初一下册数学计算题及答案

合集下载

(完整版)七年级下册数学计算题和解答题

(完整版)七年级下册数学计算题和解答题

七年级数学下册复习试卷——计算题&解答题姓名__________ 班别___________ 座号___________一、计算题:1、)2()9()3(32422ab b a b a -⋅-÷2、 ()()733222x x x ÷⋅-3、)2()(b a b a -++-4、22(1)3(2)x x x ---+5、,4)12(332312++--x x x 6、)346(21)21(3223223ab b a a ab b a a ++-+-7、(x+2)(y+3)-(x+1)(y-2) 8、22)2)(2(y y x y x ++-9、x(x -2)-(x+5)(x -5) 10、⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 22411、)94)(32)(23(22x y x y y x +--- 12、()()3`122122++-+a a13、()()()2112+--+x x x 14、(x -3y)(x+3y)-(x -3y)215、23(1)(1)(21)x x x +--- 16、22)23()23(y x y x --+17、22)()(y x y x -+ 18、x y y x ÷-+])3[(2219、0.125100×810020、()xyxy xy y x 183********÷--21、3022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 22、(1211200622332141)()()()-⨯+----二、用乘法公式计算下列各题:23、999×1001 24、1992-25、298 26、2010200820092⨯-三、解答题::27、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。

28、化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。

初一数学计算题及答案50题

初一数学计算题及答案50题

初一数学计算题及答案50题1、计算题: 48×3+27=()答案: 1652、计算题: 90÷( 30-24)=()答案: 153、计算题: 10×[48÷(16-8)]=()答案: 804、计算题: [40-(8+2)]×9=()答案: 2705、计算题: (12-4)×3+9=()答案: 336、计算题: 12÷[( 41-34)×2]=()答案: 37、计算题: 3×[28-(13+7)]=()答案: 488、计算题: 18÷(3-1)+6=()答案: 129、计算题: 17-8÷(4-2)=()答案: 910、计算题: (9-5)×(7-2)=()答案: 28以上只是初一数学计算题及答案的一部分,希望对大家有所帮助。

初一数学找规律题及答案找规律是数学学习中一个重要的部分,它能帮助学生发展逻辑思维和解决问题的能力。

下面,我将展示一些初一数学找规律的问题,并附上相应的答案,以便帮助学生理解并解决类似的问题。

问题1:观察下列数字序列,找出规律,并预测下一个数字。

1,2,3,5,8,13,21,34,55,89...答案:这个数字序列是著名的斐波那契数列。

它的规律是每个数字是前两个数字的和。

因此,下一个数字应该是34 + 55 = 89。

问题2:观察下列图形序列,找出规律,并预测下一个图形。

图1:△图2:□△图3:△□□图4:□△□□图5:△□□□答案:这个图形序列的规律是每个图形都是由一个或多个三角形和一个正方形组成。

每个图形中的三角形数量比前一个图形多一个,而正方形数量与前一个图形相同。

因此,下一个图形应该是□△□□□。

问题3:观察下列等式序列,找出规律,并预测下一个等式。

a +b = cb +c = dc +d = ed +e = f答案:这个等式序列的规律是每个等式都是前两个等式的和。

(完整版)七年级下册数学计算题和解答题

(完整版)七年级下册数学计算题和解答题

七年级数学下册复习试卷——计算题&解答题姓名__________ 班别___________ 座号___________一、计算题:1、)2()9()3(32422ab b a b a -⋅-÷2、 ()()733222x x x ÷⋅-3、)2()(b a b a -++-4、22(1)3(2)x x x ---+5、,4)12(332312++--x x x 6、)346(21)21(3223223ab b a a ab b a a ++-+-7、(x+2)(y+3)-(x+1)(y-2) 8、22)2)(2(y y x y x ++-9、x(x -2)-(x+5)(x -5) 10、⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 22411、)94)(32)(23(22x y x y y x +--- 12、()()3`122122++-+a a13、()()()2112+--+x x x 14、(x -3y)(x+3y)-(x -3y)215、23(1)(1)(21)x x x +--- 16、22)23()23(y x y x --+17、22)()(y x y x -+ 18、x y y x ÷-+])3[(2219、0.125100×810020、()xyxy xy y x 183********÷--21、3022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 22、(1211200622332141)()()()-⨯+----二、用乘法公式计算下列各题:23、999×1001 24、1992-25、298 26、2010200820092⨯-三、解答题::27、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。

28、化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。

完整版初一100道数学计算题及答案

完整版初一100道数学计算题及答案

完整版初一100道数学计算题及答案第1题:计算2.5+3.8的和。

答案:6.3。

第2题:计算6.3-2.9的差。

答案:3.4。

第3题:计算4.2x0.5的积。

答案:2.1。

第4题:计算9.3÷3的商。

答案:3.1。

第5题:计算2/5+1/4的和。

答案:0.65。

第6题:计算3/4-1/3的差。

答案:0.083。

第7题:计算5/8x3/5的积。

答案:0.375。

第8题:计算1/2÷1/4的商。

答案:2。

第9题:计算12÷4+6x2的值。

答案:30。

第10题:计算8-2x3÷6的值。

答案:7。

第11题:计算9+ (7-2)x4的值。

答案:33。

第12题:计算(5+4)x3-4的值。

答案:23。

第13题:计算3/8÷1/3的值。

答案:0.875。

第14题:计算2 3/4-1 2/3的值。

答案:1 1/12。

第15题:计算2 1/2x3 1/4的值。

答案:7 7/8。

第16题:计算0.75x12x4的值。

答案:9。

第17题:计算2.7+4.8的和。

答案:7.5。

第18题:计算8.3-6.2的差。

答案:2.1。

第19题:计算5x1.2的积。

答案:6。

第20题:计算9.6÷4的商。

答案:2.4。

第21题:计算1/4+2/5的和。

答案:0.65。

第22题:计算3/5-1/3的差。

答案:0.133。

第23题:计算4/7x5/6的积。

答案:0.476。

第24题:计算3/4÷1/3的商。

答案:2.25。

第25题:计算36÷6+8x2的值。

答案:52。

第26题:计算17-5x2+12÷3的值。

答案:10。

第27题:计算(5+6)x3-6的值。

答案:33。

第28题:计算3/4÷1/2的值。

答案:1.5。

第29题:计算3 1/2-2 2/5的值。

答案:1 3/10。

第30题:计算4 1/2x2 1/4的值。

答案:10 1/8。

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题专项练习题1.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x 的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?3.例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=(2)在数轴上找一个整数点A,使点A到﹣1、﹣5的距离之和等于4,请直接写出所有点A对应的数.(3)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x+2|是否有最小值?如果有,写出最小值,并写出所有符合条件的整数x.如果没有,说明理由.4.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|5﹣(﹣2)|=7或2﹣(﹣5)=7.解决问题:如图,在单位长度为1的数轴上有A,B,C三个点,点A,C表示的有理数互为相反数(1)请在数轴上标出原点O,并在A,B,C上方标出他们所表示的有理数;(2)B,C两点间的距离是(3)若点P为数轴上一动点,其对应的数为x①P、B两点之间的距离表示为,若P、B两点之间的距离为5,则x=②若点P到点B、点C的距离相等,则点P对应的数是③若点P到点B、点C的距离之和为7,则点P对应的数是(4)对于任何有理数a①|a﹣1|+|a+5|的最小值为,此时能使|a﹣1|+|a+5|取最小值的所有整数a的和是;②若a>1,则|a﹣1|﹣|a+5|=.③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是.5.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5;B.(+3)+(﹣2)=+1;C.(﹣3)﹣(+2)=﹣5;D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)6.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)7.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.8.有一列数:2,4,8,16,32,…,从第二个数开始,每一个数与前一个数之比是一个常数q,这个常数q是2;根据这个规律,如果a1表示第1个数,即a1=2,a2表示第2个数,…,a n(n为正整数)表示这列数的第n个数.(1)a2019=,a n=.(2)阅读以下材料:如果想求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得:3S=3+32+33+…+320+321②由②减去①式,可以求得S=.对照阅读材料的解法求a1+a2+a3+…+a100的值;(3)记m=a101+a102+a103+…+a2019,求m的个位数.9.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n,例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1,∴1+2+4+8+16+…+230=231﹣1请按照此解答过程,完成下列各题:①求1+5+52+53+54+…+520的值;②求3+2++++…+的值,其中m为正整数.(结果请用含m的代数式表示)10.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.11.100个偶数按每行8个数排成如图所示的阵列:(1)图中方框内的9个数的和与中间的数有什么关系?(2)小童画了一个方框,他所画的方框内9个数的和为360,求这9个数;(3)小郑也画了一个方框,方框内9个数的和为1656,你能写出这9个数吗?如果不能,请说明理由;(4)从左到右,第1至第8列各列数之和分别记为a1、a2、a3、a4、a5、a6、a7、a8,则这8个数中,最大数与最小数之差等于.12.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(a⊕3)⊕1=128,求a的值.13.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.15.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案1.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.2.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.3.解:(1)7与﹣7两数在数轴上所对的两点之间的距离=7﹣(﹣7)=14.(2)所有点A对应的数为﹣1,﹣2,﹣3,﹣4,﹣5;(3)使得|x+3|+|x﹣1|=4这样的整数是﹣3,﹣2,﹣1,0,1;(4)答:有,最小值为5,符合条件的整数有:﹣2,﹣1,0,1,2,3.故答案为:(1)14;(2)﹣1,﹣2,﹣3,﹣4,﹣5;(3)﹣3,﹣2,﹣1,0,1.4.解:(1)如图所示,(2)B,C两点间的距离是|3﹣(﹣1)|=4,故答案为:4;(3)①P、B两点之间的距离表示为|x+1|,若P、B两点之间的距离为5,则x=4或﹣6,故答案为:|x+1|,4或﹣6;②∵点P到点B、点C的距离相等,∴x+1=3﹣x,解得:x=1,∴点P对应的数是1;故答案为:1;③若点P到点B、点C的距离之和为7,则有|x+1|+|3﹣x|=7,解得:x=4.5或﹣2.5;故答案为:4.5或﹣2.5;(4)①当a≥1时,|a﹣1|+|a+5|=a﹣1+a+5=2a+4,∴|a﹣1|+|a+5|的最小值为6,当a≤﹣5时,|a﹣1|+|a+5|=1﹣a﹣a﹣5=﹣2a﹣4,∴|a﹣1|+|a+5|的最小值为6;当﹣5<a<1时,|a﹣1|+|a+5|=1﹣a+a+5=6,综上所述,|a﹣1|+|a+5|的最小值为6;∴|a﹣1|+|a+5|取最小值的所有整数a的和是﹣5﹣4﹣3﹣2﹣1+0+1=﹣14;故答案为:6,﹣14;②当a>1,则|a﹣1|﹣|a+5|=a﹣1﹣a﹣5=﹣6,故答案为:﹣6;③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是③分类讨论:当a≤﹣5;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4﹣a﹣5=﹣4a﹣2,∴当a=﹣5时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为18;当﹣5<a≤﹣2;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4+a+5=﹣2a+8 当a=﹣2时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当﹣2<a≤1;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1+a+2﹣a+4+a+5=12;当1<a≤4;|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2﹣a+4+a+5=2a+10,当a=1时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当a>4时,|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2+a﹣4+a+5=4a+2,综上所述,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是12,故答案为:12.5.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2)=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5;③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b).故答案为:D;﹣1010;﹣2017;﹣1008.5,1010.5;(a+b).6.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1019,故答案为﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB=2018,∴则A点表示﹣1008,B点表示1010,③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b);故答案为﹣2015,﹣1008,1010,(a+b).7.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.8.解:(1)∵从第二个数开始,每一个数与前一个数之比是一个常数2∴a2019=22019,a n=2n故答案为:22019,2n.(2)设S100=a1+a2+a3+…+a100①则2S100=a2+a3+…+a100+a101 ②∴②﹣①得:S100=a101﹣a1=2101﹣2∴a1+a2+a3+…+a100的值为:2101﹣2.(2)∵2n的个位数字分别为2,4,8,6,循环a101=2101,a2019=22019101÷4=25...1,(2019﹣100)÷4=479 (3)故m=a101+a102+a103+…+a2019,中的第一个数a101的末位数字为2每相邻4个一组数字求和的个位数字为0,末三项的个位数字为:2,4,8,其和为14 故m=a101+a102+a103+…+a2019的个位数字为:4.∴m的个位数字为4.9.解:(1)q=÷=;a20=或,a n=或;(2)①令S=1+5+52+53+54+…+520……①,等式两边同时乘以5,得5S=5+52+53+54+55+…+521……②,由②式减去①式,得4S=521﹣1,,∴;②令……①等式两边同时乘以,得……②,由②式减去①式,得,∴.故答案为:;或,或.10.解:(1)PA=t;PC=36﹣t;故答案为:t,36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.故答案为:21,5;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.11.解:(1)∵2+4+6+18+20+22+34+36+38=180=9×20,∴图中方框内的9个数的和是中间的数的9倍.(2)设中间数为x,则另外8个数分别为:x﹣18,x﹣16,x﹣14,x﹣2,x+2,x+14,x+16,根据题意得:9x=360,解得:x=40,∴这9个数分别为:22,24,26,38,40,42,54,56,58.(3)假设能成立,设中间数为y,则另外8个数分别为:y﹣18,y﹣16,y﹣14,y﹣2,y+2,y+14,y+16,根据题意得:9y=1656,解得:y=184,∵184÷2÷8=11……4,∴184为第12行第4个数,∴这9个数为:166,168,170,182、184、186、198、200、202.又∵仅有100个数,∴202不存在,∴假设不成立,即方框内9个数的和不能为1656.(4)∵200÷2÷8=12……4,∴尾数200为第13行第4个数,∴a1=2+18+34+...+194==1274,a2=1274+2×13=1300,a3=1300+2×13=1326,a4=1326+2×13=1352,a5=10+26+42+ (186)=1176,a6=1176+2×12=1200,a7=1200+2×12=1224,a8=1224+2×12=1248,∴这8个数中,最大数为1352,最小数为1176,∴1352﹣1176=176.故答案为:176.12.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:a⊕3=a×32+2×a×3+a=16a,16a⊕1=16a×12+2×16a×1+16a=64a,已知等式整理得:64a=128,解得:a=2.13.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.14.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.15.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。

求100道初一数学计算题(附答案)

求100道初一数学计算题(附答案)

求100道初一数学计算题(附答案)1. 一个直角三角形的斜边长是18,则邻边长之和为:答案:362. 如果一圆的半径增加了50%,则这个圆的周长变多了多少?答案:150%3. 三角形的三个内角为a、b、c,若 2a + b = 180°,则 c 等于:答案:180°-2a-b4. 若一个正方形的边长是x,则它的面积为:答案:x²5. 正方形的面积是81,则其边长为:答案:96. 三角形的三条边长分别是4,5,6,则它的最大内角为:答案:90°7. 三角形的三边中,最长的边是7,短两边为x和y,则 x² +y² = 49。

答案:x=3,y=48. 正方形的边长是6,则该正方形的周长为:答案:249. 一个长方形的面积是30,其长是4,则它的宽为:答案:7.510. 一个正多边形的边数是x,则它的外角和为:答案:180x-36011. 三角形的面积是8,其底边长为4,则它的高为:答案:412. 一个正方形的面积是9,则它的周长为:答案:1213. 如果矩形的长和宽都增长了50%,则它的面积变多了多少?答案:225%14. 将圆的周长减半,则面积变成多少:答案:1/415. 若一个矩形的面积是2,则它的最大内角为:答案:90°16. 一个三角形的面积是15,短边长分别为3和5,则它的最大外角为:答案:90°17. 一个圆的半径是7,则这个圆的面积为:答案:153π18. 三角形的三边长分别为3,4,5,则它的最小外角为:答案:36°19. 三角形的三个内角是45°,60°,75°,则它的边长为:答案:3,4,520. 一个圆的周长是100,则它的半径为:答案:25π21. 三角形的三条边长分别是7,8,9,它的最小内角为:答案:25°22. 一个正多边形的边数是7,则它的最大外角为:答案:135°23. 三角形的三边长分别是4,5,6,则它的最小外角为:答案:70°24. 若正方形的面积是16,则它的边长为:答案:425. 矩形的面积是30,其宽是5,则它的长为:答案:626. 三角形的三个内角为45°,60°,75°,则它的最大外角为:答案:60°27. 若正方形的边长是2,则它的周长为:答案:828. 正多边形的边数是5,则它的内角和为:答案:540°29. 一个圆的半径减半,则它的周长变成多少:答案:1/230. 一个长方形的面积是21,短边长是3,则它的长为:答案:731. 三角形的三条边长分别为5,6,7,它的最大外角为:答案:120°32. 如果矩形的边长都减半,则它的面积变小了多少?答案:1/433. 一个正多边形的最小内角为60°,该多边形的边数是:答案:634. 将圆的面积减半,则它的周长变成多少:答案:1/235. 若一个矩形的长和宽都增加了30%,则它的面积变多了多少?答案:69%36. 圆的周长是24,则它的半径为:答案:4π37. 三角形的三边长分别为2,3,4,则它的最小内角为:答案:9°38. 圆的半径增加50%,则它的面积变成多少:答案:225%39. 三角形的三个内角是30°,60°,90°,则它的边长为:答案:2,3,440. 一个正方形的周长是12,则它的面积为:答案:941. 一个三角形的面积是10,短边长分别为4和5,则它的最大外角为:答案:91°42. 三角形的三边长分别是9,10,11,则它的最小外角为:答案:20°43. 若一个矩形的面积是9,则它的最大内角为:答案:90°44. 一个圆的周长是50,则它的半径为:答案:25π45. 将正多边形的边长翻倍,则它的面积变多了多少?答案:4倍46. 正多边形的边数是8,则它的内角和为:答案:1080°47. 若正方形的面积是25,则它的边长为:答案:548. 矩形的面积是27,其宽是3,则它的长为:答案:949. 三角形的三个内角为45°,60°,75°,则它的最大外角为:答案:60°50. 一个圆的半径是14,则这个圆的面积为:答案:612π51. 如果正多边形的边长翻倍,则它的面积变多了多少?答案:4倍52. 正多边形的边数是10,则它的周长是:答案:6053. 若一个等边三角形的边长是2,则它的内角和为:答案:180°54. 若一个矩形的长是4和宽是6,则它的面积为:答案:2455. 一个正方形的边长减半,则它的面积变成多少:答案:1/456. 正多边形的最小内角为120°,则它的边数是:答案:557. 三角形的最大外角为90°,则它的最小内角为:答案:30°58. 圆的半径减半,则它的面积变成多少:答案:1/459. 若一个矩形的长是6和宽是8,则它的周长为:答案:2860. 三角形的三边长分别为3,4,5,则它的最大外角为:答案:90°61. 将圆的半径增加50%,则它的周长变多了多少?答案:150%62. 三角形的最小内角为60°,则它的最大内角为:答案:120°63. 若一个正多边形的边数是10,则它的最小内角为:答案:36°64. 将矩形的面积减半,则它的周长变小了多少?答案:1/265. 一个正方形的边长是8,则它的面积为:答案:6466. 一个三角形的最大外角为120°,它的三条边长分别是:答案:5,5,767. 三角形的三边长分别为5,6,7,它的最小外角为:答案:7°68. 一个圆的半径是21,则它的周长是:答案:132π69. 三角形的三个内角是90°,45°,45°,它的边长为:答案:3,3,370. 一个矩形的宽是6,面积是24,则它的长为:答案:471. 若一个等边三角形的边长是2,则它的最大外角为:答案:60°72. 一个正方形的面积是64,则它的边长为:答案:873. 将正多边形的边长减半,则它的面积变小了多少?答案:1/474. 圆的周长是25,则它的半径为:答案:5π75. 若一个矩形的长是6和宽是7,则它的面积为:答案:4276. 一个三角形的最大外角为45°,它的三条边长分别是:答案:2,2,277. 三角形的最大内角为120°,则它的最小外角为:答案:60°78. 圆的面积是100,则它的周长是:答案:63.6π79. 一个正多边形的边数是6,则它的最大内角为:答案:150°80. 三角形的最小外角为30°,则它的最大内角为:答案:150°81. 若一个矩形的面积是18,则它的长为:答案:682. 一个正多边形的边长是3,则它的面积是:答案:9√383. 将矩形的宽减半,则它的面积变小了多少?答案:1/484. 一个三角形的最大内角为90°,它的三边长分别是:答案:2,2,285. 正多边形的最小内角是36°,则它的边数是:答案:1086. 若一个三角形的面积是20,短边长是5,则它的最大外角为:答案:90°的周长是:答案:88π88. 若一个正多边形的最小内角是60°,则它的边数是:答案:689. 三角形的最大外角是90°,则它的最小内角是:答案:30°90. 圆的半径增加一半,则它的周长变多了多少?答案:150%91. 三角形的三边长分别是2,3,4,则它的最小外角为:答案:1°92. 将矩形的长加倍,则它的面积变多了多少?答案:4倍93. 若一个正方形的边长是5,则它的周长为:答案:2094. 将圆的半径减半,则它的周长变小了多少?答案:1/295. 一个三角形的最大内角为120°,它的三边长分别是:答案:3,4,596. 正多边形的最大外角是180°,则它的最小内角是:答案:180°÷边数97. 一个矩形的面积是36,则它的宽为:答案:698. 将正多边形的边长增加50%,则它的面积变多了多少?答案:225%99. 三角形的三边长分别是4,5,6,它的最大外角为:答案:90°100. 一个正多边形的边数是7,则它的最小内角为:答案:128.57°。

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

初一年级100道数学计算题和答案解析

初一年级100道数学计算题和答案解析

初一年级100道数学计算题和答案解析1. 计算:3 + 5 × 2 4 ÷ 2答案:13解析:根据运算法则,先乘除后加减,所以先计算5 × 2 = 10,再计算4 ÷ 2 = 2,进行加减运算,得出结果为13。

2. 计算:(4 + 6) × (5 3)答案:18解析:先计算括号内的加法和减法,4 + 6 = 10,5 3 = 2,然后将两个结果相乘,得出18。

3. 计算:8 ÷ 2(2 + 3)答案:1解析:先计算括号内的加法,2 + 3 = 5,然后将8除以2,得4,用4除以5,得出结果为1。

4. 计算:7 × 7 7 ÷ 7答案:48解析:先计算乘法,7 × 7 = 49,再计算除法,7 ÷ 7 = 1,进行减法运算,得出结果为48。

5. 计算:9 + 6 ÷ 3 2 × 4答案:1解析:根据运算法则,先乘除后加减。

先计算6 ÷ 3 = 2,再计算2 × 4 = 8,进行加减运算,得出结果为1。

6. 计算:15 3 × 2 + 4 ÷ 2答案:10解析:处理乘法,3 × 2 = 6,然后进行除法,4 ÷ 2 = 2。

接着,将15减去6,再加上2,得到最终答案10。

7. 计算:4² 6²答案:20解析:这里涉及到平方的计算,4² = 16,6² = 36。

将16减去36,得到的结果是20。

8. 计算:(8 5) × (3 + 2)答案:18解析:先解决括号内的运算,8 5 = 3,3 + 2 = 5。

然后将两个结果相乘,3 × 5 = 18。

9. 计算:12 ÷ (2 + 1)答案:4解析:计算括号内的加法,2 + 1 = 3。

接着,用12除以3,得到的结果是4。

七年级下册数学计算题1000道及答案

七年级下册数学计算题1000道及答案

七年级下册数学计算题1000道及答案18x+23y=230374x-y=1998答案:x=27 y=7944x+90y=779644x+y=3476答案:x=79 y=4876x-66y=408230x-y=2940答案:x=98 y=5167x+54y=854671x-y=5680答案:x=80 y=5942x-95y=-141021x-y=1575答案:x=75 y=4847x-40y=85334x-y=2006答案:x=59 y=4819x-32y=-178675x+y=4950答案:x=66 y=9597x+24y=7202 58x-y=2900答案:x=50 y=98 )42x+85y=636263x-y=1638答案:x=26 y=62 85x-92y=-251827x-y=486答案:x=18 y=44 79x+40y=2419 56x-y=1176答案:x=21 y=19 80x-87y=215622x-y=880答案:x=40 y=12 91x+70y=5845 95x-y=4275答案:x=45 y=25 29x+44y=5281 88x-y=3608答案:x=41 y=93 25x-95y=-435540x-y=2000答案:x=50 y=59 54x+68y=328478x+y=1404答案:x=18 y=34 48x-54y=-318624x+y=1080答案:x=45 y=99 36x+77y=761947x-y=799答案:x=17 y=91 13x-42y=-271731x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 62x-98y=-256446x-y=2024答案:x=44 y=54 79x-76y=-438826x-y=832答案:x=32 y=91 63x-40y=-82142x-y=546答案:x=13 y=41 69x-96y=-120942x+y=3822答案:x=91 y=78 85x+67y=7338 11x+y=308答案:x=28 y=74 78x+74y=12928 14x+y=1218答案:x=87 y=83 39x+42y=533159x-y=5841答案:x=99 y=35 29x+18y=1916 58x+y=2320答案:x=40 y=42 40x+31y=604345x-y=3555答案:x=79 y=9345x+y=3780答案:x=84 y=93 45x-30y=-145529x-y=725答案:x=25 y=86 11x-43y=-1361 47x+y=799答案:x=17 y=36 33x+59y=3254 94x+y=1034答案:x=11 y=49 89x-74y=-2735 68x+y=1020答案:x=15 y=55 94x+71y=751778x+y=3822答案:x=49 y=41 28x-62y=-493446x+y=552答案:x=12 y=85 75x+43y=8472答案:x=82 y=54 41x-38y=-118029x+y=1450答案:x=50 y=85 22x-59y=82463x+y=4725答案:x=75 y=14 95x-56y=-401 90x+y=1530答案:x=17 y=36 93x-52y=-852 29x+y=464答案:x=16 y=45 93x+12y=882354x+y=4914答案:x=91 y=30 21x-63y=8420x+y=1880答案:x=94 y=30 48x+93y=975638x-y=950答案:x=25 y=9299x-67y=401175x-y=5475答案:x=73 y=48(x^4-2x²+1)÷(x²+2x+1)答案:(x-1)²18x+23y=230374x-y=1998答案:x=27 y=7944x+90y=779644x+y=3476答案:x=79 y=4876x-66y=408230x-y=2940答案:x=98 y=5167x+54y=854671x-y=5680答案:x=80 y=5942x-95y=-141021x-y=1575答案:x=75 y=4834x-y=2006答案:x=59 y=48 19x-32y=-1786 75x+y=4950答案:x=66 y=95 97x+24y=7202 58x-y=2900答案:x=50 y=98 )42x+85y=636263x-y=1638答案:x=26 y=62 85x-92y=-251827x-y=486答案:x=18 y=44 79x+40y=2419 56x-y=1176答案:x=21 y=19 80x-87y=215622x-y=880答案:x=40 y=12 91x+70y=5845答案:x=45 y=25 29x+44y=528188x-y=3608答案:x=41 y=93 25x-95y=-435540x-y=2000答案:x=50 y=59 54x+68y=328478x+y=1404答案:x=18 y=34 48x-54y=-318624x+y=1080答案:x=45 y=99 36x+77y=761947x-y=799答案:x=17 y=91 13x-42y=-271731x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 62x-98y=-2564 46x-y=2024答案:x=44 y=54 79x-76y=-4388 26x-y=832答案:x=32 y=91 63x-40y=-82142x-y=546答案:x=13 y=41 69x-96y=-120942x+y=3822答案:x=91 y=78 85x+67y=7338 11x+y=308答案:x=28 y=74 78x+74y=12928 14x+y=1218答案:x=87 y=83 39x+42y=533159x-y=5841答案:x=99 y=3529x+18y=1916 58x+y=2320答案:x=40 y=42 40x+31y=604345x-y=3555答案:x=79 y=93 47x+50y=859845x+y=3780答案:x=84 y=93 45x-30y=-145529x-y=725答案:x=25 y=86 11x-43y=-1361 47x+y=799答案:x=17 y=36 33x+59y=3254 94x+y=1034答案:x=11 y=49 89x-74y=-2735 68x+y=1020答案:x=15 y=55 94x+71y=751778x+y=3822答案:x=49 y=41 28x-62y=-493446x+y=552答案:x=12 y=85 75x+43y=847217x-y=1394答案:x=82 y=54 41x-38y=-118029x+y=1450答案:x=50 y=85 22x-59y=82463x+y=4725答案:x=75 y=14 95x-56y=-401 90x+y=1530答案:x=17 y=36 93x-52y=-852 29x+y=464答案:x=16 y=45 93x+12y=882354x+y=4914答案:x=91 y=3021x-63y=8420x+y=1880答案:x=94 y=3048x+93y=975638x-y=950答案:x=25 y=9299x-67y=401175x-y=5475答案:x=73 y=48(x^4-2x²+1)÷(x²+2x+1) 答案:(x-1)²。

初一下册数学计算题及答案

初一下册数学计算题及答案

程要比规定日期多用 5 天;方案三若甲、乙两队合做 4 天,余下的工 程由乙队单独完成,也正好如期完成。
试问在不耽误工期的情况下,你觉得哪一种施工方案最节省工程 款?请说明理由。
8、一个分数的分母比分子大 7,如果把此分数的分子加 17,分 母减 4,所得新分数是原分数的倒数,求原分数。
9、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。 某校师生也行动起来捐款打井抗旱,已知第一天捐款 4800 元, 第二天捐款 6000 元,第二天捐款人数比第一天捐款人数多 50 人,且 两天人均捐款数相等,那么两天共参加捐款的人数是多少?10、某超 市用 5000 元购进一批新品种的苹果进行试销,由于销售状况良好, 超市又调拨 11000 元资金购进该品种苹果,但这次的进价比试销时的 进价每千克多了 05 元,购进苹果数量是试销时的 2 倍。 ⑴试销时该品种苹果的进价是每千克多少元?⑵如果超市将该 品种苹果按每千克 7 元的定价出售,当大部分苹果售出后,余下的 400 千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多 少元?11、某公司开发的 960 件新产品必须加工后才能投放市场,现 有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工 48 件产 品的时间与乙工厂单独加工 72 件产品的时间相等,而且乙工厂每天 比甲工厂多加工 8 件产品,在加工过程中,公司需每天支付 50 元劳 务费请工程师到厂进行技术指导。 ⑴甲、乙两个工厂每天各能加工多少件产品?⑵该公司要选择既
问乙单独整理需多少分钟完工?2、有两块面积相同的试验田, 分别收获蔬菜 900 千克和 1500 千克,已知第一块试验田每亩收获蔬 菜比第二块少 300 千克,求第一块试验田每亩收获蔬菜多少千克?3、 甲、乙两地相距 19 千米,某人从甲地去乙地,先步行 7 千米,然后 改骑由于小明的父母战斗在抗非典第一线,为了使他能按时 到校,王老师每天骑自行车接小明上学。

七年级下数学计算题

七年级下数学计算题

七年级下数学计算题一、整式的运算类1. 计算:(2x + 3y)(3x - 2y)- 解析:- 根据多项式乘法法则,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加。

- 原式=2x×3x - 2x×2y+3y×3x - 3y×2y- = 6x^2-4xy + 9xy-6y^2- =6x^2+5xy - 6y^2。

2. 计算:(3a - 2b)^2- 解析:- 根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 3a,b = 2b。

- 原式=(3a)^2-2×3a×2b+(2b)^2- = 9a^2-12ab + 4b^2。

3. 化简:3x(2x^2-x + 1)-2x^2(3x - 2)- 解析:- 先分别进行单项式乘多项式运算。

- 原式=3x×2x^2-3x× x+3x×1-(2x^2×3x - 2x^2×2)- = 6x^3-3x^2+3x-(6x^3-4x^2)- 去括号得6x^3-3x^2+3x - 6x^3+4x^2- 合并同类项得x^2+3x。

4. 计算:(x + 2y)(x - 2y)(x^2+4y^2)- 解析:- 先利用平方差公式(a + b)(a - b)=a^2-b^2计算前两个括号。

- 原式=(x^2-4y^2)(x^2+4y^2)- 再利用平方差公式得x^4-16y^4。

5. 化简:(2m + n - 1)(2m - n - 1)- 解析:- 把式子变形为[(2m - 1)+n][(2m - 1)-n]- 利用平方差公式得(2m - 1)^2-n^2- 再根据完全平方公式展开(2m - 1)^2=4m^2-4m + 1- 所以原式=4m^2-4m + 1 - n^2。

二、一元一次方程类6. 解方程:3x+5 = 2x - 1- 解析:- 移项,将含x的项移到等号左边,常数项移到等号右边,得3x - 2x=-1 - 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试问在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
9、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
某校师生也行动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?10、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了05元,购进苹果数量是试销时的2倍。
⑴甲、乙两个工厂每天各能加工多少件产品?⑵该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?12、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用1Fra bibliotek50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜02元,因此,当第二次买酸奶时,便到百货商场去买,结果用去1840元钱,买的瓶数比第一次买的瓶3数多5,问她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
13、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。
问原来规定修好这条公路需多长时间?14、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度是大队的12倍,以便提前1小时到达2目的地做准备工作,求先遣队与大队的速度各是多少?15、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?本题5分16、某市今年1月1日起调整居民用水价格,每立方米水费上涨25小明家去年12月份的水费是18元,而今年5月份的水费是36元已知小明家今年5月份的用水量比去年12月份多63,求该市今年居民用水的价格17小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为05千米,由于小明的父母战斗在抗非典第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。
⑴试销时该品种苹果的进价是每千克多少元?⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?11、某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导。
问乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
如有侵权请联系告知删除,感谢你们的配合!
已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米时?18、在争创全国卫生城市的活动中,我市一青年突击队决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问青年突击队原计划每小时清运多少吨垃圾?19、我国八纵八横铁路骨干网的第八纵通道——温州福州铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间【初一下册数学计算题及答案】
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问5月份销售这种纪念品获利多少元?6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问两人每小时各加工多少个零件?7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款15万元,乙工程队款11万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案方案一甲队单独完成这项工程刚好如期完成;方案二乙队单独完成这项工程要比规定日期多用5天;方案三若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
相关文档
最新文档