第3章 有穷自动机

合集下载

第三章有穷自动机

第三章有穷自动机

例:将图示的DFA M最小化。
a
b
6
4
a
a
a
b
a
1
ab
5a
7
b3
b
b
2 b
1、将M状态分为两个子集: P0=({1,2,3,4},{5,6,7})
2、{1,2,3,4}读入a后划为: P1=({1,2},{3,4},{5,6,7})
3、进一步划分: P2=({1,2},{3},{4},{5,6,7})
对M的状态集S进行划分的步骤:
①把S的终态与非终态分开,分成两个子集, 形成基本划分,属于这两个不同子集的 状态是可区别的。
②假定某个时候已含m个子集,记={I(1) , I(2) , …,I(m) }且属于不同子集的状态是可 区别的,再检查中的每个I能否进一步划 分,对于某个I(i) ,令I(i) ={S1,S2,…,Sk}, 若存在一个输入字符使得move(I(i) ,a)不包 含在现行的某一子集I(i)中,则将I(i)一分 为二。
若M的某些结既是初态结,又是终态结,
或者存在一条从某个初态结到某个终态结 的道路,则空字可为M所接受。
例: NFA M=({0,1,2,3,4},{a,b},f,{0},{2,4})
f(0,a)={0,3} f(2,b)={2} f(0,b)={0,1}
f(3,a)={4} f(1,b)={2} f(4,a)={4}
M’=(K, ,f,S,Z)
一个含有m个状态和n个输入字符的NFA 可表示为一张状态转换图,该图含有m个 状态结,每个结可射出若干条 箭弧与别的 结点相连接,每条弧用*中的一个字(不 一定要不同的字,且可以为空字)作标记 (称输入字),整个图至少含有一个初态 结以及若干个终态结。

编译原理第三章_有穷自动机

编译原理第三章_有穷自动机
5
例 过河问题 分析(续)
初始状态:MWGC-φ;终止状态:φ-MWGC。 g
MWGC-φ
WC-MG
问题:
6
例 过河问题 状态转换图
起始 g
MWGC-φ g
g φ-MWGC
g
7
WC-MG
m
m MWC-G
w
w
c
C-MWG
c W-MGC
g
g
MGC-W c
MG-WC
w
m
c G-MWC
m
gg MWG-C
+dd. ddd;
输入符号串
数字 数字
SB
.
数字
+
A
H
-.
数字
.G
接收:若扫描完输入串, 且在一个终止状态上结 束。
数字 阻塞:若扫描结束但未 停止在终止状态上;或 者为能扫描完输入串 (如遇不合法符号)。
不完全描述:某些状态 对于某些输入符号不存 在转换。
练习:+34.567 .123 3.4.5
w
有穷自动机(FA)
数字系统:可以从一个状态移动到另一个状态;每次 状态转换,都上由当前状态及一组输入符号确定的;可以 输出某些离散的值集。
FA:一个状态集合;状态间的转换规则;通过读头来 扫描的一个输入符号串。
读头:从左到右扫描符号串。移动(扫描)是由状态 转换规则来决定的。
8
读头
一个FA的例子
(3)运行: 串f(,Q,且t1tt21)∈= Σf(,f(Qt1,t2t1∈), Σt2*),其中Q∈K, t1t2为输入字符
17
例3
题:试证abba可为例1的DFA M所识别(所接受)。

第三章有穷自动机-PPT课件

第三章有穷自动机-PPT课件
q 0 c h a rc h ,n a m e [ k ] n a m e r e a d ( c h ) 若 c h = l q 1 q 2 符 号 表 , n a m e查 n a m e n a m e + c h 非 l , d 用 r e a d ( c h ) 若 没 有 , 则 填 表 , 否 则 返 回 其 地 址 r e a d ( c h ) 若 c h = lo rd
自动机接受(收)字符串
• 3)自动机接收语言 自动机 M所能接收的串组成一个集合, 则称该集合为自动机 M所能接收(识别)的 语言。 用L(M)表示: L ( M ) = {ω ∣ t(q0, ω )∈ F , ω ∈ * }
3.2.4 自动机的等价性
•定义3.2 M和M是等价的,当且仅当 对每一个串x,M接收x当且仅当M接收x。 •定义3.3 如果M仅通过重新标记它的 状态就能转换称M,则M和M称为同构的 (Isomorphic)。 •FSA的一个基本定理是:对每一个自动 机M,存在一个等价的具有最少状态个 数的自动机M,而且对于每一个其状态 个数与M相同且等价于M的自动机M″, 必是与M同构的。换句话说,M在结构 上是唯一的。
3.2.5 非确定有穷状态自动机
•定义3.4 一个非确定有穷自动机NDFSA是一个
五元组
NDFSA=(Q, , t, q0, F) 其中,Q是一个非空有穷状态集, 是一个非空有穷输入字母集, 映射t为QQ的子集(即t是一个多值映射), Q0Q是开始状态集, FQ是终止状态集。 •同样的,NDFSA也可以用状态转换表和状态转换 图表示。
3.2.3 构形和移动(2)
• 构形(q0,ω)称为初始构形,其中q0 是初始状态,ω是由该自动机可接 收或拒绝的任何输入串。构形(q, ) 称为终止构形,其中是空串, qF(终态集)。 • 自动机的移动(记为├)是从一种构 形到另一种构形的转换。 • DFSA的工作过程就是一系列的移动 过程。 • 记号├+称为├的传递闭包;├*称为 ├的自反闭包。 ├*表示“0次或多 次移动”;├+表示“一次或多次移 动”。

第3章有穷自动机

第3章有穷自动机

▪ 正规式为 :(10 | 01) (10 | 01)*
第3章有穷自动机
▪ 习题:P55-3.5
第3章有穷自动机
3.3.2 正规表达式RE 正规文法G
▪ 同理,对任何一个正规表达式e,都存在一个等价的 正规文法G ,使得 L(e) =L(G) 。
▪ 具体转换方法如下: ▪ 1) 令VT= ∑ ▪ 2) 对任意正规式R选择一个非终结符Z生成规则 ▪ Z→R , 并令S=Z,即Z是开始符号;
第3章有穷自动机
RE与FA——RE的性质
设A、B、C均为正规表达式,则有下列关系成立: ⑴ A|B=B|A ⑵ A|(B|C)=(A|B)|C ⑶ A(BC)=(AB)C ⑷ A(B|C)=AB|AC (B|C)A=BA|CA ⑸ εA=Aε=A ⑹ (A*)*=A* ⑺ A* = A |A* =ε|AA* = (ε|A)* ⑻ A = A= ⑼ A | =A
第3章有穷自动机
▪ (4) (a | b)* 是正规式 , 则相应正规集为 ▪ L((a | b)*)=(L(a | b))*= { a, b }*={ε,a,b,ab,ba, …}
▪ (5) ba* 是正规式 , 则相应正规集为 ▪ L(ba*)=L(b)L(a*)={b,ba,baa,baaa,…}
多数程序设计语言的单词符号都能用正规文法来描 述,但直观上比较繁琐,不利于词法分析程序的构造。
正规表达式是用于描述称之为正规集的语言类的另
一种表示形式,习惯用 RE 来表示。
第3章有穷自动机
例如: 表示标识符的文法用左线性文法来描述: <标识符>→<字母>|<标识符><字母>|<标识符><数字> 可抽象为: I→ l | I l | I d 我们可以用正规式来描述

编译原理 第3章 词法分析与有穷自动机(第5-8讲)

编译原理 第3章 词法分析与有穷自动机(第5-8讲)

它所对应的状态表如图:
状态 0 1 2 3 a 1 3 1 3 后继 状态 b 2 2 3 3
输入字符 接受 否 否 否 是
式的转化
22
第3章 词法分析与有穷自动机
■DFA所识别的语言
给定DFA M,对于字符c1,c2,…,cn,当以下条件成立时, 称M接受由c1,c2,…,cn组成的字符串c1c2…cn: 存在状态序列s0,s1,s2,…,sn,使得s1=f(S,c1), s2=f(s1,c2),…,sn=f(sn-1,cn),且sn∈Z。 由DFA M接受的语言L(M)是所有M接受的字符串组成的集 合。
25
第3章 词法分析与有穷自动机
判断下图是DFA还是NFA的状态转换图,并 写出其他2种表示形式
26
第3章 词法分析与有穷自动机
■由正规表达式R构造NFA
1.基本正规表达式 (a)对于正规式φ,所构造NFA: (b)对于正规式ε,所构造NFA: (c)对于正规式a,a∈Σ,则 NFA:
x ε y
练习:若S=a|bb,则L((a|bb)*)=?
5
第3章 词法分析与有穷自动机
■正规式中运算的优先级
括号优先,* 次之,•(连接)再次之,| 最后 例:a|bc* ≌ a|(b(c*)) ab|c*d ≌ (ab)|((c*)d)
■ 正规式与正规集举例
L(a|bc*)=L(a)∪L(bc*) 思考:L(ab|c*d)=? =L(a)∪L(b)L(c*) =L(a)∪L(b)(L(c))* ={a}∪{b}{ε,c,cc,ccc……} ={a,b,bc,bcc,bccc,……}
17
第3章 词法分析与有穷自动机
■有穷自动机的状态转移图表示方法

第3章词法分析与有穷自动机20090319

第3章词法分析与有穷自动机20090319

单词的种类 (1)关键字:if、for、while (2)标识符: (3) 常数: (4) 运算符:+、-、* (5)分界符:, 、;、(、)
编译原理
2013年8月27日
词法分析程序的输出形式-----二元式
单词类别 单词的属性值
单词类别可以用整数编码表示:一类一种或一字一种
单词类别 关键字 标识符 常数 运算符 分界符
编译原理
2013年8月27日
【例3.9】将描述标识符的正规式R=l(l∣d)*转换 成相应的正规文法。
• 令S为文法的开始符号, 根据规则(2) 有 • S→l(l∣d)* • 根据规则(3)变换为: • S→lA • A→(l∣d)* • 根据规则(4)变换为: • S→lA • A→(l∣d)A∣ε •
有穷自动机的作用
实质上是提供了一种逻辑的探测方式,去探测一 些输入串是否属于某种语言,即: 它可以作为一种 语法检查器。
编译原理
2013年8月27日
3.4.1
确定的有穷自动机(DFA)
M=(Σ, Q, f,S, Z)
Σ:有穷字母表,它的每个元素称为一个输入符号 Q:有穷状态集,它的每个元素称为一个状态 S∈K,是唯一的初态
运算符的优先级: 先*, 后 • , 最后 | • 在正规式中可以省略.
正规式相等 这两个正规式表示的语言相等
编译原理
2013年8月27日
正规式举例
• 例:设有字母表 ∑={a,b},根据正规式与正规集的定义,有以 下的正规式和正规集 正规式 正规集 a {a} a∣b {a,b} ab {ab} ( a∣b)( a∣b) {aa,ab,ba,bb} a* {ε,a,aa,aaa,…,任意个a的串} (a∣b)* {ε,a,b,aa,ab,ba,bb,…所有a,b组成的串} (a︱b) *(aa︱bb) (a︱b) * ∑*上所有含两个连续的a 或两 个连续的b组成的串

3 FA 语言与自动机导论

3  FA 语言与自动机导论

A
i FA M
B
状态 A i B d F
FA f (A, i) = B f (B, i) = B f (B, d) = B (B为终止状态)
RG AiB BiB BdB Bε
B
B
B
1
状态转换矩阵
11
FA的状态转换图

状态转换图显示了一个由状态、转换组成的状态 机。
有限自动机的状态转换图说明系统的动态视图。 状态图强调一个对象按事件次序发生的行为。
22
例3.3扩:接受语言{x000 | x {0,1}*} ∪{x001 | x {0,1}*}的 FA
解:该语言定义的句子以000或001结尾。设q0为DFA的开 始状态,用q1记住结尾串中的第一个0;用q2记住在q1之 后紧接着又读到的一个0;用q3记住在q2后紧接着又读到 的一个0,用q4记住在q2后紧接着又读到的一个1,识别 该语言的FA如下图(3-5):
则 A也作为终止状态
13
3.2 有穷状态自动机



主要内容:
1、DFA的形式化定义
2、DFA的仿真算法(伪代码描述)
14
一.有穷自动机的形式化定义
1. 确定的有穷自动机DFA
一个确定的有穷自动机DFAM是一个五元组(5-tuple): M=(K,Σ, δ ,q0,F) 其中:K:状态的非空有穷集 Σ:有穷输入字母表 δ:K× Σ到K的一个映射(是单值函数)
q0∈K 是开始状态
F K 是终止状态集
15

例3-2:构造一个DFA,识别语言{x000y | x,y {0,1}*} 解:该语言定义的句子都会有三个连续的0。设q0为DFA 的开始状态,用q1记住子串“000”的第一个0;用q2记住 在q1之后紧接着又读到的一个0,这可能是子串“000”的 第2个0;用q3记住在q2后紧接着又读到的一个0,发现子 串“000”即识别结束。识别该语言的确定的有穷状态自 动机如下图:

chapter 3-有穷状态自动机

chapter 3-有穷状态自动机
例2、假设字母表为{0,1},构造一个识别含有001字串的所有 字符串的DFA的状态图。
1 0 q1 1 q2 0
0 1 q3
0,1
q4
第三章、有穷状态自动机
例2、假设字母表为{0,1},构造一个识别含有001子串的所有 字符串的DFA的状态图。
1 0 q1 1 q2 0
0 1 q3
0,1
q4
第三章、有穷状态自动机
关键问题:DFA与NFA等价吗?
第三章、有穷状态自动机
第三章、有穷状态自动机
NFA与DFA的等价性
NFA与DFA等价是指两种模型识别相同的语言类(正则语言)。 对于任意给定的DFA,存在一个NFA与之等价; 对于任意给定的NFA,存在一个DFA与之等价。 DFA本身就是一种NFA,所以,要证明DFA与NFA等价,只需证明 对于任意给定的NFA,存在一个DFA与之等价。 下面根据给定的NFA构造一个DFA: 这里M2=(Q2,Σ,δ,q0,F ),Q2 =P(Q),
第三章、有穷状态自动机
δ1
q01 q1 q2
0 1
q1 q2 q1
0 q02 q3 q4
q01 q1 Q2
1 q3 q4 q5
δ2
q02 q3 q4
q5
q5
q5
第三章、有穷状态自动机
下面构造M= (Q,Σ,δ,q,F), (1)Q={(r1,r2) ∣ r1∈Q1且r2∈Q2}; (2)Σ= {0,1}; (3)转移函数 δ((r1,r2) ,a)= δ (δ1 (r1,a) ,δ 2(r2,a)), 如下页表所示; (4)q0=(q01,q02)是M的起始状态; (5)F={(q2,q02),(q2,q3),(q2,q4),(q2,q5),(q01,q4), (q1,q4)}。

第03章有穷状态自动机-电子科技大学

第03章有穷状态自动机-电子科技大学

作为对DFA的修改
q1 0
0
0,1
S q0
10
1
1 q3
q2
构造接受语言
L={x| x{0,1}*,且 x含有子串00或11}的DFA
“直接”的FA
0,1 0 q1
0
0,1
S q0
1
1 q3
q2
希望是接受语言
L={x| x{0,1}*,且 x含有子串00或11}的FA
与DFA的区别
并不是对于所有的(q, a) Q ,(q, a)
M = (Q, , , q0, F)
其中,Q, , q0, F 状态的意义同DFA(定义3-1)
—状态转移函数。 : Q 2Q。 对(q, a) Q ,(q, a)={p1, p2, …, pm} 表示M在
状态q读入字符a,可以选择地将状态变成p1, p2, …, 或者pm,并将读头向右移动一个带方格而指向输入 字符串的下一个字符。
状态说明 状态
开始状态 [q0] [q1] [q2]
即时描述
设M = (Q, , , q0, F)为一个FA,x, y *,
(q0, x)=q,xqy称为M的一个即时描述。
它表示xy是M 正在处理的一个字符串,x引导M
从q0启动并到达状态q,当前正指向y的首字符。
如果xqay是M的一个即时描述,且(q, a)=p,则
经过字符a的处理后,即时描述变为xapy。这一 过程记作:
NFA不适于构造“不包含子串…”, “不满足条件…”的语言,在这些情况 下它可能退化为DFA。
定理3-1
NFA与DFA等价。 ➢ NFA与DFA等价是指NFA和DFA能识
别相同的语言类。 ➢ 回顾等价的概念:

编译原理:第3章 有穷自动机

编译原理:第3章 有穷自动机

编译原理第3章内容简介学习目标第3章有穷自动机3.1 有穷自动机的形式定义3.1 有穷自动机的形式定义DFA的表示举例——状态转换表DFA的表示举例——状态转换图 3.13.1 FA的形式定义有穷自动机识别的符号串举例DFA A3.1 有穷自动机的形式定义 3.1 有穷自动机的形式定义NFA举例 3.13.1用NFA识别符号串yFA的构造FA的构造举例—1FA的构造举例—2FA的构造举例—3请构造一个有穷自动机FA的构造举例—4 3.1请构造一个有穷自动机FA的等价性举例3.2 NFA到DFA的转换 3.2 NFA到DFA的转换—NFA确定化3.2 NFA到DFA的转换3.2 NFA到DFA的转换—NFA确定化——ε闭包状态子集I的ε闭包——举例状态子集I的状态子集I的ε闭包——举例状态子集I的——Ia 子集3.2 NFA到DFA的转换Ia子集——举例Ia子集——举例 3.2 NFA到DFA的转换NFA到DFA的转换——子集法NFA=(Q NFA到DFA的转换——举例1aNFA到DFA的转换——举例2NFA DFA DFA NFA DFA DFADFA化简举例1DFA化简——注意NFA到最小化DFA的转换——举例33.3 正规文法与FA3.3 正规文法与FAFA⇒右线性正规文法FA⇒右线性正规文法——举例1y3.4 正规表达式RE与FA 正规表达式与有穷自动机3.4 RE与FA——RE的性质 3.4 RE与FA—RE⇒FARE⇒FA举例1RE⇒FA举例23.4 RE与FA——FA⇒RE FA⇒REFA⇒RE FA⇒RE举例FA⇒RE举例正规文法到正规表达式正规文法到正规表达式DFA的程序实现DFADFA的程序实现DFA DFA的程序实现lDFA的程序实现l第3章内容小结第3章内容小结参考文献。

形式语言与自动机_课件_陈有祺第03章 有穷自动机

形式语言与自动机_课件_陈有祺第03章 有穷自动机
定义3.7 给出NFA M=(Q,∑,δ,q0 , F),若δ(q0,x)∩F非空( x∈∑*),则称字符串x被M接受。被NFA M接受的全体字符串称 为M接受的语言,记作L(M)。也就是 L(M)={x∣x∈∑*,且δ(q0,x)∩F非空}。
从定义3.7可知,在δ(q0,x)的众多状态中,只要有一个状态属于 终结状态集F,则x就被该NFA M接受。如对例3.4中的NFA,字 符串01001是被接受的,因为δ(q0 ,01001)={q0,q1,q4} ,而 q0∈F。但字符串010是不被接受的,因为δ(q0 ,010)={q0,q3} ,其中没有一个状态在F中。
从给定集合构造接受该集合的FA
实现上述思路的FA M1如图所示
初始状态标记为“1”,表示要么还没有读入符号,要么刚读过符号1。对 于“0”状态遇1,“01” 状态遇0,“010”状态再遇0或1的情况,上 面已经做了解释。其他情况是:“0”状态遇0,此时应当保持在“0”状 态,意味着刚读过的符号是0;再有“01”状态遇1,表示这次的期望“ 半途而废”,只能从头再来,所以转回到“1”状态。
形式语言与自动机
第三章 有穷自动机
非形式化描述 有穷自动机的基本定义 非确定的有穷自动机 具有ε转移的有穷自动机 有穷自动机的应用 具有输出的有穷自动机
有穷状态系统
指针式钟表共有12*60*60个状态
围棋共有3361个状态
电梯的控制结构
某些电子产品中的开关电路,具有n个门的开关网络有 2n种状态
分析:x∈L当且仅当把x看成二进制数时,x模5与0同余。换句话说,x 要能被5整除。例如,0,101,1010,1111等都能被5整除,而10, 11,100,110等都不能被5整除。
当二进制数x的位数向右不断增加时,它的值(换算成十进制)的增加很 有规律:x0的值等于2x,x1的值等于2x+1。

编译原理第二版第3章词法分析

编译原理第二版第3章词法分析
一、正规式与正规集的递归定义
1. ε和φ都是∑上的正规式,它所表示的正规集分
别为{ε}和Ф; 2. 任何a∈∑,a是∑上的正规式,它所表示的正 规集为{a}; 3. 假定e1和e2都是∑上的正规式,他们所表示的 正规集分别为L(e1)和L(e2),那么,以下也 都是正规式和他们所表示的正规集;
一、正规式与正规集的递归定义
3.2 单词符号及输出单词的形式
单词自身值
对常数,基本字,运算符,界符就是他们本 身的值 对标识符,将标识符的名字登记在符号表中, ‚自身值‛是指向该标识符所在符号表中位 置的指针。
假定基本字、运算符和界符都是一符一种 例:if(a>1) b=100; 词法分析后输出的单词序列是: (2, ) if (29, ) ( (10,‘a’) a (23, ) > (11,‘1’) 1 (30, ) ) (10,’b’) b (17, ) = (11,‘100’) 100 (26, ) ;
4. 仅由有限次使用上述三步定义的表达式才是∑上的 正规式,仅由这些正规式所表示的字集才是∑上 的正规集。
重点回顾
四、将正规文法转换成正规式 求非终结符的正规式 将正规文法中的每个非终结符表示成关 于它的一个正规式方程,获得一个联立 方程组 用代入法解正规式方程组 最后只剩下一个开始符号定义的正规式, 其中不含非终结符
3.3 语言单词符号的两种定义方式
作用: 描述单词的构成规则,基于这类描 述工具建立词法分析技术,进而实现词法 分析程序的自动构造。 工具有: 正规文法 正规式(Regular Expression)
多数程序设计语言的单词符号都能用正 规文法或正规式来定义。
3.3.1 正规文法
多数程序设计语言单词的语法都能用正 规文法(3型文法)描述 正规文法回顾 文法的任一产生式α →β 的形式都为 A→aB或A→a,其中A ,B∈VN ,a∈VT A→Ba或A→a,其中A ,B∈VN ,a∈ VT 正规文法描述的是VT*上的正规集

第3章 有穷状态自动机 计算机专业 形式语言课件

第3章 有穷状态自动机 计算机专业 形式语言课件
因为a可能需要用来判定输入串的最初45个字符组成的子串是否满足语言的要当i45也就是m读到输入串的第45个字符时在a3的情况下m需要将a201111195532当i6也就是m读到输入串的第6个字符此时以前读到的第1个字符a就没有用了此时它要看a3是否成立如果成立m需要将a201111195632i4的考察并发现它满足语言的要求时m记下来的是i4此时它读入输入串的第i5个字符i5以前读到的第i个字符a就没有用了此时它要看ai1i53是否成立如果成立m需要将ai1下来
2021/4/26
19
3.2有穷状态自动机
• 例 3-2 构造一个DFA,它接受的语言为 {x000y|x,y∈{0,1}*}
q0——M的启动状态; q1—第—1个M0读;到了一个0,这个0可能是子串“000”的
q2—是—子M串在“q001后0”紧的接第2着个又0;读到了一个0,这个0可能
q3—符—串M含在有q子2后串紧“接00着0”又;读因到此了,一这个个0状,态发应现该输是入字终 止状态。
2021/4/26
7
3.1 语言的识别
• ⑷ 系统中有一个状态,它是系统的开始状 态,系统在这个状态下开始进行某个给定 句子的处理。
• ⑸ 系统中还有一些状态表示它到目前为止 所读入的字符构成的字符串是语言的一个 句子,把所有将系统从开始状态引导到这 种状态的字符串放在一起构成一个语言, 该语言就是系统所能识别的语言。
– 定义。 – ε-NFA与DFA的等价性。
• FA是正则语言的识别器
– 正则文法(RG)与FA的等价性。 – 相互转换方法。 – 带输出的有穷状态自动机。 – 双向有穷状态自动机。
2021/4/26
2
第3章 有穷状态自动机
• 重点:DFA的概念,DFA、NFA、ε-NFA 、 RG之间的等价转换思路与方法。

第3章 有穷自动机共45页

第3章 有穷自动机共45页

(c)
空移环路的消除
• 找到空移环路之后,要消除它只要把空移环路上 所有结点q1,q2,…,qn合成一个结点,并消除它们 所有的弧。如果其中的某一个结点qi(i=1或 2,…,n)是开始结点或终止结点,则将此合并后的 新结点相应地设置为开始状态或终止状态。
例3.8
q0
a
q1
q2
则L(A)=L(B)={(ab)n|n1}, 所以自动机A,B等价。
非确定的有穷自动机NDFA
• 定义3.5 一个非确定的有穷自动机是一个五 元组,NDFA=Q,,t,Q0,F,其中Q 为状态的有穷非空集, 为有穷输入字母 表,t为Q 到Q的子集(多值映射), Q0Q是初始状态集,F Q为终止状态集。
例3.5 DFA A=({q0,q1}, {a,b}, t, q0, {q0} ), 其中 t(q0,a)=q1, t(q1,b)=q0.
DFA B=({q0’,q1’,q2’}, {a,b}, t’, q0’, {q2’} ), 其中 t’(q0’,a)=q1’, t’(q1’,b)=q2’, t’(q2’,a)=q1’.
有穷自动机DFA定义:
一个确定的有穷自动机(DFA)M是一个五元组:M=(Q, Σ,t,q0,F)其中
✓ 1 Q是一个有穷集,它的每个元素称为一个状态;
✓ 2 Σ是一个有穷字母表,它的每个元素称为一个输入符 号,所以也称Σ为输入符号字母表;
✓ 3 t是转换函数,是在Q×Σ→Q上的映射,即,如 t(qi, a)=qj,(qi,qjQ)就意味着,当前状态为qi,输入 符为a时,将转换为下一个状态qj,我们把qj称作qi的一 个后继状态;
例子
NDFA N=({S,P,Z},{0,1},t,{S,P}, {Z})

第三章有穷自动机

第三章有穷自动机
第三章有穷自动机
例:将图示的DFA M最小化。
a
b
6
4
a
a
a
b
a
1
a
b
5a
7
b3
b
b
2 b
第三章有穷自动机
1、将M状态分为两个子集: P0=({1,2,3,4},{5,6,7})
2、{1,2,3,4}读入a后划为: P1=({1,2},{3,4},{5,6,7})
3、进一步划分: P2=({1,2},{3},{4},{5,6,7})
② 检查Ia 和Ib,看它们是否已在表的第一列 中出现,把未曾出现者之一填入下一空行 的第一列上,再计算该行的第二、第三列 上的Ia 和Ib。
第三章有穷自动机
③ 重复第二步,直至表中所有第二、第三列 上的元素全部再第一列出现为止。
因为M中的状态(子集)的个数是有限的,所 以上述三步必定在有限步骤内终止。
f(V,a)=U f(V,b)=Q U Q V
f(Q,a)=Q f(Q,b)=Q V U Q
QQQ
第三章有穷自动机
3.1.3 状态转换图
图中标有的为开始状态,标有双圈的状态为终止 状态。
若f(Ki,a)=Kj,则从状态结点Ki到状态Kj画标记为a
的弧。
a
q0
q1
a
bb
bb
a
q3
q2
a
第三章有穷自动机
➢ NFA有一个开始状态集,而DFA只有一个 开始状态。
➢ NFA的映射是QQ的子集,是一个多 值映射,而DFA的映射是QQ,是一 个单值映射。
➢ DFA是NFA的特例,对于每个NFA M,存 在一个DFA M’,使得L(M)=L(M’)。

第3章有穷自动机(胡)

第3章有穷自动机(胡)

(4) (a | b)* 是正规式 , 则相应正规集为 L((a | b)*)=(L(a | b))*= { a, b }*={ε,a,b,ab,ba, …} (5) ba* 是正规式 , 则相应正规集为 L(ba*)=L(b)L(a*)={b,ba,baa,baaa,…} (6) (a | b)*(aa | bb ) (a | b)*是正规式 , 则相应正规集为 L((a | b)*(aa | bb ) (a | b)*) =L((a | b)*)L(aa | bb ) L((a | b)*) ={a,b}*{aa,bb}{a,b}*
注意: 1)对于 关键字、运算符和界符 种别码是一字一 符。可以完全代表它自己。也就不用写自身值。 2)对于标识符和常数就必须依赖自身值来区分。 标识符自身值是它自己的字符串。 常数自身值是常数本身的二进制数值。 我们可以用指向标识符表或常数表的入口指针作 为它们的自身值
下表是简单语言单词符号的内部表示:
3.4 有穷自动机
自动机是一种能进行运算并实现自我控制的装置,
计算机就是一部自动机。自动机是描述符号串处理的强
有力的工具。因而自动机成为研究词法分析器的重要基
础。在识别功能上与正规文法类和正规表达式等价。 下面介绍有关有穷自动机的基本概念和理论以及正 规文法、正规表达式与有穷自动机之间的相互关系。
例题1 (右线性) 给定文法G[Z]: Z→0A A→0A|0B B→1A| ε 解:首先改为正规方程组: Z=0A A=0A+0B B=1A+ε 联立求解:3)代入2) A = 0A+01A+0 = (0+01)A+0 其次应用求解规则得 A =(0+01)*0 代入1)中 Z = 0 (0+ 01)*0 正规式为 = 0 ( 0 | 01 )* 0

编译原理课件第3章有穷自动机

编译原理课件第3章有穷自动机

确定性有穷自动机 (DFA)
1
定义
DFA 是有穷自动机的一种,用于表示确定性状态自动机,它从一个状态转移到 另一个状态,每次只读入一个输入字符。
2
应用
在编译原理的词法分析中,DFA 可帮助语法分析器DFA 可以使用状态表或状态图来实现。
非确定性有穷自动机 (NFA)
定义
NFA 是有穷自动机的一种,其中一个状态可以 有多个后继状态,并且可以从一个状态转移到 多个状态。
应用
在词法分析中,NFA 可以解决正则表达式匹配 问题,同时也被用于编程语言中的语法分析。
有穷自动机的应用
词法分析
在编写编译器时,有穷自动机可以用来进行词法分析,从而将源程序转换成更易于处理和理 解的单词串。
计算理论
有穷自动机是计算理论中的重要概念,被广泛应用于机器学习、人工智能和计算机科学的许 多领域。
有穷自动机
编译原理课件第3章介绍有穷自动机,这是一种数学模型,用于描述自动的计 算过程。有穷自动机是编译原理中非常重要的概念。
有穷自动机概述
1 定义
有限状态机,又称有穷状态自动机。它是一个表示有限个特定状态及在这些状态之间的 转移和动作等行为的数学模型。
2 应用
有穷自动机在计算机科学中很有用,例如编写正则表达式、词法分析和语法分析。
状态图
有穷自动机可以使用状态图来表示,通常包括起始状态、接受状态、状态转移和输入字母表。
有穷自动机的分类
有限状态自动机
这是大多数情况下使用的模型,用于表示有穷状 态自动机,由确定性自动机和非确定性自动机两 种类型。
无限状态自动机
用于表示无限状态自动机,由部分确定性自动机 和无限确定性自动机两种类型。
有穷自动机的定义

03 有穷状态自动机

03 有穷状态自动机

13
例3-2
构造一个 DFA,它接受的语言为{ x000y | x, y∈{0, 1}* }。 关键:是否出现了子串“000”? q0——M 的启动状态; q1——M 读到了一个 0,这个 0 可能是子串“000”的第 1 个0; q2——M 在 q1 后紧接着又读到了一个 0,这个 0 可能是子串 “000”的第 2 个0; q3——M 在 q2 后紧接着又读到了一个 0,发现输入字符串含 有子串“000”;因此,这个状态应该是终止状态。 可以给出 M 的状态转移函数的部分定义: δ(q0 ,0)=q1——M 读到了一个0,这个 0 可能是子串 “000”的 第1个0。 δ(q1,0)=q2——M 又读到了一个 0,这个 0 可能是子串 “000” 的第2个0。 δ(q2 ,0)=q3——M 找到了子串 “000”。
14
例3-2
δ(q0,1)=q0——M 在 q0 读到了一个 1,它需要继续在 q0 “等待” 可能是子串“000”的第 1 个 0 的输入字符 0; δ(q1,1)=q0——M 在刚刚读到了一个 0 后,读到了一个 1,表明 在读入这个 1 之前所读入的 0 并不是子串“000”的第 1 个 0, 因此,M 需要重新回到状态 q0,以寻找子串“000”的第1个0; δ(q2,1)=q0——M 在刚刚发现了00后,读到了一个1,表明在读入 这个1之前所读入的00并不是子串“000”的前两个0,因此, M 需要重新回到状态 q0,以寻找子串“000”的第 1 个 0; δ(q3,0)=q3——M 找到了子串“000”,只用读入该串的剩余部分。 δ(q3,1)=q3——M 找到了子串“000”,只用读入该串的剩余部分。
开始状态
状态
q0 q1
输入字符
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3.10
NDFA =(Q,,t,Q0,F)其中 Q={q0, q1, q2, q3}, ={x, y}, Q0={q0}, F={q1}. t(q0,x)={q1, q2}, t(q0,y )={q0}, t(q1, x)={q0}, t(q1,y )={q1,q2}, t(q2,x)={q3}, t(q2,y) ={q3}, t(q3,x)={q1,q3}, t(q3,y)={q3} DFA =(Q’, , t’,q0, F’). (1) ={x,y}; (2)Q’={[q0], [q1], [q2], [q3], [q0, q1], [q0, q2], [q0, q3], [q1, q2], [q1, q3], [q2, q3], [q0, q1, q2], [q0, q1, q3], [q0, q2, q3], [q1, q2, q3], [q0, q1, q2, q3]} (3)定义映射t’: t’([q0], x)=[q1,q2], t’([q0], y)=[q0], t’([q1], x)=[q0], t’([q1], y)=[q1, q2], t’([q2], x)=[q3], t’([q2], y)=[q3], t’([q3], x)=[q1, q3], t’([q3], y)=[q3], t’([q0, q1], x)=[q0, q1,q2], t’([q0, q1], y)=[q0, q1,q2], …. t’([q0, q1 , q2 , q3], x)=[q0, q1,q2 ,q3], t’([q0, q1 , q2 , q3], y)=[q0, q1,q2 ,q3]. (4)DFA的开始状态q0’=[q0] (5) DFA的开始状态集合F=[q1], [q0, q1], [q2, q1], [q3, q1], [q0, q1, q2], [q0, q1, q3], [q1, q2, q3], [q1, q2, q3 , q4]
例3.1状态转换表
DFSA 例3.2
DFA A=({q0, q1, q2, q3}, {a,b}, t, q0, {q0})其 中 t 定义为:
t(q0 ,a)= q1 t( q2 ,a)= q3
t(q0 ,b)= q3
t(q1 ,a)=q0
t( q2 ,b)= q1
t( q3 ,a)= q2
t(q1 ,b)= q2
t( q3 ,b)= q0
状态转换表
t(q0 ,a)= q1 t(q0 ,b)= q3 t(q1 ,a)=q0 t(q1 ,b)= q2
状态 字符
t( q2 ,a)= q3 t( q2 ,b)= q1 t( q3 ,a)= q2 t( q3 ,b)= q0
q0 q1 q2 q3
a q1 q0 q3 q2
DFSA 可接受的符号串
DFSA=(Q, ∑, t, q0, F), 扩充的映射t: Q×Σ*→Q 定义为:
(1)t(q,)= q
q∈Q, a∈∑, ∈ ∑*
(2) t(q, a)=t(t(q,a), ) 其中
DFSA=(Q, ∑, t, q0, F),如果t(q0, )=q∈F,则符号
x
q2
y
x,y
y
q1
x
q3
x,y
NDFSA与DFSA的区别
• NDFSA有一个开始状态集合,而DFA只有一个 开始状态; • NDFSA的映射是Q Q的子集,是一个多值 映射,而DFSA是Q Q的一个单值映射。
例3.7 证明符号串xyx能被例3.6中的NDFSA,所 接受。 证明:因为t(q0, xyx)=t(q1,yx) t(q2,yx) (∵t(q0, x)={q1, q2})=t(q1,x) t(q2,x) t(q3,x) (∵t(q1, y)={q1, q2}, t(q2, y)={q3})={q0} {q3}
q0
q1
a b
q2
a
q4
a b
a
q0
q2
b
b
q3
b
q3
b
(1)
(2)
确定化-子集法(自学)
• 给定一个NDFSA A=(Q, ∑, t, Q0, F)是一个非确定的有穷 自动机,一定可以构造一个和它等价的确定有穷自动机 DFSA A’=(Q’, ∑, t’, q0, F’),即L(A)=L(A’)。
例子
NDFSA N=({S,P,Z},{0,1},t,{S,P}, {Z}) 其中 N状态图表示 t(S,0)={P} 1
t(S,1)={S,Z} t(P,1)={Z} t(Z,0)={P} t(Z,1)={P}
1 S 0,1 Z 1
0
P
例子3.6
NDFSA =(Q,,t,Q0,F)其中 Q={q0, q1, q2, q3}, ={x, y}, Q0={q0}, F={q1}. t(q0,x)={q1, q2}, t(q0,y )={q0}, t(q1,x)={q0}, t(q1,y )={q1,q2} t(q2,x)={q3}, t(q2,y)={q3} t(q3,x)={q1,q3}, t(q3,y)={q3} NDFA状态图表示 y q0 x x
非确定的有穷自动机NDFSA
• 定义3.4 一个非确定的有穷自动机是一个五元组, NDFA=Q,,t,Q0,F,其中Q为状态的有穷非空集, 为有穷输入字母表,t为Q 到Q的子集(多值映射), Q0Q是初始状态集,F Q为终止状态集。
一个确定的有穷自动机(DFSA)M是一个五元组:M=(Q,Σ,t,q0,F) 其中
{q1, q3}={q0, q1, q3}
∵q1∈ t(q0, xyx)={q0, q1, q3}, q1 ∈F 所以xyx能被该NDFSA所接受。
空移环路的寻找
• 如果自动机的弧上允许标记,则称此自动 机为自动机,记为NDFSA或DFSA.
q1 q2 q1

q2

q3
(a)
q1 q2
3 t是转换函数,是在Q×Σ→Q上的映射,即,如: t=(q,x)=q’,(q,q’Q)就意味着,当前状态为q, 输入符为x时,将转换为下一个状态q’,我们把q’称作q 的一个后继状态;
4 q0 Q是唯一的一个开始状态; 5 F Q是一个终止状态集,它至少由一个终止状态组成。
状态转换表
FSA例3.1 :识别一个由带符号或无符号十进制数组成的语言。
终止状态
开始状态
有穷自动机DFSA定义3.1: 一个确定的有穷自动机(DFSA)M是一个五元组:M= (Q,Σ,t,q0,F)其中 1 Q是一个有穷集,它的每个元素称为一个状态; 2 Σ 是一个有穷字母表,它的每个元素称为一个输入符 号,所以也称Σ 为输入符号字母表;
确定化-造表法
子集法的确定,如果状态数n很大,确定化 后的状态数将更大2n-1,并且其中很多是不可到 达的状态而造表法,更加简单而有效。 步骤: 确定DFSA的开始状态,从开始状态开始分别计算 对不同输入字母的映象,如果产生新的状态,则 继续计算新状态的映象,重复这个过程一直到没 有新的状态出现为止。
b q3 q2 q1 q0
DFSA 的状态图表示
t(q0 ,a)= q1 t(q0 ,b)= q3 t( q2 ,a)= q3 t( q2 ,b)= q1
t(q1 ,a)=q0
t(q1 ,b)= q2
t( q3 ,a)= q2
b
t( q3 ,b)= q0
q2
a a
b
q1
a
a
q3
b
q0
b
DFSA 例3.3:DFSA M=({0,1,2,3},{a,b}, f,0,{3}), 其中:f素称为一个状态;
2 Σ 是一个有穷字母表,它的每个元素称为一个输入符号,所以也称Σ 为 输入符号字母表; 3 t是转换函数,是在Q×Σ→Q上的映射,即,如: t=(q,x)=q’,(q, q’Q)就意味着,当前状态为q,输入符为x时,将转换为下一个状态q’, 我们把q’称作q的一个后继状态; 4 q0 Q是唯一的一个开始状态; 5 F Q是一个终止状态集,它至少由一个终止状态组成。
第3章 有穷自动机
• • • • • • 有穷自动机形式定义 NDFSA DFSA 的转换 正规文法与有穷自动机 正规表达式与FA DFSA在计算机中的表示 小结
有穷自动机 有穷自动机(也称有限自动机)作为一种识别装 置,它能准确地识别正规集,即识别正规文法 所定义的语言和正规式所表示的集合,引入有 穷自动机这个理论,正是为词法分析程序的自 动构造寻找特殊的方法和工具。 有穷自动机分为两类:确定的有穷自动机 (Deterministic Finite State Automata)和不确定 的有穷自动机(NonDeterministic Finite State Automata) 。
t(q0 ,a)= q1
t(q0 ,b)= q3 t(q1 ,a)=q0
t( q2 ,a)= q3
t( q2 ,b)= q1 t( q3 ,a)= q2
t(q1 ,b)= q2
t( q3 ,b)= q0
q2 a a
b b
q1
a a
b b
q3
q0
自动机的等价
定义3.2 给定两个有穷自动机M和M’,如果L(M)=L(M’),则 称自动机M和M’等价。 例3.4 DFSA M=({q0,q1}, {a,b}, t, q0, {q0} ), 其中t(q0,a)=q1, t(q1,b)=q0. DFSA M’=({q0’,q1’,q2’}, {a,b}, t’, q0’, {q2’} ), 其中 t’(q0’,a)=q1’, t’(q1’,b)=q2’, t’(q2’,a)=q1’. 则L(M)=L(M’)={(ab)n|n1}, 所以自动机M,M’等价。
相关文档
最新文档