2020年广东省深圳市南山区育才二中中考数学一模试卷 (解析版)
2020年广东省深圳市中考数学一模试卷解析版
分组结果
频数
频率
A.完全掌握
30
0.3
B.比较清楚
50
m
C.不怎么清楚
n
0.15
D.不清楚
5
0.05
请根据上图完成下面题目: (1)总人数为______人,m=______,n=______. (2)请你补全条形统计图. (3)若全校有 2700 人,请你估算一下全校对“新型冠状病毒”的防控知识“完全 掌握”的人数有多少?
个,这些口罩除了颜色外全部相同,从中随机依次不放回拿出两个口罩,则两个口
罩都是粉色的概率是______.
15. 已知 tan(α+β)=
,tan2α=
(其中 α 和 β 都表示角度),比如求
tan105°,可利用公式得 tan105°=tan(60°+45°)=
-2,又如求 tan120°,
可利用公式得 tan120°=tan(2×60°)=
第 4 页,共 18 页
21. 复课返校后,为了拉大学生锻炼的间距,学校决定增购适合独立训练的两种体育器 材:跳绳和毽子.如果购进 5 根跳绳和 6 个毽子共需 196 元;购进 2 根跳绳和 5 个 键子共需 120 元. (1)求跳绳和毽子的售价分别是多少元? (2)学校计划购买跳绳和毽子两种器材共 400 个,由于受疫情影响,商场决定对 这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的 数量不少于毽子数量的 3 倍,跳绳的数量不多于 310 根,请你求出学校花钱最少的 购买方案.
A. 1.18×108
B. 118×107
C. 1.18×109
D. 11.8×108
4. 如图所示的几何体的左视图为( )
2020年广东省中考数学一模试卷解析版
中考数学一模试卷一.选择题(共10 小题)1.计算|﹣ 2|的结果是()A .2B .C.﹣D.﹣ 22.以下图形中,既是轴对称图形,又是中心对称图形的是()A .B .C.D.3.我市 2019 年参加中考的考生人数约为52400 人,将 52400 用科学记数法表示为()A .524× 102B .× 103C.×104D.× 1054.以下运算正确的选项是()A .a﹣ 2a=a B.(﹣ a 2)3=﹣ a66 2 3 2 2 2C. a ÷ a = a D.( x+y)= x +y5.函数 y=中自变量 x 的取值范围是()A .x≥﹣ 1 且 x≠ 1B .x≥﹣ 1 C. x≠ 1 D.﹣ 1≤ x< 1 6.如图, PA、PB 分别与⊙O 相切于 A、B 两点,若∠ C= 65°,则∠ P 的度数为()A .65°B .130°C. 50°D. 100°7.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计以下:5,4, 3,5, 5, 2, 5, 3, 4, 1,则这组数据的中位数,众数分别为()A .4,5B.5,4C.4,4D.5,58.一个多边形每个外角都等于30°,这个多边形是()A .六边形B .正八边形C.正十边形D.正十二边形9.如图在同一个坐标系中函数y= kx2和y=kx﹣ 2( k≠0)的图象可能的是()A .B .C .D .10.如图,在等腰△ ABC 中, AB = AC = 4cm ,∠ B = 30°,点 P 从点 B 出发,以速度沿 BC 方向运动到点 C 停止,同时点 Q 从点 B 出发,以 1cm/s 的速度沿cm/s 的BA ﹣ AC 方向运动到点 C 停止,若△ BPQ 的面积为y ( cm 2),运动时间为 x ( s ),则以下最能反应y 与 x 之间函数关系的图象是()A .B .C .D .二.填空题(共 7 小题)11.实数 81 的平方根是. 12.分解因式: 3x 3﹣ 12x =.13.抛物线 y = 2x 2+8x+12 的极点坐标为.14.如图, Rt △ ABC 中,∠ B = 90°, AB = 4, BC = 3,AC 的垂直均分线 DE 分别交 AB , AC 于 D , E 两点,则 CD 的长为.15.如图, AB 是⊙ O 的直径,点C、 D 在圆上,∠ D = 67°,则∠ ABC 等于度.16.已知一副直角三角板如图搁置,此中BC= 6,EF = 8,把 30°的三角板向右平移,使顶点 B 落在 45°的三角板的斜边DF 上,则两个三角板重叠部分(暗影部分)的面积为.17.二次函数y= ax2+bx+c 的图象如图,对称轴是直线x=﹣ 1,有以下结论:① abc>0;② 4ac< b2;③2a﹣ b= 0;④a﹣ b+c> 0;⑤9a﹣ 3b+c>0.此中正确的结论有.三.解答题(共8 小题)18.计算:()﹣1°﹣( 1﹣).﹣4sin60 +19.先化简:(1+ )÷,请在﹣ 1, 0,1,2,3 中间选一个适合的数 a 代入求值.20.如图,在△ABC 中,∠ C= 90°.( 1)用尺规作图法作AB 边上的垂直均分线DE ,交 AC 于点 D,交 AB 于点 E.(保存作图印迹,不要求写作法和证明);( 2)连结 BD ,若 BD 均分∠ CBA,求∠ A 的度数.21.央视“经典咏流传”开播以来遇到社会宽泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱状况进行了随机检查.对采集的信息进行统计,绘制了下边两幅尚不完好的统计图.请你依据统计图所供给的信息解答以下问题:图中 A 表示“很喜爱” ,B 表示“喜爱” 、C 表示“一般” , D 表示“不喜爱”.( 1)被检查的总人数是人,扇形统计图中 C 部分所对应的扇形圆心角的度数为;( 2)补全条形统计图;( 3)若该校共有学生1800 人,请依据上述检查结果,预计该校学生中 A 类有人;(4)在抽取的 A 类 5 人中,恰好有 3 个女生 2 个男生,从中随机抽取两个同学担当两角色,用树形图或列表法求出被抽到的两个学生性别同样的概率.22.如图,在△A BC 中,点 D, E 分别在边 AB, AC 上,∠ AED =∠ B,线段 AG 分别交线段 DE,BC 于点 F,G,且=.(1)求证:△ ADF ∽△ ACG;(2)若=,求的值.23.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季试销售成本为每千克 18 元的草莓,规定试销时期销售单价不低于成本单价,也不高于每千克40 元.经试销发现,销售量y( kg)与销售单价x(元 /kg)切合一次函数关系,如图是y 与x 的函数关系图象.( 1)求 y 与 x 的函数分析式;( 2)设该水果销售店试销草莓获取的收益为W 元,求W 的最大值.24.如图,在△ABC 中, AB= AC, AE 是∠ BAC 的均分线,∠ABC 点 M,点 O 在 AB 上,以点 O 为圆心, OB 的长为半径的圆经过点的均分线BM 交M,交 BC 于点AE 于G,交AB 于点 F.(1)求证: AE 为⊙O 的切线;(2)当 BC= 4, AC= 6 时,求⊙O 的半径;( 3)在( 2)的条件下,求线段BG 的长.25.如图,在平面直角坐标系中,四边形OABC 为菱形,点 C 的坐标为( 8,0),∠ AOC =60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与菱形 OABC 的两边分别交于点 M、 N(点 M 在点 N 的上方).(1)求 A、B 两点的坐标;(2)设△ OMN 的面积为 S,直线 l 运动时间为 t 秒( 0≤ t≤ 12),求 S 与 t 的函数表达式;(3)在( 2)的条件下, t 为什么值时, S 最大?并求出 S 的最大值.参照答案与试题分析一.选择题(共10 小题)1.计算|﹣ 2|的结果是()A .2B .C.﹣D.﹣ 2【剖析】依据负数的绝对值是它的相反数,可得答案.【解答】解: |﹣2|的结果是2.应选: A.2.以下图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解: A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、既是轴对称图形,也是中心对称图形,故此选项切合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.应选: C.3.我市 2019 年参加中考的考生人数约为52400 人,将 52400 用科学记数法表示为()2 3 4 5A .524× 10B .× 10 C.×10 D.× 10【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤ |a|< 10,n 为整数.确立n的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数相同.当原数绝对值>10 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解: 52400=× 104,应选: C.4.以下运算正确的选项是()A .a﹣ 2a=a B.(﹣ a 2)3=﹣ a6C. a 6÷ a2= a3D.( x+y)2= x2+y2【剖析】依据同底数幂的除法,底数不变指数相减;归并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用清除法求解.【解答】解: A、 a﹣ 2a=﹣ a,故错误;B、正确;6 2 4,故错误;C、 a ÷ a = aD、( x+y)2= x2+2xy+y2,故错误;应选: B.5.函数y=中自变量x 的取值范围是()A .x≥﹣ 1 且x≠ 1B .x≥﹣ 1 C. x≠ 1 D.﹣ 1≤ x< 1【剖析】依据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应当是取让两个条件都知足的公共部分.【解答】解:依据题意获取:,解得 x≥﹣ 1 且 x≠1,应选: A.6.如图, PA、PB 分别与⊙O 相切于 A、B 两点,若∠ C= 65°,则∠ P 的度数为()A .65°B .130°C. 50°D. 100°【剖析】由 PA 与 PB 都为圆 O 的切线,利用切线的性质获取OA 垂直于 AP,OB 垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的 2 倍,由已知∠ C 的度数求出∠AOB 的度数,在四边形PABO 中,依据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵ PA、PB 是⊙ O 的切线,∴OA⊥ AP, OB⊥BP,∴∠OAP=∠ OBP= 90°,又∵∠AOB= 2∠C= 130°,则∠ P= 360°﹣( 90°+90 ° +130°)=50°.应选: C.7.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计以下:5,4, 3,5, 5, 2, 5, 3, 4, 1,则这组数据的中位数,众数分别为()A .4,5B.5,4C.4,4D.5,5【剖析】依据众数及中位数的定义,联合所给数据即可作出判断.【解答】解:将数据从小到大摆列为:1, 2,3, 3, 4,4, 5, 5, 5, 5,这组数据的众数为:5;中位数为: 4.应选: A.8.一个多边形每个外角都等于30°,这个多边形是()A .六边形B .正八边形C.正十边形【剖析】依据多边形的外角和为360°,而多边形每个外角都等于角的个数,确立多边形的边数.【解答】解:∵多边形的外角和为360°, 360°÷ 30°= 12,∴这个多边形是正十二边形,应选: D.D.正十二边形30°,可求多边形外9.如图在同一个坐标系中函数y= kx2和y=kx﹣ 2( k≠0)的图象可能的是()A.B.C.D.【剖析】分两种状况进行议论:k>0 与k< 0 进行议论即可.【解答】解:当k> 0 时,函数y= kx﹣ 2 的图象经过一、三、四象限;函数y= kx2的开口向上,对称轴在y 轴上;当 k< 0 时,函数y= kx﹣ 2 的图象经过二、三、四象限;函数y= kx2的张口向下,对称轴在y 轴上,故 C 正确.应选: C.10.如图,在等腰△ ABC 中, AB = AC = 4cm ,∠ B = 30°,点 P 从点 B 出发,以速度沿 BC 方向运动到点 C 停止,同时点 Q 从点 B 出发,以 1cm/s 的速度沿cm/s 的BA ﹣ AC 方向运动到点 C 停止,若△ BPQ 的面积为y ( cm 2),运动时间为 x ( s ),则以下最能反应y 与 x 之间函数关系的图象是()A .B .C .D .【剖析】 作 AH ⊥BC 于 H ,依据等腰三角形的性质得 BH =CH ,利用∠ B =30°可计算出 AH = AB =2,BH =AH =2,则 BC = 2BH = 4,利用速度公式可得点 P 从B 点 运动到 C 需 4s , Q 点运动到 C 需 8s ,而后分类议论:当 0≤ x ≤ 4 时,作 QD ⊥ BC 于 D ,如图 1,BQ = x ,BP =x ,DQ = BQ = x ,利用三角形面积公式获取y =x 2;当 4< x ≤ 8 时,作 QD ⊥ BC 于 D ,如图 2, CQ = 8﹣ x , BP = 4 ,DQ = CQ = (8﹣ x ), 利用三角形面积公式得y =﹣x+8,于是可得 0≤ x ≤ 4 时,函数图象为抛物线的一部分,当 4< x ≤8 时,函数图象为线段,则易得答案为 D .【解答】 解:作 AH ⊥ BC 于 H , ∵ AB = AC = 4cm , ∴ BH = CH , ∵∠ B = 30°,∴ AH = AB = 2, BH = AH =2,∴ BC = 2BH =4,∵点 P 运动的速度为 cm/s , Q 点运动的速度为 1cm/s ,∴点 P 从 B 点运动到 C 需 4s , Q 点运动到 C 需 8s ,当 0≤x ≤ 4 时,作 QD ⊥ BC 于 D ,如图 1, BQ =x , BP =x ,在 Rt △BDQ 中, DQ = BQ = x ,∴ y = ? x? x =x 2,当 4<x ≤ 8 时,作 QD ⊥ BC 于 D ,如图 2, CQ =8﹣ x , BP = 4在 Rt △BDQ 中, DQ = CQ = (8﹣ x ),∴ y = ? (8﹣ x )?4 =﹣x+8 ,综上所述, y =.应选: D .二.填空题(共 7 小题)11.实数 81 的平方根是± 9 .【剖析】 第一依据平方根的定义能够求得结果.【解答】 解:实数 81 的平方根是:±=± 9.故答案为:± 9.12.分解因式: 3x 3﹣ 12x = 3x (x ﹣ 2)( x+2) .【剖析】 注意将提取公因式与乘法公式综合应用,将整式提取公因式后再次利用公式分解.【解答】 解: 3x 3﹣ 12x= 3x (x 2﹣ 4)﹣﹣(提取公因式)= 3x (x ﹣2)( x+2).13.抛物线 y = 2x 2+8x+12 的极点坐标为(﹣ 2,4) .【剖析】 利用极点的公式第一求得横坐标,而后把横坐标的值代入分析式即可求得纵坐标.【解答】 解: x =﹣=﹣ 2,把 x =﹣ 2 代入得: y = 8﹣ 16+12= 4.则极点的坐标是(﹣ 2, 4).故答案是:(﹣ 2, 4).14.如图, Rt △ ABC 中,∠ B = 90°, AB = 4, BC = 3,AC 的垂直均分线 DE 分别交 AB , AC 于 D , E 两点,则 CD 的长为.【剖析】 先依据线段垂直均分线的性质得出CD = AD ,故 AB = BD +AD =BD+CD ,设 CD= x ,则 BD = 4﹣ x ,在 Rt △ BCD 中依据勾股定理求出x 的值即可.【解答】 解:∵ DE 是 AC 的垂直均分线,∴CD =AD ,∴ AB = BD +AD = BD +CD ,设 CD =x ,则 BD = 4﹣x ,在 Rt △BCD 中,CD 2= BC 2+BD 2,即 x 2= 32+( 4﹣ x ) 2,解得 x =.故答案为:.15.如图, AB 是⊙ O 的直径,点 C 、 D 在圆上,∠ D = 67°,则∠ ABC 等于23度.【剖析】 依据圆周角定理获取∠ A =∠ D = 67°、∠ ACB = 90°,依据直角三角形的性质计算,获取答案.【解答】 解:由圆周角定理得,∠∵ AB 是 ⊙O 的直径,∴∠ ACB = 90°,∴∠ ABC = 90°﹣ 67°= 23°,A =∠ D = 67°,故答案为: 23.16.已知一副直角三角板如图搁置,此中 BC = 6,EF = 8,把 30°的三角板向右平移,使极点 B 落在 45°的三角板的斜边 DF 上,则两个三角板重叠部分 (暗影部分) 的面积为 12﹣.【剖析】 依据特别角的锐角三角函数值,求出EC 、EG 、AE 的长,获取暗影部分的面积.【解答】 解:在直角△ BCF 中,∵∠ F = 45°, BC = 6,∴ CF = BC = 6.又∵ EF = 8,则 EC = 2.在直角△ ABC 中,∵ BC = 6,∠ A = 30°,∴AC = 6,则 AE = 6 ﹣ 2,∠ A = 30°,∴ EG = AE = 6﹣ ,暗影部分的面积为: (EG+BC )?EC = ×( 6﹣ +6)× 2= 12﹣.故答案是: 12﹣.17.二次函数2x =﹣ 1,有以下结论: ① abc > 0;y = ax +bx+c 的图象如图,对称轴是直线② 4ac < b 2; ③ 2a ﹣ b = 0 ; ④ a ﹣ b+c > 0 ; ⑤ 9a ﹣ 3b+c > 0 . 其 中 正 确 的 结 论 有①②③④.【剖析】由图象可知:a<0, c> 0,依据对称轴及 a 与 b 的符号关系可得b< 0,则可判断① 的正误;依据抛物线与x 轴有两个交点,可得△> 0,则可判断②的正误;由对称轴是直线 x=﹣ 1,可判断③的正误;由当x=﹣ 1 时, y> 0,可判断④的正误;由当 x =﹣ 3 时, y< 0,可判断⑤的正误.【解答】解:由图象可知:a< 0, c> 0,又∵对称轴是直线x=﹣ 1,∴依据对称轴在y 轴左边, a, b 同号,可得 b< 0,∴ abc>0,故① 正确;∵抛物线与 x 轴有两个交点,∴△= b 2﹣ 4ac> 0,∴ 4ac<b 2,故② 正确;∵对称轴是直线x=﹣ 1,∴﹣=﹣1,∴ b= 2a,∴ 2a﹣b= 0,故③ 正确;∵当 x=﹣ 1 时, y> 0,∴ a﹣ b+c> 0,故④ 正确;∵对称轴是直线x=﹣ 1,且由图象可得:当x= 1 时, y< 0,∴当 x=﹣ 3 时, y< 0,∴ 9a﹣3b+c< 0,故⑤ 错误.综上,正确的有①②③④ .故答案为:①②③④.三.解答题(共8 小题)18.计算:(﹣1 0.)﹣4sin60°﹣( 1﹣) +【剖析】原式第一项利用负指数幂法例计算,第二项利用特别角的三角函数值计算,第三项利用零指数幂法例计算,最后一项化为最简二次根式,计算即可获取结果.【解答】解:原式=2﹣ 4×﹣ 1+2 = 1.19.先化简:(1+ )÷,请在﹣ 1, 0,1,2,3 中间选一个适合的数 a 代入求值.【剖析】直接将括号里面通分运算,再利用分式的混淆运算法例计算得出答案.【解答】解:原式=?=?=,当 a=﹣ 1, 0, 1 时,分式无心义,故当 a= 2 时,原式=.20.如图,在△ ABC 中,∠ C= 90°.( 1)用尺规作图法作AB 边上的垂直均分线DE ,交 AC 于点 D,交 AB 于点 E.(保存作图印迹,不要求写作法和证明);( 2)连结 BD ,若 BD 均分∠ CBA,求∠ A 的度数.【剖析】( 1)直接利用线段垂直均分线的作法得出即可;(2)利用线段垂直均分线的性质得出 AD = BD,再利用角均分线的性质求出即可.【解答】解:( 1)以下图, DE 为所求作的垂直均分线;(2)∵ DE 是 AB 边上的垂直均分线,∴ AD= BD,∴∠ ABD=∠ A,∵ BD 均分∠ CBA,∴∠ CBD =∠ ABD =∠ A,∵∠ C= 90°,∴∠ CBD+∠ ABD+∠ A= 90°,∴∠ A= 30°.21.央视“经典咏流传”开播以来遇到社会宽泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱状况进行了随机检查.对采集的信息进行统计,绘制了下边两幅尚不完好的统计图.请你依据统计图所供给的信息解答以下问题:图中 A 表示“很喜爱” ,B 表示“喜爱” 、C 表示“一般” , D 表示“不喜爱”.( 1)被检查的总人数是50人,扇形统计图中 C 部分所对应的扇形圆心角的度数为216°;( 2)补全条形统计图;( 3)若该校共有学生1800 人,请依据上述检查结果,预计该校学生中 A 类有180人;(4)在抽取的 A 类 5 人中,恰好有 3 个女生 2 个男生,从中随机抽取两个同学担当两角色,用树形图或列表法求出被抽到的两个学生性别同样的概率.【剖析】( 1)由 A 类型人数及其所占百分比可得总人数,用360°乘以 C 部分人数所占比率可得;( 2)总人数减去其余类型人数求得 B 的人数,据此即可补全条形图;(3)用总人数乘以样本中 A 类型人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别同样的两个学生的概率.【解答】解:( 1)被检查的总人数为5÷ 10%= 50 人,扇形统计图中 C 部分所对应的扇形圆心角的度数为360°×=216°,故答案为: 50、216°;(2)B 类型人数为 50﹣( 5+30+5 )= 10 人,补全图形以下:(3)预计该校学生中 A 类有 1800× 10%= 180 人,故答案为: 180;(4)列表以下:女 1 女 2 女 3 男 1 男 2女 1 ﹣﹣﹣女 2 女 1 女 3 女 1 男 1 女 1 男 2 女 1女 2 女 1 女 2 ﹣﹣﹣女 3 女 2 男 1 女 2 男 2 女 2女 3 女 1 女 3 女2女3 ﹣﹣﹣男 1 女 3 男 2 女 3男 1 女 1 男 1 女 2 男 1 女 3 男 1 ﹣﹣﹣男 2 男 1男 2 女 1 男 2 女 2 男 2 女 3 男 2 男 1 男 2 ﹣﹣﹣全部等可能的结果为20 种,此中被抽到的两个学生性别同样的结果数为8,∴被抽到的两个学生性别同样的概率为=.22.如图,在△A BC 中,点 D, E 分别在边 AB, AC 上,∠ AED =∠ B,线段 AG 分别交线段 DE,BC 于点 F,G,且=.( 1)求证:△ ADF ∽△ ACG;( 2)若=,求的值.【剖析】( 1)由∠ AED =∠ B、∠ DAE =∠ CAB 利用相像三角形的判断即可证出△ADE ∽△ ACB;依据相像三角形的性质再得出∠ADF =∠ C,即可证出△ADF ∽△ ACG;(2)由( 1)的结论以及相像三角形的性质即可求出答案.【解答】( 1)证明:∵∠ AED =∠ B,∠ DAE=∠CAB ,∴△ AED∽△ ABC,∴∠ ADF =∠ C,又∵,∴△ ADF ∽△ ACG;( 2)解:∵△ ADF ∽△ ACG,∴,∵=,∴,∴.23.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季试销售成本为每千克 18 元的草莓,规定试销时期销售单价不低于成本单价,也不高于每千克40 元.经试销发现,销售量y( kg)与销售单价x(元 /kg)切合一次函数关系,如图是y 与 x 的函数关系图象.( 1)求 y 与 x 的函数分析式;( 2)设该水果销售店试销草莓获取的收益为W 元,求 W 的最大值.【剖析】( 1)利用待定系数法求解可得;( 2)依据总收益=每千克的收益×销售量列出函数分析式,并配方成极点式,再利用二次函数的性质求解可得.【解答】 解:( 1)设 y = kx+b ,将 x = 20、 y = 300 和 x = 30、 y = 280 代入,得:,解得:,∴ y =﹣ 2x+340( 18≤ x ≤ 40);( 2)依据题意,得: W =( x ﹣ 18)(﹣ 2x+340)=﹣ 2x 2+376x ﹣ 6120=﹣ 2( x ﹣ 94)2+2716 ,∵ a =﹣ 2< 0,∴当 x <94 时, W 随 x 的增大而增大,∴在 18≤ x ≤ 40 中,当 x =40 时, W 获得最大值,最大值为8548.24.如图,在△ ABC 中, AB = AC , AE 是∠ BAC 的均分线,∠ ABC点 M ,点 O 在 AB 上,以点 O 为圆心, OB 的长为半径的圆经过点的均分线 BM 交M ,交 BC 于点 AE 于G ,交AB 于点 F .( 1)求证: AE 为 ⊙O 的切线;( 2)当 BC = 4, AC = 6 时,求 ⊙O 的半径;( 3)在( 2)的条件下,求线段 BG 的长.【剖析】( 1)连结 OM ,如图 1,先证明OM ∥ BC,再依据等腰三角形的性质判断AE⊥BC,则 OM ⊥ AE,而后依据切线的判断定理获取AE 为⊙ O 的切线;( 2)设⊙O 的半径为r,利用等腰三角形的性质获取∽△ ABE,则利用相像比获取=,而后解对于( 3)作 OH⊥ BE 于 H ,如图,易得四边形OHEM = BE﹣ HE =,再依据垂径定理获取BH =HG=【解答】( 1)证明:连结OM ,如图 1,∵ BM 是∠ ABC 的均分线,∴∠ OBM =∠ CBM ,∵OB= OM,∴∠ OBM =∠ OMB ,∴∠ CBM =∠ OMB ,∴OM∥ BC,∵AB= AC, AE 是∠ BAC 的均分线,∴ AE⊥ BC,∴OM⊥AE,∴ AE 为⊙O 的切线;( 2)解:设⊙O 的半径为r ,∵AB= AC= 6,AE 是∠ BAC 的均分线,∴ BE= CE= BC =2,∵OM ∥ BE,∴△ AOM ∽△ ABE,∴=,即=,解得r=,BE= CE=BC= 2,再证明△ AOM r的方程即可;为矩形,则HE=OM =,所以BH ,所以 BG=1.即设⊙O 的半径为;(3)解:作 OH⊥ BE 于 H,如图,∵OM⊥EM,ME⊥BE,∴四边形 OHEM 为矩形,∴ HE= OM=,∴BH= BE﹣ HE =2﹣=,∵OH ⊥BG,∴BH= HG=,∴BG= 2BH =1.25.如图,在平面直角坐标系中,四边形OABC 为菱形,点 C 的坐标为( 8,0),∠ AOC =60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与菱形 OABC 的两边分别交于点 M、 N(点 M 在点 N 的上方).(1)求 A、B 两点的坐标;(2)设△ OMN 的面积为 S,直线 l 运动时间为 t 秒( 0≤ t≤ 12),求 S 与 t 的函数表达式;(3)在( 2)的条件下, t 为什么值时, S 最大?并求出 S 的最大值.【剖析】( 1)过 A 作 AD⊥ OC 于 D,在直角三角形OAD 中,可依据OA 的长和∠ AOC 的度数求出OD 和 AD 的长,即可得出 A 点坐标,将 A 的坐标向右平移8 个单位即可得出 B 点坐标.(2)当 l 过 A 点时,ON= OD= 4,所以 t= 4;当 l 过 C 点时, ON=OC= 8,此时 t=8.所以此题可分三种状况:①当 0≤ t≤ 4 时,直线l 与 OA、 OC 两边订交,此时ON= t ,MN =t,依据三角形的面积公式即可得出S, t 的函数关系式.②当 4< t≤8 时,直线l 与 AB、 OC 两边订交,此时三角形OMN 中, NM 的长与 AD 的长同样,而ON= t,可得出S, t 的函数关系式.③ 当8< t≤ 12 时,直线l 与AB 、BC 两边订交,可设直线l 与x 轴交点为H,那么三角形OMN 能够MN 为底, OH 为高来计算其面积.OH 的长为t,而MN 的长可经过MH ﹣NH 来求得,可得出对于S,t 的函数关系式.S 的最大值及对应的t ( 3)依据( 2)中各函数的性质和各自的自变量的取值范围可得出的值.【解答】解:( 1)过点 A 作 AD ⊥ OC 于 D,∵四边形OABC 为菱形,点 C 的坐标为( 8, 0),∴OA= AB= BC= CO= 8.∵∠ AOC= 60°,∴OD=4,AD=4 .∴ A( 4, 4),B(12,4);( 2)直线 l 从 y 轴出发,沿x 轴正方向运动与菱形OABC 的两边订交有三种状况:① 0≤ t≤ 4 时,直线l 与 OA 、OC 两边订交,(如图①).∵MN⊥ OC,∴ ON= t.∴MN = ONtan60°=t.∴S= ON?MN =t2;②当 4< t≤8 时,直线l 与 AB、OC 两边订交,(如图②).S=③ 当ON?MN =× t× 48< t≤12 时,直线l= 2t;与 AB、 BC 两边订交,(如图③).设直线 l 与 x 轴交于点H .∵ MN = 4﹣(t﹣8)=12 ∴ S=OH?MN =× t×(12﹣﹣t,t)=﹣t2+6 t;( 3)由( 2)知,当 0≤ t≤ 4 时, S 最大=×42=8 ,当 4< t≤ 8 时, S 最大= 16 ,当 8< t≤ 12 时, S=﹣t 2+6 t=﹣( t﹣ 6)2+18∴当 8< t≤ 12 时, S<16综上所述,当t= 8 时, S 最大= 16.。
广东省深圳市南山区育才二中2020年中考数学一模试卷(含解析)
2020年中考数学一模试卷一、选择题1.与的积为1的数是()A.2B.C.﹣2D.2.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A.5.6×109B.5.6×108C.0.56×109D.56×1083.下列运算正确的是()A.B.C.3a+5b=8ab D.3a2b﹣4ba2=﹣a2b4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或225.下列立体图形中,主视图是矩形的是()A.B.C.D.6.下列各数中,为不等式组解的是()A.﹣1B.0C.2D.47.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°9.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7B.7,7C.7,6D.6,610.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣111.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x 轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共4个小题,每小题3分,共12分)13.若分式的值为0,则x的值为.14.把多项式am2﹣9a分解因式的结果是.15.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.16.如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k =.三、解答题17.计算(﹣π)0﹣3tan30°+()﹣2+|1﹣|18.先化简:,再从﹣3、2、3中选择一个合适的数作为a的值代入求值.19.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?捐款人数0~50元51~100元101~150元151~200元6200元以上420.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=,点M是y轴上一个动点,求△AQM的最小周长.参考答案一、选择题:(本大题共12个小题,每小题3分,共36分.)1.与的积为1的数是()A.2B.C.﹣2D.【分析】根据乘积是1的两数互为倒数,进行求解.解:∵的倒数是2,∴与乘积为1的数是2,故选:A.2.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A.5.6×109B.5.6×108C.0.56×109D.56×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:5600000000=5.6×109,故选:A.3.下列运算正确的是()A.B.C.3a+5b=8ab D.3a2b﹣4ba2=﹣a2b【分析】分别根据有理数的混合运算法则,幂的定义,合并同类项法则逐一判断即可.解:A,故本选项不合题意;B.,故本选项不合题意;C.3a与5b不是同类项,所以不能合并,故本选项不合题意;D.3a2b﹣4ba2=﹣a2b,正确.故选:D.4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或22【分析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.5.下列立体图形中,主视图是矩形的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解:A.此几何体的主视图是等腰三角形;B.此几何体的主视图是矩形;C.此几何体的主视图是等腰梯形;D.此几何体的主视图是圆;故选:B.6.下列各数中,为不等式组解的是()A.﹣1B.0C.2D.4【分析】分别求出两个不等式的解集,再找到其公共部分即可.解:,由①得,x>,由②得,x<4,∴不等式组的解集为<x<4.四个选项中在<x<4中的只有2.故选:C.7.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.【分析】根据勾股定理求出AC,根据余弦的定义计算即可.解:由勾股定理得,AC===则sin B==,故选:C.8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°【分析】根据平行线的性质求出∠B,根据圆内接四边形的性质求出∠D,根据圆周角定理解答.解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.9.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7B.7,7C.7,6D.6,6【分析】根据中位数和众数的定义分别进行解答即可.解:∵共有15个数,最中间的数是8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6;6出现的次数最多,出现了6次,则众数是6;故选:D.10.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣1【分析】利用一元二次方程的定义和根的判别式的意义得到k≠0且△=(﹣2)2﹣4×k ×(﹣1)≥0,然后求出两不等式的公共部分后找出非正整数即可.解:根据题意得k≠0且△=(﹣2)2﹣4×k×(﹣1)≥0,解得k≥﹣1且k≠0,∵k为非正整数,∴k=﹣1.故选:D.11.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x 轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.【分析】设直线l的解析式为y=kx+b,列方程组求得y=x+1,根据已知条件得到点C (4,3),设反比例函数表达式为y=,把C的坐标代入即可得到结论.解:设直线l的解析式为:y=kx+b,∵直线l经过点A(﹣2,0)和点B(0,1),∴,解得:,∴直线l的解析式为:y=x+1,∵点A(﹣2,0),∴OA=2,∵OM=2OA,∴OM=4,∴点C的横坐标为4,当x=4时,y=3,∴点C(4,3),设反比例函数表达式为y=,∴m=12,∴反比例函数表达式为y=,故选:B.12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A.1个B.2个C.3个D.4个【分析】由三个角是直角的四边形是矩形,先判定四边形AMFN是矩形,再证明AM=AN,从而可判断①;利用SAS可判定△ABE≌△ACD,从而可判断②;在没有∠DAE =45°时,无法证得DE'=DE,故可判断③;由∠DAE=∠C,∠ADE=∠CDA可判定△ADE∽△CDA,从而可判定④.解:∵DM、EN分别垂直AB、AC,垂足为M、N,∴∠AMF=∠ANF=90°,又∵∠BAC=90°,∴四边形AMFN是矩形;∵△ABC为等腰直角三角形,∴AB=AC,∠ABC=∠C=45°,∵DM⊥AB,EN⊥AC,∴△BDM和△CEN均为等腰直角三角形,又∵BD=CE,∴△BDM≌△CEN(AAS),∴BM=CN∴AM=AN,∴四边形AMFN是正方形,故①正确;∵BD=CE,∴BE=CD,∵△ABC为等腰直角三角形,∴∠ABC=∠C=45°,AB=AC,∴△ABE≌△ACD(SAS),故②正确;如图所示,将△ACE绕点A顺时针旋转90°至△ABE',则CE=BE',∠E'BA=∠C=45°,由于△BDM≌△CEN,故点N落在点M处,连接ME',则D、M、E'共线,∵∠E'BA=45°,∠ABC=45°,∴∠DBE'=90°,∴BE'2+BD2=DE'2,∴CE2+BD2=DE'2,当∠DAE=45°时,∠DAE'=∠DAM+∠EAN=90°﹣45°=45°,AE=AE',AD=AD,∴△ADE≌△ADE'(SAS),∴DE'=DE,∴在没有∠DAE=45°时,无法证得DE'=DE,故③错误;∵AB=AC,∠ABD=∠C,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∴当∠DAE=45°时,∠ADE=∠AED=67.5°,∵∠C=45°,∴∠DAE=∠C,∠ADE=∠CDA,∴△ADE∽△CDA,∴=,∴AD2=DE•CD,故④正确.综上,正确的有①②④,共3个.故选:C.二、填空题(本大题共4个小题,每小题3分,共12分)13.若分式的值为0,则x的值为2.【分析】根据分式的值为0的条件和分式有意义条件得出4﹣x2=0且x+2≠0,再求出即可.解:∵分式的值为0,∴4﹣x2=0且x+2≠0,解得:x=2,故答案为:2.14.把多项式am2﹣9a分解因式的结果是a(m+3)(m﹣3).【分析】直接提取公因式a,再利用平方差公式分解因式得出答案.解:am2﹣9a=a(m2﹣9)=a(m+3)(m﹣3).故答案为:a(m+3)(m﹣3).15.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长4cm.【分析】根据平行四边形的性质得到AB=CD=2cm,AD=BC=4cm,AO=CO,BO =DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC==6cm,∴OC=3cm,∴BO==5cm,∴BD=10cm,∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm,故答案为:4.16.如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k =2﹣.【分析】连接OB,过点B作BE⊥x轴于点E,根据正方形的性质可得出∠AOB的度数及OB的长,结合三角形外角的性质可得出∠BDO=∠DBO,利用等角对等边可得出OD =OB,进而可得出点D的坐标,在Rt△BOE中,通过解直角三角形可得出点B的坐标,由点B,D的坐标,利用待定系数法可求出k,b的值,再将其代入(b﹣k)中即可求出结论.解:连接OB,过点B作BE⊥x轴于点E,如图所示.∵正方形ABCO的边长为,∴∠AOB=45°,OB=OA=2.∵OA与x轴正半轴的夹角为15o,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴点D的坐标为(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴点B的坐标为(,1).将B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案为:2﹣.三、解答题17.计算(﹣π)0﹣3tan30°+()﹣2+|1﹣|【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.解:原式=1﹣3×+4+﹣1=1﹣+4+﹣1=4.18.先化简:,再从﹣3、2、3中选择一个合适的数作为a的值代入求值.【分析】根据分式的加法和除法可以化简题目中的式子,然后在﹣3、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.解:===a+2,当a=﹣3时,原式=﹣3+2=﹣1.19.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?捐款人数0~50元51~100元101~150元151~200元6200元以上4【分析】(1)根据捐款200元以上的人数和所占的百分比,可以求得本次共有多少人捐款;(2)根据(1)中的结果和扇形统计图中的数据,统计表中的数据,可以计算出捐款51~100元的有多少人.解:(1)4÷8%=50(人),答:共有50人捐款;(2)50﹣50×﹣50×32%﹣6﹣4=50﹣10﹣16﹣6﹣4=14(人)答:捐款51~100元的有14人.20.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)【分析】(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.解:延长PQ交直线AB于点E,如图所示:(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°,∴∠BPE=30°,在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=9米,则x﹣x=9,解得:x=.则BE=米.在直角△BEQ中,QE=BE=米.∴PQ=PE﹣QE=﹣=9+3(米).答:电线杆PQ的高度为(9+3)米.21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?【分析】(1)根据“销售单价每涨1元,月销售量就减少10件”,可知:月销售量=500﹣(销售单价﹣50)×10,然后根据月销售利润=每件的利润×销售的数量列出方程并解答;(2)设销售单价定为a元,根据“在月销售成本不超过10000元”列出不等式,并解答.解:(1)设销售单价应定为x元,由题意,得(x﹣40)[500﹣10(x﹣50)]=8000,解得x1=60,x2=80,∵尽可能让利消费者,∴x=60.答:消费单价应定为60元.(2)设销售单价定为a元,由题意,得40[500﹣10(a﹣50)]≤10000,解得a≥75答:销售单价至少定为75元.22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.【分析】(1)如图1中,作CD⊥y轴于D.首先证明四边形OACD是矩形,利用反比例函数k的几何意义解决问题即可.(2)如图2中,作BD⊥AC于D,交反比例函数图象于N,连接CN,AN.求出D2你的坐标,证明四边形ABCN是菱形即可.(3)如图3中,连接PB,PA,OP.设P(a,).可得S四边形OAPB=S△POB+S△POA =×1×a+××=a+=(﹣)2+,由此即可解决问题.解:(1)如图1中,作CD⊥y轴于D.∵CA∥y轴,CD⊥y轴,∴CD∥OA,AC∥OD,∴四边形OACD是平行四边形,∵∠AOD=90°,∴四边形OACD是矩形,∴k=S矩形OACD=2S△ABC=2,∴反比例函数的解析式为y=.(2)如图2中,作BD⊥AC于D,交反比例函数图象于N,连接CN,AN.∵△ABC是等边三角形,面积为,设CD=AD=m,则BD=m,∴×2m×m=,∴m=1或﹣1(舍弃),∴B(0,1),C(,,2),A(,0),∴N(2,1),∴BD=DN,∵AC⊥BN,∴CB=CN,AB=AN,∵AB=BC,∴AB=BC=CN=AN,∴四边形ABCN是菱形,∴N(2,1).(3)如图3中,连接PB,PA,OP.设P(a,).S四边形OAPB=S△POB+S△POA=×1×a+××=a+=(﹣)2+,∴当a=时,四边形OAPB的面积最小,解得a=或﹣(舍弃),此时P(,).23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=,点M是y轴上一个动点,求△AQM的最小周长.【分析】(1)求得点A的坐标,根据抛物线过点A、B、C三点,从而可以求得抛物线的解析式;(2))△ABP为直角三角形时,分别以三个顶点为直角顶点讨论:根据直角三角形的性质和勾股定理列方程解决问题;(3)求出点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,求出QG+AQ的值即可得出答案.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.。
2020年深圳市中考数学一模试题
2020年广东省深圳市南山区育才二中中考数学一模试卷副标题一、选择题(本大题共12小题,共36.0分)1.与12的积为1的数是()A. 2B. 12C. -2 D. −122.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A. 5.6×109B. 5.6×108C. 0.56×109D. 56×1083.下列运算正确的是()A. 17×(−7)+(−17)×7=1 B. (−35)2=95C. 3a+5b=8abD. 3a2b-4ba2=-a2b4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A. 17B. 22C. 13D. 17或225.下列立体图形中,主视图是矩形的是()A. B. C. D.6.下列各数中,为不等式组{2x−3>0x−4<0解的是()A. -1B. 0C. 2D. 47.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A. √155B. 14C. √154D. 138.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°9.则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A. 6,7B. 7,7C. 7,6D. 6,610.已知关于x的一元二次方程kx2-2x-1=0有实数根,若k为非正整数,则k等于()A. 12B. 0C. 0或-1D. -111.已知:如图,直线l经过点A(-2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A. y=24x B. y=12xC. y=3xD. y=6x12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.若分式4−x2x+2的值为0,则x的值为______.14.把多项式am2-9a分解因式的结果是______.15.如图,在▱ABCD中,AB=2√13cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长______cm.16.如图,正方形ABCO的边长为√2,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b-k=______.三、计算题(本大题共1小题,共5.0分)17.先化简:a2−4a−3÷(1+1a−3),再从-3、2、3中选择一个合适的数作为a的值代入求值.四、解答题(本大题共6小题,共47.0分))-2+|1-√3|18.计算(√5-π)0-3tan30°+(1219.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?20.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,S△ABC=√3,且CA∥y轴.(k≠0)的图象上,求该反比例函数的解析式;(1)若点C在反比例函数y=kx(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=10√2,点M是y轴上一个动点,求△AQM3的最小周长.。
2024年广东省深圳市南山区初三一模数学试题含答案解析
2024年广东省深圳市南山区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.−2023C.12023D.−12023【答案】B【分析】根据数轴的定义求解即可.【详解】解;∵数轴上点A表示的数是2023,OA=OB,∴OB=2023,∴点B表示的数是−2023,故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.2.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是().A.B.C.D.【答案】D【分析】根据中心对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C. 不是中心对称图形,故此选项不合题意;D. 是中心对称图形,故此选项符合题意;【点睛】本题考查的是中心对称图形.中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A .0.186×105B .1.86×105C .18.6×104D .186×103【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:将数据186000用科学记数法表示为1.86×105;故选B【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键.4.一技术人员用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB =90°,点D 为边AB 的中点,点A 、B 对应的刻度为1、7,则CD =( )A .3.5cmB .3cmC .4.5cmD .6cm 【答案】B【分析】本题考查直角三角形性质,涉及直角三角形斜边上的中线等于斜边的一半,读懂题意,直接利用直角三角形性质求解即可得到答案,熟记直角三角形斜边上的中线等于斜边的一半是解决问题的关键.【详解】解:由题意可知,AB =7−1=6cm ,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,则CD =12AB =62=3cm ,故选:B .5.一元一次不等式组x−2>1x <4的解集为( )A .−1<x <4B .x <4C .x <3D .3<x <4【答案】D第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:x−2>1①x<4②解不等式①得:x>3结合②得:不等式组的解集是3<x<4,故选:D.【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°【答案】C【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵AB∥OF,∴∠1+∠BFO=180°,∴∠BFO=180°−155°=25°,∵∠POF=∠2=30°,∴∠3=∠POF+∠BFO=30°+25°=55°;故选:C.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形的其中一个内角是72°D.单项式πab2的次数是43【答案】B【分析】本题考查命题真假的判断,涉及同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识,根据相关定义与性质逐项验证即可得到答案,熟记同位角定义与性质、菱形定义与性质、正五边形内角与外角、单项式定义等知识是解决问题的关键.【详解】解:A、根据同位角定义与性质,当两条直线平行时,同位角才相等,故选项说法错误,不是真命题,不符合题意;B、根据菱形定义与性质,菱形的四条边相等,故选项说法正确,是真命题,符合题意;=72°,从而由正多边形外角与其C、由正五边形外角和为360°,则每一个外角均为360°5相应内角和为180°即可得到正五边形的其中一个内角是180°−72°=108°,故选项说法错误,不是真命题,不符合题意;D、单项式πab2的次数是3而不是4,故选项说法错误,不是真命题,不符合题意;3故选:B.8.某校篮球队有20名队员,统计所有队员的年龄制成如下的统计表,表格不小心被滴上了墨水,看不清13岁和14岁队员的具体人数.年龄(岁)12岁13岁14岁15岁16岁人数(个)283在下列统计量,不受影响的是()A.中位数,方差B.众数,方差C.平均数,中位数D.中位数,众数【答案】D【分析】根据频数表可知,年龄为13岁与年龄为14岁的频数和为7,即可知出现次数最多的数据及第10、11个数据的平均数,可得答案.【详解】解:由表可知,年龄为13岁与年龄为14岁的频数和为20−2−8−3=7,故该组数据的众数为15岁,总数为20,按大小排列后,第10个和第11个数为15,15,则中位数为:15+152=15岁,故统计量不会发生改变的是众数和中位数,故选:D.【点睛】本题考查频数分布表及统计量的选择,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,驽马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.x240=x+12150B.x240=x150−12C.240(x−12)=150x D.240x=150(x+12)【答案】D【分析】设快马x天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x天可追上慢马,由题意得240x=150(x+12)故选:D.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.10.在平面直角坐标系xoy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为直线x=t.若m<n<c,则t的取值范围是()A.32<t<2B.1<t<3C.0<t<1D.12<t<1【答案】A【分析】本题考查二次函数的性质,二次函数图象上点的坐标特征,根据m<n<c,可得出a+b+c<9a+3b+c<c,解得3a<−b<4a,进而可确定t的取值范围,函数图象上点的坐标满足函数解析式是解题的关键.【详解】解:∵m<n<c,二、填空题11.若a2=3b,则ab=.【答案】6【分析】本题考查比例性质,交叉相乘即可得到答案,熟记比例性质是解决问题的关键.【详解】解:∵a2=3b,∴ab=2×3=6,故答案为:6.12.已知一元二次方程x2−5x+2m=0有一个根为2,则另一根为.【答案】3【分析】本题考查一元二次方程根与系数的关系,根据题意,设另一个根为a,则由根与系数的关系得到a+2=5,解得a=3,熟练掌握一元二次方程根与系数的关系是解决问题的关键.【详解】解:∵一元二次方程x2−5x+2m=0有一个根为2,设另一个根为a,∴a+2=5,解得a=3,故答案为:3.13.如图,一束光线从点A(−2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m−n的值是.由题意知,∠ABG=∠CBF ∴△AGB∼△CFB∴BF CF =BGAG∵A(−2,5),B(0,1)∴AG=2,BG=5−1=4∴BF CF =BGAG=214.如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=kx (k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为.【详解】解:设C a,∵⊙A 与x 轴相切于点B ,∴BC ⊥x 轴,15.如图,在四边形ACBD 中,对角线AB 、CD 相交于点O ,∠ACB =90°,BD =CD 且sin ∠DBC =35,若∠DAB =2∠ABC ,则AD AB 的值为 .设∠ABC=α,∠ABD=β,∴∠DAB=2∠ABC=2α,∠DBC ∵BD=CD,DE⊥BC,三、解答题16.计算:|−3|−(4−π)0−2sin60°+.【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】=4.【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.先化简x−1−÷x2−4,然后从−1,1,−2,2中选一个合适的数代入求x2+2x+1值.【答案】x+1,2【分析】本题考查分式化简求值,涉及通分、因式分解、分式加减乘除混合运算、约分、分式有意义的条件等知识,先将分式分子分母因式分解、再由分式加减乘除混合运算法则,利用通分、约分化简,再根据分式有意义的条件取得x的值,代值求解即可得到答案,熟练掌握分式加减乘除混合运算法则,根据分式有意义的条件取值是解决问题的关键.【详解】18.2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m的值为______;(2)补全条形统计图;(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.【详解】(1)解:根据题意得,本次抽取的人数为:5÷10%=50人,∵B组人数为15人,∴15÷50×100%=30%,故答案为:50;30;(2)解:C组人数为:50-10-15-5=20人,补全统计图如图所示:(3)(4)【点睛】题目主要考查条形统计图与扇形统计图,列表法或树状图法求概率,用样本估计总体等,理解题意,综合运用这些知识点是解题关键.19.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?【答案】(1)甲型自行车利润为150元,一台乙型自行车利润为100元(2)最少需要购买10台甲型自行车【分析】本题考查二元一次方程组及一元一次不等式解实际应用题,涉及解二元一次方程组、解一元一次不等式等知识,读懂题意,准确列出方程组及不等式求解是解决问题的关键(1)设一台甲型自行车利润为x元,一台乙型自行车利润为y元,读懂题意,找准等量关系列二元一次方程组求解即可得到答案;(2)设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,读懂题意,找到不等关系列不等式求解即可得到答案.【详解】(1)解:设一台甲型自行车利润为x元,一台乙型自行车利润为y元,由题意可得3x+2y=650x+2y=350,解得x=150y=100,∴甲型自行车利润为150元,一台乙型自行车利润为100元;(2)解:设最少需要购买x台甲型自行车,则乙型自行车购买(20−x)台,则由题意可得500x+800(20−x)≤13000,解得x≥10,∴最少需要购买10台甲型自行车.20.研究发现课堂上进行当堂检测效果很好,每节课40分钟,假设老师用于精讲的时间x(单位:分钟)与学生学习收益y1的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y2的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.(1)老师精讲时的学生学习收益y1与用于精讲的时间x之间的函数关系式为________;(2)求学生当堂检测的学习收益y2与用于当堂检测的时间x的函数关系式;(3)问“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量W最大?(W=y1+y2)【答案】(1)y1=2x(0≤x≤40)(2)y2=−x 2+16x(0≤x≤8) 64(8<x≤20)(3)精讲33分钟,当堂检测7分钟【分析】本题考查了待定系数法求一次函数的解析式的运用,二次函数的运用,顶点式求二次函数的最大值的运用,解答时求出二次函数的解析式是关键.(1)由图设该函数解析式为y1=kx,即可依题意求出y与x的函数关系式.(2)本题涉及分段函数的知识,需要注意的是x的取值范围依照分段函数的解法解出即可.(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟,用配方法的知识解答该题即可.【详解】(1)解:设y1=kx,把(1,2)代入,得k=2,∴y1=2x,自变量的取值范围为0≤x≤40,故答案为:y1=2x(0≤x≤40);(2)解:当0≤x≤8时,设y2=a(x−8)2+64,把(0,0)代入,得64a+64=0,解得a=−1.∴y2=−(x−8)2+64=−x2+16x.当8<x≤20时,y2=64,∴y2=−x 2+16x(0≤x≤8) 64(8<x≤20);(3)设学生当堂检测的时间为x分钟(0≤x≤20),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40−x)分钟.当0≤x≤8时,w=−x2+16x+2(40−x)=−x2+14x+80=−(x−7)2+129.∴当x=7时,W最大=129.当8<x≤20时,W=64+2(40−x)=−2x+144.∵W随x的增大而减小,∴当x=8时,W最大=128,综合所述,当x=7时,W最大=129,此时40−x=33.即老师在课堂用于精讲的时间为33分钟,学生当堂检测的时间为7分钟时,学习收益总量最大.21.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.如图是从正面看到的一个“老碗”,其横截面可以近似的看成是如图(1)所示的以AB为直径的半圆O,MN为台面截线,半圆O与MN相切于点P,连结OP与CD相交于点E.水面截线CD=63cm,MN∥CD,AB=12cm.(1)如图(1)求水深EP;(2)将图(1)中的老碗先沿台面MN向左作无滑动的滚动到如图(2)的位置,使得A、C 重合,求此时最高点B和最低点P之间的距离BP的长;(3)将碗从(2)中的位置开始向右边滚动到图(3)所示时停止,若此时∠BOP=75°,求滚动过程中圆心O运动的路径长.【分析】本题考查圆的实际应用,涉及垂径定理、勾股定理、全等三角形的判定与性质、勾股定理、弧长公式等知识,熟练掌握圆的性质是解决问题的关键.(1)连结OC ,如图所示,由垂径定理及勾股定理求解即可得到答案;(2)过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示,利用三角形全等的判定与性质,结合勾股定理求解即可得到答案;(3)根据题意可知,滚动过程中圆心O 运动的路径长为AC 的长度,求出弧对的圆心角带入公式求解即可得到答案.【详解】(1) ∴CE =12CD =33cm ,在Rt △OCE 中,由勾股定理可得∴EP =OP−OE =6−3=3cm (2)解:过B 点作AD 的平行线,与PO 的延长线相较于点F ,如图所示:∵AD ∥BF ,∴∠OAE =∠OBF ,在△AOE 和△BOF 中,∠OAE =∠OBF AO =BO ∠AOE =∠BOF,∴△AOE≌△BOF (ASA),(3)由(1)可知OE=3cm,OC在Rt△COE中,∠COE=60°∵∠BOP=75°,∴∠AOC=180°−60°−75°=由题意可得,圆心O运动的路径长为22.“转化”是解决数学问题的重要思想方法,通过构造图形全等或者相似建立数量关系是处理问题的重要手段.(1)【问题情景】:如图(1),正方形ABCD中,点E是线段BC上一点(不与点B、C重合),连接EA.将EA绕点E顺时针旋转90°得到EF,连接CF,求∠FCD的度数.以下是两名同学通过不同的方法构造全等三角形来解决问题的思路,①小聪:过点F作BC的延长线的垂线;②小明:在AB上截取BM,使得BM=BE;请你选择其中一名同学的解题思路,写出完整的解答过程.(2)【类比探究】:如图(2)点E是菱形ABCD边BC上一点(不与点B、C重合),∠ABC=α,将EA绕点E顺时针旋转α得到EF,使得∠AEF=∠ABC=α(a≥90°),则∠FCD的度数为______(用含α的代数式表示)(3)【学以致用】:如图(3),在(2)的条件下,连结AF,与CD相交于点G,当α=120°时,若DGCG =12,求BECE的值.【详解】解:(1)任选一个思路求解即可,下面两种思路求解如下:小聪解题思路:过点F作FG⊥BC交BC的延长线于点G,如图1,∵将EA绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∵FG⊥BC,∴∠G=90°=∠B=∠AEF,∴∠BAE+∠AEB=90°=∠AEB+∠FEC,∴∠BAE=∠FEC,∴△ABE≌△EGF(AAS),∴BE=CF,AB=EG,∵AB=BC,∴BC=EG,∴BE=CG,∴CG=FG,∴∠FCG=45°,∴∠FCD=45°;小慧解题思路:在AB上截取BM,使得BM=BE,连接EM,如图所示:∵BM=BE,AB=BC,∴∠BME=∠BEM=45°,AM=EC,∴∠AME=135°,又∵AE=EF,∠BAE=∠FEC,∴△AME≌△ECF(SAS),∴∠AME=∠ECF=135°,∴∠DCF=45°;(2)在AB上截取BM,使得BM=BE,连接EM,如图2,∵四边形ABCD是菱形,∠ABC=α,∴AB=BC,∠BCD=180°−α,∵BM=BE,∴AM=CE,∵将EA绕点E顺时针旋转α得到EF,∴AE=EF,∠AEF=∠B=α,∵∠AEC=∠AEF+∠FEC=∠B+∠BAE,∴∠BAE=∠CEF,∴△AEM≌△EFC(SAS),由(2)可知,△ANE≌△ECF,∴NE=CF,【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等腰直角三角形,旋转性质,正方形的性质,菱形的性质,相似三角形的判定和性质,解直角三角形等知识,添加恰当辅助线构造全等三角形或相似三角形是解题的关键.试题21。
2024年广东省深圳市南山区育才教育集团中考数学一模试卷及答案解析
2024年广东省深圳市南山区育才教育集团中考数学一模试卷一、选择题(本题有10小题,每题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用2B铅笔填涂在答题卡上)1.(3分)实数P在数轴上对应的点如图所示,下列各数中比实数P小的是()A.﹣3B.﹣1C.0D.2.(3分)积木有助于开发智力,有利于数学概念的早期培养.某积木配件如图所示,则它的左视图为()A.B.C.D.3.(3分)人才是深圳城市发展的重要基因,深圳人才公园是全国第一个人才主题公园,占地面积约770000平方米.数据770000用科学记数法表示为()A.0.77×104B.7.7×105C.77×103D.7.7×106 4.(3分)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.B.C.D.5.(3分)下列运算正确的是()A.5a﹣2a=3a2B.a2•a3=a6C.(b+1)2=b2+1D.(﹣2a)3=﹣8a36.(3分)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°7.(3分)榫卯是古代中国建筑、家具及其他器械的主要结构方式.如图,在某燕尾榫中,榫槽的横截面ABCD是梯形,其中AD∥BC,AB=DC,燕尾角∠B=α,外口宽AD=a,榫槽深度是b,则它的里口宽BC为()A.+a B.+a C.b tanα+a D.2b tanα+a 8.(3分)明代《算法纂要》书中有一题:“牧童分杏各争竞,不知人数不知杏.三人五个多十枚,四人八枚两个剩.问有几个牧童几个杏?”题目大意是:牧童们要分一堆杏,不知道人数也不知道有多少个杏.若3人一组,每组5个杏,则多10个杏.若4人一组,每组8个杏,则多2个杏.有多少个牧童,多少个杏?设共有x个牧童,则下列方程正确的是()A.3×5x+10=4×8x+2B.C.D.9.(3分)如图,矩形ABCD中,AB=4,BC=8,点E在BC边上,连接EA,EA=EC.将线段EA绕点A逆的针旋转90°,点E的对应点为点F,连接CF,则cos∠ACF的值为()A.B.C.D.10.(3分)已知二次函数y=ax2﹣2ax+1(a≠0)经过点(﹣1,m)、(1,n)和(3,p),若在m,n,p这三个实数中,只有一个是正数,则a的取值范围为()A.B.a<﹣1C.﹣<a<0D.﹣1≤a<0二、填空题(本题有5小题,每题3分,共15分,把答案填在答题卡上)11.(3分)因式分解2a2﹣4a+2=.12.(3分)“每天一节体育课”成深圳中小学生标配,某校九年级三班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.则这组数据的中位数为.13.(3分)如图所示的网格中,每个小正方形的边长均为1,点A,B,C均在小正方形的顶点上,且点D在上,∠BCD=30°,则的长为.14.(3分)如图,在平面直角坐标系中,等腰△ABC的底边BC在x轴的正半轴上,顶点A在反比例函数y=(x>0)的图象上,延长AB交y轴于点D,若OC=4OB,△BOD的面积为,则k的值为.15.(3分)如图,在正方形ABCD的对角线AC上取一点E,使得AE=2CE,连接BE,将△BCE沿BE翻折得到△BFE,连接DF.若BC=4,则DF的长为.三、解答题(本题共7小题,共55分)16.(5分)计算:.17.(7分)先化简,再从不等式组﹣1≤x<3中选择一个适当的整数,代入求值.18.(8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”“无人机”“创客”“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占%,所对应的圆心角度数为;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?19.(8分)某社区采购春节慰问礼品,购买了甲、乙两种类型的粮油套装.甲种粮油套装单价比乙种粮油套装单价多30元,用1200元购买甲种粮油套装和用900元购买乙种粮油套装的数量相同.(1)求甲、乙两种粮油套装的单价分别是多少元?(2)社区准备再次购买甲种和乙种粮油套装共40件,购买乙种粮油套装不超过甲种粮油套装的3倍,且商家给出了两种粮油套装均打八折的优惠.问购买甲种和乙种粮油套装各多少件时花费最少?最少花费是多少元?20.(8分)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,过点D作DG ⊥BC于点G.交BA的延长线于点H.(1)下列条件:①D是AC边的中点;②D是的中点;③BA=BC.请从中选择一个能证明直线HG是⊙O的切线的条件,并写出证明过程;(2)若直线HG是⊙O的切线,且HA=2,HD=4,求CG的长.21.(9分)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),科研人员测量出小钢球离地面高度h(米)与其运动时间t(秒)的几组数据如表:运动时间t(秒)0123456…高地面高度h(米)0356075807560…(1)在如图平面直角坐标系中,描出表中各组对应值为坐标的点,并用平滑的曲线连接;科研人员发现,小钢球离地面高度h(米)与其运动时间t(秒)成二次函数关系,请求出h关于t的函数关系式(不要求写出自变量的取值范围).(2)在弹射小钢球的同一时刻,无人机开始保持匀速竖直上升,无人机离地面高度h(米)与小钢球运动时间t(秒)之间的函数关系式为h1=5t+30.①在小钢球运动过程中,当无人机高度不大于小钢球高度时,无人机可以采集到某项相关性能数据,则能采集到该性能数据的时长为秒;②弹射器间隔3秒弹射第二枚小钢球,其飞行路径视为同一条抛物线.当两枚小钢球处于同一高度时,求此时无人机离地面的高度.22.(10分)如图1,菱形ABCD中,∠B=α,BC=2,E是边BC上一动点(不与点B,C 重合),连接DE,点C关于直线DE的对称点为C′,连结AC′并延长交直线DE于点P,F是AC的中点,连接DC′,DF.(1)填空:DC′=,∠APD=(用含α的代数式表示);(2)如图2,当α=90°,题干中其余条件均不变,连接BP.求证:BP=AF.(3)在(2)的条件下,连接AC.①若动点E运动到边BC的中点处时,△ACC′的面积为.②在动点E的整个运动过程中,△ACC′面积的最大值为.2024年广东省深圳市南山区育才教育集团中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分。
2020年广东省深圳市中考数学模拟试卷一解析版
2020年广东省深圳市中考数学模拟试卷一一、选择题(本部分共12小题,每题3分,共36分)1.(3分)的立方根是()A.﹣4B.±4C.±2D.﹣22.(3分)国务院总理李克强在《2017年国务院政府工作报告》中提到,2016年新增第四代移动通信用户3.4亿,数据“3.4亿”用科学记数法表示为()A.3.4×106B.3.4×108C.34×107D.3.4×1093.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.4.(3分)关于x的一元二次方程kx2﹣4x+1=0有两个不相等的实数根,则k的取值范围是()A.k>4B.k<4C.k<4且k≠0D.k≤4且k≠0 5.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.75D.1.70、1.70 6.(3分)平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.87.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=48.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C.D.9.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°10.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个B.2个C.3个D.4个11.(3分)如图,将正方形ABCD折叠,使点A与CD边上的点H重合(H不与C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD 周长为m,△CHG周长为n,则为()A.B.2C.D.12.(3分)如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线(x>0)上,此时▱OABC的面积为()A.B.C.D.4二、填空题(本部分共4小题,每题3分,共12分)13.(3分)因式分解:﹣2x2+4xy+30y2=.14.(3分)若关于x的分式方程=的解为非负数,则a的取值范围是.15.(3分)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B 的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为.16.(3分)如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.三、解答题(本部分共7小题,共52分)17.(5分)计算:18.(6分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.19.(7分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.20.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?21.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.22.(8分)如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?23.(10分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.参考答案与试题解析一、选择题(本部分共12小题,每题3分,共36分)1.(3分)的立方根是()A.﹣4B.±4C.±2D.﹣2【分析】首先根据立方根的定义计算出的结果,然后利用立方根的定义求解即可.【解答】解:∵=﹣8∴﹣8的立方根是﹣2,∴的立方根是﹣2.故选:D.2.(3分)国务院总理李克强在《2017年国务院政府工作报告》中提到,2016年新增第四代移动通信用户3.4亿,数据“3.4亿”用科学记数法表示为()A.3.4×106B.3.4×108C.34×107D.3.4×109【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3.4亿=3.4×108.故选:B.3.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.4.(3分)关于x的一元二次方程kx2﹣4x+1=0有两个不相等的实数根,则k的取值范围是()A.k>4B.k<4C.k<4且k≠0D.k≤4且k≠0【分析】根据一元二次方程kx2﹣4x+1=0有两个不相等的实数根,知△=b2﹣4ac>0,然后据此列出关于k的不等式,解不等式即可.【解答】解:∵kx2﹣4x+1=0有两个不相等的实数根,∴△=16﹣4k>0,且k≠0,解得,k<4且k≠0.故选:C.5.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.75D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.6.(3分)平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【分析】由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【解答】解:∵点A、B的坐标分别为(1,2)、B(3,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(B点除外),即(﹣1,0)、(2+,0)、(0,2﹣),即满足△ABC是等腰三角形的C点有3个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个.综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有7个.故选:C.7.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选:D.8.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C.D.【分析】观察图形,根据各图形中“●”个数的变化可找出变化规律“a n=n(n+2)”,再将其代入(+++…+)中即可求出结论.【解答】解:观察图形,可知:a1=2+1=3=1×3,a2=2+3+2+1=8=2×4,a3=2+3+4+3+2+1=15=3×5,a4=2+3+4+5+4+3+2+1=24=4×6,…,∴a n=n(n+2),∴+++…+=+++…+,=×(1﹣+﹣+﹣+…+﹣),=×(1+﹣﹣),=×,=.故选:A.9.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°【分析】先根据EC=EA.∠CAE=30°得出∠C=30°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.【解答】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选:D.10.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【解答】解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;故选:C.11.(3分)如图,将正方形ABCD折叠,使点A与CD边上的点H重合(H不与C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD 周长为m,△CHG周长为n,则为()A.B.2C.D.【分析】连接AH、AG,作AM⊥HG于M.证明△AHD≌△AHM(AAS),得出DH=HM,AD=AM,证明Rt△AGM≌Rt△AGB(HL),得出GM=GB,求出△GCH的周长=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC,由四边形ABCD的周长=m=4BC,即可得出答案.【解答】解:连接AH、AG,作AM⊥HG于M.∵四边形ABCD是正方形,∴AD=AB.∴AM=AB.∵EA=EH,∴∠1=∠2,∵∠EAB=∠EHG=90°,∴∠HAB=∠AHG,∵DH∥AB,∴∠DHA=∠HAB=∠AHM,在△AHD和△AHM中,∴△AHD≌△AHM(AAS),∴DH=HM,AD=AM,在Rt△AGM和Rt△AGB中,,∴Rt△AGM≌Rt△AGB(HL),∴GM=GB,∴△GCH的周长=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC,∵四边形ABCD的周长=m=4BC,∴=2;故选:B.12.(3分)如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线(x>0)上,此时▱OABC的面积为()A.B.C.D.4【分析】先过A作AD⊥x轴于D,过C作CE⊥x轴于E,过B作BF⊥AD于F,设A(a,﹣),C(b,),依据△ABF≌△COE,可得B(a+b,﹣+),根据点B在双曲线y=﹣(x<0)上,可得B(a+b)(﹣+)=﹣3,设=x,则方程﹣=2可化为3x﹣=2,进而得到=,=,最后根据平行四边形OABC的面积=2×S△OAC=2(S梯形ADEC﹣S△AOD﹣S△COE),进行计算即可.【解答】解:如图,连接AC,过A作AD⊥x轴于D,过C作CE⊥x轴于E,过B作BF ⊥AD于F,则△ABF≌△COE,设A(a,﹣),C(b,),则OE=BF=b,CE=AF=,∴B(a+b,﹣+),又∵点B在双曲线y=﹣(x<0)上,∴(a+b)(﹣+)=﹣3,∴﹣=2,设=x,则方程﹣=2可化为3x﹣=2,解得x=或x=(舍去),∴=,=,∴平行四边形OABC的面积=2×S△OAC=2(S梯形ADEC﹣S△AOD﹣S△COE)=2[(﹣+)(b﹣a)﹣×|﹣3|﹣×|2|]=﹣+3+2﹣﹣5=﹣3×﹣2×(﹣)=2.故选:B.二、填空题(本部分共4小题,每题3分,共12分)13.(3分)因式分解:﹣2x2+4xy+30y2=﹣2(x+3y)(x﹣5y).【分析】先提公因式,再利用十字相乘法分解即可.【解答】解:原式=﹣2(x2﹣2xy﹣15y2)=﹣2(x+3y)(x﹣5y).故答案为:﹣2(x+3y)(x﹣5y).14.(3分)若关于x的分式方程=的解为非负数,则a的取值范围是a≥1,且a ≠4.【分析】在方程的两边同时乘以2(x﹣2),解方程,用含a的式子表示出x的值,再根据x≥0,且x≠2,解不等于组即可.【解答】解:两边同时乘以2(x﹣2),得:4x﹣2a=x﹣2,解得x=,由题意可知,x≥0,且x≠2,∴,解得:a≥1,且a≠4,故答案为:a≥1,且a≠4.15.(3分)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B 的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(,).【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出D点坐标.【解答】解:如图,过点D作DM⊥x轴于点M,∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,3),∴AC=OB=3,∠CAB=30°,∴BC=AC•tan30°=3×=,∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=30°,AD=3,∵∠CAB=∠BAD=30°,∴∠DAM=30°,∴DM=AD=,∴AM=3×cos30°=,∴MO=﹣=,∴点D的坐标为(,).故答案为:(,).16.(3分)如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为2.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,作AE⊥CD,∴AE=P′Q,∵AB=4,∠A=120°,∴∠DAE=30°,∴AE=cos30°•AD=4×=2∴点P′到CD的距离为2,∴PK+QK的最小值为2.故答案为:2.三、解答题(本部分共7小题,共52分)17.(5分)计算:【分析】直接利用特殊角的三角函数值以及负整数指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣3+1﹣9=1﹣3+1﹣9=﹣10.18.(6分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.【分析】先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.【解答】解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵分式有意义时x≠±1、0,∴x=2,则原式=0.19.(7分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.树状图即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,共有12种可能性结果,它们发生的可能性相等,其中七年级特等奖作文被选登在校刊上的可能性有6种,∴P(七年级特等奖作文被选登在校刊上)==.20.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由总利润=销售量•每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.21.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED =∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=另解:∵AG⊥BC,AF⊥DE,△ADE∽△ABC,∴==22.(8分)如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?【分析】(1)要证明y轴是⊙G的切线,只需要连接GD后证明GD⊥OB即可,推出GD ∥OA,则△BDG∽△BOA,设半径为r后,利用对应边的比相等列方程即可求出半径r 的值.(2)由于∠FEA=45°,所以可以连接CE、CF构造直角三角形.由于要求的EF是弦,所以过点A作AH⊥EF,然后利用垂径定理即可求出EF的长度.【解答】解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°∴∠FCA=45°∴在Rt△AEH中,由勾股定理可知:AF=CF=,设OE=a∴AE=2﹣a∵CE∥OB∴△ACE∽△ABO∴=,∴CE=,∵CE2+AE2=AC2,∴(2﹣a)2+(2﹣a)2=∴a=或a=(不合题意,舍去)∴AE=∴在Rt△AEH中,由勾股定理可得,AH=EH=,∴在Rt△AEH中,由勾股定理可知:FH2=AF2﹣AH2=()2﹣()2=2,∴FH=,∴EF=EH+FH=.23.(10分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.【分析】(1)由对称轴求出B的坐标,由待定系数法求出抛物线解析式,即可得出顶点D的坐标;(2)由勾股定理和勾股定理的逆定理证出△ACD为直角三角形,∠ACD=90°.得出AD为△ACD外接圆的直径,再证明△AED为直角三角形,∠ADE=90°.得出AD⊥DE,即可得出结论;(3)求出直线AC的解析式,再求出线段AD的中点N的坐标,过点N作NP∥AC,交抛物线于点P,求出直线NP的解析式,与抛物线联立,即可得出答案;(4)由相似三角形的性质和直角三角形的性质即可得出答案.【解答】解:(1)∵抛物线的对称轴是直线x=1,点A(3,0),∴根据抛物线的对称性知点B的坐标为(﹣1,0),OA=3,将A(3,0),B(﹣1,0)代入抛物线解析式中得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;当x=1时,y=4,∴顶点D(1,4).(2)当x=0时,∴点C的坐标为(0,3),∴AC==3,CD==,AD==2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径,∵点E在轴C点的上方,且CE=.∴E(0,)∴AE==DE==,∴DE2+AD2=AE2,∴△AED为直角三角形,∠ADE=90°.∴AD⊥DE,又∵AD为△ACD外接圆的直径,∴DE是△ACD外接圆的切线;(3)设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为y=﹣x+3,∵A(3,0),D(1,4),∴线段AD的中点N的坐标为(2,2),过点N作NP∥AC,交抛物线于点P,设直线NP的解析式为y=﹣x+c,则﹣2+c=2,解得:c=4,∴直线NP的解析式为y=﹣x+4,由y=﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,解得:x=或x=,∴y=,或y=∴P(,)或(,);(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣);综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣).。
广东省深圳市南山区育才二中2019~2020学年第二学期九年级一模数学试卷(无答案)
深圳市南山区育才二中2019-2020学年第二学期初三第一次模拟考试 数学试卷(卷面分值:100分 答题时间:90分钟 日期:2020.4.11)一、选择题:(本大题共12个小题,每小题3分,共36分.) 1.与21的积为1的数是( ) A .2 B .21C .﹣2D .21-2. 《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾。
其票房突破56亿元(5600000000元),5600000000用科学记数法表示为( )A .9106.5⨯ B .8106.5⨯ C .91056.0⨯ D .81056⨯ 3. 下列运算正确的是( )A .()1177177⎛⎫⨯-+-⨯= ⎪⎝⎭B .23955⎛⎫-= ⎪⎝⎭C .3+5 =8a b abD . 22234a b ba a b -=-4. 等腰三角形的一边长为 4,另一边长为9,则这个三角形的周长为( ) A .22 B .17 C. 13 D .17或22 5.下列立体图形中,主视图是矩形的是( )A .B .C .D .6. 下列各数中,为不等式组解的是( )A .﹣1B .0C .2D .47. 在Rt ABC V 中,90,C ∠=︒1BC =,4AB =,则sinB 的值是( )A .155 B .14 C .154 D .138. 如图,四边形ABCD 内接于圆O ,AD ∥BC ,∠DAB =48°,则∠AOC 的度数是( ) A .48° B .96° C .114° D .132°9. “停课不停学”期间,某体育老师随机调查了初三15名学生,了解他们一周参加体育锻炼时间,列表如下:则这15名同学一周参加体育锻炼时间的中位数和众数分别是( )A .6,7B .7,7C .7,6D .6,6锻炼时间(小时) 5 6 7 8人数 2 6 5 2第8题第12题 10.已知关于x 的一元二次方程kx 2﹣2x ﹣1=0有实数根,若k 为非正整数,则k 等于( )A .21B .0C .0或﹣1D .﹣111.已知:如图,直线l 经过点A (﹣2,0)和点B (0,1),点M 在x 轴上,过点M 作x轴的垂线交直线l 于点C ,若OM =2OA ,则经过点C 的反比例函数表达式为( )A .24y x =B .12y x =C .3y x= D .6y x =12. 如图,等腰直角三角形ABC ,∠BAC=90o,D 、E 是BC 上的两点,且BD=CE ,过D 、E 作DM 、EN 分别垂直AB 、AC ,垂足为M 、N ,交与点F ,连接AD 、AE 。
2020年广东深圳市中考数学一模试卷及解析
2020年广东深圳市中考一模试卷数学试卷一、选择题(本大题共12小题,共36分)1.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是()A. 100.30克B. 100.70克C. 100.51克D. 99.80克2.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.下列运算正确的是()A. 2m×3m=6mB. (m3)2=m6C. (−2m)3=−2m3D. m2+m2=m44.2019年1月3日,经过26天的飞行,嫦娥4号月球探测器在月球背面的预定着陆区中顺利着陆,成为人类首颗成功软着陆月球背面的探测器地球与月球之间的平均距离大约为384000km,384000用科学记数法表示为()A. 3.84×103B. 3.84×104C. 3.84×105D. 3.84×1065.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1−6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. 16B. 13C. 12D. 236.某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A. 成B. 功C. 其D. 我7.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠1=65°,则∠2的度数是()A. 25°B. 35°C. 45°D. 65°8.下列命题中,是假命题的是()A. 样本方差越大,数据波动越小B. 正十七边形的外角和等于360°C. 位似图形必定相似D. 方程x2+x+1=0无实数根9.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A. πB. 2πC. 3πD. 6π10.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. 12000x+100=120001.2xB. 12000x=120001.2x+100C. 12000x−100=120001.2xD. 12000x=120001.2x−10011.给出一种运算:对于函数y=x n,规定若函数y=x4,则有,已知函数y=x3,则方程的解是()A. x=2B. x=3C. x 1=0,x2=2D. x=−212.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG⋅FC④EG⋅AE=BG⋅AB其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)13.因式分解:m2n−6mn+9n=______.14.某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成9______环数789人数3415.如图,在▱ABCD中,AB=2√13cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长______cm.16.如图,△OAC和△BAD都是等腰直角三角,∠ACO=∠ADB=90°,反比例函数y=8x的图象经过点B,则△OAC与△BAD的面积之差S△OAC−S△BAD=______.三、解答题(本大题共7小题,共52分)17.计算:4sin60°+|3−√12|−(12)−1+(π−2019)018.x取哪些整数值时,不等式5x+2>3(x−1)与12x≤2−32x都成立?19.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27=108”,请你判断这种说法是否正确,并说明理由.30020.在小水池旁有一盏路灯(如图),已知支架AB的长是0.8m,A端到B地面的距离AC是4m,支架AB与灯柱AC的夹角为65°小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.(结果精确到0.1.参考数据:sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)21.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x(ℎ),货车的路程为y1(km),小轿车的路程为y2(km),图中的线段OA与折线OBCD分别表示y1,y2与x之间的函数关系.(1)甲乙两地相距______km,m=______;(2)求线段CD所在直线的函数表达式;(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?22.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=______°;(2)求证:DE与⊙O相切;(3)点F在BC⏜上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.23.如图,抛物线y=ax2+bx−5(a≠0)经过点A(4,−5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.答案和解析1.【答案】D【解析】【分析】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围.计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即:从99.75克到100.25克之间.【解答】解:100−0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是:在99.75克到100.25克之间.故选D.2.【答案】B【解析】解:A、不是中心对称图形,又不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,又不是轴对称图形,故此选项错误;D、不是中心对称图形,又不是轴对称图形,故此选项错误;故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:A、2m×3m=6m2,故原题计算错误;B、(m3)2=m6,故原题计算正确;C、(−2m)3=−8m3,故原题计算错误;D、m2+m2=2m2,故原题计算错误;故选:B.根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了单项式与单项式相乘、幂的乘方、积的乘方、合并同类项,关键是熟练掌握计算法则.4.【答案】C【解析】解:384000=3.84×105.故选:C.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】B【解析】解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于26=13,故选:B.根据题意得出所有2位数,从中找到两位数是3的倍数的结果数,利用概率公式计算可得.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.【答案】D【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“谁”是相对面,故选:D.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【答案】A【解析】【分析】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键,过点C作CD//l1,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD//l1,则∠1=∠ACD.∵l1//l2,∴CD//l2,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.8.【答案】A【解析】解:A、样本方差越大,数据波动越大,故原命题错误,是假命题;B、任意正多边形的外角和均为360°,故原命题正确,是真命题;C、位似图形必相似,正确,是真命题;D、方程x2+x+1=0无实数根,正确,是真命题,故选:A.利用方差的意义、正多边形的性质、位似图形的定义及一元二次方程根的判别式分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解方差的意义、正多边形的性质、位似图形的定义及一元二次方程根的判别式,难度不大.9.【答案】C【解析】解:∵在▱ABCD中,∠A=2∠B,∠A+∠B=180°,∴∠A=120°,∵∠C=∠A=120°,⊙C的半径为3,∴图中阴影部分的面积是:120⋅π×32360=3π,故选:C.根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.【答案】B【解析】解:设学校购买文学类图书平均每本书的价格是x元,可得:12000x =120001.2x+100,故选:B.首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.11.【答案】C【解析】解:由题意可知:y′=3x2,∴3x2=6x,∴x=0或x=2,故选:C.根据新定义运算法则以及一元二次方程的解法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.【答案】C【解析】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=12×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG⋅FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠ACF=45°,∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°−∠CGB,∠DAF=90°+∠EAF=90°+(90°−∠AGF)=180°−∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴ADBG =DFBF=DFEF,∵EG//CD,∴EFDF =EGCD=EGAB,∴ADBG =ABGE,∵AD=AE,∴EG⋅AE=BG⋅AB,故④正确,故选:C.①只要证明△ADE为等腰直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG⋅FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得ADBG =DFBF=DFEF,由EG//CD,推出EFDF=EGCD=EGAB,推出ADBG=ABGE,由AD=AE,EG⋅AE=BG⋅AB,故④正确,本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.【答案】n(m−3)2【解析】解:m2n−6mn+9n=n(m2−6m+9)=n(m−3)2.故答案为:n(m−3)2.此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.【答案】3【解析】解:设成绩为9环的人数是x,根据题意得:(7×3+8×4+9⋅x)÷(3+4+x)=8,解得:x=3,则成绩为9环的人数是3;故答案为:3.先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.此题考查了加权平均数,关键是根据加权平均数的计算公式和已知条件列出方程,是一道基础题.15.【答案】4【解析】解:在▱ABCD中,∵AB=CD=2√13cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC =√AB 2−BC 2=6cm , ∴OC =3cm ,∴BO =√OC 2+BC 2=5cm , ∴BD =10cm ,∴△DBC 的周长−△ABC 的周长=BC +CD +BD −(AB +BC +AC)=BD −AC =10−6=4cm , 故答案为:4.根据平行四边形的性质得到AB =CD =2√13cm ,AD =BC =4cm ,AO =CO ,BO =DO ,根据勾股定理得到OC =3cm ,BD =10cm ,于是得到结论.本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键. 16.【答案】4【解析】解:设△OAC 和△BAD 的直角边长分别为a 、b , 则点B 的坐标为(a +b,a −b).∵点B 在反比例函数y =8x 的第一象限图象上, ∴(a +b)×(a −b)=a 2−b 2=8.∴S △OAC −S △BAD =12a 2−12b 2=12(a 2−b 2)=12×8=4.故答案为:4.设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.本题考查了反比例函数系数k 的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a 2−b 2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.17.【答案】解:4sin60°+|3−√12|−(12)−1+(π−2019)0=4×√32+2√3−3−2+1 =2√3+2√3−4 =4√3−4【解析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:根据题意解不等式组{5x +2>3(x −1)①12x ≤2−32x ②, 解不等式①,得:x >−52, 解不等式②,得:x ≤1, ∴−52<x ≤1,故满足条件的整数有−2、−1、0、1.【解析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.本题考查的是解一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】(1)144°(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120−27−33−20=120−80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:=160人;1200×40300(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.【解析】解:(1)360°×(1−15%−45%)=360°×40%=144°;故答案为:144°;(2)见答案(3)见答案(4)见答案【分析】(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【答案】解;作BF⊥AC于F,作BG⊥CD于G,如图所示:则CG=BF,BG=CF,,在Rt△ABF中,∠BAF=65°,AB=0.8,sin∠BAF=BFABcos ∠BAF =AF AB ,∴BF =AB ×sin65°≈0.8×0.9=0.72,AF =AB ×cos65°≈0.8×0.4=0.36, ∴BG =CF =AF +AC =0.36+4=4.36,CG =BF =0.72,在Rt △ACE 中,tan ∠CEA =AC CE ,∴CE =ACtan50∘≈41.2≈3.333,∵∠BDG =45°,∠BGD =90°,∴△BDG 是等腰直角三角形,∴DG =BG =4.36,∴CD =CG +DG =0.72+4.36=5.08,∴DE =CD −CE =5.08−3.333≈1.7(m);答:小水池的宽DE 约为1.7m .【解析】作BF ⊥AC 于F ,作BG ⊥CD 于G ,则CG =BF ,BG =CF ,在Rt △ABF 中,由三角函数得出BF =AB ×sin65°≈0.72,AF =AB ×cos65°≈0.36,得出BG =CF =AF +AC =0.36+4=4.36,CG =BF =0.72,在Rt △ACE 中,由三角函数得出CE =ACtan50∘≈3.333,证明△BDG 是等腰直角三角形,得出DG =BG =4.36,求出CD 的长,即可得出答案.本题考查了解直角三角形的应用−仰角俯角问题、等腰直角三角形的判定与性质;熟练掌握甲种直角三角形,作出辅助线构造直角三角形是解题的关键.21.【答案】(1)420;5(2)设直线CD 的解析式为y =kx +b ,把C(5,270),D(6.5,420)代入得到{5k +b =2706.5k +b =420, 解得{k =100b =−230, ∴直线CD 的解析式为y =100x −230.(3)设线段OA 所在的直线的解析式为y =k′x ,把点A(7,420)代入得到k′=60,∴y =60x ,由题意:60x −(100x −230)=20,解得x =214,x −5=14, 或(100x −230)−60x =20,解得x =254,x −5=54, 答:小轿车停车休整后还要提速行驶14或54小时,与货车之间相距20km.【解析】解:(1)观察图象可知:甲乙两地相距420km ,m =5,故答案为:420,5;(2)见答案;(3)见答案.【分析】(1)观察图象结合题意即可解决问题;(2)利用待定系数法即可解决问题;(3)首先确定直线OA 的解析式,分两种情形构建方程解决问题即可;本题考查一次函数的应用,解题的关键是理解题意,学会构建一次函数解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.22.【答案】(1)60;(2)∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≌△OMD.∴∠ACM=∠ODM.∴CA//OD.∵DE⊥CA,∴∠E=90°.∴∠ODE=180°−∠E=90°.∴DE⊥OD.∴DE与⊙O相切.(3)如图2,连接CF,CN,∵OA⊥CD于M,∴M是CD中点.∴NC=ND.∵∠CDF=45°,∴∠NCD=∠NDC=45°.∴∠CND=90°.∴∠CNF=90°.由(1)可知∠AOD=60°.∴∠ACD=1∠AOD=30°.2在Rt△CDE中,∠E=90°,∠ECD=30°,DE=3,=6.∴CD=DEsin30∘在Rt△CND中,∠CND=90°,∠CDN=45°,CD=6,∴CN=CD⋅sin45°=3√2.由(1)知∠CAD=2∠OAD=120°,∴∠CFD=180°−∠CAD=60°.在Rt△CNF中,∠CNF=90°,∠CFN=60°,CN=3√2,=√6.∴FN=CNtan60∘【解析】解:(1)如图1,连接OD ,AD∵AB 是⊙O 的直径,CD ⊥AB∴AB 垂直平分CD∵M 是OA 的中点,∴OM =12OA =12OD ∴cos ∠DOM =OM OD =12∴∠DOM =60° 又:OA =OD∴△OAD 是等边三角形∴∠OAD =60°故答案为:60°(2)见答案;(3)见答案;【分析】(1)由CD ⊥AB 和M 是OA 的中点,利用三角函数可以得到∠DOM =60°,进而得到△OAD 是等边三角形,∠OAD =60°.(2)只需证明DE ⊥OD.便可以得到DE 与⊙O 相切.(3)利用圆的综合知识,可以证明,∠CND =90°,∠CFN =60°,根据特殊角的三角函数值可以得到FN 的数值.本题考查圆的综合运用,特别是垂径定理、切线的判定要求较高,同时对于特殊角的三角函数值的运用有所考察,需要学生能具有较强的推理和运算能力.23.【答案】解:(1)∵抛物线y =ax 2+bx −5与y 轴交于点C ,∴C(0,−5),∴OC =5.∵OC =5OB ,∴OB =1,又点B 在x 轴的负半轴上,∴B(−1,0).∵抛物线经过点A(4,−5)和点B(−1,0),∴{16a +4b −5=−5a −b −5=0,解得{a =1b =−4, ∴这条抛物线的表达式为y =x 2−4x −5.(2)由y=x2−4x−5,得顶点D的坐标为(2,−9).连接AC,∵点A的坐标是(4,−5),点C的坐标是(0,−5),又S△ABC=12×4×5=10,S△ACD=12×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.(3)过点C作CH⊥AB,垂足为点H.∵S△ABC=12×AB×CH=10,AB=√(−1−4)2+(0+5)2=5√2,∴CH=2√2,在Rt△BCH中,∠BHC=90°,BC=√26,BH=√BC2−CH2=3√2,∴tan∠CBH=CHBH =23.∵在Rt△BOE中,∠BOE=90°,tan∠BEO=BOEO,∵∠BEO=∠ABC,∴BOEO =23,得EO=32,∴点E的坐标为(0,32).【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.。
2020年广东省深圳市南山区中考数学一模
2020年广东省深圳市南山区中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是( )C. 0D. 1A. −1B. −122.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是( )A. B. C.D.3.下列图形既是轴对称图形,又是中心对称图形的是( )A. B. C. D.4.地球绕太阳公转的速度约为110000km/ℎ,则110000用科学记数法可表示为( )A. 0.11×106B. 1.1×105C. 0.11×105D. 1.1×1065.如图,已知a//b,∠1=120∘,∠2=90∘,则∠3的度数是( )A. 120∘B. 130∘C. 140∘D. 150∘6.下列运算正确的是( )A. 5a2+3a2=8a4B. a3⋅a4=a12C. (a+2b)2=a2+4b2D. (a−b)(−a−b)=b2−a27.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是( )A. 484(1−2x)=210B. 484x2=210C. 484(1−x)2=210D. 484(1−x)+484(1−x)2=210(x>0)8.如图,在平面直角坐标系中,点P是反比例函数y=2x图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交(k≠0)于点M,若PQ=4MQ,则k的值为反比例函数y=kx( )A. ±2B. 12C. −12第2页,共14页D. ±129.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )个黑子.A. 37B. 42C. 73D. 12110. 二次函数y =ax 2+bx +c(a ≠0)的部分图象如图,图象过点(−1,0),对称轴为直线x =2,下列结论 ①abc >0; ②4a +b =0; ③9a +c >3b ;④当x >−1时,y 的值随x 值的增大而增大,其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个11. 如图,河流的两岸PQ ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN 的A 处测得∠DAN =45∘,然后沿河岸走了130米到达B 处,测得∠CBN =60∘.则河流的宽度CE 为( )A. 80B. 40(3−√3)C. 40(3+√3)D. 40√212. 若a 使关于x 的不等式组{x−a 2<0x −4<3(x +2)至少有三个整数解,且关于x 的分式方程a+x3−x +2x−3=2有正整数解,a 可能是( )A. −3B. 3C. 5D. 8二、填空题(本大题共4小题,共12.0分) 13. 因式分解:y 3−4x 2y =______.14. 一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15. 定义新运算:对于任意有理数a 、b 都有a ⊕b =a(a −b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2−5)+1=2×(3)+1=6+1=5.则4⊗x =13,则x =______.16. 正方形ABCD 中,F 是AB 上一点,H 是BC 延长线上一点,连接FH ,将△FBH 沿FH 翻折,使点B 的对应点E 落在AD 上,EH 与CD 交于点G ,连接BG 交FH 于点M ,当GB 平分∠CGE 时,BM =2√26,AE =8,则ED =______.三、解答题(共52分)17.先化简,再求值:xx2+2x+1÷(2x2−1x+1+1−x),其中x=2.18.(13)−2−4+√64+(3.14−x)0×cos60∘19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D、E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF ;(2)已知AC=2√10,EB=4CE,求⊙O的直径22.如图1,在等腰Rt△ABC中,∠BAC=90∘,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90∘,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=√2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2√5,CE=2,求线段AE的长.第4页,共14页23.如图1,二次函数y=ax2+bx的图象过点A(−1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN//y轴交OC于点N.若在点T运动的过程中,ON2为常数,试确定k的值.OM答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13. y(y+2x)(y−2x)14. 2515. 116. 417. 解:xx2+2x+1÷(2x2−1x+1+1−x)=x(x+1)2÷2x2−1+(1−x)(x+1)x+1=x(x+1)2⋅x+1x2=1x(x+1),当x=2时,原式=12×(2+1)=16.18. 解:原式=9+8+1×12=1712.19. 解:(1)本次参与调查的市民人数80÷40%=200(人);(2)A品牌人数为200×30%=60(人),D品牌人数为200×15%=30(人),补全图形如下:(3)10000×30%=3000(人),答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:(1)根据题意:y=20000+x100×10000=100x+20000;(2)设所获的利润w(元),则W=(2200−1200−x)(100x+20000)=−100(x−400)2+36000000;所以当降价400元,即定价为2200−400=1800元时,所获利润最大;第6页,共14页(2)根据题意每天最多接受50000(1−0.05)=47500台,此时47500=100x+20000,解得:x=275.所以最大量接受预订时,每台定价2200−275=1925元.21. (1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90∘,∴∠DAB+∠ABD=90∘.∵AF是⊙O的切线,∴∠FAB=90∘,即∠DAB+∠CAF=90∘.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90∘,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)如图,连接AE,∴∠AEB=90∘,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2√10)2=x2+(3x)2,∴x=2.∴BA=10.22. 解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90∘,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,第8页,共14页∴AB//DF ,∴∠DKE =∠ABC =45∘,∴∠EKF =180∘−∠DKE =135∘,EK =ED , ∵∠ADE =180∘−∠EDC =180∘−45∘=135∘, ∴∠EKF =∠ADE , ∵∠DKC =∠C , ∴DK =DC ,∵DF =AB =AC , ∴KF =AD ,在△EKF 和△EDA 中, {EK =ED∠EKF =∠ADE KF =AD, ∴△EKF≌△EDA(SAS),∴EF =EA ,∠KEF =∠AED , ∴∠FEA =∠BED =90∘, ∴△AEF 是等腰直角三角形, ∴AF =√2AE .(3)如图3,当AD =AC =AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD =AC ,ED =EC ,可得AE 垂直平分CD ,而CE =2, ∴EH =DH =CH =√2,Rt △ACH 中,AH =√(2√5)2+(√2)2=3√2,∴AE =AH +EH =4√2.23. 解:(1)∵二次函数y =ax2+bx 的图象过点A(−1,3),顶点B 的横坐标为1,则有{3=a −b −b 2a =1解得{a =1b =−2∴二次函数y =x 2−2x ,(2)由(1)得,B(1,−1), ∵A(−1,3),∴直线AB 解析式为y =−2x +1,AB =2√5, 设点Q(m ,0),P(n ,n 2−2n)∵以A 、B 、P 、Q 为顶点的四边形是平行四边形,①当AB 为对角线时,根据中点坐标公式得,则有{m+n2=0n 2−2n2=1,解得{m =−1−√3n =1+√3或{m =−1+√3n =1−√3∴P(1+√3,2)和(1−√3,2)②当AB 为边时,根据中点坐标公式得{n+12=m−12n 2−2n−12=32解得{m =3+√5n =1+√5或{m =3−√5n =1−√5 ∴P(1+√5,4)或(1−√5,4).故答案为P(1+√3,2)或(1−√3,2)或P(1+√5,4)或(1−√5,4). (3)设T(m ,m 2−2m),∵TM ⊥OC ,∴可以设直线TM 为y =−1k x +b ,则m 2−2m =−1k m +b ,b =m 2−2m +mk , 由{y =kx y =−1kx +m 2−2m +m k解得{x =m 2k−2mk+mk 2+1y =k(m 2k−2mk+m)k 2+1, ∴OM =√x 2+y 2=√k 2+1⋅(m 2k−2mk+m)k 2+1,ON =m ⋅√k 2+1,∴ON 2OM=m(k 2+1)√k 2+1mk−2k+1,∴k =12时,ON 2OM =5√54. ∴当k =12时,点T 运动的过程中,ON 2OM为常数.【解析】1. 解:∵−1<−12<0<1,∴最小的数为−1, 故选:A .根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可 本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:C .根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图. 3. 解:A 、不是轴对称图形,是中心对称图形,不合题意; B 、不是轴对称图形,不是中心对称图形,不合题意; C 、是轴对称图形,不是中心对称图形,不合题意; D 、是轴对称图形,也是中心对称图形,符合题意. 故选:D .根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 4. 解:将110000用科学记数法表示为:1.1×105. 故选:B .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.第10页,共14页5. 解:如图,延长∠1的边与直线b 相交,∵a//b ,∴∠4=180∘−∠1=180∘−120∘=60∘, 由三角形的外角性质,可得∠3=90∘+∠4=90∘+60∘=150∘, 故选:D .延长∠1的边与直线b 相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键. 6. 解:A.5a 2+3a 2=8a 2,故此题错误; B .a 3⋅a 4=a 7,故此题错误;C .(a +2b)2=a 2+4ab +4b 2,故此题错误;D .(a −b)(−a −b)=b 2−a 2,正确. 故选:D .按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断. 此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x ,根据题意得: 484(1−x)2=210, 故选:C .等量关系为:2015年贫困人口×(1−下降率)2=2017年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接OP ,OM ,OM′.由题意;S △POQ =1,S △MOQ =14=|k|2,∴k =±12,故选:D .根据反比例函数系数k 的几何意义即可解决问题;本题考查反比例函数k 的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个, 故选:C .观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:①由图象可得c>0,=2,∵x=−b2a∴ab<0,∴abc<0,故①错误;=2,②∵抛物线的对称轴为直线x=−b2a∴b=−4a,即4a+b=0,故本结论正确;③∵当x=−3时,y<0,∴9a−3b+c<0,即9a+c<3b,故本结论错误;④∵对称轴为直线x=2,∴当−1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,故本结论错误;故选:A.①由图象可得c>0,ab<0,abc<0,=2,则有4a+b=0;②根据抛物线的对称轴为直线x=−b2a③观察函数图象得到当x=−3时,函数值小于0,则9a−3b+c<0,即9a+c<3b;④由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.11. 解:过点C作CF//DA交AB于点F.∵MN//PQ,CF//DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=∠DAN=45∘,∴FE=CE,设BE=x,∵∠CBN=60∘,∴EC=√3x,∵FB+BE=EF,∴130−50+x=√3x,解得:x=40(√3+1),∴CE=√3x=40(3+√3),故选:C.过点C作CF//DA交AB于点F,易证四边形AFCD是平行四边形.再在直角△CFE中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.第12页,共14页 12. 解:{x−a 2<0x −4<3(x +2), 不等式组整理得:{x <a x >−5, 由不等式组至少有三个整数解,得到a >−2,a+x3−x +2x−3=2,分式方程去分母得:−a −x +2=2x −6,解得:x =8−a3,∵分式方程有正整数解,且x ≠3,∴a =2,5,只有选项C 符合.故选:C .将不等式组整理后,由不等式组至少有三个整数解确定出a 的范围,再由分式方程有正整数解确定出满足条件a 的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:y 3−4x 2y ,=y(y 2−4x 2),=y(y +2x)(y −2x).先提取公因式y ,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为3+16+3+1=25,故答案为:25.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:4(4−x)+1=13,去括号得:16−4x +1=13,移项合并得:4x =4,解得:x =1.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B 作BP ⊥EH 于P ,连接BE ,交FH 于N ,则∠BPG =90∘, ∵四边形ABCD 是正方形,∴∠BCD =∠ABC =∠BAD =90∘,AB =BC ,∴∠BCD =∠BPG =90∘,∵GB 平分∠CGE∴∠EGB =∠CGB ,又∵BG =BG ,∴△BPG≌△BCG ,∴∠PBG =∠CBG ,BP =BC ,∴AB =BP ,∵∠BAE=∠BPE=90∘,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∠ABC=45∘,∴∠EBG=∠EBP+∠GBP=12由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM=2√26,∴BN=NM=2√13,∴BE=4√13,∵AE=8,∴Rt△ABE中,AB=√BE2−AE2=12,∴AD=12,∴DE=12−8=4,故答案为:4.作辅助线,构建全等三角形,先证明∠EBG=45∘,利用△BNM是等腰直角三角形,即可求得BN,NM的长,Rt△ABE中,依据勾股定理可得AB=√BE2−AE2=12,根据AD=12,即可得到DE=12−8=4.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将x=2代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. (1)根据B品牌人数及其所占百分比可得总人数;(2)总人数分别乘以A、D所占百分比求出其人数即可补全图形;(3)总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. (1)根据题意列代数式即可;(2)根据利润=单台利润×预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;(3)根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. (1)首先连接BD,由AB为直径,可得∠ADB=90∘,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:(2√10)2=x2+(3x)2求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. (1)依据AE=EF,∠DEC=∠AEF=90∘,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=√2,Rt△ACH 中,AH=3√2,即可得到AE=AH+EH=4√2.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. (1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2−2m),由TM⊥OC,可以设直线TM为y=−1kx+b,则m2−2m=−1k m+b,b=m2−2m+mk,求出点M、N坐标,求出OM、ON,根据ON2OM列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第14页,共14页。
2024年广东省深圳市南山区中考一模数学试题(含解析)
2023-2024学年第二学期九年级一模数学试卷一.选择题(每题3分,共30分)1.一小袋味精的质量标准为“克”,那么下列四小袋味精质量符合要求的是( )A .50.35克B .49.80克C .49.72克D .50.40克2.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星.北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超亿次.将数据亿用科学记数法表示为( )A .B .C .D .3.由一个长方体和一个圆柱组成的几何体如图所示,则这个几何体的俯视图是( )A .B .C .D .4.下列计算中,正确的是( )A .B .C .D .5.如图,已知直线,平分,,则的度数是( )A .B .C .D .6.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2500.25±300030008310⨯9310⨯10310⨯11310⨯235a a a ⋅=()235a a =()55210a a =448a a a +=AB CD EG BEF ∠140∠=︒2∠70︒50︒40︒140︒所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为( )A .B .C .D .7.如图,在平面直角坐标系中,有三点,,,则( )A.BCD8.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .D .9.如图1,点P 从等边三角形的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,,图2是点P 运动时y 随x 变化的关系图象,则等边三角形的边长为( )120O ∠=︒3m OA = 1.5m OB =24.25m π23.25m π23m π22.25m πxOy ()0,1A ()4,1B ()5,6C sin BAC ∠=12AP AB AB AC =AB AC BP CB=ABC PB y PC=ABCA .6B .3C .D .10.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积,其中分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知,,则内部的格点个数是( )A .266B .270C .271D .285二.填空题(每题3分,共15分)11.因式分解: .12.分式方程的解是 .13.如图,在中,,,点D 为上一点,连接.过点B 作于点E ,过点C 作交的延长线于点F .若,,则的长度为 .14.如图,平行于x 轴的直线l 与反比例函数和的图像交于A 、B 两点,点C 是x 轴上任意一点,且的面积为3,则k 的值为 .112=+-S N L ,N L ()0,30A ()()20,10,0,0B O ABO 2312x -=422x x=-Rt ABC △90BAC ∠= AB AC =BC AD BE AD ⊥CF AD ⊥AD 4BE =1CF =EF 1(0)y x x =>(0)k y x x=>ABC15.如图,正方形 ABCD 中,点 E 是 CD 边上一点,连接 AE ,过点 B 作 BG ⊥AE 于点 G , 连接 CG 并延长交 AD 于点 F ,当 AF 的最大值是 2 时,正方形 ABCD 的边长为 .三.解答题(共55分)16.17.先化简,再求值:,其中.18.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(写出必要的计算过程)(1)这次调查的学生共有多少名?101)2sin 605π-⎛⎫--︒+ ⎪⎝⎭2344111x x x x x -+⎛⎫--÷ ⎪--⎝⎭3x =(2)请将条形统计图补充完整.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率.(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E )19.某校在商场购进A ,B 两种品牌的篮球,购买A 品牌篮球花费了2500元,购买B 品牌篮球花费了2000元,且购买A 品牌篮球的数量是购买B 品牌篮球数量的2倍,已知购买一个B 品牌篮球比购买一个A 品牌篮球多花30元.(1)问购买一个A 品牌,一个B 品牌的篮球各需多少元?(2)该校决定再次购进A ,B 两种品牌篮球共50个,恰逢商场对两种品牌篮球的售价进行调整,A 品牌篮球售价比第一次购买时提高了,B 品牌篮球按第一次购买时售价的9折出售,如果该校此次购买A ,B 两种品牌篮球的总费用不超过3060元,那么该校此次最多可购买多少个B 品牌篮球?20.如图,在中,,的平分线交于点,过点作的垂线交于点.(1)请画出的外接圆(尺规作图,不写作法,保留作图痕迹);(2)求证:是的切线;(3)过点作于点,延长交于点,若,.求的半径.21.用四根一样长的木棍搭成菱形,是线段上的动点(点不与点和点重合),在射线上取一点,连接,,使.操作探究一(1)如图1,调整菱形,使,当点在菱形外时,在射线上取8%ABC 90C ∠=︒BAC ∠BC D D AD AB E ADE V O BC O D DF AE ⊥F DF O G 8DG =2EF =O ABCD P DC P D C BP M DM CM CDM CBP ∠=∠ABCD 90A ∠=︒M ABCD BP一点,使,连接,则______,=______.操作探究二(2)如图2,调整菱形,使,当点在菱形外时,在射线上取一点,使,连接,探索与的数量关系,并说明理由.拓展迁移(3)在菱形中,,.若点在直线上,点在射线上,且当时,请直接写出的长.22.某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点P 到定点的距离,始终等于它到定直线l :的距离(该结论不需要证明).他们称:定点F 为图象的焦点,定直线l 为图象的准线,叫做抛物线的准线方程.准线l 与y 轴的交点为H .其中原点O 为的中点,.例如,抛物线,其焦点坐标为,准线方程为l :,其中,.【基础训练】(1)请分别直接写出抛物线的焦点坐标和准线l 的方程:___________,___________;【技能训练】(2)如图2,已知抛物线上一点到焦点F 的距离是它到x 轴距离的3倍,求点P 的坐标;【能力提升】(3)如图3,已知抛物线的焦点为F ,准线方程为l .直线m :交y 轴于点N BN DM =CN BMC ∠=MC MNABCD 120A ∠=︒M ABCD BP N BN DM =CN MC MN ABCD 120A ∠=︒6AB =P CD M BP 45CDM PBC ∠=∠=︒MD ()20y ax a =>10,4F a ⎛⎫ ⎪⎝⎭PF 14y a=-PN 14y a=-FH 122FH OF a ==22y x =10,8F ⎛⎫ ⎪⎝⎭18y =-PF PN =124FH OF ==214y x =214y x =()()000,0P x y x >214y x =132y x =-C ,抛物线上动点P 到x 轴的距离为,到直线m 的距离为,请直接写出的最小值;【拓展延伸】该兴趣小组继续探究还发现:若将抛物线平移至.抛物线内有一定点,直线l 过点且与x 轴平行.当动点P 在该抛物线上运动时,点P 到直线l 的距离始终等于点P 到点F 的距离(该结论不需要证明).例如:抛物线上的动点P 到点的距离等于点P 到直线l :的距离.请阅读上面的材料,探究下题:(4)如图4,点是第二象限内一定点,点P 是抛物线上一动点,当取最小值时,请求出的面积.参考答案与解析1.B 【分析】先根据一小袋味精的质量标准为“克”,可求出一小袋味精的质量的范围,再对照选项逐一判断即可.【详解】解:∵一小袋味精的质量标准为“克”,∴一小袋味精的质量的范围是49.75-50.25只有B 选项符合,故选B.【点睛】本题考查了正负数的意义,正确理解正负数的意义是解题的关键.2.D1d 2d 12d d +()20y ax a =>()()20y a x h k a =-+>()()20y a x h k a =-+>1,4F h k a ⎛⎫+ ⎪⎝⎭1,4M h k a ⎛⎫- ⎪⎝⎭1PP ()2213y x =-+251,8F ⎛⎫ ⎪⎝⎭238y =31,2D ⎛⎫- ⎪⎝⎭2114y x =-PO PD +POD 500.25±500.25±【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】解:亿.故选:D .【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.3.D【分析】本题考查了简单组合体的三视图,掌握从上面看到的图形是俯视图,是解答本题的关键,根据从上面看到的图形是俯视图,即可解答.【详解】从上面看下边是一个矩形,矩形的内部是一个圆,故选:D .4.A【分析】根据同底数幂相乘法则计算判断A ,根据幂的乘方法则计算判断B ,然后根据积的乘方法则计算判断B ,最后根据合并同类项的法则计算判断D .【详解】因为,所以A 正确;因为,所以B 不正确;因为,所以C 不正确;因为,所以D 不正确.故选:A .【点睛】本题主要考查了幂的运算,掌握运算法则是解题的关键.5.A【分析】10n a ⨯1||10a ≤<n 300011300000000003001=⨯=10n a ⨯1||10a ≤<n n a n 10≥n 1<n a n 23235a a a a +⋅==32326()a a a ⨯==5555(2)232a a a ==4442a a a +=根据平行线的性质可得, ,,推得,根据角平分线的性质可求出的度数,即可求得的度数.【详解】∵,∴,,,∴,又∵平分,∴,∴故选:A .【点睛】本题考查平行线的性质和角平分线的性质.熟练掌握平行线的性质和角平分线的性质是解决本题的关键.6.D【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.【详解】解:S 阴影=S 扇形AOD -S 扇形BOC ====2.25π(m 2)故选:D .【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.7.C【分析】如图,取格点D ,连接,,则B 在上,由,,,证明,可得【详解】解:如图,取格点D ,连接,,则B 在上,140EFG ︒∠=∠=180EFG BEF ∠+∠=︒EGF BEG ∠=∠140BEF ∠=︒BEG ∠2∠AB CD 140EFG ︒∠=∠=180EFG BEF ∠+∠=︒EGF BEG ∠=∠18040140BEF ∠=︒-︒=︒EG BEF ∠1702BEG BEF ∠=∠=︒027BEG =∠=︒∠22120120360360OA OB ππ⋅⋅-()22120360OA OB π-()223 1.53π-CD AD AD ()0,1A ()4,1B ()5,6C 45BAC ∠=︒sin sin 45BAC ∠=︒=CD AD AD∵,,,∴,,,∴,∴故选C【点睛】本题考查的是坐标与图形,等腰直角三角形的判定与性质,特殊角的三角函数值,作出合适的辅助线构建直角三角形是解本题的关键.8.D【详解】解:A .当∠ABP =∠C 时,又∵∠A =∠A ,∴△ABP ∽△ACB ,故此选项错误;B .当∠APB =∠ABC 时,又∵∠A =∠A ,∴△ABP ∽△ACB ,故此选项错误;C .当时,又∵∠A =∠A ,∴△ABP ∽△ACB ,故此选项错误;D .无法得到△ABP ∽△ACB ,故此选项正确.故选:D .9.A【分析】如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运()0,1A ()4,1B ()5,6C 5AD =5CD =90ADC ∠=︒45BAC ∠=︒sin sin 45BAC ∠=︒=AP AB AB AC =P A O O动到顶点.结合图象可知,当点在上运动时,,,当点在上运动时,可知点到达点时的路程为作,解直角三角形可得,进而可求得等边三角形的边长.【详解】解:如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,∴,又∵为等边三角形,∴,,∴,∴,∴,当点在上运动时,可知点到达点时的路程为∴∴,过点作,∴,则,∴,即:等边三角形的边长为6,故选:A .B P AO PB PC =AO =30BAO CAO ∠=∠=︒P OB P B AO OB ==O OD AB ⊥cos303AD AO =⋅︒=ABC P A O O B P AO 1PB PC=PB PC =AO =ABC 60BAC ∠=︒AB AC =()SSS APB APC △≌△BAO CAO ∠=∠30BAO CAO ∠=∠=︒P OB P B OB =AO OB ==30BAO ABO ∠=∠=︒O OD AB ⊥AD BD =cos303AD AO =⋅︒=6AB AD BD =+=ABC【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.10.C【分析】首先根据题意画出图形,然后求出的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵,,∴,∵上有31个格点,上的格点有,,,,,,,,,,共10个格点,上的格点有,,,,,,,,,,,,,,,,,,,共19个格点,∴边界上的格点个数,∵,∴,∴解得.∴内部的格点个数是271.故选:C .【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思ABO ()0,30A ()()20,10,0,0B O 130203002ABO S =⨯⨯=V OA OB ()2,1()4,2()6,3()8,4()10,5()12,6()14,7()16,8()18,9()20,10AB ()1,29()2,28()3,27()4,26()5,25()6,24()7,23()8,22()9,21()10,20()11,19()12,18()13,17()16,14()15,15()16,14()17,13()18,12()19,1131101960L =++=112=+-S N L 13006012N =+⨯-271N =ABO想.11.【分析】此题主要考查了提取公因式法与公式法的综合运用,正确运用平方差公式是解题关键.首先提取公因式3,再利用平方差公式分解因式即可.【详解】解:原式.故答案为:.12.【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:,解得:,检验:当时,,∴原方程的解为.故答案为:【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.13.3【分析】证明,得到,即可得解.【详解】解: ∵,∴,∵,,∴,∴,()()322x x +-()234x =-()()322x x =+-()()322x x +-2x =-()224x x -=2x =-2x =-()20x x -≠2x =-2x =-AFC BEA ≌△△,BE AF CF AE ==90BAC ∠=︒90EAB EAC ∠+∠=︒BE AD ⊥CF AD ⊥90AEB AFC ∠=∠=︒90ACF EAC ∠+∠=︒∴,在和中:,∴,∴,∴,故答案为:3.【点睛】本题考查全等三角形的判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.14.7【分析】根据反比例函数的几何意义,得出,进而得出,求解即可.【详解】解:如图,连接,,则,,,,又,,故答案为:7.ACF BAE ∠=∠AFC △BEA △AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFC BEA ≌△△4,1AF BE AE CF ====413EF AF AE =-=-=k 3ABC ABO BOM AOM S S S S ==-=△△△△11||322k -=OA OB 3ABC ABO BOM AOM S S S S ==-=△△△△12AOM S =△1||2BOM S k = ∴11||322k -=0k >7k ∴=【点睛】本题考查反比例函数图象上点的坐标特征,的几何意义,理解反比例函数的几何意义是解决问题的关键.15.8.【分析】以AB 为直径作圆O ,则∠AGB=90º,当CF 与圆O 相切时,AF 最大,AF=2,由切线长定理的AF=FG ,BC=CG ,过F 作FH ⊥BC 与H ,则四边形ABHF 为矩形,AB=FH ,AF=BH=2,设正方形的边长为x ,在Rt △FHC 中,由勾股定理得x 2+(x-2)2=(x+2)2解之即可.【详解】以AB 为直径作圆O ,∵AB 为直径,∴∠AGB=90º,当CF 与圆O 相切时,AF 最大,AF=2,由切线长定理的AF=FG ,BC=CG ,过F 作FH ⊥BC 与H ,则四边形ABHF 为矩形,AB=FH ,AF=BH=2,设正方形的边长为x ,则HC=x-2,FC=2+x ,FH=x ,在Rt △FHC 中,由勾股定理得,x 2+(x-2)2=(x+2)2,整理得:x 2-8x=0,解得x=8,x=0(舍去),故答案为:8.【点睛】本题考查圆的切线问题,涉及切线长,直径所对的圆周角,引辅助圆与辅助线,正方形的性质,矩形的性质与判定,能综合运用这些知识解决问题特别是勾股定理构造分析是解题关键.16.【分析】k k 4先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】解:原式.【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.,【分析】分式的混合运算,根据加减乘除的运算法则化简分式,代入求值即可求出答案.【详解】解:原式当时,原式,故答案是: .【点睛】本题主要考查分式的化简求值,掌握分式的混合运算法则即可,包括完全平方公式,能约分的要约分等,理解和掌握乘法公式,分式的乘法,除法法则是解题的关键.18.(1)280名(2)见解析(3)【分析】本题考查条形统计图和扇形统计图的关联、用树状图或列表法求概率,能从统计图中找到相关信息是解答的关键.(1)用关注“平等”的人数除以其所占的百分比求解即可;(2)求出关注“互助”和“进取”的人数,进而补全统计图即可;(3)画出树状图得到所有等可能的结果,再找到满足条件的结果数,然后利用概率公式求125=-+4=22x x+-5-23(1)(1)111(2)x x x x x x +--⎡⎤=-⋅⎢⎥---⎣⎦23(1)(1)11(2)x x x x x -+--=⋅--22411(2)x x x x --=⋅--2(2)(2)11(2)x x x x x +--=⋅--22xx+=-3x ==5-5-110解即可.【详解】(1)解:(名),答:这次调查的学生共有280名;(2)解:关注“互助”的人数为(名),关注“进取”的人数为(名),补全条形统计图,如图所示,(3)解:由题意,学生关注最多的两个主题是“感恩”和“进取”,即“C ”和“E ”,列树状图如下:由图知,共有20种等可能的结果数,其中恰好选到“C ”和“E ”有两种,所以恰好选到“进取”和“感恩”两个主题的概率.19.(1)购买一个A 品牌的篮球需50元,购买一个B 品牌的篮球需80元(2)该校此次最多可购买20个B 品牌篮球【分析】本题考查了分式方程的应用及一元一次不等式的应用:5620%280÷=28015%42⨯=2804256287084----=212010==(1)设购买一个A 品牌的篮球需元,则购买一个B 品牌的篮球需元,根据等量关系列出方程,解方程并检验即可求解;(2)设该校可购买个B 品牌篮球,则购买品牌的篮球个,根据不等关系列出不等式并解不等式即可求解;理清题意,根据等量关系列出方程及根据不等关系列出不等式是解题的关键.【详解】(1)解:设购买一个A 品牌的篮球需元,则购买一个B 品牌的篮球需元,依题意得:,解得:,经检验,是原方程的解,且符合题意,(元),答:购买一个A 品牌的篮球需50元,购买一个B 品牌的篮球需80元(2)设该校可购买个B 品牌篮球,则购买品牌的篮球个,依题意得:,解得:,答:该校此次最多可购买20个B 品牌篮球.20.(1)见解析(2)见解析(3)的半径为5【分析】(1)根据圆周角定理可知是的外接圆的直径,所以作的垂直平分线,交于点O ,以O 为圆心以为半径画圆即可;(2)根据连接,由为直径、可得出点D 在上且,根据平分可得出,由内错角相等,两直线平行可得出,再结合即可得出,进而即可证出是的切线;(2)设,根据勾股定理列方程可得r 值.【详解】(1)解:圆周角定理可知是的外接圆的直径,所以作的垂直平分线,交于点O ,以O 为圆心以为半径画圆即可,如图1所示,即为所求;x ()30x +a A ()50a -x ()30x +25002000230x x =⨯+50x =50x =503080+=a A ()50a -()()5018%50800.93060a a ⨯+-+⨯≤20a ≤O AE ADE V AE AE OA OD AE DE AD ⊥O DAO ADO ∠=∠AD CAB ∠DAO ADO CAD =∠=∠∠AC DO ∥90C ∠=︒90ODB ∠=︒BC O OD r =AE ADE V AE AE OA O(2)证明:如图2,连接,平分,,,,,∴,,,,,为的半径,是的切线;(3)解:设的半径为r,OD AD CAB ∠CAD OAD ∴∠=∠OA OD = OAD ODA ∠=∠∴CAD ODA ∴∠=∠AC DO ∥C ODB ∴∠=∠90C ∠=︒ 90ODB ∴∠︒=OD BC ∴⊥OD O BC ∴O O,,,,在中,,,,,解得:,的半径为5.【点睛】本题考查了切线的判定与性质、平行线的判定与性质、垂径定理以及勾股定理,熟练掌握相关知识是解题关键.21.(1);(2),理由见解析;(3)的长度为【分析】(1)证明得到,,从而得到,推出为等腰直角三角形,最后根据等腰直角三角形的性质即可得到答案;(2)证明得到,,从而得到,作交于,则,,根据含角的性质及勾股定理得出,从而得到;(3)当时,点和点重合,再分两种情况:当点在线段的延长线时,过点作于点;当点在的延长线上时,过点作交2EF = 2OF r ∴=-DF AE ⊥ 142DF GF DG ∴===RtODF △90OFD ∠=︒,2OD r OF r ==-4DF =()22224r r ∴=-+=5r O ∴ 45︒MN MD +(SAS)BCN DCM ≌BCN DCM ∠=∠CN CM =90DCM DCN MCN ∠+∠=∠=︒MCN △(SAS)BCN DCM ≌BCN DCM ∠=∠CN CM =120DCM DCN MCN ∠+∠=∠=︒CE BP ⊥BP E ME NE =90CEM ∠=︒30︒EM 2MN EM ==45CDM PBC ∠=∠=︒M N P CD M MF CD ⊥F P DC M MF CD ⊥DC的延长线于点;利用等腰直角三角形的性质以及锐角三角形函数进行计算即可得到答案.【详解】解:(1)四边形是正方形,,,在和中,,,,,,,是等腰直角三角形,,,,故答案为:;(2),理由如下:四边形是菱形,,,,在和中,,,,,,,,,F ABCD BC CD ∴=90BCD ∠=︒BCN △DCM △BC DC CBN CDM BN DM =⎧⎪∠=∠⎨⎪=⎩(SAS)BCN DCM ∴ ≌BCN DCM ∴∠=∠CN CM =90BCN DCN BCD ∠+∠=∠=︒ 90DCM DCN MCN ∴∠+∠=∠=︒MCN ∴ 45CMN ∴∠=︒cos cos 45CM CMN MN =∠=︒=45CMB ∴∠=︒CM MN 45︒MN = ABCD 120A ∠=︒BC CD ∴=120BCD A ∠=∠=︒BCN △DCM △BC DC CBN CDM BN DM =⎧⎪∠=∠⎨⎪=⎩(SAS)BCN DCM ∴ ≌BCN DCM ∴∠=∠CN CM =120BCN DCN BCD ∠+∠=∠=︒ 120DCM DCN MCN ∴∠+∠=∠=︒CM CN = CMN CNM ∴∠=∠,,如图2,作交于,则,,在中,,,,,;(3)当时,点和点重合,如图3,当点在线段的延长线时,过点作于点,设,,,为等腰直角三角形,,四边形是菱形,,,,,,由菱形的对称性及可得,180CMN CNM MCN ∠+∠+∠=︒ ∴180302MCN CMN CNM ︒-∠∠=∠==︒CE BP ⊥BP E ME NE =90CEM ∠=︒Rt CEM △30CME ∠=︒90CEM ∠=︒∴12CE CM =∴EM∴22MN EM ==45CDM PBC ∠=∠=︒M N P CD M MF CD ⊥F MD x =MF CD ⊥ 45CDM ∠=︒DFM ∴∴DF MF = ABCD 120A ∠=︒6AB =6BC CD ∴==120BCD ∠=︒CDM PBC ∠=∠1602MCF BCM BCD ∠=∠=∠=︒在中,,,,,,如图4,当点在的延长线上时,过点作交的延长线于点,设,同①可得:,,,综上所述,的长度为或【点睛】本题主要考查了三角形全等的判定与性质、等腰直角三角形的判定与性质、菱形的性质、正方形的性质、锐角三角函数、含角的直角三角形的性质等知识点,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.22.(1),;(2);Rt MCF △60MCF ∠=︒90MFC ∠=︒∴tan tan 60MF MCF CF=∠=︒=∴CF =∴6DF CF CD +===∴x =∴MD =P DC M MF CD ⊥DC F M D y =DF =CF y =∴6DF CF y y -=∴y =∴MD =MD +30︒()0,11y =-12⎫⎪⎭(4)【分析】(1)根据题中所给抛物线的焦点坐标和准线方程的定义求解即可;(2)利用两点间距离公式结合已知条件列式整理得,然后根据,求出,进而可得,问题得解;(3)过点作直线交于点,过点作准线交于点,结合题意和(1)中结论可知,,根据两点之间线段最短可得当,,三点共线时,的值最小;待定系数法求直线的解析式,求得点的坐标为,根据点是直线和直线m 的交点,求得点的坐标为,即可求得和的值,即可求得;(4)根据题意求得抛物线的焦点坐标为,准线l 的方程为,过点作准线交于点,结合题意和(1)中结论可知,则,根据两点之间线段最短可得当,,三点共线时,的值最小;求得,即可求得的面积.【详解】(1)解:∵抛物线中,∴,,∴抛物线的焦点坐标为,准线l 的方程为,故答案为:,;(2)解:由(1)知抛物线的焦点F 的坐标为,∵点到焦点F 的距离是它到x 轴距离的3倍,,整理得:,又∵,19822000821x y y =+-20014y x =0y 0x P PE ⊥m E P PG ⊥l G 11PG PF d ==+2PE d =F P E 12d d +PE P (4,9-E PE E 811,55⎛⎫- ⎪⎝⎭1d 2d 2114y x =-()0,0F =2y -P PG ⊥l G PG PF =PO PD PG PD +=+D P G PO PD +13,24P ⎛⎫-- ⎪⎝⎭POD 214y x =14a =114a=114a -=-214y x =()0,11y =-()0,11y =-214y x =()0,1()()000,0P x y x >03y =22000821x y y =+-20014y x =∴解得:或(舍去),∴∴点P 的坐标为;(3)解:过点作直线交于点,过点作准线交于点,结合题意和(1)中结论可知,,如图:若使得取最小值,即的值最小,故当,,三点共线时,,即此刻的值最小;∵直线与直线垂直,故设直线的解析式为,将代入解得:,∴直线的解析式为,∵点是直线和抛物线的交点,令,解得:,(舍去),故点的坐标为,∴∵点是直线和直线m 的交点,令,解得:,故点的坐标为,∴20004821y y y =+-012y =014y =-0x =12⎫⎪⎭P PE ⊥m E P PG ⊥l G 11PG PF d ==+2PE d =12d d +1PF PE +-F P E 11PF PE EF +-=-12d d +PE m PE 2y x b =-+()0,1F 1b =PE 21y x =-+P PE 214y x =21214x x =-+14x =-24x =--P (4,9--19d =-E PE 12132x x -+=-85x =E 811,55⎛⎫- ⎪⎝⎭2d =.即.(4)解:∵抛物线中,∴,,∴抛物线的焦点坐标为,准线l 的方程为,过点作准线交于点,结合题意和(1)中结论可知,则,如图:若使得取最小值,即的值最小,故当,,三点共线时,,即此刻的值最小;如图:∵点的坐标为,准线,∴点的横坐标为,代入解得,即,,则的面积为.【点睛】本题考查了两点间距离公式结合,两点之间线段最短,三角形的面积,一次函数的交点坐标,一次函数与抛物线的交点坐标等,解决问题的关键是充分利用新知识的结论.121d d +=12d d +12114y x =-14a =114a=114a -=-2114y x =-()0,0F =2y -P PG ⊥l G PG PF =PO PD PG PD +=+PO PD +PG PD +D P G PO PD PG PD DG +=+=PO PD +D 31,2⎛⎫- ⎪⎝⎭DG ⊥l P 1-2114y x =-34y =-13,24P ⎛⎫-- ⎪⎝⎭339244OP =+=POD 1991248POD S =⨯⨯=。
2020年深圳市南山区育才二中中考数学一模试卷 (含答案解析)
2020年深圳市南山区育才二中中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.下列各数中,倒数是−3的数是()A. 3B. −3C. 13D. −132.“犯我中华者,虽远必诛”爱国题材影片《战狼2》的票房喜获丰收,高达56.7亿元,把数56.7亿用科学记数法表示为()A. 0.567×1010B. 56.7×108C. 5.67×109D. 5.67×10103.下列计算正确的是()A. 2a2+3a2=5a4B. 3x3y2z−2x3y2z=1C. (−2)5−(−5)2=0D. −0.25ab+14ba=04.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A. 21B. 20C. 19D. 185.下列几何体中,主视图是矩形的是()A. B. C. D.6.下列各数是不等式组{x+3>21−2x<−3的解是()A. 0B. −1C. 2D. 37.在Rt△ABC中,∠C=90°,AC=12,BC=5,则sin A为()A. 512B. 125C. 513D. 12138.如图,四边形ABDC是⊙O的内接四边形,连接BO、CO,若∠BOC=116°,则∠CDB的度数为()A. 116°B. 122°C. 128°D. 112°9.数据1,2,3,0,5,5,6的中位数和众数分别是()A. 3和2B. 3和3C. 3和5D. 0和510.若关于x的一元二次方程(a−2)x2−3x−2=0有实数根,则a的取值为()A. a>78B. a≥78C. a>78且a≠2 D. a≥78且a≠211.若点A(2,−3)、B(−3,n)在同一个反比例函数的图像上,则n的值为()A. 6B. −6C. 2D. −212.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的14;④DF2+BE2=2EO2.其中正确的是()A. ①②③④B. ①②③C. ①②④D. ③④二、填空题(本大题共4小题,共12.0分)13.当x= ______ 时,分式x2−4x2+3x+2的值为0.14.多项式4a−a3分解因式为______.15.如图,平行四边形ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为.16.九个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这九个正方形分成面积相等的两部分,则该直线l的函数关系式是______.三、计算题(本大题共1小题,共5.0分)17.先化简x2x+3 ⋅ x2−9x2−2x−x2x−2,再从−3、−2、0、2中选一个合适的数作为x的值代入求值.四、解答题(本大题共6小题,共47.0分)18.计算:−1−2+|√2−√3|+(π−3.14)0−tan60°+√8.19.我市“有效学习儒家文化”课题于今年4月结题,在这次结题活动中,甲、乙两校师生共170人进行了汇报演出.总课题组将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表:甲校参加汇报演出的师生人数统计表:百分百人数话剧50%m演讲12%6其他n19根据提供的信息解答下列问题:(1)m______,n______(2)计算乙校的扇形统计图中“话剧”的圆心角的度数;(3)哪个学校参加“话剧”的师生人数多?说明理由.20.如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°.求CD的高度.(结果保留根号)21.江津区某玩具商城在“六一”儿童节来临之际,以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具,且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具.(1)若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围;(2)在实际销售中,玩具城以(1)中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了a%,从而每天的销售量降低了2a%,当每天的销售利润为147元时,求a的值.22.如图,反比例函数y=k与y=mx交于A、B两点,已知点A的坐标x是(4,2),点P是第一象限内反比例函数图象上的动点,且在AB的上方.(1)求k、m的值及B点的坐标;(2)在x轴的正半轴上是否存在点Q,使△ABQ为等腰三角形,若存在,请直接写出点Q的坐标;(3)若S△ABP=12,求点P的坐标.23.如图,抛物线y=x2−bx+c交x轴于点A(1,0),交y轴于点B,对称轴是直线x=2.(1)求抛物线的解析式;(2)若C点是抛物线与x轴的另一个交点,求出△ABC的面积【答案与解析】1.答案:D解析:本题考查了了倒数,分子分母交换位置是求一个数的倒数的关键.根据乘积为1的两个数互为倒数,可得答案.解:倒数是−3的数是−13,故选:D.2.答案:C解析:解:把数56.7亿用科学记数法表示为:5.67×109,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:D解析:本题考查合并同类项及有理数的混合运算,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.先判断是否是同类项,同类项是指的:字母相同且相同字母的指数相同.根据合并同类项的法则即可求出答案.解:A.原式=5a2,故A错误;B.原式=x3y2z,故B错误;C.原式=−32−25=−57,故C错误;D.−0.25ab+14ba=−14ab+14ab=0,故D正确;故选D.4.答案:A解析:解:8+8+5=16+5=21.故这个三角形的周长为21. 故选:A .由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解. 本题考查了等腰三角形两腰相等的性质,以及三角形周长的定义.5.答案:B解析:解:圆柱的主视图时矩形,球的主视图时圆,圆锥的主视图是三角形;圆台的主视图是梯形, 所以,以上四个几何体中,主视图是矩形的是圆柱. 故选:B .根据主视图是从物体正面看,所得到的图形,分别得出四个几何体的主视图,即可解答. 本题考查了简单几何体的主视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.答案:D解析:解:{x +3>2 ①1−2x <−3 ②,由①得:x >−1, 由②得:x >2,则不等式组的解集为x >2,即3是不等式组的解, 故选:D .求出不等式组的解集,判断即可.此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.7.答案:C解析:这是一道考查勾股定理与锐角三角函数的定义的题目,解题关键在于求出AB的长,根据正弦函数的定义,即可求出答案.解:∵∠C=90°,AC=12,BC=5,∴AB=√AC2+BC2=13,∴sinA=BCAB =513.故选C.8.答案:B解析:本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.根据圆周角定理求出∠A,根据圆内接四边形的性质计算,得到答案.解:由圆周角定理得,∠A=12∠BOC=12×116°=58°,∵四边形ABDC是⊙O的内接四边形,∴∠CDB=180°−∠A=122°,故选B.9.答案:C解析:此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.根据中位数和众数的定义分别进行解答即可.解:将数据从小到大排列为:0,1,2,3,5,5,6,则中位数是3,5出现了2次,出现的次数最多,则众数是5.故选C.10.答案:D解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与判别式△=b2−4ac的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.根据一元二次方程的定义和判别式的意义得到a−2≠0且△=(−3)2−4(a−2)×(−2)≥0,然后求出两不等式解集的公共部分即可.解:根据题意得a−2≠0且△=(−3)2−4(a−2)×(−2)≥0,解得a≥78且a≠2.故选D.11.答案:C解析:本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.反比例函数的解析式为y=kx,把A(2,−3)代入求出k=−6,得出解析式,把B点的坐标代入解析式即可.解:设反比例函数的解析式为y=kx,把A(2,−3)代入得:k=−6,即y=−6x,把B(−3,n)代入得:n=−6−3=2.故选C.12.答案:A解析:本题属于正方形的综合题,主要考查了正方形的性质,等腰直角三角形,全等三角形的判定与性质、相似三角形的判定、勾股定理的综合运用.①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②易得,∠OGE=∠FGC,进而得OGE∽△FGC便可;③证明S△COE=S△DOF,可得S四边形CEOF=S△OCD=14S正方形ABCD便可;④先证明△EOF是等腰直角三角形,再证明BE2+DF2=EF2,然后等量代换即可得到.解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②由①得△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°,∴∠OEG=∠FCG=45°,∵∠OGE=∠FGC ∴△OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴S四边形CEOF =S△OCD=14S正方形ABCD,故③正确;④∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴OE=√22EF,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∵OE=√22EF,∴EF=√2OE,∴BE2+DF2=2OE2.故④正确.故选A.13.答案:2的值为0,解析:解:∵分式x2−4x2+3x+2∴x2−4=0且x2+3x+2≠0,解得x=2,故答案为2.根据分式值为0的条件:分子=0且分母≠0,进行计算即可.本题考查了分式值为0的条件,掌握分式值为0的条件:分子=0,且分母≠0是解题的关键.14.答案:a(2+a)(2−a)解析:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.直接提取公因式a,再利用平方差公式分解因式即可.解:原式=a(4−a2)=a(2+a)(2−a).故答案为a(2+a)(2−a).15.答案:2√13解析:本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.利用平行四边形的性质和勾股定理易求AC的长,进而运用勾股定理可求出OB的长.解:∵四边形ABCD是平行四边形,∴BC=AD=6,OA=OC,∵AC⊥BC,AB=10,∴AC=√AB2−BC2=√102−62=8,AC=4,∴CO=12∴OB=√BC2+OC2=√62+42=2√13.故答案为2√13.x16.答案:y=−911解析:解:设直线l和九个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这九个正方形分成面积相等的两部分,∴S△AOB=4.5+1=5.5,OB⋅AB=5.5,∴12∴AB=11,3∴OC=11,3,3),由此可知直线l经过(−113设直线方程为y=kx,k,则3=−113k=−9,11x,∴直线l的解析式为y=−911x.故答案为y=−911设直线l和九个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.此题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,此题难度较大,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.17.答案:解:x2x+3 ⋅ x2−9x2−2x−x2x−2=x2x+3⋅(x+3)(x−3)x(x−2)−x2x−2=x(x−3)x−2−x2x−2=x2−3x−x2x−2=−3xx−2,当x=−2时,原式=−3×(−2)−2−2=−32.解析:根据分式的乘法和减法可以化简题目中的式子,然后从−3、−2、0、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.答案:解:原式=1+(√3−√2)+1−√3+2√2=2+√2解析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.19.答案:(1)=25=38%(2)根据题意得:360°×(1−60%−10%)=108°;(3)甲校参加“话剧”的人数为50×50%=25(人),乙校参加“话剧”的人数为(170−50)×30%=36(人),则乙学校参加“话剧”的师生人数多.解析:解:(1)根据题意得:6÷12%=50(人),则m=50×50%=25;n=19÷50×100%=38%,故答案为:=25;=38%;(2)见答案(3)见答案(1)根据演讲的百分比与人数求出总人数,进而求出m与n的值即可;(2)求出“话剧”的百分比,乘以360即可得到结果;(3)求出甲乙两校参加“话剧”的师生人数,比较即可.此题考查了扇形统计图,以及统计表,弄清题中的数据是解本题的关键.20.答案:解:作BF⊥CD于点F,设DF=x米,在Rt△DBF中,tan∠DBF=DFBF,则BF=DFtan∠DBF =xtan30∘=√3x(米),在直角△DCE中,DC=x+CF=(3+x)米,在直角△DCE中,tan∠DEC=DCEC ,则EC=DCtan∠DEC=3+xtan60∘=√33(x+3)米.∵BF−CE=AE,即√3x−√33(x+3)=18.解得:x=9√3+32,则CD=9√3+32+3=(9√3+92)米.答:CD的高度是(9√3+92)米.解析:本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.作BF⊥CD于点F,设DF=x米,在直角△DBF中利用三角函数用x表示出BF的长,在直角△DCE中表示出CE的长,然后根据BF−CE=AE即可列方程求得x的值,进而求得CD的长.21.答案:解:(1)设每个玩具售价为x 元/个,根据题意得:{x ≤6049(50−3×x−500.5)≤686,解得:56≤x ≤60.答:预计每个玩具售价的取值范围是56≤x ≤60.(2)由(1)可知最低销售价为56元/个,对应销售量为50−3×56−500.5=14个,根据题意得:[56(1+a%)−49]×14(1−2a%)=147,令t =a%,整理得:32t 2−12t +1=0,解得:t 1=14,t 2=18,∴a =25或a =12.5.解析:(1)设每个玩具售价为x 元/个,根据玩具售价不超过60元/个及每天售出玩具总成本不高于686元,即可得出关于x 的一元一次不等式组,解之即可得出每个玩具售价的取值范围;(2)由(1)可知最低销售价为56元/个,对应销售量为50−3×56−500.5=14个,根据单个玩具的利润×销售数量=总利润(令t =a%),即可得出关于t 的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准数量间的关系,正确列出一元一次不等式组;(2)找准等量关系,正确列出一元二次方程.22.答案:解:(1)将A(4,2)代入y =k x 得,k =8,将A(4,2)代入y =mx 得,m =12,∵点A 与点B 关于原点中心对称,∴B(−4,−2),∴k =8,m =12,B(−4,−2).(2)如图1中,作AE ⊥x 轴于E ,BM ⊥y 轴于M .∵A(4,2)、B(−4,−2)∴AB=4√5当AQ′=AB=4√5时,△ABQ是等腰三角形,∴Q′E=√AQ2−AE2=√(4√5)2−22=√76,∴Q′(4+√76,0),当BA=BQ时,△ABQ是等腰三角形,QM=√BQ2−BM2=√76 Q(√76−4,0).综上所述,满足条件的点Q坐标为(4+√76,0)或(√76−4,0).(3)如图2中,过点P作PM⊥x轴,交直线AB于点M.设P(a,8a ),则M(a,a2),S△ABP=12|x A−x B|⋅|y P−y M|=12×8×(8a−a2)=12解得:a=−8(舍去)a=2,∴P(2,4).解析:(1)利用待定系数法以及A、B关于原点对称即可解决问题.(2)如图1中,作AE⊥x轴于E,BM⊥y轴于M.分两种情形讨论即可①当AQ′=AB=4√5时,△ABQ 是等腰三角形,②当BA=BQ时,△ABQ是等腰三角形.(3)如图2中,过点P作PM⊥x轴,交直线AB于点M.根据S△ABP=12|x A−x B|⋅|y P−y M|列出方程即可解决问题.本题考查反比例函数的图象与性质、一次函数的应用、等腰三角形的判定、三角形的面积等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,属于中考常压轴题.23.答案:解:(1)由题意得,{1−b+c=0 b2=2,解得b=4,c=3,∴抛物线的解析式为:y=x2−4x+3;(2)∵点A与点C关于x=2对称,∴根据抛物线的对称性可知,点C的坐标为(3,0),y=x2−4x+3与y轴的交点B的坐标为(0,3),∴AC=2,OB=3,∴S △ABC= 12 AC⋅OB=12×2×3=3.解析:本题考查二次函数的综合应用,涉及待定系数法求二次函数的解析式、三角形的面积、轴对称的性质等知识,掌握待定系数法求解析式的一般步骤和轴对称的性质是解题的关键.(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,解方程组求出的b,c值即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质,可得点C的坐标,再由抛物线解析式可求得点B坐标,即可得出三角形ABC的底边AC和高OB,再根据三角形的面积可求得答案.。
深圳市南山区2020年九年级数学第一次模拟考试(含答案)
座位号:
2020 年九年级第一次模拟考试
数学答题卷
一、选择题(每小题 3 分,共 36 分)
1 [A] [B] [C] [D]
5 [A] [B] [C] [D]
2 [A] [B] [C] [D]
6 [A] [B] [C] [D]
3 [A] [B] [C] [D]
7 [A] [B] [C] [D]
4 [A] [B] [C] [D]
23.(9 分)如图已知抛物线 y=ax2+bx+c(a≠0)与 x 轴交于点 M (-2,0)、 N (6,0)与 y 轴 交于点 G (0,6)
(1)求抛物线的解析式 (2)将抛物线平移至顶点在坐标原点如图 1,将一直角三角板的直角顶点置于平面直角坐标系的
原点 O ,抛物线与三角板的两直角边交于 A 、 B 两点, AB 交 y 轴于点 C ,当 AB∥x 轴时,求线 段 OC 的长。 (3)若将三角板绕点 O 旋转到如图 2 所示位置时,过 A 作 AE x 轴于点 E ,过 B 作 BF x 轴 于点 F ,若 OF 1,直接写出点 A 的坐标。 (4)将三角板绕点 O 旋转任意角度时请探索 OC 的长度是否发生变化,若变化请找出变化规律,
中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请
设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
22.(9 分)如图 ,AB 是⊙O 的直径,D 为半圆 AB 的中点,连接 CD,交 AB 于点 E,延长 AB 到 点 P 使 PC=PE. (1)若 AC=8cm,BC=6cm,求 AD 的长; (2)求证:PC 是⊙O 的切线; (3)如图 ,作 DH⊥AC 于点 H,试探究线段 AH、DH、BC 之间的数量关系,并说明理由.
2020-2021深圳育才中学(初中)九年级数学下期中一模试卷带答案
2020-2021深圳育才中学(初中)九年级数学下期中一模试卷带答案一、选择题1.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )A .①和②B .②和③C .①和③D .①和④ 2.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定 3.在反比例函数y =1k x -的每一条曲线上,y 都随着x 的增大而减小,则k 的值可以是( )A .-1B .1C .2D .34.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .25B .5C .5D .125.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍;B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍;6.如图,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过顶点B ,则反比例函数的表达式为( )A .y=12xB .y=24xC .y=32xD .y=40x 7.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .378.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BC B .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 9.如图,在同一平面直角坐标系中,反比例函数y =k x与一次函数y =kx ﹣1(k 为常数,且k >0)的图象可能是( ) A . B . C . D .10.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:211.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252B .25-C .251D 52 12.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A.B. C.D.二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.14.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.15.计算:cos245°-tan30°sin60°=______.16.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.17.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.18.如图,点A在双曲线y=2x上,点B在双曲线y=5x上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为________.19.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面23米,若保持梯子底端位置不动,将梯子斜靠在右端时,与地面成45°,则小巷的宽度为_____米(结果保留根号).20.若函数y=(k-2)2k5x 是反比例函数,则k=______.三、解答题21.已知:如图,点C,D在线段AB上,△PCD是等边三角形,且AC=1,CD=2,DB=4.求证:△ACP∽△PDB.22.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A 2B 2C 2,并写出A 2点的坐标 .23.计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒. 24.如图,在△ABC 中,DE ∥BC ,23AD AB =,M 为BC 上一点,AM 交DE 于N. (1)若AE =4,求EC 的长; (2)若M 为BC 的中点,S △ABC =36,求S △ADN 的值.25.如图,已知O 是原点,,B C 两点的坐标分别为()3,1-,()2,1.(1)以点O 为位似中心,在y 轴的左侧将OBC V 扩大为原来的两倍(即新图与原图的相似比为2),画出图形,并写出点,B C 的对应点的坐标;(2)如果OBC V 内部一点M 的坐标为(),x y ,写出点M 的对应点M '的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】 设小长方形的长为2a ,宽为a .利用勾股定理求出三角形的三边长即可判断.【详解】由题意可知:小长方形的长是宽的2倍,设小长方形的宽为a ,则长为2a ,∴图①中的三角形三边长分别为2a 2222(2)(2)22(2)(4)25a a a a a a +=+=; 图②中的三角形三边长分别为2222(2)(3)13(3)(4)5a a a a a a +=+=;图③中的三角形三边长分别为==;==、5a=,∴①和②图中三角形不相似;∵22aa≠≠∴②和③图中三角形不相似;∵22aa≠≠∴①和③图中三角形不相似;55a===∴①和④图中三角形相似.故选D【点睛】本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知识.2.A解析:A【解析】【分析】设A4纸的高度为xcm,对折后的矩形高度为2xcm,然后根据相似多边形的对应边成比例列方程求解.【详解】设A4纸的高度为xcm,则对折后的矩形高度为2xcm,∵对折后所得的两个矩形都和原来的矩形相似,∴21=212xx解得29.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 3.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.4.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=2555ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC 的面积变为原来的4倍,故D 正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.6.C解析:C【解析】【分析】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.【详解】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.7.B解析:B【解析】由比例的基本性质可知a=37b ,因此b a a -=347337b b b -=. 故选B.8.D解析:D【解析】【分析】根据黄金分割的定义得出12BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;AB ,故C 错误;AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.9.B解析:B【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx-1与y 轴交于负半轴,∴D 选项错误,B 选项正确,故选B .10.D解析:D【解析】解:在平行四边形ABCD 中,AB ∥DC ,则△DFE ∽△BAE ,∴DF :AB =DE :EB .∵O 为对角线的交点,∴DO =BO .又∵E 为OD 的中点,∴DE =14DB ,则DE :EB =1:3,∴DF :AB =1:3.∵DC =AB ,∴DF :DC =1:3,∴DF :FC =1:2.故选D . 11.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 12.B解析:B【解析】【分析】 根据反比例函数k y x=中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=4;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=4. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG 经过A 点∴FA∥EGEA∥FH∴∠HFA=∠AEG=90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA =7里EG =15里∴FA=35里EA =45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△E 解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.15.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos45tan30sin60︒-︒︒=2110 22=-=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.17.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.18.3【解析】试题分析:由AB∥y轴可知AB两点横坐标相等设A(m)B(m)求出AB=﹣=再根据平行四边形的面积公式进行计算即可得=•m=3考点:反比例函数系数k的几何意义解析:3【解析】试题分析:由AB∥y轴可知,A、B两点横坐标相等,设A(m,2m),B(m,5m),求出AB=5m﹣2m=3m,再根据平行四边形的面积公式进行计算即可得ABCDSY=3m•m=3.考点:反比例函数系数k的几何意义19.【解析】【分析】本题需要分段求出巷子被分成的两部分再加起来即可先在直角三角形ABC中用正切和正弦分别求出BC和AC(即梯子的长度)然后再在直角三角形DCE中用∠DCE的余弦求出DC然后把BC和DC加解析:222【解析】【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC中,用正切和正弦,分别求出BC和AC(即梯子的长度),然后再在直角三角形DCE中,用∠DCE 的余弦求出DC,然后把BC和DC加起来即为巷子的宽度.【详解】解:如图所示:3米,∠ACB=60°,∠DCE=45°,AC=CE.则在直角三角形ABC中,ABBC=tan∠ACB=tan60°3ABAC=sin∠ACB=sin60°3∴BC3233=2,AC32332=4,∴直角三角形DCE中,CE=AC=4,∴CDCE=cos45°=2,∴CD=CE×22=4×22=22,∴BD=2+22,故答案为:2+22.【点睛】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题.20.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.三、解答题21.见解析【解析】【分析】先证明∠ACP=∠PDB=120°,然后由△PCD为等边三角形可证明,从而可证明△ACP∽△PD B.【详解】证明:∵△PCD为等边三角形,∴∠PCD=∠PDC=60°,PC=PD=CD=2∴∠ACP=∠PDB=120°∴.∴△ACP∽△PD B.【点睛】本题考查的知识点是相似三角形的判定和等边三角形的性质,解题关键是熟记等边三角形的性质.22.(1)见解析;(2)(﹣4,2).【解析】【分析】(1)根据网格结构找出点A、B、C以点B为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A1BC1即为所求;(2)如图,△A2B2C2,即为所求,A2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.23.214-.【解析】试题分析:把特殊角的三角函数值代入运算即可.试题解析:原式23321121 22322.124 122=⋅-==+⨯24.(1)2(2)8【解析】【分析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE 求出长度;(2)根据△ABC 的面积求出△ABM 的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN 的面积.【详解】解:(1)∵DE ∥BC∴△ADE ∽△ABC ∴23AE AD AC AB == ∵AE=4∴AC=6 ∴EC=AC -AE=6-4=2(2)∵△ABC 的面积为36,点M 为BC 的中点∴△ABM 的面积为:36÷2=18 ∵△ADN 和△ABM 的相似比为23 ∴:4:9ADN ABM S S ∆∆=∴ADN S V =8考点: 相似三角形的判定与性质25.(1)如图,OB C ''△即为所求,见解析;点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--;(2)点(),M x y 的对应点M '的坐标为()2,2x y --.【解析】【分析】(1)延长BO ,CO 到B′、C′,使OB′、OC′的长度是OB 、OC 的2倍.顺次连接三点即可;(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M 的坐标为(x ,y ),写出M 的对应点M′的坐标为(-2x ,-2y ).【详解】(1)如图,OB C ''△即为所求,点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M 的坐标为(x ,y ),写出M 的对应点M′的坐标为(-2x ,-2y ).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.。
2020年广东深圳南山区联考一模九年级数学试卷及答案
2020年九年级一模数学学科试卷及答案考试时间:90分钟总分100一、选择题(本部分共12个小题,每小题3分,共36分,请把答案写在答题卡上)1.﹣2的绝对值是()A.﹣2B.2C.±2D.2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.3.4月24日是中国航天日。
1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1034.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.5.关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0B.k≤0C.k<0且k≠﹣1D.k≤0且k≠﹣1 6.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320 S2 2.1 1.92 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁7.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.110°C.120°D.125°8.下列命题正确是()A .一组对边平行,另一组对边相等的四边形是平行四边形B .六边形内角和为540°C .81的平方根是9D .对角线相等的平行四边形是矩形9.若关于x 的方程=﹣1无解,则m 的值为().A .1B .3C .351或D .3510.如图,CB 为⊙O 的切线,点B 为切点,CO 的延长线交⊙O 于点A ,若∠A =25°,则∠C 的度数是()A .25°B .30°C .35°D .40°11.如图,▱ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则PB +PD 的最小值等于()A .3B .3C .33D .2+2312.如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为()A .(1200,)B .(600,0)C .(600,)D .(1200,0)二、填空题(13-16题,每空3分,请把答案写在答题卡上)7分)13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为个.14.如图,在△ABC 中,CD 平分∠ACB ,DE ∥BC ,交AC 于点E .若∠AED =50°,则∠D =度.15.如图,过点C (3,4)的直线y =2x +b 交x 轴于点A ,∠ABC =90°,AB =CB ,曲线y =(x >0)过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为.16.如图,在△ABC 中,AB =AC =5,BC =4,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为.三、解答题(本大题共7小题)17.(5分)计算:|﹣2|+(sin36°﹣)0﹣+tan45°.18.(6分)先化简,再求值:x xx x x x x ++-÷-+-22444222,其中x =3.19.(7分)为了解市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A .非常了解”、“B .了解”、“C .基本了解”、“D .不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2),请根据图中的信息解答下列问题.(1)(2分)这次调查的市民人数为人,图2中,n =;(2)(1分)图1中的条形统计图中;(3)(2分)在图2中的扇形统计图中,求“C .基本了解”所在扇形的圆心角度数;(4)(2分)据统计,2018年该市约有市民500万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“A .非常了解”的市民约有多少万人?20.(8分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31°,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45°,根据测得的数据,计算这座灯塔的高度CD (结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.21.(8分)新冠病毒疫情牵动全国人心,“疫情无情人有情”.“红十字会”将人们为武汉市捐赠的物资打包成件,其中口罩和防护服共320件,口罩比防护服多80件.(1)求打包成件的口罩和防护服各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批口罩和防护服全部运往受灾地区.已知甲种货车最多可装口罩40件和防护服10件,乙种货车最多可装口罩和防护服各20件.则红十字会安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.红十字会应选择哪种方案可使运输费最少?最少运输费是多少元?22.(9分)如图,AD是⊙O的直径,BA=BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)(4分)求证:AF是⊙O的切线;(2)(5分)若BC=2,BE=4,求⊙O半径r.23.(9分)如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c 经过点B,C,与x轴的另一个交点为点A.(1)(3分)求抛物线的解析式;(2)(3分)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)(3分)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2024年广东省深圳市南山区中考数学一模试卷及答案解析
2024年广东省深圳市南山区中考数学一模试卷一、选择题(本题有10小题,每题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用2B铅笔填涂在答题卡上)1.(3分)如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.﹣2023C.D.﹣2.(3分)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是()A.B.C.D.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×103 4.(3分)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm5.(3分)一元一次不等式组的解集为()A.﹣1<x<4B.x<4C.x<3D.3<x<46.(3分)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°7.(3分)下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形的其中一个内角是72°D.单项式的次数是48.(3分)某校篮球队有20名队员,统计所有队员的年龄制成如下的统计表,表格不小心被滴上了墨水,看不清13岁和14岁队员的具体人数.年龄(岁)12岁13岁14岁15岁16岁人数(个)283在下列统计量,不受影响的是()A.中位数,方差B.众数,方差C.平均数,中位数D.中位数,众数9.(3分)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.=B.=﹣12C.240(x﹣12)=150x D.240x=150(x+12)10.(3分)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为直线x=t.若m<n<c,则t的取值范围是()A.B.1<t<3C.0<t<1D.二、填空题:(本大题共5小题,每小题3分,共15分)11.(3分)若,则ab=.12.(3分)已知一元二次方程x2﹣5x+2m=0有一个根为2,则另一根为.13.(3分)如图,一束光线从点A(﹣2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m﹣n的值是.14.(3分)如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为.15.(3分)如图,在四边形ACBD中,对角线AB、CD相交于点O,∠ACB=90°,BD=CD,若∠DAB=2∠ABC,则的值为.三、解答题:(本题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题9分,第21题9分,第22题10分,共55分)16.(5分)计算:.17.(6分)先化简,然后从﹣1,1,﹣2,2中选一个合适的数代入求值.18.(8分)2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x分为如下四组(A:x<70;B:70≤x<80;C:80≤x<90;D:x≥90,单位:分钟)进行统计,绘制了如下不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取的学生人数为人,扇形统计图中m的值为;(2)补全条形统计图;(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?(4)若D组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.19.(8分)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?20.(9分)麻城市思源实验学校自从开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;(3)问此“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量最大?21.(9分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.如图是从正面看到的一个“老碗”,其横截面可以近似的看成是如图(1)所示的以AB为直径的半圆O,MN为台面截线,半圆O与MN相切于点P,连结OP与CD相交于点E.水面截线,MN∥CD,AB=12cm.(1)如图(1)求水深EP;(2)将图(1)中的老碗先沿台面MN向左作无滑动的滚动到如图(2)的位置,使得A、C重合,求此时最高点B和最低点P之间的距离BP的长;(3)将碗从(2)中的位置开始向右边滚动到图(3)所示时停止,若此时∠BOP=75°,求滚动过程中圆心O运动的路径长.22.(10分)“转化”是解决数学问题的重要思想方法,通过构造图形全等或者相似建立数量关系是处理问题的重要手段.(1)【问题情景】:如图(1),正方形ABCD中,点E是线段BC上一点(不与点B、C 重合),连接EA.将EA绕点E顺时针旋转90°得到EF,连接CF,求∠FCD的度数.以下是两名同学通过不同的方法构造全等三角形来解决问题的思路,①小聪:过点F作BC的延长线的垂线;②小明:在AB上截取BM,使得BM=BE;请你选择其中一名同学的解题思路,写出完整的解答过程.(2)【类比探究】:如图(2)点E是菱形ABCD边BC上一点(不与点B、C重合),∠ABC=α,将EA绕点E顺时针旋转α得到EF,使得∠AEF=∠ABC=α(α≥90°),则∠FCD的度数为(用含α的代数式表示).(3)【学以致用】:如图(3),在(2)的条件下,连结AF,与CD相交于点G,当α=120°时,若,求的值.2024年广东省深圳市南山区中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用2B铅笔填涂在答题卡上)1.【分析】结合已知条件,根据实数与数轴的对应关系即可求得答案.【解答】解:∵OA=OB,点A表示的数是2023,∴OB=2023,∵点B在O点左侧,∴点B表示的数为:0﹣2023=﹣2023,故选:B.【点评】本题主要考查实数与数轴的对应关系,此为基础且重要知识点,必须熟练掌握.2.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、B、C都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将186000用科学记数法表示为:1.86×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据图形和直角三角形斜边上的中线等于斜边的一半,可以计算出CD的长.【解答】解:由图可得,∠ACB=90°,AB=7﹣1=6(cm),点D为线段AB的中点,∴CD=AB=3cm,故选:B.【点评】本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.5.【分析】求出第一个不等式的解集,再求出其公共解集即可.【解答】解:,由不等式x﹣2>1得:x>3,∴不等式的解集为3<x<4.故选:D.【点评】本题考查了解一元一次不等式组,解题的关键是熟知解集的规律.6.【分析】由平行线的性质求出∠OFB=25°,由对顶角的性质得到∠POF=∠2=30°,由三角形外角的性质即可求出∠3的度数.【解答】解:∵AB∥OF,∴∠1+∠OFB=180°,∵∠1=155°,∴∠OFB=25°,∵∠POF=∠2=30°,∴∠3=∠POF+∠OFB=30°+25°=55°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,对顶角的性质,关键是由平行线的性质求出∠OFB的度数,由对顶角的性质得到∠POF的度数,由三角形外角的性质即可解决问题.7.【分析】根据真假命题的定义:题设成立,结论也一定成立的命题是真命题,题设成立,结论不一定成立的命题是假命题进行判断,然后举出例子进行解答.【解答】解:A、两直线平行,同位角相等,原命题是假命题;B、菱形的四条边相等,是真命题;C、正五边形的其中一个外角是72°,内角是108°,原命题是假命题;D、单项式的次数是3,原命题是假命题;故选:B.【点评】本题主要考查了真假命题,解题关键是熟练掌握真假命题的定义.8.【分析】根据频数表可知,年龄为13岁与年龄为14岁的频数和为7,即可知出现次数最多的数据及第10、11个数据的平均数,可得答案.【解答】解:由表可知,年龄为13岁与年龄为14岁的频数和为20﹣2﹣8﹣3=7,故该组数据的众数为15岁,总数为20,按大小排列后,第10个和第11个数为15,15,则中位数为:(岁),故统计量不会发生改变的是众数和中位数,故选:D.【点评】本题考查频数分布表及统计量的选择,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.9.【分析】由慢马先行12天,可得出快马追上慢马时慢马行了(x+12)天,利用路程=速度×时间,结合快马追上慢马时快马和慢马行过的路程相等,即可得出关于x的一元一次方程,此题得解.【解答】解:∵慢马先行12天,快马x天可追上慢马,∴快马追上慢马时,慢马行了(x+12)天.根据题意得:240x=150(x+12).故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.【分析】根据m<n<c,可得出a+b+c<9a+3b+c<c,解得3a<﹣b<4a,进而可确定t 的取值范围.【解答】解:∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∵a>0,∴,∴<t<2.故选:A.【点评】本题考查二次函数的性质,二次函数图象上点的坐标特征,图象上点的坐标满足解析式解题关键.二、填空题:(本大题共5小题,每小题3分,共15分)11.【分析】根据比例的性质进行计算,即可解答.【解答】解:∵,∴ab=2×3=6,故答案为:6.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.12.【分析】利用根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为α,则α+2=5,解得α=3.故答案为:3.【点评】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.13.【分析】点A(﹣2,5)关于y轴的对称点为A′(2,5),根据反射的性质得,反射光线所在直线过点B(0,1)和A′(2,5),求出A'B的解析式为:y=2x+1,再根据反射后经过点C(m,n),2m+1=n,即可求出答案.【解答】解:∵点A(﹣2,5)关于y轴的对称点为A′(2,5),∴反射光线所在直线过点B(0,1)和A′(2,5),设A'B的解析式为:y=kx+1,过点A′(2,5),∴5=2k+1,∴k=2,∴A'B的解析式为:y=2x+1,∵反射后经过点C(m,n),∴2m+1=n,∴2m﹣n=﹣1.故答案为:﹣1.【点评】本题考查一次函数解析式,解题的关键是掌握待定系数法,求出A'B的解析式.14.【分析】过点A作AE⊥y轴于点E,设⊙A的半径为r,则AC=AB=r,BC=2r,设AE =a,则点C的坐标为(a,2r),据此可得k=2ar,然后再根据△ACD的面积为6可求出ar=12,据此可得此题的答案.【解答】解:过点A作AE⊥y轴于点E,设⊙A的半径为r,∵⊙A与x轴相切于点B,∴AC=AB=r,BC=2r,设AE=a,则点C的坐标为(a,2r),∴k=2ar,∵,∴,即:ar=12,∴k=2ar=24.故答案为:24.【点评】此题主要考查了反比例函数的图象,三角形的面积,解答此题的关键是熟练掌握三角形的面积计算公式,理解函数图象上的点满足函数的解析式,满足函数解析式的点都在函数的图象上.15.【分析】过点A作AE∥BC交VD于E,过点D作DH⊥BC于H,交AE于T,交AB于K,先证∠EAB=∠ABC=∠DAE,进而可证△ADT和△AKT全等,得AD=AK,再证四边形ACHT为矩形得AT=CH=BH,进而可证△ATK和△BHK全等得AK=BK,由此得AB=2AK=2AD,据此可得的值.【解答】解:过点A作AE∥BC交VD于E,过点D作DH⊥BC于H,交AE于T,交AB于K,如图所示:∵AE∥BC,∴∠EAB=∠ABC,∵∠DAB=2∠ABC,∴∠DAE+∠EAB=2∠ABC,∴∠DAE=∠ABC,∴∠DAE=∠EAB,∵AE∥BC,DH⊥BC,∴DH⊥AE,即∠ATD=∠ATK=90°在△ADT和△AKT中,,∴△ADT≌△AKT(ASA),∴AD=AK,∵BD=CD,DH⊥BC,∴BH=CH,∵DH⊥BC,DH⊥AE,∠ACB=90°,∴四边形ACHT为矩形,∴AT=CH=BH,在△ATK和△BHK中,,∴△ATK≌△BHK(AAS),∴AK=BK,∴AB=2AK=2AD,∴=.故答案为:.【点评】此题主要考查了等腰三角形的性质,矩形的判定和性质,全等三角形的判定和性质,理解等腰三角形的性质,矩形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.三、解答题:(本题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题9分,第21题9分,第22题10分,共55分)16.【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【解答】解:原式==4.【点评】本题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.【分析】先通分括号内的式子,同时将括号外的除法转化为乘法,然后约分,再从﹣1,1,﹣2,2中选一个使得原分式有意义的值代入化简后的式子计算即可.【解答】解:(x﹣1﹣)÷=[]•==x+1,∵x+1≠0,x2+2x+1≠0,x2﹣4≠0,∴x≠﹣1,x≠±2,∴x=1,当x=1时,原式=1+1=2.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.18.【分析】(1)由D组的人数除以所占百分比得出本次抽取的学生人数,即可解决问题;(2)求出C组的人数,补全条形统计图即可;(3)由该校九年级学生人数乘以参加家务劳动的时间在80分钟(含80分钟)以上的学生所占的比例即可;(4)画树状图,共有20种等可能的结果,其中抽取的两名同学中恰好是一名女生和一名男生的结果有12种,再由概率公式求解即可.【解答】解:(1)本次抽取的学生人数为5÷10%=50(人),∴m%=15÷50×100%=30%,∴m=30,故答案为:50,30;(2)C组的人数为:50﹣10﹣15﹣5=20(人),补全条形统计图如下:(3)600×=300(人),答:估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生约有300人;(4)若D组中有3名女生,则有2名男生,画树状图如下:共有20种等可能的结果,其中抽取的两名同学中恰好是一名女生和一名男生的结果有12种,∴抽取的两名同学中恰好是一名女生和一名男生的概率是=.【点评】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】(1)设该公司销售一台甲型自行车的利润是x元,一台乙型自行车的利润是y 元,根据该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.列出二元一次方程组,解方程组即可;(2)需要购买甲型自行车m台,则需要购买乙型自行车(20﹣m)台,根据资金不超过13000元,列出一元一次不等式,解不等式即可.【解答】解:(1)设该公司销售一台甲型自行车的利润是x元,一台乙型自行车的利润是y元,由题意得:,解得:,答:该公司销售一台甲型自行车的利润是150元,一台乙型自行车的利润是100元;(2)需要购买甲型自行车m台,则需要购买乙型自行车(20﹣m)台,由题意得:500m+800(20﹣m)≤13000,解得:m≥10,答:最少需要购买甲型自行车10台.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出数量关系,正确列出一元一次不等式.20.【分析】(1)由图设该函数解析式为y=kx,即可依题意求出y与x的函数关系式.(2)本题涉及分段函数的知识.需要注意的是x的取值范围依照分段函数的解法解出即可.(3)设学生当堂检测的时间为x分钟(0≤x≤15),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40﹣x)分钟.用配方法的知识解答该题即可.【解答】解:(1)设y=kx,把(1,2)代入,得:k=2,∴y=2x,(0≤x≤40);(2)当0≤x≤8时,设y=a(x﹣8)2+64,把(0,0)代入,得:64a+64=0,解得:a=﹣1,∴y=﹣(x﹣8)2+64=﹣x2+16x,当8<x≤15时,y=64;(3)设学生当堂检测的时间为x分钟(0≤x≤15),学生的学习收益总量为W,则老师在课堂用于精讲的时间为(40﹣x)分钟,当0≤x≤8时,W=﹣x2+16x+2(40﹣x)=﹣x2+14x+80=﹣(x﹣7)2+129,当x=7时,W max=129;当8≤x≤15时,W=64+2(40﹣x)=﹣2x+144,∵W随x的增大而减小,∴当x=8时,Wmax=128,综上,当x=7时,W取得最大值129,此时40﹣x=33,答:此“高效课堂”模式分配33分钟时间用于精讲、分配7分钟时间当堂检测,才能使这学生在40分钟的学习收益总量最大.【点评】本题考查了待定系数法求一次函数的解析式的运用,二次函数的运用,顶点式求二次函数的最大值的运用,解答时求出二次函数的解析式是关键.21.【分析】(1)连接OC,由切线的性质及垂径定理得出CE的长,由勾股定理求出OE的长,则可得出答案;(2)过B点作AD的平行线,与PO的延长线相交于点F.证明△AOE≌△BOF(ASA),得出OE=OF,由勾股定理得出答案;(3)由弧长公式可得出答案.【解答】解:(1)连接OC,∵半圆O与MN相切于点P,∴OP⊥CD,∵,∴,在Rt△OCE中,由勾股定理,可得,∴EP=OP﹣OE=6﹣3=3cm;(2)过B点作AD的平行线,与PO的延长线相交于点F.∵AD∥BF,∴∠OAE=∠OBF,在△AOE和△BOF中,∴△AOE≌△BOF(ASA),∴OE=OF,由(1)可得OE=3cm,,∴OE=OF=3cm,.由勾股定理可得,;(3)由(1)可知OE=3cm,OC=6cm,在Rt△COE中,∠COE=60°,∵∠BOP=75°,∴∠AOC=45°,由题意可得圆心O运动的路径长为弧AC的长度,∴(cm).【点评】本题考查了切线的性质,垂径定理,弧长公式,勾股定理,全等三角形的判定与性质,熟练掌握以上知识是解题的关键.22.【分析】(1)在AB上截取BM,使得BM=BE.证明△AME≌△ECF(SAS),得出∠AME =∠ECF=135°,则可得出结论;(2)由“SAS”可证△AEM≌△EFC,可得∠AME=∠ECF,由等腰三角形的性质可求解;(3)过点A作AP⊥CD交CD的延长线于点P,证明△APG∽△FCG,得出,在AB上截取AN,使AN=EC,连接NE,作BO⊥NE于点O.由(2)可知,△ANE≌△ECF,求出BE和CE,则可得出答案.【解答】解:(1)在AB上截取BM,使得BM=BE.∵BM=BE,AB=BC,由图可知AM=AB﹣BM,EC=BC﹣BE,∴AM=EC.∵EA顺时针旋转90°得到EF,∴AE=EF.∴∠MAE+∠MEA=45°,∠CEF+∠MEA=45°,∴∠MAE=∠CEF.在△AME和△ECF中,,∴△AME≌△ECF(SAS),∴∠AME=∠ECF=135°,∴∠FCD=45°;(2)如图2,在AB上截取BM,使得BM=BE,连接EM,∵四边形ABCD是菱形,∠ABC=α,∴AB=BC,∠BCD=180°﹣α,∵BM=BE,∴AM=CE,∵将EA绕点E顺时针旋转α得到EF,∴AE=EF,∠AEF=∠B=α,∵∠AEC=∠AEF+∠FEC=∠B+∠BAE,∴∠BAE=∠CEF,∴△AEM≌△EFC(SAS),∴∠AME=∠ECF,∵∠B=α,BM=BE,∴∠BME=∠BEM=90°﹣α,∴∠AME=90°+α=∠ECF,∴∠DCF=∠ECF﹣∠BCD=α﹣90°;故答案为:;(3)过点A作AP⊥CD交CD的延长线于点P,设菱形的边长为3.∵,∴DG=1,CG=2,∵∠ADC=∠ABC=120°,∴∠ADP=60°,∴,,∴,∵∠α=120°,由(2)知,∠GCF=90°,∵∠AGP=∠FGC,∴△APG∽△FCG,∴,∴,∴,在AB上截取AN,使AN=EC,连接NE,作BO⊥NE于点O.由(2)可知,△ANE≌△ECF,∴NE=CF,∵AB=BC,∴BN=BE,∴,∵∠ABC=120°,∴∠BNE=∠BEN=30°,∴,∴,∴.【点评】本题是几何变换综合题,考查了旋转的性质,全等三角形的判定和性质,正方形的性质,菱形的性质,相似三角形的判定和性质等知识,添加恰当辅助线构造全等三角形或相似三角形是解题的关键。
2020年深圳市南山区中考数学一模试卷
2020年广东省深圳市南山区中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是( )C. 0D. 1A. −1B. −122.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是( )A. B. C.D.3.下列图形既是轴对称图形,又是中心对称图形的是( )A. B. C. D.4.地球绕太阳公转的速度约为110000km/ℎ,则110000用科学记数法可表示为( )A. 0.11×106B. 1.1×105C. 0.11×105D. 1.1×1065.如图,已知a//b,∠1=120∘,∠2=90∘,则∠3的度数是( )A. 120∘B. 130∘C. 140∘D. 150∘6.下列运算正确的是( )A. 5a2+3a2=8a4B. a3⋅a4=a12C. (a+2b)2=a2+4b2D. (a−b)(−a−b)=b2−a27.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是( )A. 484(1−2x)=210B. 484x2=210C. 484(1−x)2=210D. 484(1−x)+484(1−x)2=210(x>0)8.如图,在平面直角坐标系中,点P是反比例函数y=2x图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反(k≠0)于点M,若PQ=4MQ,则k的值为比例函数y=kx( )A. ±2B. 12C. −12D. ±129. 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )个黑子.A. 37B. 42C. 73D. 12110. 二次函数y =ax 2+bx +c(a ≠0)的部分图象如图,图象过点(−1,0),对称轴为直线x =2,下列结论 ①abc >0; ②4a +b =0; ③9a +c >3b ;④当x >−1时,y 的值随x 值的增大而增大,其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个11. 如图,河流的两岸PQ ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN 的A 处测得∠DAN =45∘,然后沿河岸走了130米到达B 处,测得∠CBN =60∘.则河流的宽度CE 为( )A. 80B. 40(3−√3)C. 40(3+√3)D. 40√212. 若a 使关于x 的不等式组{x−a 2<0x −4<3(x +2)至少有三个整数解,且关于x 的分式方程a+x3−x +2x−3=2有正整数解,a 可能是( )A. −3B. 3C. 5D. 8二、填空题(本大题共4小题,共12.0分) 13. 因式分解:y 3−4x 2y =______.14. 一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15. 定义新运算:对于任意有理数a 、b 都有a ⊕b =a(a −b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2−5)+1=2×(3)+1=6+1=5.则4⊗x =13,则x =______.16. 正方形ABCD 中,F 是AB 上一点,H 是BC 延长线上一点,连接FH ,将△FBH 沿FH 翻折,使点B 的对应点E 落在AD 上,EH 与CD 交于点G ,连接BG 交FH 于点M ,当GB 平分∠CGE 时,BM =2√26,AE =8,则ED =______.三、解答题(共52分)17.先化简,再求值:xx2+2x+1÷(2x2−1x+1+1−x),其中x=2.18.(13)−2−4+√64+(3.14−x)0×cos60∘19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D、E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)已知AC=2√10,EB=4CE,求⊙O的直径22.如图1,在等腰Rt△ABC中,∠BAC=90∘,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90∘,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=√2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2√5,CE=2,求线段AE的长.23.如图1,二次函数y=ax2+bx的图象过点A(−1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN//y轴交OC于点N.为常数,试确定k的值.若在点T运动的过程中,ON2OM答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13. y(y+2x)(y−2x)14. 2515. 116. 417. 解:xx2+2x+1÷(2x2−1x+1+1−x)=x(x+1)2÷2x2−1+(1−x)(x+1)x+1=x(x+1)2⋅x+1x2=1x(x+1),当x=2时,原式=12×(2+1)=16.18. 解:原式=9+8+1×12=1712.19. 解:(1)本次参与调查的市民人数80÷40%=200(人);(2)A品牌人数为200×30%=60(人),D品牌人数为200×15%=30(人),补全图形如下:(3)10000×30%=3000(人),答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:(1)根据题意:y=20000+x100×10000=100x+20000;(2)设所获的利润w(元),则W=(2200−1200−x)(100x+20000)=−100(x−400)2+36000000;所以当降价400元,即定价为2200−400=1800元时,所获利润最大;(2)根据题意每天最多接受50000(1−0.05)=47500台,此时47500=100x+20000,解得:x=275.所以最大量接受预订时,每台定价2200−275=1925元.21. (1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90∘,∴∠DAB+∠ABD=90∘.∵AF是⊙O的切线,∴∠FAB=90∘,即∠DAB+∠CAF=90∘.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90∘,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)如图,连接AE,∴∠AEB=90∘,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2√10)2=x2+(3x)2,∴x=2.∴BA=10.22. 解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90∘,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB//DF ,∴∠DKE =∠ABC =45∘,∴∠EKF =180∘−∠DKE =135∘,EK =ED , ∵∠ADE =180∘−∠EDC =180∘−45∘=135∘, ∴∠EKF =∠ADE , ∵∠DKC =∠C , ∴DK =DC ,∵DF =AB =AC , ∴KF =AD ,在△EKF 和△EDA 中, {EK =ED∠EKF =∠ADE KF =AD, ∴△EKF≌△EDA(SAS),∴EF =EA ,∠KEF =∠AED , ∴∠FEA =∠BED =90∘, ∴△AEF 是等腰直角三角形, ∴AF =√2AE .(3)如图3,当AD =AC =AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD =AC ,ED =EC ,可得AE 垂直平分CD ,而CE =2, ∴EH =DH =CH =√2,Rt △ACH 中,AH =√(2√5)2+(√2)2=3√2,∴AE =AH +EH =4√2.23. 解:(1)∵二次函数y =ax2+bx 的图象过点A(−1,3),顶点B 的横坐标为1,则有{3=a −b −b 2a =1解得{a =1b =−2∴二次函数y =x 2−2x ,(2)由(1)得,B(1,−1), ∵A(−1,3),∴直线AB 解析式为y =−2x +1,AB =2√5, 设点Q(m ,0),P(n ,n 2−2n)∵以A 、B 、P 、Q 为顶点的四边形是平行四边形,①当AB 为对角线时,根据中点坐标公式得,则有{m+n2=0n 2−2n2=1,解得{m =−1−√3n =1+√3或{m =−1+√3n =1−√3∴P(1+√3,2)和(1−√3,2)②当AB 为边时,根据中点坐标公式得{n+12=m−12n 2−2n−12=32解得{m =3+√5n =1+√5或{m =3−√5n =1−√5 ∴P(1+√5,4)或(1−√5,4).故答案为P(1+√3,2)或(1−√3,2)或P(1+√5,4)或(1−√5,4). (3)设T(m ,m 2−2m),∵TM ⊥OC ,∴可以设直线TM 为y =−1k x +b ,则m 2−2m =−1k m +b ,b =m 2−2m +mk , 由{y =kx y =−1kx +m 2−2m +m k解得{x =m 2k−2mk+mk 2+1y =k(m 2k−2mk+m)k 2+1, ∴OM =√x 2+y 2=√k 2+1⋅(m 2k−2mk+m)k 2+1,ON =m ⋅√k 2+1,∴ON 2OM=m(k 2+1)√k 2+1mk−2k+1,∴k =12时,ON 2OM =5√54. ∴当k =12时,点T 运动的过程中,ON 2OM为常数.【解析】1. 解:∵−1<−12<0<1,∴最小的数为−1, 故选:A .根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可 本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:C .根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图. 3. 解:A 、不是轴对称图形,是中心对称图形,不合题意; B 、不是轴对称图形,不是中心对称图形,不合题意; C 、是轴对称图形,不是中心对称图形,不合题意; D 、是轴对称图形,也是中心对称图形,符合题意. 故选:D .根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 4. 解:将110000用科学记数法表示为:1.1×105. 故选:B .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5. 解:如图,延长∠1的边与直线b相交,∵a//b,∴∠4=180∘−∠1=180∘−120∘=60∘,由三角形的外角性质,可得∠3=90∘+∠4=90∘+60∘=150∘,故选:D.延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:A.5a2+3a2=8a2,故此题错误;B.a3⋅a4=a7,故此题错误;C.(a+2b)2=a2+4ab+4b2,故此题错误;D.(a−b)(−a−b)=b2−a2,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:484(1−x)2=210,故选:C.等量关系为:2015年贫困人口×(1−下降率)2=2017年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接OP,OM,OM′.由题意;S△POQ=1,S△MOQ=14=|k|2,∴k=±12,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:①由图象可得c>0,=2,∵x=−b2a∴ab<0,∴abc<0,故①错误;=2,②∵抛物线的对称轴为直线x=−b2a∴b=−4a,即4a+b=0,故本结论正确;③∵当x=−3时,y<0,∴9a−3b+c<0,即9a+c<3b,故本结论错误;④∵对称轴为直线x=2,∴当−1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,故本结论错误;故选:A.①由图象可得c>0,ab<0,abc<0,=2,则有4a+b=0;②根据抛物线的对称轴为直线x=−b2a③观察函数图象得到当x=−3时,函数值小于0,则9a−3b+c<0,即9a+c<3b;④由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.11. 解:过点C作CF//DA交AB于点F.∵MN//PQ,CF//DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=∠DAN=45∘,∴FE=CE,设BE=x,∵∠CBN=60∘,∴EC=√3x,∵FB+BE=EF,∴130−50+x=√3x,解得:x=40(√3+1),∴CE=√3x=40(3+√3),故选:C.过点C作CF//DA交AB于点F,易证四边形AFCD是平行四边形.再在直角△CFE中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:{x−a 2<0x −4<3(x +2), 不等式组整理得:{x <a x >−5, 由不等式组至少有三个整数解,得到a >−2,a+x3−x +2x−3=2,分式方程去分母得:−a −x +2=2x −6,解得:x =8−a3,∵分式方程有正整数解,且x ≠3,∴a =2,5,只有选项C 符合.故选:C .将不等式组整理后,由不等式组至少有三个整数解确定出a 的范围,再由分式方程有正整数解确定出满足条件a 的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:y 3−4x 2y ,=y(y 2−4x 2),=y(y +2x)(y −2x).先提取公因式y ,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为3+16+3+1=25,故答案为:25.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:4(4−x)+1=13,去括号得:16−4x +1=13,移项合并得:4x =4,解得:x =1.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B 作BP ⊥EH 于P ,连接BE ,交FH 于N ,则∠BPG =90∘, ∵四边形ABCD 是正方形,∴∠BCD =∠ABC =∠BAD =90∘,AB =BC ,∴∠BCD =∠BPG =90∘,∵GB 平分∠CGE∴∠EGB =∠CGB ,又∵BG =BG ,∴△BPG≌△BCG ,∴∠PBG =∠CBG ,BP =BC ,∴AB =BP ,∵∠BAE=∠BPE=90∘,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∠ABC=45∘,∴∠EBG=∠EBP+∠GBP=12由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM=2√26,∴BN=NM=2√13,∴BE=4√13,∵AE=8,∴Rt△ABE中,AB=√BE2−AE2=12,∴AD=12,∴DE=12−8=4,故答案为:4.作辅助线,构建全等三角形,先证明∠EBG=45∘,利用△BNM是等腰直角三角形,即可求得BN,NM的长,Rt△ABE中,依据勾股定理可得AB=√BE2−AE2=12,根据AD=12,即可得到DE=12−8=4.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将x=2代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. (1)根据B品牌人数及其所占百分比可得总人数;(2)总人数分别乘以A、D所占百分比求出其人数即可补全图形;(3)总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. (1)根据题意列代数式即可;(2)根据利润=单台利润×预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;(3)根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. (1)首先连接BD,由AB为直径,可得∠ADB=90∘,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:(2√10)2=x2+(3x)2求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. (1)依据AE=EF,∠DEC=∠AEF=90∘,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=√2,Rt△ACH 中,AH=3√2,即可得到AE=AH+EH=4√2.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. (1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2−2m),由TM⊥OC,可以设直线TM为y=−1kx+b,则m2−2m=−1k m+b,b=m2−2m+mk,求出点M、N坐标,求出OM、ON,根据ON2OM列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学一模试卷一、选择题1.与的积为1的数是()A.2B.C.﹣2D.2.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A.5.6×109B.5.6×108C.0.56×109D.56×1083.下列运算正确的是()A.B.C.3a+5b=8ab D.3a2b﹣4ba2=﹣a2b4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或225.下列立体图形中,主视图是矩形的是()A.B.C.D.6.下列各数中,为不等式组解的是()A.﹣1B.0C.2D.47.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°9.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7B.7,7C.7,6D.6,610.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣111.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共4个小题,每小题3分,共12分)13.若分式的值为0,则x的值为.14.把多项式am2﹣9a分解因式的结果是.15.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.16.如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k =.三、解答题17.计算(﹣π)0﹣3tan30°+()﹣2+|1﹣|18.先化简:,再从﹣3、2、3中选择一个合适的数作为a的值代入求值.19.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?捐款人数0~50元51~100元101~150元151~200元6200元以上420.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=,点M是y轴上一个动点,求△AQM的最小周长.参考答案一、选择题:(本大题共12个小题,每小题3分,共36分.)1.与的积为1的数是()A.2B.C.﹣2D.【分析】根据乘积是1的两数互为倒数,进行求解.解:∵的倒数是2,∴与乘积为1的数是2,故选:A.2.《战狼2》中“犯我中华者,虽远必诛”,令人动容,热血沸腾.其票房突破56亿元(5600000000元),5600000000用科学记数法表示为()A.5.6×109B.5.6×108C.0.56×109D.56×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:5600000000=5.6×109,故选:A.3.下列运算正确的是()A.B.C.3a+5b=8ab D.3a2b﹣4ba2=﹣a2b【分析】分别根据有理数的混合运算法则,幂的定义,合并同类项法则逐一判断即可.解:A,故本选项不合题意;B.,故本选项不合题意;C.3a与5b不是同类项,所以不能合并,故本选项不合题意;D.3a2b﹣4ba2=﹣a2b,正确.故选:D.4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或22【分析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.5.下列立体图形中,主视图是矩形的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解:A.此几何体的主视图是等腰三角形;B.此几何体的主视图是矩形;C.此几何体的主视图是等腰梯形;D.此几何体的主视图是圆;故选:B.6.下列各数中,为不等式组解的是()A.﹣1B.0C.2D.4【分析】分别求出两个不等式的解集,再找到其公共部分即可.解:,由①得,x>,由②得,x<4,∴不等式组的解集为<x<4.四个选项中在<x<4中的只有2.故选:C.7.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.【分析】根据勾股定理求出AC,根据余弦的定义计算即可.解:由勾股定理得,AC===则sin B==,故选:C.8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°【分析】根据平行线的性质求出∠B,根据圆内接四边形的性质求出∠D,根据圆周角定理解答.解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.9.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7B.7,7C.7,6D.6,6【分析】根据中位数和众数的定义分别进行解答即可.解:∵共有15个数,最中间的数是8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6;6出现的次数最多,出现了6次,则众数是6;故选:D.10.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣1【分析】利用一元二次方程的定义和根的判别式的意义得到k≠0且△=(﹣2)2﹣4×k ×(﹣1)≥0,然后求出两不等式的公共部分后找出非正整数即可.解:根据题意得k≠0且△=(﹣2)2﹣4×k×(﹣1)≥0,解得k≥﹣1且k≠0,∵k为非正整数,∴k=﹣1.故选:D.11.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.【分析】设直线l的解析式为y=kx+b,列方程组求得y=x+1,根据已知条件得到点C (4,3),设反比例函数表达式为y=,把C的坐标代入即可得到结论.解:设直线l的解析式为:y=kx+b,∵直线l经过点A(﹣2,0)和点B(0,1),∴,解得:,∴直线l的解析式为:y=x+1,∵点A(﹣2,0),∴OA=2,∵OM=2OA,∴OM=4,∴点C的横坐标为4,当x=4时,y=3,∴点C(4,3),设反比例函数表达式为y=,∴m=12,∴反比例函数表达式为y=,故选:B.12.如图,等腰直角三角形ABC,∠BAC=90°,D、E是BC上的两点,且BD=CE,过D、E作DM、EN分别垂直AB、AC,垂足为M、N,交与点F,连接AD、AE.其中①四边形AMFN是正方形;②△ABE≌△ACD;③CE2+BD2=DE2;④当∠DAE=45°时,AD2=DE•CD.正确结论有()A.1个B.2个C.3个D.4个【分析】由三个角是直角的四边形是矩形,先判定四边形AMFN是矩形,再证明AM=AN,从而可判断①;利用SAS可判定△ABE≌△ACD,从而可判断②;在没有∠DAE =45°时,无法证得DE'=DE,故可判断③;由∠DAE=∠C,∠ADE=∠CDA可判定△ADE∽△CDA,从而可判定④.解:∵DM、EN分别垂直AB、AC,垂足为M、N,∴∠AMF=∠ANF=90°,又∵∠BAC=90°,∴四边形AMFN是矩形;∵△ABC为等腰直角三角形,∴AB=AC,∠ABC=∠C=45°,∵DM⊥AB,EN⊥AC,∴△BDM和△CEN均为等腰直角三角形,又∵BD=CE,∴△BDM≌△CEN(AAS),∴BM=CN∴AM=AN,∴四边形AMFN是正方形,故①正确;∵BD=CE,∴BE=CD,∵△ABC为等腰直角三角形,∴∠ABC=∠C=45°,AB=AC,∴△ABE≌△ACD(SAS),故②正确;如图所示,将△ACE绕点A顺时针旋转90°至△ABE',则CE=BE',∠E'BA=∠C=45°,由于△BDM≌△CEN,故点N落在点M处,连接ME',则D、M、E'共线,∵∠E'BA=45°,∠ABC=45°,∴∠DBE'=90°,∴BE'2+BD2=DE'2,∴CE2+BD2=DE'2,当∠DAE=45°时,∠DAE'=∠DAM+∠EAN=90°﹣45°=45°,AE=AE',AD=AD,∴△ADE≌△ADE'(SAS),∴DE'=DE,∴在没有∠DAE=45°时,无法证得DE'=DE,故③错误;∵AB=AC,∠ABD=∠C,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∴当∠DAE=45°时,∠ADE=∠AED=67.5°,∵∠C=45°,∴∠DAE=∠C,∠ADE=∠CDA,∴△ADE∽△CDA,∴=,∴AD2=DE•CD,故④正确.综上,正确的有①②④,共3个.故选:C.二、填空题(本大题共4个小题,每小题3分,共12分)13.若分式的值为0,则x的值为2.【分析】根据分式的值为0的条件和分式有意义条件得出4﹣x2=0且x+2≠0,再求出即可.解:∵分式的值为0,∴4﹣x2=0且x+2≠0,解得:x=2,故答案为:2.14.把多项式am2﹣9a分解因式的结果是a(m+3)(m﹣3).【分析】直接提取公因式a,再利用平方差公式分解因式得出答案.解:am2﹣9a=a(m2﹣9)=a(m+3)(m﹣3).故答案为:a(m+3)(m﹣3).15.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长4cm.【分析】根据平行四边形的性质得到AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC==6cm,∴OC=3cm,∴BO==5cm,∴BD=10cm,∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm,故答案为:4.16.如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15o,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k =2﹣.【分析】连接OB,过点B作BE⊥x轴于点E,根据正方形的性质可得出∠AOB的度数及OB的长,结合三角形外角的性质可得出∠BDO=∠DBO,利用等角对等边可得出OD =OB,进而可得出点D的坐标,在Rt△BOE中,通过解直角三角形可得出点B的坐标,由点B,D的坐标,利用待定系数法可求出k,b的值,再将其代入(b﹣k)中即可求出结论.解:连接OB,过点B作BE⊥x轴于点E,如图所示.∵正方形ABCO的边长为,∴∠AOB=45°,OB=OA=2.∵OA与x轴正半轴的夹角为15o,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴点D的坐标为(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴点B的坐标为(,1).将B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案为:2﹣.三、解答题17.计算(﹣π)0﹣3tan30°+()﹣2+|1﹣|【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.解:原式=1﹣3×+4+﹣1=1﹣+4+﹣1=4.18.先化简:,再从﹣3、2、3中选择一个合适的数作为a的值代入求值.【分析】根据分式的加法和除法可以化简题目中的式子,然后在﹣3、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.解:===a+2,当a=﹣3时,原式=﹣3+2=﹣1.19.某社区踊跃为“抗击肺炎”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但工作人员不小心把墨水滴在统计表上,部分数据看不清楚.(1)共有多少人捐款?(2)如果捐款0~50元的人数在扇形统计图中所占的圆心角为72°,那么捐款51~100元的有多少人?捐款人数0~50元51~100元101~150元151~200元6200元以上4【分析】(1)根据捐款200元以上的人数和所占的百分比,可以求得本次共有多少人捐款;(2)根据(1)中的结果和扇形统计图中的数据,统计表中的数据,可以计算出捐款51~100元的有多少人.解:(1)4÷8%=50(人),答:共有50人捐款;(2)50﹣50×﹣50×32%﹣6﹣4=50﹣10﹣16﹣6﹣4=14(人)答:捐款51~100元的有14人.20.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)【分析】(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.解:延长PQ交直线AB于点E,如图所示:(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°,∴∠BPE=30°,在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=9米,则x﹣x=9,解得:x=.则BE=米.在直角△BEQ中,QE=BE=米.∴PQ=PE﹣QE=﹣=9+3(米).答:电线杆PQ的高度为(9+3)米.21.六一儿童节,某玩具经销商在销售中发现:某款玩具若以每个50元销售,一个月能售出500个,销售单价每涨1元,月销售量就减少10个,这款玩具的进价为每个40元,请回答以下问题:(1)若月销售利润定为8000元,且尽可能让利消费者,销售单价应定为多少元?(2)由于资金问题,在月销售成本不超过10000元、且没有库存积压的情况下,问销售单价至少定为多少元?【分析】(1)根据“销售单价每涨1元,月销售量就减少10件”,可知:月销售量=500﹣(销售单价﹣50)×10,然后根据月销售利润=每件的利润×销售的数量列出方程并解答;(2)设销售单价定为a元,根据“在月销售成本不超过10000元”列出不等式,并解答.解:(1)设销售单价应定为x元,由题意,得(x﹣40)[500﹣10(x﹣50)]=8000,解得x1=60,x2=80,∵尽可能让利消费者,∴x=60.答:消费单价应定为60元.(2)设销售单价定为a元,由题意,得40[500﹣10(a﹣50)]≤10000,解得a≥75答:销售单价至少定为75元.22.如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.【分析】(1)如图1中,作CD⊥y轴于D.首先证明四边形OACD是矩形,利用反比例函数k的几何意义解决问题即可.(2)如图2中,作BD⊥AC于D,交反比例函数图象于N,连接CN,AN.求出D2你的坐标,证明四边形ABCN是菱形即可.(3)如图3中,连接PB,PA,OP.设P(a,).可得S四边形OAPB=S△POB+S△POA =×1×a+××=a+=(﹣)2+,由此即可解决问题.解:(1)如图1中,作CD⊥y轴于D.∵CA∥y轴,CD⊥y轴,∴CD∥OA,AC∥OD,∴四边形OACD是平行四边形,∵∠AOD=90°,∴四边形OACD是矩形,∴k=S矩形OACD=2S△ABC=2,∴反比例函数的解析式为y=.(2)如图2中,作BD⊥AC于D,交反比例函数图象于N,连接CN,AN.∵△ABC是等边三角形,面积为,设CD=AD=m,则BD=m,∴×2m×m=,∴m=1或﹣1(舍弃),∴B(0,1),C(,,2),A(,0),∴N(2,1),∴BD=DN,∵AC⊥BN,∴CB=CN,AB=AN,∵AB=BC,∴AB=BC=CN=AN,∴四边形ABCN是菱形,∴N(2,1).(3)如图3中,连接PB,PA,OP.设P(a,).S四边形OAPB=S△POB+S△POA=×1×a+××=a+=(﹣)2+,∴当a=时,四边形OAPB的面积最小,解得a=或﹣(舍弃),此时P(,).23.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=,点M是y轴上一个动点,求△AQM的最小周长.【分析】(1)求得点A的坐标,根据抛物线过点A、B、C三点,从而可以求得抛物线的解析式;(2))△ABP为直角三角形时,分别以三个顶点为直角顶点讨论:根据直角三角形的性质和勾股定理列方程解决问题;(3)求出点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,求出QG+AQ的值即可得出答案.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.。