考研数学高数部分重难点总结

合集下载

考研数学考研高数重难点总结

考研数学考研高数重难点总结

转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

这一部分主要以计算应用题出现,只需多加练习即可。

4.向量代数和空间解析几何.计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目.这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

5.多元函数的微分学。

判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值.这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目,找找这类题目的感觉.6。

多元函数的积分学。

二重、三重积分在**种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

7.微分方程。

求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

以上是考研专家对高数重难点做的提纲性的总结,还需**位童鞋进行具体内容的复习,例如公式等一定要熟记。

高数考研重点罗列

高数考研重点罗列

考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。

(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。

考研数学复习中的重难点整理与总结

考研数学复习中的重难点整理与总结

考研数学复习中的重难点整理与总结考研是许多大学生的选择,也是众多人追求升学和就业竞争力的必经之路。

数学作为考研的必修科目,对于学生来说是难点较多的科目之一,需要花费较多时间进行复习。

因此,针对考研数学的复习中,整理和总结数学的重难点是至关重要的。

本文将从以下几个方面对考研数学的重难点进行整理和总结。

一、高等数学中的重难点高等数学是考研数学的核心考点之一,也是考研数学难度最大的部分之一。

以下是高等数学中的一些重难点。

1. 极限的概念和性质:极限是高等数学中的基础性概念,需要考生掌握。

在极限运算的过程中,需要注意一些常用的极限公式和定理,如夹逼准则和洛必达法则等。

2. 一元函数微分学:数学中的微分学也是考研难点之一,需要考生掌握一定的微积分知识。

包括导数的定义、导数的运算法则、高阶导数等。

3. 一元函数积分学:积分与微分是一对相互依存的概念。

需要掌握定积分和不定积分概念、性质以及积分的计算公式。

二、线性代数中的重难点线性代数是考研数学中的另一大重点,以下是线性代数中的一些重难点。

1. 行列式的定义和性质:行列式是线性代数中的关键概念,需要考生掌握其定义和基本性质,如行列式的计算方法、逆矩阵与行列式的关系。

2. 矩阵和向量的乘法:矩阵和向量的乘法是线性代数的基础内容。

需要考生掌握矩阵和向量的定义及其乘法的规则和运算法则。

3. 特征值和特征向量:特征值和特征向量是矩阵的重要性质。

需要考生掌握对角化的概念和方法,即如何通过特征向量和特征值将矩阵对角化。

三、概率统计中的重难点概率统计是考研数学中的另一难点,以下是概率统计中的一些重难点。

1. 随机变量及其分布函数:随机变量是概率统计的核心概念之一,需要掌握随机变量的概念、离散型和连续性随机变量的概率密度函数和分布函数等。

2. 参数估计:参数估计是概率统计中的一个重要内容,主要包括点估计和区间估计法。

需要掌握最大似然估计法、矩估计法和贝叶斯估计法等。

3. 假设检验:假设检验是概率统计中的关键方法之一,该方法主要用于检验数据分布的准确性。

高数第一章知识点总结

高数第一章知识点总结

高数第一章知识点总结希望同学们在准备考研数学高数的复习过程中能够适当结合真题与模拟题,下面是精心收集的高数第一章知识点总结,希望能对你有所帮助。

篇一:高数第一章知识点总结高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

具体说来,大家需要重点掌握的知识点有几以下几点:1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

最后凯程考研名师预祝大家都能取得好成绩。

考研高数重难点-函数间断点的判断

考研高数重难点-函数间断点的判断
8
王诚
《考研经综写作冲刺讲义》
写作模考
通过应试技巧的学习,提供写作的速度,发现考试中的问题,及时解决, 提高考试分值
4
王诚
《考研管综写作 4 套卷》
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
提高运用各种知识点和逻辑方法解答各种类型的逻辑题的数学能力;消灭 逻辑理解中的盲点和误区;提高解题的速度和正确率
4
饶思中
《考研管综逻辑冲刺讲义》
《管理类联考数学阅卷人考前 8 天写作大预测》
写作冲刺
掌握写作大小作文的模版,能利用模版衍生解决应试模版的能力,规范写 作
考研高数重难点:函数间断点的判断
考研高数重难点:函数间断点的判断,更多考研报名入口、考研数学大 纲、考研数学指导、考研数学备考经验等信息,请及时关注关注
经济类联考数学全程规划班
掌握经济类联考数学的复习方法,制定全复习规划
1
李擂
《考研经综数学导学讲义》

了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
王晓东
《经济类联考综合真题及其答案》
高等数学基础班
全面学习高等数学的基本知识点,理解基本概念,掌握基本运算方法,为 强化提高打下基础。
16
李擂
《考研经综数学基础讲义》
王晓东
《考研管综真题》
数学基础
通过学习管理类联考数学的基本概念、基本理论、基本方法,为强化提高 打基础
20
刘京环
《考研管综初数基础讲义-刘京环》
《管理类联考数学阅卷人核心教程》

考研高数每章总结知识点

考研高数每章总结知识点

考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。

二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。

三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。

四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。

五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。

总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。

在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。

考研高数知识点超强归纳

考研高数知识点超强归纳

(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
1− x2
1− x2
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′[ϕ(x)]ϕ ′(x)dx
由于公式 dy = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方

考研高等数学难点解读:中值定理就得这么学_毙考题

考研高等数学难点解读:中值定理就得这么学_毙考题

考研高等数学难点解读:中值定理就得这么学中值定理是考研数学的难点之一,考查考生的逻辑推理能力,在考研数学中以证明题形式出现,难度相对较大。

在31年考研真题中数一查过16次,数二考查过18次,数学三考过14次,考查的重点是罗尔中值定理和拉格朗日中值定理。

虽然中值定理是一大难点,但却有规律可循,为了方便考生复习,边一老师就中值定理给考生们做出详细解读,为你们暑期正确复习本章做好铺垫。

针对高数中的这一难点,我们2018年的考生在暑期的学习过程中应注意以下:研究真题总结出题规律中值定理可以通过研究考研数学真题总结出解题规律,做完真题之后要总结一下,要找大量不同的题做,如果一些基本概念不懂的,一定要回去翻课本。

真题至少要做三遍以上。

只要做了,做错的地方一定要反复看,如果后期有时间我建议大家再看看全书,切忌没有仔细研读课本直接看复习全书的孩子们。

做过的题一定要会对于数学,大量做题是必不可少的,但是更重的是做过的题一定要会,这就需要反复做错的题,做错题的过程很痛苦,很打击你的积极性,但是你一定要不断的提醒自己,做错题才是让自己的复习升华的王道。

考生在备考时还要多做讲义例题,而不仅仅是练习题。

做例题时应遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先认真做;无论做出与否都要把自己的思路详记于空白处,尤其是做不出的,一定把自己真实的思考方式记录在案,留待日后分析,而不是对了答案就万事大吉,这样做可以迅速的找到做题的感觉。

注重解题思路与技巧培养总之,考生在做题目时,要养成良好的做题习惯,做一个有心人,认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。

对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。

数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解中值定理题的针对性,又能提高中值定理解题速度和正确率。

高等数学考研知识点总结

高等数学考研知识点总结

高等数学考研知识点总结
嘿,宝子们!今天咱就来唠唠高等数学考研那些知识点哈!
先来说说函数极限吧!就好比你跑步,你能跑的最远距离就是那个极限呀!比如说,给你个函数 f(x) = (x - 1)/(x - 1),当 x 趋近于 1 的时候,这极限不就等于 1 嘛,这多明显呀!
然后呢,还有导数!导数就像是汽车的速度表,能告诉你函数变化的快慢。

就像曲线y = x²,它的导数就是 2x 呀,这就是告诉你在每个点上变化得有多快!“哎呀,这导数可太重要啦!”
再说说积分呀!积分就像把无数个小碎片拼成一个完整的东西。

比如你要计算一个图形的面积,用积分不就能搞定嘛!“哇塞,积分真的好神奇呀!”
高等数学里还有无穷级数呢!这就好像是一串无穷无尽的糖果,你得好好研究怎么去数清楚呀!像幂级数,那可真是考研的重点呀!
高等数学可不简单,但咱别怕呀!只要咱认真学,肯定能搞定它。

就像爬山一样,虽然过程累,但爬到山顶那一刻,哇,那感觉超棒的!宝子们,
加油呀!咱一定能在高等数学考研的道路上取得胜利!我相信你们都可以的!这就是我的观点,高等数学难,但我们能战胜它!。

数三高数考查重点和题型总结

数三高数考查重点和题型总结

考研数学三高等数学考察重点及题型总结
章节知识点题型
重要度等

第一章函数、极限、
连续等价无穷小代换、洛必达法则、
泰勒展开式
求函数的极限★★★★★函数连续的概念、函数间断点的
类型
判断函数连续性与间断点的类型★★★
第二章一元函数微分学导数的定义、可导与连续之间的
关系
按定义求一点处的导数,可导与连
续的关系
★★★★函数的单调性、函数的极值讨论函数的单调性、极值★★★★闭区间上连续函数的性质、罗尔
定理、拉格朗日中值定理、柯西
中值定理和泰勒定理
微分中值定理及其应用★★★★★
第三章一元函数积分学积分上限的函数及其导数变限积分求导问题★★★★★定积分的应用用定积分计算几何量★★★★
第四章多元函数微积分学隐函数、偏导数、全微分的存在
性以及它们之间的因果关系
函数在一点处极限的存在性,连续
性,偏导数的存在性,全微分存在
性与偏导数的连续性的讨论与它
们之间的因果关系
★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★
第五章无穷级数级数的基本性质及收敛的必要
条件,正项级数的比较判别法、
比值判别法和根式判别法,交错
级数的莱布尼茨判别法
数项级数敛散性的判别★★★★★
第六章常微分方程一阶线性微分方程、齐次方程,
微分方程的简单应用
用微分方程解决一些应用问题★★★★。

考研高等数学重难点的解析

考研高等数学重难点的解析

考研高等数学重难点的解析考研高等数学重难点的解析我们在准备考研数学的复习时,需要把高等数学的重难点知识掌握好。

店铺为大家精心准备了考研高等数学重难点的分析,欢迎大家前来阅读。

考研高等数学知识点的总结高等数学:从科目上看,从数一到数三,分量最重的都是高等数学,它在数一、数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。

通过对2013考研数学考纲以及历年真题的分析,新东方在线的老师对高数的重难点进行了梳理、总结:一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。

二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。

一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。

微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。

函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。

曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。

多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。

多元函数的应用也是重点,主要是条件极值和最值问题。

方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。

三、积分学部分:一元函数积分学的一个重点是不定积分与定积分的计算。

这个对于有些来说可能不难,但是要想用简便的方法解答还是需要多花点时间的。

在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。

考研数学高数部分重难点总结

考研数学高数部分重难点总结

考研数学高数部分重难点总结1高数部分1.1 高数第一章《函数、极限、连续》1.2 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim=→x xx 、e x x x =+→1)1(lim 、e xxx =+∞→)1(1lim ;4.夹逼定理。

1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。

所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aadx x f )(型定积分,若f(x)是奇函数则有⎰-aadx x f )(=0;若f(x)为偶函数则有⎰-aadx x f )(=2⎰adx x f 0)(;对于⎰2)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-aa奇函数 、⎰⎰=-aa a2偶函数偶函数。

数二高数考查重点和题型总结

数二高数考查重点和题型总结

考研数学二高等数学考察重点及题型总结
章节知识点题型
重要度等

第一章函数、极限、连续等价无穷小代换、洛必达
法则、泰勒展开式
求函数的极限★★★★★函数连续的概念、函数间
断点的类型
判断函数连续性与间断点的类型★★★
第二章一元函数微分学导数的定义、可导与连续
之间的关系
按定义求一点处的导数,可导与连续
的关系
★★★★函数的单调性、函数的极

讨论函数的单调性、极值★★★★闭区间上连续函数的性
质、罗尔定理、拉格朗日
中值定理、柯西中值定理
和泰勒定理
微分中值定理及其应用★★★★★
第三章一元函数积分学积分上限的函数及其导数变限积分求导问题★★★★★有理函数、三角函数有理
式、简单无理函数的积分
计算被积函数为有理函数、三角函数
有理式、简单无理函数的不定积分和
定积分
★★
第四章多元函数微隐函数、偏导数、全微分
的存在性以及它们之间的
函数在一点处极限的存在性,连续性,
偏导数的存在性,全微分存在性与偏
★★
积分学因果关系导数的连续性的讨论与它们之间的因
果关系
二重积分的概念、性质及
计算
二重积分的计算及应用★★★★★
第五章常微分方程一阶线性微分方程、齐次
方程,微分方程的简单应

用微分方程解决一些应用问题★★★★★。

2023年考研数学高数知识点终极梳理

2023年考研数学高数知识点终极梳理

2023年考研数学高数知识点终极梳理2023年考研数学高数知识点终极梳理作为考生来说,复习肯定要扎扎实实的,押题的话,我们正好改成重点,尤其是到了冲刺阶段,有所侧重的做题型复习也是有必要的,我们经常说要“抓重点”,抓住重点就可以进步复习的效率,要是侧重掌握某些题型、加深印象,这与全面复习掌握根底是不矛盾的。

我们认为押题和有所侧重是在打好根底的情况下侧重,这样才不会走偏,假如一个考生就想押题,让教师告诉你几道题就得高分,这样是不正确的,往往不会成功。

第一章函数、极限与连续1、函数的有界性2、极限的定义〔数列、函数〕3、极限的性质〔有界性、保号性〕4、极限的计算〔重点〕〔四那么运算、等价无穷小交换、洛必达法那么、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理〕5、函数的连续性6、连续点的类型7、渐近线的'计算第二章导数与微分1、导数与微分的定义〔函数可导性、用定义求导数〕2、导数的计算〔“三个法那么一个表”:四那么运算、复合函数、反函数,根本初等函数导数表:“三种类型”:幂指型、隐函数、参数方程;高阶导数〕3、导数的应用〔切线与法线、单调性〔重点〕与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率〔数一、二〕〕第三章中值定理1、闭区间上连续函数的性质〔最值定理、介值定理、零点存在定理〕2、三大微分中值定理〔重点〕〔罗尔、拉格朗日、柯西〕3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算〔变量代换、分部积分〕3、定积分的定义〔几何意义、微元法思想〔数一、二〕〕4、定积分性质〔奇偶函数与周期函数的积分性质、比拟定理〕5、定积分的计算6、定积分的应用〔几何应用:面积、体积、曲线弧长和旋转面的面积〔数一、二〕,物理应用:变力做功、形心质心、液体静压力〕7、变限积分〔求导〕8、广义积分〔收敛性的判断、计算〕第五章空间解析几何〔数一〕1、向量的运算〔加减、数乘、数量积、向量积〕2、直线与平面的方程及其关系3、各种曲面方程〔旋转曲面、柱面、投影曲面、二次曲面〕的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算〔重点〕4、方向导数与梯度5、多元函数的极值〔无条件极值和条件极值〕6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学〔除二重积分外,数一〕1、二重积分的计算〔对称性〔奇偶、轮换〕、极坐标、积分次序的选择〕2、三重积分的计算〔“先一后二”、“先二后一”、球坐标〕3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性〔主要关注不带方向的积分〕4、格林公式〔重点〕〔直接用〔不满足条件时的处理:“补线”、“挖洞”〕,积分与途径无关,二元函数的全微分〕5、高斯公式〔重点〕〔不满足条件时的处理〔类似格林公式〕〕6、斯托克斯公式〔要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线〕7、场论初步〔散度、旋度〕第八章微分方程1、各类微分方程〔可别离变量方程、齐次方程、一阶线性微分方程、伯努利方程〔数一、二〕、全微分方程〔数一〕、可降阶的高阶微分方程〔数一、二〕、高阶线性微分方程、欧拉方程〔数一〕、差分方程〔数三〕〕的求解2、线性微分方程解的性质〔叠加原理、解的构造〕3、应用〔由几何及物理背景列方程〕第九章级数〔数一、数三〕1、收敛级数的性质〔必要条件、线性运算、“加括号”、“有限项”〕2、正项级数的判别法〔比拟、比值、根值,p级数与推广的p级数〕3、交织级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数〔函数展开成傅里叶级数,狄利克雷定理〕。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

考研数学高数复习有哪些重难点

考研数学高数复习有哪些重难点

考研数学高数复习有哪些重难点考研数学高数复习知识点第一,保持对基础概念、理论的重视考研数学试题和前几年一样,以考查基础题目和中等题为主,因此对于高数,在平时的复习中,仍然要保持对基础概念、理论的重视,不要一味只做题,要及时从错题中找出自己基础中的薄弱环节,对照教材和复习全书查漏补缺。

这个内容需要一直做到临考前。

第二,把握好重难点考研数学高数中的重、难点主要有:第一章函数、极限、连续:1、求极限;2、无穷小阶的比较问题;3、间断点类型的判断;4、渐近线。

第二章一元函数微分学:1、导数的定义;2、复合函数、隐函数和参数方程的求导;3、方程的根的相关问题;4、微分中值定理;5、导数在经济中的应用(数三)。

第三章一元函数积分学:1、不定积分、定积分和反常积分的基本运算;2、变上限积分的相关问题;3、利用定积分求面积和旋转体的体积。

第四章多元函数微分学:1、多元函数的连续性、偏导存在以及可微三者之间的关系;2、复合函数和隐函数求偏导,特别是抽象函数的偏导;3、多元函数的极值和最值问题。

第五章多元函数积分学:1、二重积分的计算;2、累次积分的换序与计算3、第二类曲线积分和第二类曲面积分的计算(数一);4、关于三重积分、第一类曲线积分和第一类曲面积分的基本计算(数一)。

第六章常微分方程:1、求解微分方程的基本方法(可分离变量的微分方程、齐次微分方程和二阶线性常系数微分方程);2、关于微分方程的综合题(例如:变上限积分与微分方程的结合,二重积分与微分程的结合);3、关于微分方程的应用题(例如:几何应用)。

第七章无穷级数(数一和数三):1、关于常数项级数判敛的选择题;2、幂级数的收敛域、收敛半径和收敛区间;3、幂级数的展开与求和。

第三,对后期复习要有整体规划基础阶段全面复习(现在~6月)主要目标是系统复习,夯实基础,把基本概念、基本理论、基本方法的内涵与外延弄清楚,加强对知识点的把握,提高解题速度及正确率,为后期的阶段复习做充足的准备。

高数考研知识点归纳

高数考研知识点归纳

高数考研知识点归纳高等数学是考研数学的重要组成部分,其知识点广泛且深入,以下是对高数考研知识点的归纳总结:一、极限与连续性- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点- 连续函数的性质二、导数与微分- 导数的定义与几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用三、中值定理与导数的应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 泰勒公式- 导数在几何、物理等领域的应用四、不定积分与定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 定积分的定义与性质- 定积分的计算方法五、级数- 级数的概念与性质- 正项级数的收敛性判别- 幂级数与泰勒级数- 函数项级数的一致收敛性六、多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度- 多元函数的泰勒展开七、重积分与曲线积分、曲面积分- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理八、常微分方程- 一阶微分方程的解法- 高阶微分方程- 线性微分方程的解法- 微分方程的应用结束语:考研高等数学的知识点繁多,要求考生不仅要掌握基本的概念和公式,还要能够灵活运用这些知识点解决实际问题。

通过系统地复习和大量的练习,可以提高解题速度和准确率,为考研数学取得高分打下坚实的基础。

希望以上的知识点归纳能够帮助考生更好地复习和准备考研高等数学。

历年考研数学真题高数部分考查重点

历年考研数学真题高数部分考查重点

历年考研数学真题高数部分考查重点(一)
一、函数、极限与连续
1.求分段函数的复合函数;
2.求极限或已知极限确定原式中的常数;
3.讨论函数的连续性,判断间断点的类型;
4.无穷小阶的比较;
5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二、一元函数微分学
1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2.利用洛比达法则求不定式极限;
3.讨论函数极值,方程的根,证明函数不等式;
4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足......,此类问题证明经常需要构造辅助函数;
5.几何、物理、经济等方面的值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学
1.计算题:计算不定积分、定积分及广义积分;
2.关于变上限积分的题:如求导、求极限等;
3.有关积分中值定理和积分性质的证明题;
4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
5.综合性试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学高数部分重难点总结1高数部分1.1 高数第一章《函数、极限、连续》1.2 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim=→x xx 、e x x x =+→1)1(lim 、e xxx =+∞→)1(1lim ;4.夹逼定理。

1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。

所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aadx x f )(型定积分,若f(x)是奇函数则有⎰-aadx x f )(=0;若f(x)为偶函数则有⎰-aadx x f )(=2⎰adx x f 0)(;对于⎰2)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-aa奇函数 、⎰⎰=-aa a2偶函数偶函数。

在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。

这种思路对于证明定积分等式的题目也同样有效。

1.4 高数第五章《中值定理的证明技巧》由本章《中值定理的证明技巧》讨论一下证明题的应对方法。

用以下这组逻辑公式来作模型:假如有逻辑推导公式A ⇒E 、(A B)⇒C 、(C D E)⇒F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A 、B 、D ,求证F 成立。

为了证明F 成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。

正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。

如对于证明F 成立必备逻辑公式中的A ⇒E 就可能有A ⇒H 、A ⇒(I K)、(A B) ⇒M 等等公式同时存在,有的逻辑公式看起来最有可能用到,如(A B) ⇒M ,因为其中涉及了题目所给的3个条件中的2个,但这恰恰走不通; 2.对于解题必须的关键逻辑推导关系不清楚,在该用到的时候想不起来或者弄错。

如对于模型中的(A B) ⇒C ,如果不知道或弄错则一定无法得出结论。

从反方向入手证明时也会遇到同样的问题。

通过对这个模型的分析可以看出,对可用知识点掌握的不牢固、不熟练和无法有效地从众多解题思路中找出答案是我们解决不了证明题的两大原因。

针对以上分析,解证明题时其一要灵活,在一条思路走不通时必须迅速转换思路,而不应该再从头开始反复地想自己的这条思路是不是哪里出了问题;另外更重要的一点是如何从题目中尽可能多地获取信息。

当我们解证明题遇到困难时,最常见的情况是拿到题莫名其妙,感觉条件与欲证结论简直是风马牛不相及的东西,长时间无法入手;好不容易找到一个大致方向,在做若干步以后却再也无法与结论拉近距离了。

从出题人的角度来看,这是因为没能够有效地从条件中获取信息。

“尽可能多地从条件中获取信息”是最明显的一条解题思路,同时出题老师也正是这样安排的,但从题目的“欲证结论”中获取信息有时也非常有效。

如在上面提到的模型中,如果做题时一开始就想到了公式(C D E) ⇒F 再倒推想到 (A B) ⇒C 、 A ⇒E 就可以证明了。

如果把主要靠分析条件入手的证明题叫做“条件启发型”的证明题,那么主要靠“倒推结论”入手的“结论启发型”证明题在中值定理证明问题中有很典型的表现。

其中的规律性很明显,甚至可以以表格的形式表示出来。

下表列出了中值定理证明问题的几种类型:条件欲证结论 可用定理A 关于闭区间上的连续函数,常常是只有连续性已知存在一个ε满足某个式子介值定理(结论部分为:存在一个ε使得k f =)(ε)零值定理(结论部分为:存在一个ε使得0)(=εf)B 条件包括函数在闭区间上连续、在开区间上可导 存在一个ε满足0)()(=εn f 费尔马定理(结论部分为: 0)(0='x f ) 洛尔定理(结论部分为:存在一个ε使得0)(='εf )C 条件包括函数在闭区间上连续、在开区间上可导 存在一个ε满足kfn =)()(ε拉格朗日中值定理(结论部分为:存在一个ε使得ab a f b f f --=')()()(ε) 柯西中值定理(结论部分为:存在一个ε使得)()()()()()(a g b g a f b f g f --=''εε)另外还常利用构造辅助函数法,转化为可用费尔马或洛尔定理的形式来证明从上表中可以发现,有关中值定理证明的证明题条件一般比较薄弱,如表格中B 、C 的条件是一样的,同时A 也只多了一条“可导性”而已;所以在面对这一部分的题目时,如果把与证结论与可能用到的几个定理的的结论作一比较,会比从题目条件上挖掘信息更容易找到入手处。

故对于本部分的定理如介值、最值、零值、洛尔和拉格朗日中值定理的掌握重点应该放在熟记定理的结论部分上;如果能够做到想到介值定理时就能同时想起结论“存在一个ε使得k f=)(ε”、看到题目欲证结论中出现类似“存在一个ε使得k f=)(ε”的形式时也能立刻想到介值定理;想到洛尔定理时就能想到式子0)(='εf ;而见到式子)()()()()()(a g b g a f b f g f --=''εε也如同见到拉格朗日中值定理一样,那么在处理本部分的题目时就会轻松的多,时常还会收到“豁然开朗”的效果。

所以说,“牢记定理的结论部分”对作证明题的好处在中值定理的证明问题上体现的最为明显。

综上所述,针对包括中值定理证明在内的证明题的大策略应该是“尽一切可能挖掘题目的信息,不仅仅要从条件上充分考虑,也要重视题目欲证结论的提示作用,正推和倒推相结合;同时保持清醒理智,降低出错的可能”。

希望这些想法对你能有一点启发。

不过仅仅弄明白这些离实战要求还差得很远,因为在实战中证明题难就难在答案中用到的变形转换技巧、性质甚至定理我们当时想不到;很多结论、性质和定理自己感觉确实是弄懂了、也差不多记住了,但是在做题时那种没有提示、或者提示很少的条件下还是无法做到灵活运用;这也就是自身感觉与实战要求之间的差别。

这就像在记英语单词时,看到英语能想到汉语与看到汉语能想到英语的掌握程度是不同的一样,对于考研数学大纲中“理解”和“掌握”这两个词的认识其实是在做题的过程中才慢慢清晰的。

我们需要做的就是靠足量、高效的练习来透彻掌握定理性质及熟练运用各种变形转换技巧,从而达到大纲的相应要求,提高实战条件下解题的胜算。

依我看,最大的技巧就是不依赖技巧,做题的问题必须要靠做题来解决。

1.5 高数第六章《常微分方程》本章常微分方程部分的结构简单,陈文灯复习指南对一阶微分方程、可降阶的高阶方程、高阶方程都列出了方程类型与解法对应的表格。

历年真题中对于一阶微分方程和可降阶方程至少是以小题出现的,也经常以大题的形式出现,一般是通过函数在某点处的切线、法线、积分方程等问题来引出;从历年考察情况和大纲要求来看,高阶部分不太可能考大题,而且考察到的类型一般都不是很复杂。

对于本章的题目,第一步应该是辨明类型,实践证明这是必须放在第一位的;分清类型以后按照对应的求解方法按部就班求解即可。

这是因为其实并非所有的微分方程都是可解的,在大学高等数学中只讨论了有限的可解类型,所以出题的灵活度有限,很难将不同的知识点紧密结合或是灵活转换。

这样的知识点特点就决定了我们可以采取相对机械的“辨明类型——〉套用对应方法求解”的套路 ,而且各种类型的求解方法正好也都是格式化的,便于以这样的方式使用。

先讨论一下一阶方程部分。

这一部分结构清晰,对于各种方程的通式必须牢记,还要能够对易混淆的题目做出准确判断。

各种类型都有自己对应的格式化解题方法,这些方法死记硬背并不容易,但有规律可循——这些方法最后的目的都是统一的,就是把以各种形式出现的方程都化为f(x)dx=f(y)dy 这样的形式,再积分得到答案。

对于可分离变量型方程0)()()()(2211=+dy y g x f dx y g x f ,就是变形为dx x f x f )()(21=-dy y g y g )()(12,再积分求解;对于齐次方程)(x yf y ='则做变量替换x yu =,则y '化为dxdu xu +,原方程就可化为关于xu 和的可分离变量方程,变形积分即可解;对于一阶线性方程)()(x q y x p y =+'第一步先求0)(=+'y x p y 的通解,然后将变形得到的dx x p ydy )(-=积分,第二步将通解中的C 变为C(x)代入原方程)()(x q y x p y =+'解出C(x)后代入即可得解;对于贝努利方程)()(x q y x p y =+'n y ,先做变量代换n y z -=1代入可得到关于z 、x 的一阶线性方程,求解以后将z 还原即可;全微分方程M(x,y)dx+N(x,y)dy 比较特殊,因为其有条件xN yM∂∂∂∂=,而且解题时直接套用通解公式⎰+xx dx y x M 0),(0⎰=yy C dy y x N 0),(.所以,对于一阶方程的解法有规律可循,不用死记硬背步骤和最后结果公式。

对于求解可降阶的高阶方程也有类似的规律。

对于)()(x f yn =型方程,就是先把)1(-n y 当作未知函数Z ,则Z y n '=)( 原方程就化为 dx x f dz )(= 的一阶方程形式,积分即得;再对)2(-n y 、)3(-n y 依次做上述处理即可求解;),(y x f y '='' 叫不显含y 的二阶方程,解法是通过变量替换 p y ='、p y '='' (p 为x 的函数)将原方程化为一阶方程;),(y y f y '=''叫不显含x 的二阶方程,变量替换也是令py ='(但此中的p 为y 的函数),则p p p y dy dpdx dy dy dp '==='',也可化为一阶形式。

相关文档
最新文档