量x 不同的取值范围,对应的关系式也不同,这样的函数我们通常称为分段函数.分段函数是一个函数,而不是几个函数,其定义域为各段自变量取值范围的并集,值域是各段值域的并集.分段函数的解析式是用左大括号将各段的表达式括起来,并分别注明各部分的自变量的取值情况.例3 给定函数()2()1,()1,f x x g x x x R =+=+∈. (1)在同一直角坐标系中画出函数(),()f x g x 的图象;(2)x R ∀∈,用()M x 表示(),()f x g x 中的较大者,记为()()(){}max ,M x f x g x =.例如,当2x =时, ()()(){}{}2max 2,2max 3,99M f g ===.请分别用图象法和解析法表示函数()M x .【预设的答案】(1)在同一直角坐标系中画出函数(),()f x g x 的图象(2)由图中函数取值的情况,结合函数()M x 的定义,可得函数()M x 的图象 由()211x x +=+,得()10x x +=,解得1x =-或0x =结合图象得出函数()M x 的解析式为()()()221,11,101,0x x M x x x x x ⎧+≤-⎪⎪=+-<≤⎨⎪+>⎪⎩【设计意图】(1)此例题是从形到数的过程,充分利用图象特征,可以简化代数运算,可以引导学生从纯代数运算,比较大小的角度去函数的解析式,通过对比进一步加强学生的数形结合观念与直观想象能力.(2)通过对()()(){}max ,M x f x g x =这种符号化表示的理解,提高学生的抽象思维能力. 3.归纳小结,突出重点(1)表示函数的方法有解析法、列表法和图象法三种,掌握分段函数的概念和解析式表达形式;(2)函数的图象通常是一段或几段光滑的曲线,但有时也可以由一些孤立的点或几段线段组成,必须根据定义域画图,利用描点法或图象变换法.(3)数形结合相辅相成,为我们研究函数的相关问题提供便利,直观快捷. 【设计意图】(1)梳理本节课的学习内容;(2)鼓励学生积极探索新知,为下节课函数表示法的实际应用提供必要性 . 四、课外作业1.画出函数2-=x y 的图象.(你想到了几种办法?都尝试一下吧!)2.给定函数,,)1()(,1)(2R x x x g x x f ∈-=+-= (1)画出函数)(),(x g x f 的图象;(2),R x ∈∀用()m x 表示)(),(x g x f 中的较小者,记为 {}()min (),().m x f x g x = 请分别用图象法和解析法表示函数()m x .3.已知函数()f x 的图象如图所示,其中点,A B 的坐标分别为()0,3,()3,0 则()()0f f =( )A .2B .4C .0D .34.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )5.下表表示函数()y f x =,则()f x x >的整数解的集合是________.x05x << 510x ≤< 1015x ≤< 1520x ≤<()y f x = 4 6 8 10。
高中数学函数的表示方法教案(第一课时)新课标 人教版 必修1(A)
函数的表示方法〔第一课时〕教学目标:1.进一步理解函数的概念;2.使学生掌握函数的三种表示方法;教学重点:函数的表示方法 教学难点:函数三种表示方法的选择 教学方法:自学法和尝试指导法 教学过程: 〔Ⅰ〕引入问题 1.回忆函数的两种定义; 2.函数的三要素分别是什么?3.设函数22(2)()2(2)x x f x x x ⎧+≤=⎨>⎩,那么(4)f -= ,假设0()8f x =,那么0x = 。
〔II 〕讲授新课 函数的三种表示方法〔1〕解析法〔将两个变量的函数关系,用一个等式表示〕:如222321,,2,6y x x S r C r S t ππ=++===等。
优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变〔2〕列表法〔列出表格表示两个变量的函数关系〕:如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。
优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。
〔3〕图象法〔用图象来表示两个变量的函数关系〕:如:优点:直观形象地表示自变量的变化。
〔III 〕例题分析:例1〔书P 22〕.某种笔记本的单价是5元,买x 〔{1,2,3,4,5}x ∈个笔记本需要y 元,试用函数的三种表示法表示函数()y f x =。
解:这个函数的定义域是数集{1,2,3,4,5},用解析法可以将函数()y f x =表示为5y x =,{1,2,3,4,5}x ∈。
用列表法可以将函数()y f x =表示为笔记本数x 1 2 3 4 5 钱数y 510152025图象法略。
说明:函数的图象通常是一段或几段光滑的曲线,但有时也可以由一些孤立点或几段线段组成。
例2.下表是某校高一〔1〕班三名同学在高一年度六次数学测试的成绩及班级平均分表。
请你对这三位同学在高一学年度的数学学习情况做一个分析。
分析:画出“成绩〞与“测试时间〞的函数图象,可以直观地看出:王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀。
高中数学必修一(人教新A版)教案7函数的表示法1
根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图象.
教
学
设
计
教学内容
教学环节与活动设计
(一)创设情景,揭示课题.
我们在前两节课中,已经学习了函数的定义,会求函数的定义域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题.
(二)研探新知
1.函数有哪些表示方法呢?
(表示函数的方法常用的有:解析法、列表法、图象法三种)
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三位同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:
注意:
①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:
②本例能否用解析法?为什么?
1
教
学
设
计
教学内容
教学环节与活动设计
④列表法:选取的自变量要有代表性,应能反映定义域的特征.
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班平均分
例3.画出函数 的图象
解:
2
教
学
设
计
教学内容
教学环节与活动设计
新2024秋季高一必修数学第一册人教A版第三章函数概念与性质《函数的概念及其表示:函数的表示方法》
教学设计:新2024秋季高一必修数学第一册人教A版第三章函数概念与性质《函数的概念及其表示:函数的表示方法》教学目标(核心素养)1.数学抽象:学生能够理解并掌握函数的三种基本表示方法(解析式、列表法、图像法),并能根据具体情境选择合适的表示方法。
2.逻辑推理:通过分析不同表示方法下的函数实例,学生能够推导出函数的基本性质,如定义域、值域、单调性等。
3.数学建模:培养学生将实际问题抽象为数学模型的能力,特别是能够运用函数的不同表示方法来构建数学模型。
4.数学运算:在理解函数表示方法的基础上,学生能够进行简单的函数运算和性质分析。
5.数学交流:通过小组合作和课堂展示,学生能够清晰、准确地表达自己对函数表示方法的理解和应用。
教学重点•掌握函数的三种基本表示方法(解析式、列表法、图像法)。
•理解并能灵活应用不同表示方法解决实际问题。
教学难点•理解函数图像与解析式、列表法之间的内在联系,能够相互转化。
•在复杂情境中准确选择和应用合适的函数表示方法。
教学资源•多媒体课件(包含函数实例、图像展示、动画演示等)。
•教材及配套习题册。
•黑板和粉笔/白板和笔,用于板书和演示。
•数学软件(如GeoGebra、Desmos)用于实时绘制函数图像和进行性质分析。
教学方法•讲授与演示结合:利用多媒体展示函数实例和图像,辅助讲解函数表示方法。
•小组合作学习:分组讨论函数实例,共同探究不同表示方法的优缺点和适用情境。
•问题驱动法:通过提出问题引导学生主动思考,加深对函数表示方法的理解和应用。
•实践操作法:利用数学软件绘制函数图像,进行性质分析,提高学生的实践能力。
教学过程导入新课•情境创设:展示一个实际问题的情境(如汽车速度随时间变化的问题),引导学生思考如何描述这种变化关系。
•问题引入:提问“我们有哪些方式来表示这种变化关系(即函数)?”引出函数的不同表示方法。
新课教学1.解析式法:•讲解解析式法的定义和特点,强调其精确性和一般性。
人教版高中数学必修第一册函数的表示方法教案(二)
函数的表示方法(二)三维目标 一、知识与技能1.了解实际背景的图象与数学情境下的图象是相通的.2.了解图象可以是散点.3.图象是数形结合的基础.4.了解映射的概念及表示方法. 二、过程与方法1.自主学习,了解作图的基本要求.2.探究与活动,明白作图是由点到线,由局部到全体的运动变化过程.3.会判断一个对应是不是映射.4.重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;通过教师指导发现知识结论,培养学生的抽象概括能力和逻辑思维能力.三、情感态度与价值观1.培养辩证地看待事物的观念和数形结合的思想.2.使学生认识到事物间是有联系的,对应、映射是一种联系方式.3.激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.教学重点 函数的作图. 教学难点如何选点作图,映射的概念. 教具准备多媒体课件、投影仪、打印好的材料. 教学过程一、创设情景,引入新课师:日常生活中我们见过许多曲线图象.让我们一起来看一看〔多媒体投影〕: 〔图象1〕股市走势图. 〔图象2〕产生的震动波曲线. 〔图象3〕医用心电图的波线.师:初中我们已研究过直线、反比例及二次函数的图象,请大家作出y =2x -1,y =x1,y =x 2的图象.〔学生在下面自己作图,老师巡视〕我们可以发现这些线的图象都有一个共同的特点,就是由满足一定条件的点构成的,具体地说就是x 作为横坐标,y 作为纵坐标描成的点,所有的点即构成该曲线的图象.二、讲解新课一般而言,如何作出y =f 〔x 〕的图象呢?我们将自变量的一个值x 0作为横坐标就得到坐标平面上的一个点〔x 0,f 〔x 0〕〕,自变量取遍函数定义域A 的每个值时,就得到一系列这样的点,所有这些点组成的集合〔点集〕为{〔x ,y 〕|y =f 〔x 〕,x ∈A },这些点组成的曲线就是函数y =f 〔x 〕的图象.可从以下几个方面加深对函数图象的理解:画函数的图象,不仅要依据函数的解析式,而且还必须考虑它的定义域.两个用不同的解析式表示的函数,只有在对应关系相同、定义域相同的条件下,才能是相同的函数,才能有相同的图象.由函数的图象的定义知道,点的集合{〔x ,y 〕|y =f 〔x 〕,x ∈A }是函数的图象,因此从理论上讲,用列表描点法总能作出函数的图象,但是不了解函数本身的特点,就无法了解函数图象的特点,如二次函数的图象是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图象的特征描绘出来的.函数的图象是函数的重要表示方法,它具有明显的直观性,以后可以看到,通过函数的图象能够掌握函数重要的性质.反之,掌握好函数的性质,将有助于正确地画出函数的图象.我们知道函数的图象是由点集构成的,如何作图即如何选点呢?我们看一看下面的一些例题. [例1] 试画出以下函数的图象:〔1〕f 〔x 〕=x +1〔x ∈{1,2,3,4,5}〕; 〔2〕f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕. 解:〔1〕我们先列表再描点y3 4 56-1-2-3-4〔1〕y-3-4〔2〕f 〔x 〕=x +1的图象?生:仅需把图〔1〕的散点连结起来构成一条直线就是f 〔x 〕=x +1的图象,如图〔2〕.师:对,在初中我们就研究过一次函数的图象,它表示一条直线,所以今后我们作一次函数的图象仅需作出其两点,然后再连成一条直线即可.〔2〕师:这是一个什么曲线? 生:抛物线.师:是一条完整的抛物线吗? 生:好像不是. 师:为什么?生:因为x ∈[1,3〕,所以x 的取值受限制.师:对,这个函数的图象与抛物线f 〔x 〕=〔x -1〕2+1有联系,它是其中一段,为了能够作出其图象,我们先作出抛物线f 〔x 〕=〔x -1〕2+1的图象,大家自己动手作出该函数的图象,用虚线表示.〔一会儿后〕请生甲回答如何作出其图象的.〔同时投影其所得的图象〕生甲:先作出顶点〔1,1〕,再作出两点〔2,2〕、〔3,5〕,然后根据抛物线的对称轴是x =1,作出〔2,2〕、〔3,5〕关于xf 〔x 〕=〔x -1〕2+1的图象.〔如图〔3〕〕y-1-2-3-4〔3〕师:生甲同学通过选关键点顶点,再结合二次函数的对称性取另外两点作出其关于对称轴的对称点,这样得到5点,最后用圆滑的曲线由左向右顺次连结这些点.这个方法是通常作二次函数的方法.这种方法提醒我们对一些熟知的函数要作出其图象仅需要选一些特征点及辅助点,然后就可以得出其图象.这样要作出f 〔x 〕=〔x -1〕2+1,x ∈[1,3〕,仅需要在f 〔x 〕=〔x -1〕2+1的虚线图象上取x ∈[1,3〕的一段用实线描出,但端点〔3,5〕处用空心点表示.〔如图〔4〕〕y-1-2-3-4〔4〕[例2] 作出函数y =|x -2|〔x +1〕的图象. 分析:显然直接用函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对解析式进行等价变形.解:〔1〕当x ≥2,即x -2≥0时,y =〔x -2〕〔x +1〕=x 2-x -2=〔x -21〕2-49. 当x <2,即x -2<0时,y =-〔x -2〕〔x +1〕=-x 2+x +2=-〔x -21〕2+49,所以y =⎪⎪⎩⎪⎪⎨⎧<+--≥--.2,49)21(,2,49)21(22x x x x这是分段函数,每段函数图象可根据二次函数图象作出.〔如图〔5〕〕〔5〕方法引导:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x、y的变化X围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数等基本函数的图象.函数是“两个数集间的一种确定的对应关系〞.当我们将数集扩展到任意的集合时,就可以得到映射的概念.例如,亚洲的国家构成集合A,亚洲各国的首都构成集合B,对应关系f:国家a对应于它的首都b.这样,对于集合A中的任意一个国家,按照对应关系f,在集合Bf:A→B称为映射.设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.在我们的生活中,有很多映射的例子,例如,设集合A={x|x某场电影票上的},集合B={x|x是某电影院的座位号},对应关系f:电影票的对应于电影院的座位号,那么对应f:A→B是一个映射.[例3] 教科书P26例7.本例中的〔1〕〔2〕是以后经常用到的映射,教学时应引导学生认真理解.对于〔3〕,还可以把“内切圆〞换成“外接圆〞让学生思考.对于〔4〕,可以与本例后的“思考〞进行比较,让学生进一步体会映射是讲顺序的,即f:A→B与f:B→A是不同的,并且,它们中可以一个是映射而另一个不是映射,也可以两个都是映射或两个都不是映射.在此基础上归纳出映射概念值得注意的几点:〔1〕函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;〔2〕对于映射f:A→B,我们通常把集合A中的元素叫原象,而把集合B中与A中的元素相对应的元素叫象.所以,集合A叫原象集,集合B叫象所在的集合〔集合B中可以有些元素不是象〕.〔3〕映射只要求“对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应〞,即对于A中的每一个原象在B中都有象,至于B中的元素在A中是否有原象,以及有原象时原象是否唯一等问题是不需要考虑的.〔4〕用映射刻画函数的定义可以这样表达:设A、B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f〔x〕.其中x∈A,y∈B.原象集合A叫做函数y=f〔x〕的定义域,象集合C叫做函数y=f〔x〕的值域.很明显,C B.[例4] 集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素xa及k的值.方法引导:集合A中元素1,2,3在对应法那么的作用下,分别得到象4,7,10,关键是集合B中谁和10对应.解:∵B中元素y=3x+1和A中元素x对应,∴A中元素1的象是4,2的象是7,3的象是10.对于集合B而言能与10对应的元素有两种情况:a4=10或a2+3a=10.∵a∈N,∴a2+3a-10=0得a=-5〔舍去〕或a=2.当a=2时,a4=16.由3k+1=16得k=5.∴a=2,k=5为所求.A 集合中只有两个的元素,此时应该考虑四种对应关系.然后用条件和集合的性质加以排除.此题将集合与映射两个概念同时考查,有一定的新意.三、课堂练习1.根据所给定义域,画出函数y =x 2-2x +2的图象. 〔1〕x ∈R ; 〔2〕x ∈〔-1,2]; 〔3〕x ∈〔-1,2〕且x ∈Z . 答案:〔1〕 〔2〕〔3〕A 到集合B 的映射,哪些不是,为什么? 〔1〕A =B =N *,对应关系f :x →y =|x -3|.〔2〕A =R ,B ={0,1},对应关系f :x →y =⎩⎨⎧,0,1.0,0<≥x x〔3〕A =B =R ,对应关系f :x →y =±x .〔4〕A =Z ,B =Q ,对应关系f :x →y =x1. 〔5〕A ={0,1,2,9},B ={0,1,4,9,64},对应关系f :a →b =〔a -1〕2. 答案:〔1〕对于A 中的3,在f 作用下得0,但0∉B ,即3在B 中没有象,所以不是映射. 〔2〕对于A 中任意一个非负数都有唯一象1,对于A 中任意一个负数都有唯一象0,所以是映射. 〔3〕集合A 中的负数在B 中没有元素与之对应,故不是映射. 〔4〕集合A 中的0在B 中没有元素和它对应,故不是映射.〔5〕在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,所以是映射. 四、课堂小结1.本节学习的数学知识:函数的图象、函数图象的作法、作函数图象的要素、映射的概念. 2.本节学习的数学方法:定义法、数形结合与分类讨论的思想方法、归纳与发散的思想、思维的批判性. 五、布置作业1.画出以下函数的图象.〔1〕y =〔-1〕x ,x ∈{0,1,2,3}; 〔2〕y =x -|1-x |;〔3〕y =xx x -+||)21(0.A.y 轴所示的函数表达式为x =0B.y =x 〔x <0〕是定义域为空集的函数f 是从集合A 到集合B 的映射,那么A 中每一元素在B 中都有象 f 是从集合A 到集合B 的映射,那么B 为A 中元素的象的集合M ={x |0≤x ≤6},P ={y |0≤y ≤3},那么以下对应关系中,不能看作从M 到P 的映射的是 A.f :x →y =21x B.f :x →y =31x C.f :x →y =x D.f :x →y =61x 板书设计1.2.2 函数的表示法〔2〕作法 注意点 例1 例2映射的定义 对映射的几点说明 例3 例4 课堂练习 课堂小结。
人教A版数学必修一《1.2.2《函数的表示法》(1)》教案
四川省泸县第九中学高中数学《 1.2.2函数的表示法(1)》教案 新人教A 版必修1课 型:新授课 教学目标:(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点; (2)在实际情境中,会根据不同的需要选择恰当的方法表示函数; (3)通过具体实例,了解简单的分段函数,并能简单应用。
教学重点:会根据不同的需要选择恰当的方法表示函数。
教学难点:分段函数的表示及其图象。
教学过程: 一、课前准备(预习教材19p ---21p ,找出疑惑之处)复习1.回忆函数的定义;复习2.函数的三要素分别是什么? 二、新课导学: (一)学习探究探究任务:函数的三种表示方法讨论:结合课本P 15 给出的三个实例,说明 三种表示方法的适用范围及其优点小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1); 优点:简明扼要;给自变量求函数值。
图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2); 优点:直观形象,反映两个变量的变化趋势。
列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3); 优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。
*典型例题例1.(课本P 19 例3)某种笔记本的单价是2元,买x (x ∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .{}5,4,3,2,1,5∈=x x y变式:作业本每本0.3元,买x 个作业本的钱数y (元),试用三种方法表示此实例中的函数。
反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?例2:(课本P 20 例4)下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级例3:某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。
高中数学 1[1].2.2《函数的表示法》教学设计 新人教版必修1
《函数的表示法》教学设计一.教学目标1.明确函数的三种表示方法(图象法、列表法、解析法),通过具体的实例,了解简单的分段函数及其应用。
2.通过解决实际问题的过程,在实际情境中能根据不同的需要选择恰当的方法表示函数,发展学生思维能力。
3.通过一些实际生活应用,让学生感受到学习函数表示的必要性;通过函数的解析式与图象的结合渗透数形结合思想。
二.教学重点和难点教学重点:会根据不同的实际情境需要选择恰当的方法表示函数。
教学难点:分段函数的表示。
三.教学准备教具:直尺、多媒体设备。
四.教学过程设计(一)回顾旧知,复习引入 1.复习函数的概念。
2.函数的三种表示法。
(二)实例引入,理解新知 回顾上节课中的三个实例:(1)炮弹发射:)260(,51302≤≤-=t t t h (解析法 )(2)南极臭氧层的空洞: (图象法)ts(3)恩格尔系数:(列表法)问题:(1)比较三种函数的表示法,它们各自有哪些优、缺点?(2)所有的函数都能用解析法表示吗?举出一个函数,并分别用三种表示法表示。
学生交流讨论并回答。
解析法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段所研究的主要是能够用解析式表示的函数.图象法的优点:直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.在研究函数时,根据问题的特点,往往需要同时借助几种不同的函数表示法研究函数,如同时采用解析法和图象法表示函数,加强数形结合,这是研究函数的常用方法.(三)例题精析、深化理解1.用三种表示法表示同一个函数。
例1.某种笔记本的单价是5元,买}{)5,4,3,2,1(∈x x 个笔记本需要y 元,试用三种表示法表示函数 )(x f y =.分析:注意本例的设问,此处“)(x f y =”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表。
统编人教A版数学高中必修第一册《3.1-函数的概念及其表示》优秀教案教学设计
【新教材】函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
?数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
[难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的高中又是怎样定义要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、—三、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义函数有哪三要素2. 如何用区间表示数集3. 相等函数是指什么样的函数要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
四、新知探究《1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(f)|f∈f}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示|四、典例分析、举一反三题型一函数的定义例1下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.·2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;、(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法).定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;\⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数;②f(x)与g(x)的解析式不同,不是同一函数;③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数;④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数."题型三区间例3已知集合A={x|5-x≥0},集合B={x||x|-3≠0},则A∩B用区间可表示为.【答案】(-∞,-3)∪(-3,3)∪(3,5]【解析】∵A={x|5-x≥0},∴A={x|x≤5}.∵B={x||x|-3≠0},∴B={x|x≠±3}.∴A∩B={x|x<-3或-3<x<3或3<x≤5},即A∩B=(-∞,-3)∪(-3,3)∪(3,5].解题技巧:(如何用区间表示集合)《1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示.跟踪训练三1.集合{x|0<x<1或2≤x≤11}用区间表示为.2. 若集合A=[2a-1,a+2],则实数a的取值范围用区间表示为.【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b.∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3,¥∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x +2)|x|-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x|-x ≠0,即{x ≠-2,|x|≠x,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.】故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3−√2-x1x 的定义域. …2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x≠0,所以函数y=√2x +3−√2-x1x 的定义域为{x |-32≤x <2,且x ≠0}. (2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4,∴-2≤2x≤3,∴-1≤x≤32.:∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域)例5 (1)已知f(x)=11+x(x ∈R,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3);③y =3x −11+x ; ④y =2x -√x −1.【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ ?【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【点评】本例介绍了一个可以用三种表示方法来表示的函数.通过这个例子可以看到:(1)三种表示方法有各自的优点.(2)函数的图象可以是一些离散的点,这与一次函数、二次函数的图象是连续的曲线有很大的差别,y=7x(x∈R)是连续的直线,但y=7x(x∈{1,2,3,4,5})却是5个离散的点,由此又可看到,函数概念中,对应关系、定义域、值域是一个整体.
要注意的是:(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;(2)解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;(3)图象法:根据实际情境来决定是否连线;(4)列表法:选取的自变量要有代表性,应能反映定义域的特征.
2.分段函数图象的画法
例2 画出下列函数的图象并求其值域
(1)
1,0
1,0
x x
y
x x
-≥
⎧
=⎨
-+<
⎩
(2)||
y x
=
【思路分析】通过对绝对值内部符号的讨论,将含有绝对值的解析式转化为不含绝对值的解析式,再画出图象,
【解析】
☆变式练习2 画出下列函数的图象并求其值域
(1)
1,0
1,0
x
y
x
≥
⎧
=⎨
-<
⎩
(2)|1|
y x
=+
3.分段函数求值。