广东省珠海市2021届上学期高三年级摸底考试数学试卷

合集下载

广东省珠海高三9月摸底考试文科数学试题

广东省珠海高三9月摸底考试文科数学试题

珠海市第一学期高三摸底考试 文科数学试题和参考答案及评分标准一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.设集合2{|1}P x x ==,那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 【答案】A【解析】211x x =⇒=±,所以{}1,1P =-.集合{}1,1P =-的真子集有{}{},1,1∅-共3个.故A 正确.2.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( )A .(2,4)B .(3,5)C .(1,1)D .(-1,-1) 【答案】C . 【解析】()(1,1)DA AD AC AB =-=--=.3.设()2112i iz +++=,则z =( ) A .3 B .1 C .2 D .2 【答案】D【解析】根据题意得121z i i i =-+=+,所以z =4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )【答案】D【解析】所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的对角线,在侧视图中的矩形的自左下而右上的一条对角线,因在左侧不可见,故而用虚线,所由上分析知,应选D.5.如图,大正方形的面积是 34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为 3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( )A .117B .217C .317D .417【答案】B【解析】直角三角形的较短边长为 3,则较长边为5,所以小正方形边长为2,面积为4,所以向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为423417=,故选B . 6.某商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:约为6℃,据此估计该商场下个月毛衣销售量约为( )件. A.46 B.40 C.38 D.58 【答案】A 为:(10,38),又在回归方程y bx a=+$上,且2b =-,∴3810(2)a =⨯-+,解得:58a =,∴258y x =-+$,当x =6时,265846y =-⨯+=$.故选:A . 7.设m n ,是两条不同的直线,αβ,是两个不同的平面,下列命题中正确的是 ( ) A .若αβ⊥,,m n αβ⊂⊂,则m n ⊥ B .若α∥β,,m n αβ⊂⊂,则n ∥m C .若m n ⊥,,m n αβ⊂⊂,则αβ⊥ D .若m α⊥,n ∥m ,n ∥β,则αβ⊥ 【答案】D【解析】位于两个互相垂直的平面内的两条直线位置关系不确定,故A 错;分别在两个平行平面内的两条直线可平行也可以异面,故B 错;由m α⊥,n ∥m 得n α⊥,因为n ∥β,设,n l γλβ⊂=,则//n l ,从而l α⊥,又l β⊂,故αβ⊥,D 正确.考点:空间直线和直线、直线和平面,平面和平面的位置关系.8.已知函数()sin 2f x x =向左平移6π个单位后,得到函数()y g x =,下列关于()y g x =的说法正确的是( ) A .图象关于点(,0)3π-中心对称 B .图象关于6x π=-轴对称C .在区间5[,]126ππ--单调递增 D .在[,]63ππ-单调递减 【答案】C【解析】∵函数f(x)=sin2x 向左平移6π个单位,得到函数y=g(x)=sin2(x+6π)=sin(2x+3π);∴对于A :当x=-3π时,y=g(x)=sin(-32π+3π)=-23≠0∴命题A 错误;对于B :当x=-6π时,y=g(x)=sin(-3π+3π)=0≠±1,∴命题B 错误;对于C :当x ∈5[,]126ππ--时,2x+3π∈[-2π,0],∴函数y=g(x)= sin(2x+3π)是增函数,∴命题C 正确;对于D :当x ∈[,]63ππ-时,2x+3π∈[0,π],∴函数y=g(x)= sin(2x+3π)是先增后减的函数,∴命题D 错误.9.阅读上图所示的程序框图,运行相应的程序,输出的结果是( ). A .123 B.38 C .11 D .3 【答案】C 【解析】试题分析:依此程序框图,变量a 初始值为1,满足条件a <10,执行循环, a=12+2=3,满足条件a <10,执行循环, a=32+2=11,不满足循环条件a <10,退出循环, 故输出11.故选C .10.己知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线l 与直线320x y -+=平行,若数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2015S 的值为( )A .20142015B .20122013C .20132014D .20152016【答案】D【解析】由已知得,'()2f x x b =+,函数2()f x x bx =+的图象在点(1,(1))A f 处的切线斜率为'(1)23k f b ==+=,故1b =,所以2()f x x x =+,则1111()(1)1f n n n n n ==-++,所以111111(1)())122311n S n n n =-+-+-=-++…+(,故2015S =20152016.11.椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F0y +=的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A .12B .12 C .2D 1【答案】D .【解析】设(,0)F c -0y +=的对称点A 的坐标为(m,n),则(1022nm c m c n⎧⋅=-⎪⎪+-+=,所以2c m =,2n =,将其代入椭圆方程可得22223441cc a b +=,化简可得42840e e -+=,解得1e =,故应选D . 12.若a 满足4lg =+x x ,b 满足410=+x x ,函数⎩⎨⎧>≤+++=0202)()(2x x x b a x x f ,,,则关于x 的方程x x f =)(解的个数是( )A .1B .2C .3D .4 【答案】C【解析】由已知得,lg 4x x =-,104x x =-,在同一坐标系中作出10x y =,lg y x =以及4y x =-的图象,其中10x y =,lg y x =的图象关于y x =对称,直线y x =与4y x =-的交点为(2,2),所以4a b +=,2420()2,0x x x f x x ⎧++≤=⎨>⎩,,当0x ≤时,242x x x ++=,1x =-或2-;当0x >,2x =,所以方程x x f =)(解的个数是3个.二、填空题:本大题共4小题,每小题5分,满分20分.13.设公比为(0)q q >的等比数列{}n a 的前n 项和为nS .若224432,32S a S a =+=+,则q =. 【答案】23【解析】由已知可得2322+=a S ,23224+=q a S ,两式相减得)1(3)1(222-=+q a q a 即0322=--q q ,解得23=q 或1-=q (舍),答案为23. 14.已知函数()()1623++++=x a ax x x f 有极大值和极小值,则a 的取值范围是 【答案】63>-<a a 或【解析】因为()()1623++++=x a ax x x f 有极大值和极小值,则说明导函数()()2'3260f x x ax a =+++=有两个不同的实数根,即为2(2)43(6)0a a ∆=-⨯⨯+≥解得为63>-<a a 或 15.已知实数,x y 满足约束条件⎪⎩⎪⎨⎧≤≤-≥++0005y y x y x ,则241z x y =++的最小值是____________【答案】-14 【解析】作出不等式⎪⎩⎪⎨⎧≤≤-≥++0005y y x y x 组表示的平面区域,如图所示的阴影部分 由z=2x+4y+1可得421z x y +-=, 4z 表示直线421z x y +-=在y 轴上的截距,截距越小,z 越小,由题意可得,当y=-2x+z 经过点A 时,z 最小 由⎩⎨⎧=-=++005y x y x 可得A(25-,25-), 此时141254252-=+⨯-⨯-=z .故答案为:-14.16.若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为 .【答案】1【解析】试题分析:已知抛物线28y x =,则其焦点F 坐标为(2,0) 双曲线2213x y n-=的右焦点为2=,解得1n =,故答案为1.三、解答题:本大题共8小题,考生作答6小题,共70分.解答须写出文字说明、证明过程和演算步骤。

广东省珠海市斗门第一中学高中部2021-2022学年高三数学文模拟试卷含解析

广东省珠海市斗门第一中学高中部2021-2022学年高三数学文模拟试卷含解析

广东省珠海市斗门第一中学高中部2021-2022学年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 等于A.1B.C.D.参考答案:D2. 规定:对任意的各位数字不全相同的三位数,若将各位数字按照从大到小、从左到右的顺序排列得到的三位数,称为原三位数的“和谐数”;若将各位数字按照从小到大、从左到右的顺序排列得到的三位数,称为原三位数的“新时代数”.如图,若输入的=891,则输出的为()A.2 B.3 C.4 D.5参考答案:C3. 若cosx=sin63°cos18°+cos63°cos108°,则cos2x=()A.B.C.0 D.参考答案:C【考点】三角函数的化简求值.【分析】利用诱导公式以及两角和与差的三角函数化简已知条件,利用二倍角公式求解即可.【解答】解:cosx=sin63°cos18°+cos63°cos108°=sin63°cos18°﹣cos63°sin18°=sin45°=.cos2x=2cos2x﹣1=2×=0.故选:C.4. 已知为虚数单位,则复数的虚部是A. B.1 C. D.参考答案:A5. 函数f(x)=的图象为( )A.B.C.D.参考答案:C考点:分段函数的解析式求法及其图象的作法.专题:图表型;数形结合.分析:我们看,该函数是偶函数,所以对称区间上的图象关于y轴对称,则易知结论.解答:解:当x≥0时,是一条直线,所以选项都满足当x<0时,y=3|x|=3﹣x与y=3x(x≥0)关于y轴对称.故选C点评:本题主要考查函数图象在作图和用图时,一定要注意关键点,关键线和分布规律.6. 数列满足当(其中时,有则的最小值为()A. B. C. D.参考答案:B略7. 已知数列是等差数列,若它的前n项和有最大值,且,则使成立的最小自然数n的值为( )A. 10B. 19C. 20D. 21参考答案:B略8. 定义在R上的函数满足,且对任意的不相等的实数,有成立,若关于的不等式在上恒成立,则实数的取值范围A. B.C. D.参考答案:D9. 等比数列的前n项和为,已知,,则A.38B.20C.10D.9参考答案:C10. n∈N* ,“数列{an}是等差数列”是“点Pn在一条直线上”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. (坐标系与参数方程选做题)在极坐标系中,圆上的点到直线的距离的最小值为________.参考答案:1略12. 已知,,则.参考答案:13. 的展开式中的常数项为_________.参考答案:试题分析:考点:二项式定理.14. 已知幂函数的图象过(4,2)点,则__________.参考答案:略15. 设n=(4sinx+cosx)dx,则二项式(x﹣)n的展开式中x的系数为.参考答案:10考点:二项式定理.专题:二项式定理.分析:计算定积分求出n=5,再根据(x﹣)5的展开式的通项公式,求出展开式中x的系数.解答:解:n=(4sinx+cosx)dx=(sinx﹣4cosx)=1﹣(﹣4)=5,则二项式(x﹣)n=(x﹣)5的展开式的通项公式为T r+1=?(﹣1)r?x5﹣2r,令5﹣2r=1,求得r=2,可得展开式中x的系数为=10,故答案为:10.点评:本题主要考查定积分的计算,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16. 已知,且为第二象限角,则的值为 .参考答案:17. 设实数满足约束条件则的最大值为。

广东省珠海市2021届高三一模数学试题(解析版)

广东省珠海市2021届高三一模数学试题(解析版)
(1)熟练掌握利用正余弦定理进行角化边或边化角;
(2)利用余弦定理结合基本不等式求最值.
16.若以函数 的图像上任意一点 为切点作切线 , 图像上总存在异于 点的点 ,使得以 为切点的直线 与 平行,则称函数 为“美函数”,下面四个函数中是“美函数”的是_________.




【答案】②③
【解析】
【答案】
【解析】
【分析】根据等式,左边 ,
右边 ,所以 ,由正弦定理得 ,带入余弦定理利用基本不等式即可得解.
【详解】 ,


所以 ,
由正弦定理得, ,
由余弦定理得, ,
当且仅当 时取等号,此时 .
故答案为: .
【点睛】本题考查了解三角形,考查了恒等变换化简求值,同时考查了基本不等式求最值,有一定的计算量,属于中档题.本题的关键有:
则 ,
由约束条件作出可行域如图,
联立 ,解得 , ,
由 ,得 ,由图可得,当直线 过 时,
直线在 轴上的截距最大, 有最大值为 ,即 .
故选:B.
7.下列四个叙述中,错误的是()
A.“ 为真”是“ 为真”的必要不充分条件
B.命题 :“ 且 , 的值域是 ”,则 :“ 且 ,使得 ”
C.已知 且 ,原命 平面 ;
(2)求直线 与平面 所成角的正切值.
【答案】(1)证明见解析;(2)
【解析】
【分析】(1)要证明线面平行,需证明线线平行,通过作辅助线,连接 设与 交于 ,连接 ,即可证明 ;(2)过 作 交 于 ,连接 ,根据线面角的定义, 即为所求.
【详解】(1)证明:连接 设与 交于 ,连接 ,
则第1行到第44行末一共有990个奇数,第1行到第45行末一共有1035个数,

广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科) Word

广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科) Word

广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科)Word广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科)最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。

最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

一、选择题(共10小题,每小题0分,满分0分)1.已知集合M={2,3,4},N={0,2,3,4,5},则?NM=() A. {2,3,4} B. {0,2,3,4,5} C. {0,5} D.{3,5}2.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为() A. 9 B. 8 C. 10 D.73.在等比数列{an}中,有a1a5=4,则a3的值为() A.±2 B.��2 C. 24.已知复数z满足(1��i)z=2,则z=() A.��1��i B.��1+i C. 1��i5.下列函数中,定义域是R且为增函数的是() A. y=e B. y=x C. y=lnx6.如图为某几何体的三视图,则其体积为()��xD.4D.1+iD.y=|x|A. 2B. 4C.7.设a,b∈R,则“a+b>4”是“a>2且b>2”的() A.充分非必要条件B.必要非充分条件 C.充要条件 D.既非充分又非必要条件8.对任意的[��,]时,不等式x+2x��a≤0恒成立,则实数a的取值范围是()A.(��∞,0]B.(��∞,3]C. [0,+∞)D.[,+∞)29.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.10.设点M(x0,1),若在圆O:x+y=1上存在点N,使得∠OMN=30°,则x0的取值范围是() A. [��,]B. [��,]C. [��2,2]D.[��,]2B. C. D.二、填空题(共5小题,每小题0分,满分0分) 11.不等式组12.在△ABC中,a=1,b=2,cosC=,则c=.13.若曲线y=xlnx上点P处的切线平行于直线x��y+1=0,则点P的坐标是. 14.在平面直角坐标系中,曲线C的参数方程为15.如图,已知=,|F2F4|=��1是圆O的两条弦,C2,F1,C1,则圆O的半径等于.(t为参数)的普通方程为.表示的平面区域的面积为.三、解答题(共5小题,满分0分) 16.已知函数f(x)=Asin(x+),x∈R,且f()=(1)求A的值;(2)若角θ的终边与单位圆的交于点P(,),求f(��θ).17.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的4次预赛成绩记录如下:甲 82 84 79 95 乙 95 75 80 90(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?18.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若A C⊥BC,证明:直线BC⊥平面ACC1A1;(2)是否存在过A1C的平面α,使得直线BC1∥α平行,若存在请作出平面α并证明,若不存在请说明理由.19.设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|BF1|,且|AB|=4,△ABF2的周长为16 (1)求|AF2|;(2)若直线AB的斜率为1,求椭圆E的方程.20.设函数f(x)=x��(1+a)x+ax,其中a>1 (1)求f(x)在的单调区间;(2)当x∈[1,3]时,求f(x)最小值及取得时的x的值.32广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题0分,满分0分)1.已知集合M={2,3,4},N={0,2,3,4,5},则?NM=() A. {2,3,4} B. {0,2,3,4,5} C. {0,5} D.{3,5}考点:补集及其运算.专题:集合.分析:根据集合补集的定义即可得到结论.解答:解:∵M={2,3,4},N={0,2,3,4,5},∴?NM={0,5},故选:C点评:本题主要考查集合的基本运算,比较基础.2.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为() A. 9 B. 8 C. 10 D.7考点:系统抽样方法.专题:概率与统计.分析:根据系统抽样的定义,即可得到结论.解答:解:从72人,从中抽取容量为8的样本,则分段的间隔为72÷8=9,故选:A点评:本题主要考查系统抽样的应用,比较基础.3.在等比数列{an}中,有a1a5=4,则a3的值为() A.±2 B.��2 C. 2考点:等比数列的通项公式.专题:等差数列与等比数列.D.4分析:由等比数列的性质得=4,由此能求出a3=±2.解答:解:∵在等比数列{an}中,有a1a5=4,∴=4,解得a3=±2.故选:A.点评:本题考查等比数列的等3项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.已知复数z满足(1��i)z=2,则z=() A.��1��i B.��1+i C. 1��i D.1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:z=,故选:D.点评:本题考查了复数的运算法则,属于基础题.5.下列函数中,定义域是R且为增函数的是()A. y=e B. y=x C. y=lnx D.y=|x|考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数单调性的性质和函数成立的条件,即可得到结论.解答:解:A.函数的定义域为R,但函数为减函数,不满足条件. B.函数的定义域为R,函数增函数,满足条件. C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(��∞,0)上是减函数,不满足条件.故选:B.点评:本题主要考查函数定义域和单调性的判断,比较基础.6.如图为某几何体的三视图,则其体积为()��xA. 2B. 4C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知几何体是:底面为直角三角形一条侧棱垂直底面直角顶点的三棱锥,列出体积表达式,可求几何体的体积.解答:解:几何体是:底面为直角三角形一条侧棱垂直底面直角顶点的三棱锥,感谢您的阅读,祝您生活愉快。

2021珠海一模(理数)含答案--全WORD--精心排版

2021珠海一模(理数)含答案--全WORD--精心排版

2021珠海一模(理数)含答案--全WORD--精心排版珠海市2021--2021学年度第一学期期末学生学业质量监测高三理科数学试题一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.x1.已知全集U?R,集合A?yy?2,x?R,则CUA=()??A.? B.(0,+∞) C. (-∞,0] D.R 2.已知a,b是实数,则“??a?2”是“a?b?5”的()?b?3A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件3.若某程序框图如图所示,则该程序运行后输出的值是() A.4 B.5 C.6 D.7 4. 已知直线l,m和平面?,则下列命题正确的是()A.若l//m,m??,则l//? B.若l//?,m??,则l//m C.若l?m,l??,则m//? D.若l??,m??,则l?m 5.已知是虚数单位,复数i=() 3?i13131313A.?i B.??i C.??i D.??i8810101010886.函数y?sin?2x? A.向左平移?????的图象可由函数y?sin2x的图象()4?ππ个单位长度而得到 B.向右平移个单位长度而得到88ππ C.向左平移个单位长度而得到 D.向右平移个单位长度而得到44?x?y?5?0?7.若实数x,y满足不等式组?x?y?0 则2x?4y的最小值是()?x?3?A.6 B.4 C.?2 D.?68.对于直角坐标平面内的任意两点A(x1,y1)、B(x2,y2),定义它们之间的一种“距离”:‖AB‖=x1?x2?y1?y2,给出下列三个命题:①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖;③在△ABC中,‖AC‖+‖CB‖>‖AB‖. 其中真命题的个数为() A. 0 B. 1 C. 2 D.3二、填空题:本大题共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. (一)必做题(9-13题)19.函数y?sinx的导函数y?? . x10.在递增等比数列?an?中,a2?2,a4?a3?4,则公比q=.11.某学校三个社团的人员分布如下表(每名同学只参加一个社团):合唱社粤曲社武术社a 45 30 高一15 10 20 高二学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有_______________. 12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=?3,b?3,若△ABC的面积为33 ,则c= . 2x2y213.如图,F1,F2是双曲线C:2?2?1?a?0,b?0?的左、右焦点,过F1ab的直线与C的左、右两支分别交于A,B两点.若| AB | : | BF2 | : | AF2 |=3 : 4 : 5,则双曲线的离心率为 . (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在直角坐标系xoy中,已知曲线C1:??x?t?2(t为参数)与曲线C2:?y?1?2t?x?3cos?(?为参数)相交于两个点A、B,则线段AB的长为 . ?y?3sin??15.(几何证明选讲选做题)如图,PAB、PCD为⊙O的两条割线,若PA=5, AB=7,CD=11,AC=2,则BD等于 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.??16.(本小题满分12分)设向量a??2,sin??,b??1,cos??,?为锐角.??13b?,求sin??cos?的值;(1)若a?6?????(2)若a//b,求sin?2???的值.3??17.(本小题满分12分)某中学校本课程共开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求A选修课被这3名学生选择的人数的数学期望.18.(本小题满分14分)已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BC//平面C1B1N;2(2)求证:BN?平面C1B1N;(3)设M为AB中点,在BC边上找一点P,使MP//平面CNB1,并求BP的值. PCx2y219.(本题满分14分) 已知椭圆C:2?2?1(a?b?0),左、右两个焦点分别为F1、F2,上顶点A(0,b),ab?AF1F2为正三角形且周长为6.(1)求椭圆C的标准方程及离心率;(2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|?|PO|的最小值,并求出此时点P的坐标.12ax?2x,g(x)?lnx. 2(1)如果函数y?f(x)在[1,??)上是单调减函数,求a的取值范围;g(x)1(2)是否存在实数a?0,使得方程?f?(x)?(2a?1)在区间(,e)内有且只有两个不相等的实数根?若xe存在,请求出a的取值范围;若不存在,请说明理由.20.(本小题满分14分)已知函数f(x)?21.(本题满分14分)已知正项数列?an?的前n项和为Sn,且Sn?(1)求a1的值及数列?an?的通项公式;an(an?2)* (n?N). 411115(n?N*); ??????3333a1a2a3an32?an?11111(3)是否存在非零整数?,使不等式?(1?)(1?)???(1?)cos对一切n?N*都成立??a1a2an2an?1(2)求证:若存在,求出?的值;若不存在,说明理由.珠海市2021~2021学年第一学期普通高中学生学业质量监测高三理科数学试题参考答案及评分标准一、选择题:CABD AADB 二、填空题:9、三、解答题:xcosx?sinx 10、2 11、150 12、x27 13、13 14、 4 15、 63??131b?2?sin?cos??,?sin?cos??…………… 3分 16.解:(1)因为?a?66??sin??cos???1?2sin?cos??2423,又??为锐角,?sin??cos??.………… 6分33??2sin?cos?2tan?4??(2)解法一:?a//b,?tan??2…… 8分,?sin2??2sin?cos??,sin2??cos2?tan2??15cos2??sin2?1?tan2?3cos2??cos??sin?????………… 10分sin2??cos2?tan2??1522??13143?3?4?33? (12)分 ?sin?2????sin2??cos2?????????3?22252?5?10???255解法二:?a//b,?tan??2 (8)分,?sin??, ,cos??55?sin2??2sin?cos??4322,cos2??cos??sin???…………… 10分55??13143?3?4?33?………… 12分 ?sin?2????sin2??cos2?????????3?22252?5?10?17. 解:(Ⅰ)每个学生有四个不同选择,根据乘法法则,选法总数N=4?4?4?64 …… 3分222C4C3A22?3?3?29??………… 7分(Ⅱ) 恰有2门选修课这3名学生都没选择的概率为P2?4?4?41643(Ⅲ) 设A选修课被这3名学生选择的人数为?,则?=0,1,2,3113C3?32273?C3C3332791P(?=0)=3?,P(?=1)=,P(=2)=,P(=3)= (9)分 ?????464436443644364?的分布列是2727913?1??2??3?? ………… 12分 64646464418. 解:(1)证明:E??0? 4?该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,?BA,BC,BB1两两互相垂直。

珠海市2021届第一学期高三摸底测试(数学)

珠海市2021届第一学期高三摸底测试(数学)

B. f (x) = 2sin(1 x + ) 22
D. f (x) = 2 cos(1 x) 2
A. a2 + b2 2ab
B. a2 + b2 2ab
C. a(a − b) 0
D. b + a 2 ab
12.已知随机变量 X 的取值为不大于 n(n N ) 的非负整数,它的概率分布列为
X 0 1 2 3 …n
p p0 p1 p2 p3
… pn
其中 pi (i = 0,1, 2,3, , n) 满足 pi [0,1] ,且 p0 + p1 + p2 +
+ pn = 1.定义由 X 生成的
函数 f (x) = p0 + p1x + p2x2 + p3x3 + + pi xi + + pnxn , g (x) 为函数 f (x) 的导函数,
B. 5
C. 5 3 3
D. 3 5 5
10.如图是函数 f (x) = Asin(x + ) ( 0) 的部分图象,则
A. f (x) = 2sin(1 x + ) 24
C. f (x) = −2sin(1 x − ) 22
11.已知 ab 0 ,则
(第 10 题图)
B. f (x) = 2sin(1 x + ) 22
M、N

(1)求抛物线 E 的方程;
(2) 若 P(3,1) ,求直线 MN 的方程;
(3)若 P 为直线 l 上的动点,求| MF | | NF | 的最小值.
6
数学参考答案
一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。

广东省珠海市2021届高三上学期9月摸底测试数学试题

广东省珠海市2021届高三上学期9月摸底测试数学试题

珠海市2020-2021学年度第一学期高三摸底考试 数学 2020.9一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|4A x x =>, {}2|30B x x x =-<,则A B =A .(5,2)(26)--,B .(22)-,C .(,5)(6)-∞-+∞,D .(,2)(2)-∞-+∞, 2.27(1)i i-= A .1 B . 2 C . i - D .2i -3.8名医生去甲、乙、丙三个单位做核酸检测,甲、乙两个单位各需三名医生,丙需两名医生,其中医生a 不能去甲医院,则不同的选派方法共有A .280种B .350种C .70种D .80种4.一球O 内接一圆锥,圆锥的轴截面为正三角形ABC ,过C 作球O 相切的平面α,则直线AC 与平面α所成的角为A . 30︒B .45︒C .15︒D . 60︒5.现有8位同学参加音乐节演出,每位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会斗演奏的同学的概率是A .14B .12C ..38D .586.若定义在R 上的奇函数()f x 在(0)+∞,单调递增,且(-5)=0f ,则满足()0xf x <的解集是A .(,5)(5)-∞-+∞,B .(,5)(05)-∞-,C .(50)(5)-+∞,, D .(50)(05)-,, 7.已经P 是边长为1的正方形ABCD 上或正方形内的一点,则AP BP ⋅的最大值为A .14B .2C .1D .128.直线:l y kx b =+是曲线()ln(1)f x x =+和曲线2()ln()g x e x =的公切线,则b =A .2B .12 C .ln 2e D .ln 2e ()二、选择题:本小题共4题,每小题5分,共20分,在每小题给出的选项中有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的,得3分。

2021届广东省珠海市高三上学期第一次摸底数学试题(解析版)

2021届广东省珠海市高三上学期第一次摸底数学试题(解析版)

2021届广东省珠海市高三上学期第一次摸底数学试题一、单选题1.设集合{}2|4A x x =>,{}2|30B x x x =-<,则AB =( )A .(5,2)(2,6)--B .(2,2)-C .(,5)(6,)-∞-+∞D .(,2)(2,)-∞-+∞【答案】A【解析】本题首先可以通过对不等式24x >、230x x -<进行计算得出集合A 和集合B 中所包含的元素,然后通过交集的相关性质即可得出结果. 【详解】24x >,即2x >或2x <-,则集合()(),22,A =-∞-⋃+∞,230x x -<,即650x x ,解得56x ,则集合()5,6B =-,故(5,2)(2,6)A B ⋂=--⋃, 故选:A. 【点睛】本题考查集合的相关运算,主要考查交集的相关运算,考查一元二次不等式的解法,考查计算能力,是简单题.2.27(1)i i-=( ) A .1 B .2C .−iD .−2i【答案】B【解析】利用复数的四则运算,计算结果即可. 【详解】化简得2732(1)22221i i i i i ----====-. 故选:B. 【点睛】本题考查了复数的四则运算和虚数单位的幂运算,属于基础题.3.8名医生去甲、乙、丙三个单位做核酸检测,甲、乙两个单位各需三名医生,丙需两名医生,其中医生a 不能去甲医院,则不同的选派方式共有( )A .280种B .350种C .70种D .80种【答案】B【解析】对医生a 去乙、丙医院进行讨论,分别按要求选派,即得结果. 【详解】若医生a 去乙医院,再依次为甲、乙、丙三个单位选派得322742210C C C =; 若医生a 去丙医院,再依次为甲、乙、丙三个单位选派得331741140C C C =;所以不同的选派方式共有210140350+=种. 故选:B. 【点睛】本题考查了组合的应用,分类加法计数原理和分步乘法计数原理,属于基础题. 4.一球O 内接一圆锥,圆锥的轴截面为正三角形ABC ,过C 作与球O 相切的平面α,则直线AC 与平面α所成的角为( ) A .30° B .45°C .15°D .60°【答案】D【解析】分析得平面α与圆锥底面平行,求直线AC 与圆锥底面所成的角,即得结果. 【详解】如图所示截面为正三角形的三棱锥中,,,A B C 在球O 上,过C 作与球O 相切的平面α必然与圆锥底面平行,则直线AC 与平面α所成的角,即直线AC 与圆锥底面所成的角,即60CAB ∠=︒, 故选:D. 【点睛】本题考查了球内接圆锥,直线与平面所成的角,属于基础题.5.现有8位同学参加音乐节演出,每位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是( )A .14B .12C .38D .58【答案】A【解析】根据题意:8位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛即可知有2位同学两种乐器都会演奏,利用古典概型的概率公式求概率即可; 【详解】由题意知,8位同学中有2位同学两种乐器都会演奏∴从8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率为:(P 两种乐器都会演奏的同学12181)4C C ==故选:A 【点睛】本题考查了古典概型,首先根据已知判断两种乐器都会演奏的学生人数,然后利用古典概型的概率公式求概率;6.若定义在R 上的奇函数()f x 在()0,∞+单调递增,且()50f -=,则满足()0xf x <的解集是( ) A .()(),55,-∞-+∞ B .()(),50,5-∞- C .()()5,05,-+∞D .()()5,00,5-【答案】D【解析】分析出函数()f x 在(),0-∞单调递增,可得出()50f =,然后分0x >、0x =、0x <三种情况解不等式()0xf x <,综合可得出原不等式的解集.【详解】由于定义在R 上的奇函数()f x 在()0,∞+单调递增,则该函数在(),0-∞单调递增, 且()00f =,()()550f f =--=. 显然当0x =时,()000f ⨯=;当0x >时,由()0xf x <可得()()05f x f <=,解得05x <<; 当0x <时,由()0xf x <可得()()05f x f >=-,解得5x 0-<<. 因此,不等式()0xf x <的解集为()()5,00,5-.【点睛】本题考查利用函数的奇偶性与单调性解函数不等式,考查分析问题和解决问题的能力,属于中等题.7.已知P 是边长为1的正方形ABCD 边上或正方形内的一点,则AP BP ⋅的最大值是( ) A .14B .2C .1D .12【答案】C【解析】构建A 为原点,AB 为x 轴,AD 为y 轴的直角坐标系用坐标表示各顶点,设(,)P x y 则可用坐标表示22AP BP x x y ⋅=-+,由于,x y 是两个相互独立的变量,即可将代数式中含x 和y 的部分分别作为独立函数求最大值,它们的和即为AP BP ⋅的最大值 【详解】构建以A 为原点,AB 为x 轴,AD 为y 轴的直角坐标系,如下图示:由正方形ABCD 边长为1,知:(1,0),(1,1),(0,1)B C D , 若令(,)P x y ,即(,)AP x y =,(1,)BP x y =-; ∴22AP BP x x y ⋅=-+,而01x ≤≤,01y ≤≤,则2211()()24f x x x x =-=--在01x ≤≤上0x =或1x =有最大值为0,2()g y y =在01y ≤≤上1y =有最大值为1;∴AP BP ⋅的最大值为1 故选:C本题考查了利用坐标表示向量数量积求最值,首先构建直角坐标系将目标向量用坐标表示,根据数量积的坐标公式得到函数式,进而求最大值8.直线:l y kx b =+是曲线()()ln 1f x x =+和曲线()()2ln g x e x =的公切线,则b =( ) A .2 B .12C .ln2e D .()ln 2e【答案】C【解析】由()f x k '=可求得直线l 与曲线()()ln 1f x x =+的切点的坐标,由()g x k '=可求得直线l 与曲线()()2ln g x e x =的切点坐标,再将两个切点坐标代入直线l 的方程,可得出关于k 、b 的方程组,进而可求得实数b 的值. 【详解】设直线l 与曲线()()ln 1f x x =+相切于点()11,A x y ,直线l 与曲线()()2ln g x e x =相切于点()22,B x y ,()()ln 1f x x =+,则()11f x x '=+,由()1111f x k x '==+,可得11k x k-=, 则()()111ln 1ln y f x x k ==+=-,即点1,ln k A k k -⎛⎫-⎪⎝⎭, 将点A 的坐标代入直线l 的方程可得1ln kk k b k--=⋅+,可得ln 1b k k =--,① ()()2ln 2ln g x e x x ==+,则()1g x x'=,由()221g x k x '==,可得21x k =, ()222ln y g x k ==-,即点1,2ln B k k ⎛⎫- ⎪⎝⎭,将点B 的坐标代入直线l 的方程可得12ln 1k k b b k-=⋅+=+,1ln b k ∴=-,② 联立①②可得2k =,1ln 2ln 2e b =-=. 故选:C. 【点睛】本题考查利用两曲线的公切线求参数,要结合切点以及切线的斜率列方程组求解,考查计算能力,属于中等题.二、多选题9.已知双曲线E 的中心在原点,对称轴为坐标轴,渐近线方程为2y x =±,则双曲线E 的离心率为( )A .5 B .5C .533D .355【答案】AB【解析】对双曲线的焦点位置进行讨论,得,a b 关系,再计算离心率即可. 【详解】若双曲线焦点在x 轴上,因为渐近线方程为2y x =±,故2ba=,215c b e a a ⎛⎫∴==+= ⎪⎝⎭;若双曲线焦点在y 轴上,由渐近线方程为2y x =±,得2ab=,2512c b e a a ⎛⎫∴==+= ⎪⎝⎭. 故选:AB. 【点睛】本题考查了双曲线的离心率,考查了分类讨论思想,属于基础题. 10.如图是函数()()()sin 0f x A x ωϕω=+>的部分图象,则( )A .()12sin 24f x x π⎛⎫=+⎪⎝⎭B .()12sin 22f x x π⎛⎫=+⎪⎝⎭C .()12sin 22f x x π⎛⎫=-- ⎪⎝⎭D .()12cos 2f x x ⎛⎫=⎪⎝⎭【答案】BCD【解析】由图象可求得函数()y f x =的振幅A 以及最小正周期T ,可求得ω的值,再将点()0,2的坐标代入函数()y f x =的解析式可求得ϕ的值,结合诱导公式可得出合适的选项. 【详解】由图象可得()max 2f x A ==,该函数的最小正周期T 满足122T π=,可得4T π=,212T πω∴==,所以,()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x , 又()02sin 2f ϕ==,可得sin 1ϕ=,()22k k Z πϕπ∴=+∈,()1112sin 22sin 2cos 22222f x x k x x πππ⎛⎫⎛⎫⎛⎫∴=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 、D 选项合乎要求;对于A 选项,()112sin 2sin 2422f x x x ππ⎛⎫⎛⎫=+≠+⎪ ⎪⎝⎭⎝⎭,不合乎要求;对于C 选项,()1112sin 2sin 2cos 22222f x x x x ππ⎛⎫⎛⎫⎛⎫=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,C 选项合乎要求. 故选:BCD. 【点睛】本题考查利用图象求正弦型函数的解析式,同时也考查了诱导公式的应用,考查计算能力,属于中等题.11.已知0ab <,则( ) A .222a b ab +≥ B .222a b ab +<C .()0a a b ->D .2b aa b+≥ 【答案】ACD【解析】由,a b 异号,利用不等式性质以及基本不等式即可判断各选项的正误; 【详解】0ab <即,a b 异号;∴222a b ab +≥成立,故A 正确,而B 错误; 又2()0a a b =a ab -->,故C 正确;||()()2b a b a a b a b +=-+-≥=当且仅当=-a b 时等号成立,故D 正确 故选:ACD 【点睛】本题考查了不等式,根据两数异号,结合不等式性质以及基本不等式判断正误,属于简单题;12.已知随机变量X 的取值为不大于()n n N *∈的非负整数,它的概率分布列为其中(0,1,2,3,,)i p i n =满足[0,1]i p ∈,且0121n p p p p ++++=.定义由X 生成的函数230123()i n i n f x p p x p x p x p x p x =+++++++,()g x 为函数()f x 的导函数,()E X 为随机变量X 的期望.现有一枚质地均匀的正四面体型骰子,四个面分别标有1,2,3,4个点数,这枚骰子连续抛掷两次,向下点数之和为X ,此时由X 生成的函数为1()f x ,则( ) A .()(2)E X g = B .115(2)2f =C .()(1)E X g =D .1225(2)4f = 【答案】CD【解析】先求出1211123()'()23i n i n g x f x p p x p x ip x np x --==++++++和123()23i n E X p p p ip np =++++++,并判断123()23(1)i n E X p p p ip np g =++++++=,则排除选项A ,判断选项C 正确;再求出X 的分布列和1()f x 的解析式,最后求出1225(2)4f =,则排除选项B ;判断选项D 正确. 【详解】解:因为230123()i n i n f x p p x p x p x p x p x =+++++++,则1211123()'()23i n i n g x f x p p x p x ip x np x --==++++++,123()23i n E X p p p ip np =++++++, 令1x =时,123()23(1)i n E X p p p ip np g =++++++=,故选项A 错误,选项C 正确;连续抛掷两次骰子,向下点数之和为X ,则X 的分布列为:234567811234321()16161616161616f x x x x x x x x =++++++ 234567811234321225(2)2222222161616161616164f =⨯+⨯+⨯+⨯+⨯+⨯+⨯=故选项B 错误;选项D 正确. 故选:CD. 【点睛】本题考查导数的运算、由X 生成的函数求数学期望、求随机变量生成的函数与函数值,是基础题.三、填空题13.椭圆22:143x y E +=的左、右焦点分别为1F 、2F ,过原点的直线l 与E 交于A ,B两点,1AF 、2BF 都与x 轴垂直,则||AB =________.【解析】根据题中所给的椭圆方程,以及椭圆中,,a b c 三者之间的关系,可以求得21c =,设出()()111,,1,A y B y --,由两点间距离公式可以求得AB =据点在椭圆上点的坐标满足椭圆方程,求得2194y =,之后代入求得AB ==. 【详解】在已知椭圆中,222431c a b =-=-=, 因为直线l 过原点,交椭圆于,A B 两点, 则A 与B 关于原点对称, 又1AF 、2BF 都与x 轴垂直,设()()111,,1,A y B y --,则AB ==又A 在椭圆上,则211143y +=,得2194y =,则AB ==,【点睛】该题考查的是有关椭圆的问题,涉及到的知识点有椭圆中,,a b c 三者之间的关系,椭圆上点的坐标的特征,两点间距离公式,属于基础题目. 14.将数列{}2n与{}2n 的公共项从小到大排列得到数列{}na ,则{}na 的前10项和为________(用数字作答). 【答案】2046【解析】本题首先可以根据题意确定数列{}n a 的前10项,然后通过等比数列求和公式即可得出结果. 【详解】因为数列{}n a 是由数列{}2n与{}2n 的公共项从小到大排列得到,所以数列{}n a 的前10项为2、22、32、42、、102,则{}n a 的前10项和为101121222204612,故答案为:2046. 【点睛】本题考查数列的项以及等比数列求和公式的应用,能否根据题意确定数列中的项是解决本题的关键,考查计算能力,是简单题.15.已知α、β为锐角三角形的两个内角,sin 7α=,sin()14αβ+=,则cos 2β=____. 【答案】12- 【解析】由条件利用同角三角函数的基本关系式得到cos α、cos()αβ+,再用凑角得到cos β,最后利用二倍角公式得到答案.【详解】因为α、β为锐角三角形的两个内角, 所以0<,022ππαβ,<2παβπ,因为sin 7α=,sin()14αβ+=,所以1cos 7α===,11cos()14αβ+===-, 所以cos cos()cos()cos sin()sin ββαααβααβα=+-=+++11111472=-⨯=, 则211cos 22cos12142ββ=-=⨯-=-, 故答案为:12-. 【点睛】 本题主要考查同角三角函数的基本关系式,两角差的三角公式、倍角公式,属于基础题. 16.一半径为R 的球的表面积为64π,球一内接长方体的过球心的对角截面为正方形,则该长方体体积的最大值为_____.【答案】【解析】由球体的表面积公式求出半径R ,根据其内接长方体的过球心的对角截面为正方形,设内接长方体的长、宽、高分别为,,a b c 即有222+=a b c 、2232a b +=,最后利用长方体的体积公式有V =【详解】由半径为R 的球的表面积为64π,知:2464R ππ=,有4R =;由题意,若设内接长方体的长、宽、高分别为,,a b c ,则222+=a b c ,2222464a b c R ++==;∴2232a b +=,而长方体体积V abc ==∴3222()2a b V +=≤=当且仅当4a b ==时等号成立故答案为:【点睛】本题考查了空间几何体的表面积和体积,根据球体表面积公式得到其半径,由内接长方体的对角截面为正方形即可得长、宽、高的等量关系,利用长方体的体积公式结合基本不等式求最值四、解答题17.在①1cos 2B =,②1cos 2C =,③cos C = 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在非直角△ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin (12cos )2sin cos cos sin B C A C A C +=+,1b =,________?注:如果选择多个条件分别解答,按第一个解答计分.【答案】答案见解析.【解析】利用两角和正弦公式化简三角函数式,得到(2sin sin )cos 0B A C -=,结合题设可知2a b =且1b =、2a =,进而利用①或②或③求得相关结论,判断是否与题设矛盾即可;若不矛盾,利用正余弦定理即可求c 的值;【详解】△ABC 中,由sin (12cos )2sin cos cos sin B C A C A C +=+,得sin 2sin cos sin cos cos sin sin cos B B C A C A C A C +=++sin sin cos B A C =+ ∴(2sin sin )cos 0B A C -=;∵△ABC 不是直角三角形;∴cos 0C ≠,则有2sin sin B A =,即2a b =,而1b =,即有2a =;选①:由1cos 2B =,及0B π<< 得3B π=; 由sin sin b a B A=得sin 1A =>不合理,故△ABC 不存在. 选②:由1cos 2C =得:c ==222b c a +=; ∴A 为直角,不合题设,故△ABC 不存在.选③:由cos C =得:c ==. 【点睛】本题考查了解三角形及三角恒等变换等相关知识,利用三角恒等变换中两角和正弦公式化简已知函数式,进而得到相关结果,再结合所给条件得到相关结论并判断是否与题设矛盾;18.已知数列{}n a 是正项等比数列,满足3452a a a +=,121a a +=.(1)求{}n a 的通项公式;(2)设2log (3)n n t a =,求数列121n n t t ++⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)123n n a -=;(2)1n n T n =+. 【解析】(1)本题首先可设数列{}n a 的公比为q ,然后根据题意得出2341111121a q a q a q a a q ⎧+=⎨+=⎩,通过计算求出1a 和q 的值,最后根据等比数列通项公式即可得出结果;(2)本题首先可根据123n n a -=得出1n t n =-,然后根据1n t n =-得出121111n n t t n n ++=-+,最后通过裂项相消法求和即可得出结果. 【详解】(1)设正项等比数列{}n a 的公比为0q >,因为3452a a a +=,121a a +=,所以2341111121a q a q a q a a q ⎧+=⎨+=⎩,解得1132a q ⎧=⎪⎨⎪=⎩,故{}n a 的通项公式123n n a -=. (2)因为123n n a -=,所以122log (3)log 21n n n t a n -===-, 则121111(1)1n n t t n n n n ++==-++, 故数列121n n t t ++⎧⎫⎨⎬⎩⎭的前n 项和为:1111111(1)()()()2233411n n T n n n =-+-+-++-=++. 【点睛】本题考查等比数列通项公式的求法以及裂项相消法求和,常见的裂项有:111(1)1n n n n =-++、11(1)1k n n n n k 、1111()n n a a n n a ⎛⎫=- ⎪++⎝⎭等,考查计算能力,是中档题. 19.如图,三棱锥P ABC -中,2AC BC PC PB ====,120ACB ∠=,平面PBC ⊥底面ABC ,D 、E 分别是BC 、AB 的中点.(1)证明:PD ⊥平面ABC ;(2)求二面角P CE B --的正切值.【答案】(1)证明见解析;(2)2.【解析】(1)利用等腰三角形三线合一可得PD BC ⊥,由面面垂直的性质定理可得出PD ⊥平面ABC ;(2)取CE 中点F ,连接DF 、PF ,证明出CE ⊥平面PDF ,可得出二面角P CE B --的平面角为PFD ∠,通过解PDF 可求得tan PFD ∠,进而得解.【详解】(1)证明:PC PB =,D 是BC 中点,PD BC ∴⊥,平面PBC⊥底面ABC,平面PBC底面ABC BC=,PD⊂平面PBC ,PD∴⊥平面ABC;(2)如图,取CE的中点F,连接DF、PF,则//DF AB,2AC BC PC PB====,E是AB的中点,120ACB∠=,则30CBE∠=,CE AB∴⊥,DF CE∴⊥,cos303BE BC==,223PD PD BD-= 132DF BE==,PD⊥平面ABC,CE⊂平面ABC,CE PD∴⊥,PD DF D=,CE∴⊥平面PDF,PF⊂平面PDF,CE PF∴⊥,PFD∴∠为二面角P CE B--的平面角.在Rt PDF中,3tan23PDPFDDF∠===,因此,二面角P CE B--的正切值为2. 【点睛】本题考查利用面面垂直证明线面垂直,同时也考查了利用定义求解二面角的正切值,考查推理能力与计算能力,属于中等题.20.某药企对加工设备进行升级,现从设备升级前、后生产的大量产品中各抽取了100件产品作为样本检测某项质量指标值: 该项质量指标值落在[25,30)内的产品为优等品,每件售价240元;质量指标值落在[20,25)和[30,35)内的为一等品,每件售价为180元;质量指标值落在[35,40)内的为二等品,每件售价为120元;其余为不合格品,全部销毁.每件产品生产销售全部成本50元.下图是设备升级前100个样本的质量指标值的频率分布直方图下表是设备升级后100个样本的质量指标值的频数分布表质量[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)指标值频2184814162数(1)以样本估计总体,若生产的合格品全部在当年内可以销售出去,计算设备升级前一件产品的利润X(元)的期望的估计值.(2)以样本估计总体,若某位患者从升级后生产的合格产品中随机购买两件,设其支付的费用为ξ(单位:元),求ξ(元)的分布列.【答案】(1)118元;(2)答案见解析.【解析】(1)根据产品等级得X取值,利用频数分布表计算频率,得到分布列并计算期望即可;(2)先列出患者购买一件合格品费用η的分布列,再写患者随机购买两件时的分布列即可.【详解】解:(1)由题设知,产品等级分为不合格、品二等品,一等品,优等品,则X=-,根据频数分布表得到X的分布列为:50,70,130,190-70130190X50设备升级前利润的期望值为:()0.14(50)0.18700.281300.4190118E X =⨯-+⨯+⨯+⨯=∴升级前一件产品的利润的期望估计值为118元.(2) 升级后设患者购买一件合格品的费用为η(元)则120,180,240η=,患者购买一件合格品的费用η的分布列为故患者随机购买两件时240,300,360,420,480ξ= 111(240)6636P ξ==⨯= 111(300)339P ξ==⨯= 11115(360)2263318P ξ==⨯⨯+⨯= 111(420)2323P ξ==⨯⨯= 111(480)224P ξ==⨯= 则升级后患者购买两件合格品的费用的分布列为【点睛】本题考查了频率分布直方图和频率分布表的应用,以及分布列和期望的计算,属于中档题.21.已知函数2()e 2()x xf x x ax e ax a =+-++,0a ≥.(1)讨论函数()f x 的单调性;(2)讨论()f x 的零点的个数.【答案】(1)减区间是(,1)-∞,增区间是(1,)+∞;(2)0a >时,()f x 有两个零点;0a =时, ()f x 只有一个零点.【解析】(1)利用函数求导,判断导数符号确定()f x 的单调性即可;(2)对a 进行分类讨论,利用零点存在定理确定零点即可.【详解】解:(1)∵2()e 2()x xf x x ax e ax a =+-++∴()(1)(e 2)x f x x a '=-+ 0a ≥时20x e a +>,故1x <时()0f x '<,1x >时()0f x '>.∴0a ≥时,()f x 的减区间是(,1)-∞,增区间是(1,)+∞;(2)①0a >时,∵()01f '=且()f x 的减区间是(,1)-∞,增区间是(1,)+∞ ∴(1)0f e =-<是()f x 的极小值,也是最小值,(2)0f a =>,取0b <且ln 2a b <则22()(2)(1)(2)(1)(23)022b a a f b b e a b b a b b b =-+->-+-=-> ∴()f x 在(,1)b 和(1,2)上各一个零点;②0a =时,()(2)x f x x e =-,只一个零点2x =,综上,0a >时,()f x 有两个零点;0a =时,()f x 一个零点.【点睛】本题考查了函数的单调性和导数的应用,函数零点问题,属于中档题.22.已知抛物线E 的顶点在原点,焦点(0,)2p F (0)p >到直线:2l y x =-的距离为2,00(,)P x y 为直线l 上的点,过P 作抛物线E 的切线PM 、PN ,切点为M N 、. (1)求抛物线E 的方程;(2)若(3,1)P ,求直线MN 的方程;(3)若P 为直线l 上的动点,求||||MF NF ⋅的最小值.【答案】(1)2:4E x y =;(2):3220MN x y --=;(3)92. 【解析】(1)利用点到直线的距离公式直接求解p 的值,便可确定抛物线方程;(2)利用求导的思路确定抛物线的两条切线,借助均过点p ,得到直线方程;(3)通过直线与抛物线联立,借助韦达定理将||||MF NF ⋅进行转化处理,通过参数的消减得到函数关系式是解题的关键,然后利用二次函数求最小值.【详解】(1)由(0,)2p F 到直线:20l x y --=的距离为2|2|2p += 得2p =或10p =-∵0p >∴2p =∴抛物线2:4E x y =(2) 由2:4E x y =知214y x =∴2x y '= 设切点11(,)M x y ,22(,)N x y 则21111111:()22222x x x x PM y y x x x x y -=-=-=- 即11:2x PM y x y =- 22:2x PN y x y =- ∵P PM ∈,P PN ∈ ∴112231023102x y x y ⎧--=⎪⎪⎨⎪--=⎪⎩即112232203220x y x y --=⎧⎨--=⎩ ∴:3220MN x y --=.(3)若P 为直线l 上的动点,设00(,)P x y ,则002x y =+由(2)知∵P PM ∈,P PN ∈ ∴011002200202x x y y x x y y ⎧--=⎪⎪⎨⎪--=⎪⎩ ∴00:02x MN x y y --=与2:4E x y =联立消x 得 222000(24)0y y y y y -+++=…………“”则1y ,2y 是“”的二根∴21200212024y y y y y y y ⎧+=++⎨=⎩ 121212||||(1)(1)1MF NF y y y y y y ⋅=++=+++200225y y =++ 当012y =-时,||||MF NF ⋅得到最小值为92. 【点睛】 本题是一道抛物线与直线的综合性应用问题,解题的关键是掌握抛物线的简单性质.。

珠海市高三摸底考试理科数学

珠海市高三摸底考试理科数学

侧视图主视图珠海市2021年9月高三摸底考试理科数学试题与参考答案及评分标准一、选择题:本大题共8小题,每题5分,总分值40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.请在答题卡上填涂相应选项.1.〔集合〕集合{1}A x x =>,2{20}B x x x =-<,那么A B ⋃=〔 〕 A. {0}x x > B. {1}x x > C. {12}x x << D. {02}x x <<2.〔复数的除法〕复数21ii=+〔 〕 A. 1i + B. 1i - C. 2i + D. 2i -3.〔函数的奇偶性与单调性〕以下函数中,既是偶函数又在区间0,+∞()上单调递增的函数为〔 〕 A .1y x -= B .2log y x = C .||y x = D .2y x =-4.〔充要条件〕在ABC ∆中,“060A =〞是“1cos 2A =〞的〔 〕 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.〔向量〕如图,在ABC ∆中,点D 是BC 边上靠近B 的三等分点,那么AD =〔 〕A .2133AB AC - B .1233AB AC + C .2133AB AC + D .1233AB AC -6.〔线性规划〕x y ,满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,那么2+4z x y =的最小值为〔 〕 A . 14- B.15- C. 16- D. 17-7.〔三视图〕一简单组合体的三视图及尺寸如图(1)示〔单位: cm 〕那么该组合体的体积为〔 〕 A. 720003cm B. 640003cmC. 560003cmD. 440003cm8.〔信息题〕对于函数()y f x =,如果存在区间[,]m n ,同时满足以下条件:①()f x 在[,]m n 内是单调的;②当定义域是[,]m n 时,()f x 的值域也是[,]m n ,那么称[,]m n 是该函数的“和谐区间〞.假设函数11()(0)a f x a a x+=->存在“和谐区间〞,那么a 的取值范围是〔 〕 A . 15(,)22B . (0,1)C . (0,2)D .(1,3)二、填空题:本大题共6小题,每题5分,总分值30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. 9.〔绝对值不等式〕不等式3+110x x --<的解集是 . 10.〔二项展开式〕在二项式25()a x x-的展开式中,含x 项的系数是80-,那么实数a 的值为 . 11.〔等比数列〕设等比数列{}n a 的公比2q =,那么44S a = . 12.〔导数〕直线14y x b =-+是函数1()f x x=的切线,那么实数b = . 13.〔解三角形〕在ABC ∆中,AB ,=2AC ,0=60C ,那么BC = .14.〔几何证明选讲选做题〕如图, 圆O 的直径6AB P AB P =,是延长线上的一点,过作圆的切线,0,30C CPA CP ∠=切点为若,则长为 .15.(极坐标选做题〕极坐标系中,曲线4cos ρθ=-上的点到直线()cos 8ρθθ+=的距离的最大值是 .三、解答题:此题共有6个小题,12分+12分+14分+14分+14分+14分=80分. 16.〔三角函数〕函数2()cos sin cos f x x x x =+〔1〕求()f x 的最小正周期和最小值; 〔2〕假设(,)42ππα∈且3(+)8f πα=,求cos α的值.APMNFBCDAF17.〔概率〕某大学一个专业团队为某专业大学生研究了多款学习软件,其中有A 、B 、C 三种软件投入使〔1〕从这12人中随机抽取2人,求这2人恰好来自同一班级的概率.〔2〕从这12名学生中,指定甲、乙、丙三人为代表,他们下午自习时间每人选择一个软件,其中A 、B 两个软件学习的概率每个都是16,且他们选择A 、B 、C 任一款软件都是相互独立的。

广东省珠海市2021届高三数学上学期期末考试(一模考试)试题 理(含解析).doc

广东省珠海市2021届高三数学上学期期末考试(一模考试)试题 理(含解析).doc

广东省珠海市2021届高三数学上学期期末考试(一模考试)试题 理(含解析)一、选择题:本大题共12小题,每小题5分,满分60分. 1.已知集合{}ln 0A x x =>,{}240B x x =-≤,则A B =( )A. ()1,2B. (]1,2C. (]0,2 D. ()1,+∞【答案】B 【解析】 【分析】解出集合A 、B ,利用交集的定义可得出集合A B .【详解】{}()ln 01,A x x =>=+∞,{}[]2402,2B x x =-≤=-,因此,(]1,2A B =.故选:B.【点睛】本题考查交集的计算,同时也考查了对数不等式和一元二次不等式的求解,考查计算能力,属于基础题.2.复数121z i z i =+=,,其中i 为虚数单位,则12z z 的虚部为( ) A. 1- B. 1C. iD. i -【答案】A 【解析】 【分析】根据复数共轭的概念得到__1z ,再由复数的除法运算得到结果即可.【详解】11211,1,z i z i i z i-=-==-- 虚部-1,故选A.【点睛】本题考查了复数的运算法则、复数的共轭复数等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.3.已知函数()2f x x bx c =++,b 、R c ∈,则“0c <”是“函数()f x 有零点”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】利用>0∆推出充分条件成立,取特殊值推出必要条件不成立,从而得出结论.【详解】若0c <,则240b c ∆=->,此时,函数()f x 有零点,则“0c <”⇒“函数()f x 有零点”;取2b =,1c =,则()()22211f x x x x =++=+,此时,函数()f x 有零点,但0c >.则“函数()f x 有零点”⇒“0c <”.因此,“0c <”是“函数()f x 有零点”的充分而不必要条件. 故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了二次函数的零点,考查推理能力,属于中等题.4.一个几何体是由若干个边长为1的正方体组成的,其主视图和左视图如图所示,且使得组成几何体的正方体个数最多,则该几何体的表面积为( )A. 13B. 28C. 38D. 46【答案】D 【解析】 【分析】根据题意作出组成几何体的正方体个数最多时几何体的实物图,然后计算出其表面积即可. 【详解】当组成几何体的正方体个数最多时,几何体的实物图如下图所示:小正方体每个面的面积为211=,由实物图可知,该几何体的表面积为2341355446+⨯⨯++⨯=. 故选:D.【点睛】本题考查组合体表面积的计算,解题的关键就是结合三视图作出几何体的实物图,考查空间想象能力与计算能力,属于中等题.5.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若46S =,818S =,则12S =( ) A. 24 B. 30 C. 42 D. 48【答案】C 【解析】 【分析】利用等比数列片断和的性质可得知4S 、84S S -、128S S -成等比数列,由此可计算出12S 的值. 【详解】由题意可知,4S 、84S S -、128S S -成等比数列,即()()2844128S S S S S -=-,即()21212618S =⨯-,解得1242S =.故选:C.【点睛】本题考查等比数列基本性质的应用,考查计算能力,属于基础题.6.如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )A. 21π-B.2πC.22πD. 221π-【答案】A 【解析】 【分析】分别求出矩形和阴影部分的面积,即可求出豆子落在图中阴影部分的概率. 【详解】1S ππ=⨯=矩形,又()00sin cos |cos cos02dx x πππ=-=--=⎰,2S π∴=-阴影,∴豆子落在图中阴影部分的概率为221πππ-=-. 故选A.【点睛】本题考查几何概率的求解,属于基础题,难度不大,正确求面积是关键.7.已知椭圆22221(0)x y a b a b +=>>的右焦点为F,离心率2,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A. 2B. 2-C. 12-D.12【答案】C 【解析】 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率.【详解】由题得222222242,4()2,2c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-. 故选C【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.8.如果执行如图所示的程序框图,则输出的数S 不可能是( )A. 0.4B. 0.5C. 0.75D. 0.9【答案】A 【解析】 【分析】由题意可知,输出的S 值为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和,然后赋值可得出结果.【详解】第一次循环,011i =+=,112S =⨯,1n ≥不成立; 第二次循环,112i =+=,111223S =+⨯⨯,2n ≥不成立;依次类推,()11i n n =-+=,()11112231S n n =+++⨯⨯+,n n ≥成立.输出()1111111111112231223111n S n n n n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪⨯⨯++++⎝⎭⎝⎭⎝⎭. 当1n =时,1=0.52S =;当3n =时,30.754S ==;当9n =时,90.910S ==. 令215n S n ==+,解得23n N *=∉. 因此,输出的S 的值不可能是0.4. 故选:A.【点睛】本题考查利用算法程序框图计算输出的结果,同时也考查了裂项求和法,考查推理能力与计算能力,属于中等题. 9.已知0x >,0y >,0z >,且911y z x+=+,则x y z ++的最小值为( ) A. 8 B. 9C. 12D. 16【答案】D 【解析】 【分析】将代数式x y z ++与91y z x++相乘,展开后利用基本不等式可求出x y z ++的最小值. 【详解】0x ,0y >,0z >,0x y ∴+>且911y z x+=+, 所以,()199101016x y z x y z x y z x y z y z x ⎛⎫+++=+++=++≥+=⎡⎤ ⎪⎣⎦++⎝⎭, 当且仅当9x y zy z x+=+时,即当3y z x +=时,等号成立, 因此,x y z ++的最小值为16. 故选:D.【点睛】本题考查利用基本不等式求和的最小值,同时也考查了1的妙用,考查计算能力,属于基础题.10.太极图被称为“中华第一图”.从孔庙大成殿梁柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到韩国国旗⋯⋯,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为()()()2222224,11110x y A x y x y x y x ⎧⎫⎧+≤⎪⎪⎪⎪⎪⎪=+-≤++≥⎨⎨⎬⎪⎪⎪≤⎪⎪⎪⎩⎩⎭或,设点(),x y ,则2z x y =+的最大值与最小值之差是( )A. 25+B. 225+C. 235+D. 245+【答案】C 【解析】 【分析】平移直线2z x y =+,当直线2z x y =+与圆224x y +=切于第三象限的点B 时,该直线在x 轴上的截距最小,当直线2z x y =+与圆()2211x y +-=相切于第一象限的点A 时,该直线在x 轴上的截距最大,利用圆心到直线的距离等于圆的半径求出对应的z 值,即可得出所求结果. 【详解】如下图所示:当直线2z x y =+与圆224x y +=切于第三象限的点B 时,该直线在x 轴上的截距最小,此时0z <22212z =+,解得25z =-,此时min 25z =-当直线2z x y =+与圆()2211x y +-=相切于第一象限的点A 时,该直线在x 轴上的截距最大,此时0z >1=,解得2z =max 2z =.因此,2z x y =+的最大值与最小值之差是(22+-=+故选:C.【点睛】本题考查非线性规划中线性目标函数的最值问题,同时也考查了直线与圆相切问题的处理,考查数形结合思想的应用,属于中等题.11.定义在R 上的函数()f x 满足'()()2(xf x f x e e -<为自然对数的底数),其中'()f x 为()f x 的导函数,若2(2)4f e =,则()2x f x xe >的解集为( ) A. (),1-∞ B. ()1,+∞C. (),2-∞D. ()2,+∞【答案】C 【解析】 【分析】 由()2xf x xe >,以及()()2xf x f x e -'<,联想到构造函数()()2x f x g x x e=-,所以()2x f x xe >等价为()(2)g x g >,通过导数求()g x 的单调性,由单调性定义即可得出结果.【详解】设()()2x f x g x x e =-,()2x f x xe >等价为()(2)g x g >, ()()()20xf x f xg x e'-'=-<,故()g x 在R 上单调递减,所以()(2)g x g >,解得2x <, 故选C .【点睛】本题主要考查利用导数研究函数的单调性的问题,利用单调性定义解不等式,如何构造函数是解题关键,意在考查学生数学建模能力.12.已知球O 的半径为2,A 、B是球面上的两点,且AB =P 是球面上任意一点,则PA PB ⋅的取值范围是( ) A. []1,3- B. []2,6- C. []0,1 D. []0,3【答案】B【分析】作出图形,取线段AB 的中点M ,利用向量的加法法则可得PA PM MA =+,PB PM MA =-,可得出2223PA PB PM MA PM ⋅=-=-,求出PM 的最大值和最小值,即可得出PA PB ⋅的取值范围.【详解】作出图形,取线段AB 的中点M ,连接OP 、OA 、OB 、OM 、PM ,可知OM AB ⊥,由勾股定理可得221OM OA AM=-=,且有MB MA =-,由向量的加法法则可得PA PM MA =+,PB PM MB PM MA =+=-,()()222223PA PB PM MA PM MA PM MA PM MA PM ∴⋅=+-=-=-=-.PM PO OM =+,由向量的三角不等式可得PO OM PM PO OM -≤≤+,13PM ∴≤≤,所以,[]232,6PA PB PM ⋅=-∈-.因此,PA PB ⋅的取值范围是[]2,6-. 故选:B.【点睛】本题考查向量数量积取值范围的计算,解题的关键就是选择合适的基底来表示向量,考查数形结合思想以及计算能力,属于中等题. 二、填空题:本大题共4小题,每小题5分,共20分. 13.已知向量()=1,2a ,()=2,2b -,()=1,c λ.若()2+c a b ,则λ=________.【答案】12【解析】由两向量共线的坐标关系计算即可. 【详解】由题可得()24,2a b +=()//2,c a b + ()1,c λ=4λ20∴-=,即1λ2=故答案为12【点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题. 14.已知(]0,πx ∈,关于x 的方程π2sin 3x a ⎛⎫+= ⎪⎝⎭有两个不同的实数解,则实数a 的取值范围为______. 【答案】()3,2【解析】 【分析】在同一坐标中,做出函数1π2sin 3y x ⎛⎫=+ ⎪⎝⎭,(]0,πx ∈,2y a =的图象,利用数形结合根据交点个数即可求解 【详解】令1π2sin 3y x ⎛⎫=+⎪⎝⎭,(]0,πx ∈,2y a =,作出1y 的图象如图所示.若 π2sin 3x a ⎛⎫+= ⎪⎝⎭在(]0,π上有两个不同的实数解,则1y 与2y 应有两个不同的交点,所以32a <<.答案:)3,2【点睛】本题主要考查了函数与方程,正弦型函数图象,数形结合的思想方法,属于中档题.15.已知1nx x ⎛⎫+ ⎪⎝⎭的展开式的所有项的系数和为64,则其展开式中的常数项为_______. 【答案】15 【解析】 【分析】令1x =,可以求出n ,利用二项展开式的通项公式,求出常数项.【详解】已知1nx x ⎛⎫+ ⎪⎝⎭的展开式的所有项的系数和为64,令1x =,得2646n n =⇒=,二项展开式的通项公式为36621661()()rrr r r r T C x C x x--+=⋅=,令36042r r -=⇒=, 所以常数项为4615C =.【点睛】本题考查了二项展开式中所有项系数和公式.重点考查了二项展开式中的常数项.16.已知双曲线C :()222210,0x y a b a b -=>>的左右焦点分别为1F ,2F ,过1F 的直线l 与圆222x y a +=相切于点T ,且直线l 与双曲线C 的右支交于点P ,若114F P FT =,则双曲线C 的离心率为______. 【答案】53【解析】 【分析】根据题意,作出图形,结合双曲线第一定义,再将所有边长关系转化到直角三角形2MPF 中,化简求值即可【详解】如图,由题可知12OF OF c ==,OT a =,则1FT b =,又114F P FT =,3TP b ∴=,14F P b ∴=, 又122PF PF a -=,242PF b a ∴=-作2//F M OT ,可得22F M a =,TM b =,则2PM b = 在2MPF ∆,22222PM MF PF +=,即()222c b a =-,2b a c =+又222c a b =+,化简可得223250c ac a --=,同除以2a ,得23250e e --=解得53e =双曲线的离心率为53【点睛】本题考查了利用双曲线的基本性质求解离心率的问题,利用双曲线的第一定义和中位线定理将所有边长关系转化到直角三角形2MPF 中是解题关键,一般遇到此类题型,还是建议结合图形来进行求解,更直观更具体三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是其对边长,向量(),m a b c =+,()sin sin ,sin sin n B A C B =--,且m n ⊥.(1)求角A 的大小;(2)若2a =,求ABC ∆面积的最大值.【答案】(1)3A π=;(2【解析】 【分析】(1)由m n ⊥得出()()()sin sin sin sin 0a b B A c C B +-+-=,利用正弦定理边角互化思想以及余弦定理可得出cos A 的值,结合角A 的取值范围可得出角A 的大小;(2)利用余弦定理结合基本不等式可求出bc 的最大值,再利用三角形的面积公式可得出答案. 【详解】(1)(),m a b c =+,()sin sin ,sin sin n B A C B =--,m n ⊥,()()()sin sin sin sin 0a b B A c C B ∴+-+-=,由正弦定理得()()()0b a b a c c b +-+-=,整理得222b c a bc +-=,2221cos 22b c a A bc +-∴==,0A π<<,3A π∴=;(2)在ABC ∆中,3A π=,2a =,由余弦定理知2222242cos a b c bc A b c bc ==+-=+-,由基本不等式得2242bc b c bc +=+≥,当且仅当b c =时等号成立,4bc ∴≤,113sin 4322ABC S bc A ∆∴=≤⨯⨯=,因此,ABC ∆面积的最大值为3.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积最值的计算,涉及基本不等式以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.18.如图,矩形ABCD 中,2AB =,4=AD ,E 为BC 的中点,现将BAE ∆与CDE ∆折起,使得平面BAE 及平面CDE 都与平面DAE 垂直.(1)求证://BC 平面DAE ; (2)求二面角A BE C --的余弦值. 【答案】(1)证明见解析;(2)33-【解析】 【分析】(1)过点B 作BM AE ⊥于M ,过点C 作CN ED ⊥于N ,连接MN ,利用面面垂直的性质定理证明CN ⊥平面ADE ,BM ⊥平面ADE ,可得出//BM CN ,并证明出BM CN =,可证明出四边形BCNM 为平行四边形,于是有//BC MN ,再利用直线与平面平行的判定定理可证明出//BC 平面ADE ;(2)以E 为原点,ED 为x 轴,EA 为y 轴,建立空间直角坐标系E xyz -,利用空间向量法可计算出二面角A BE C--的余弦值.【详解】(1)过点B 作BM AE ⊥于M ,过点C 作CN ED ⊥于N ,连接MN .平面BAE 及平面CDE 都与平面DAE 垂直, 平面BAE平面DAE AE =,BM AE ⊥,BM ⊂平面BAE ,BM ∴⊥平面DAE ,同理可证CN ⊥平面DAE ,//BM CN ∴.矩形ABCD 中,BAE ∆与CDE ∆全等,BM CN ∴=.∴四边形BCNM 是平行四边形,//BC MN ∴.又BC ⊄平面DAE ,MN ⊂平面DAE ,//BC ∴平面DAE ;(2)矩形ABCD 中,AE DE ⊥,以E 为原点,ED 为x 轴,EA 为y 轴,建立空间直角坐标系E xyz -,则()0,0,0E 、(2,2B 、2,0,2C,(2,2EB ∴=,(2,0,2EC =, 设平面CBE 的法向量为(),,n x y z =,则00n EB n EC ⎧⋅=⎨⋅=⎩,即220220z x z +=+=,令1z =,得1x y ==-,则()1,1,1n =--,易得平面ABE 的法向量为()1,0,0m =,3cos ,31m n m n m n⋅∴<>===⨯⋅,因此,二面角A BE C --的余弦值为3【点睛】本题考查直线与平面平行的证明,同时也考查了利用空间向量法计算二面角的余弦值,涉及面面垂直和线面垂直性质定理的应用,考查推理能力与计算能力,属于中等题. 19.已知F 为抛物线C :y 2=2px (P >0)的焦点,过F 垂直于x 轴的直线被C 截得的弦的长度为4.(1)求抛物线C 的方程.(2)过点(m ,0),且斜率为1的直线被抛物线C 截得的弦为AB ,若点F 在以AB 为直径的圆内,求m 的取值范围.【答案】(1)y 2=4x (2)1m -3<<.【解析】 【分析】(1)抛物线C 的焦点为,02p F ⎛⎫ ⎪⎝⎭,把2p x =代入22y px =,截得的弦的长度为2p ,解得p 即可; (2)由题意得直线方程为y x m =-,联立24y x y x m⎧=⎨=-⎩,得:()22240x m x m -++=,设()()1122,,,A x y B x y ,且抛物线C 的()1,0F ,将问题转化为()()212122110x x FA FB x m x m ⋅=-++++<,利用韦达定理将2121224,x mx x m x +=+=代入解得m 即可.【详解】(1)抛物线2:2(0)C y px p =>的焦点坐标为,02p F ⎛⎫ ⎪⎝⎭,把2p x =代入22y px =,得y p =±,所以24p =,因此抛物线方程为24y x =.(2)设()()1122,,,A x y B x y ,过点()0m ,,且斜率为1的直线方程为y x m =-, 联立24y x y x m ⎧=⎨=-⎩ ,消去y 得:()22240x m x m -++=()2212212Δ2440124m m m x x m x x m ⎧=+->⇒>-⎪+=+⎨⎪=⎩, 易知抛物线C 的()1,0F ,点F 在以AB 为直径的圆内等价于0FA FB ⋅<,()()()11221212121,1,1FA FB y y x x x x y y x x ⋅=-⋅-=-+++()()()1212121x x m m x x x x =-+++-- ()()21212211x x x m x m =-++++()()2221241m m m m =-++++2630m m =--<解得:33m -<<+,符合1m >-.综上:m 的范围是(3-+. 【点睛】本题考查了抛物线方程的求法,直线与抛物线的位置关系,向量数量积坐标的运算,韦达定理的应用,属于中档题. 20.某游戏棋盘上标有第0、1、2、、100站,棋子开始位于第0站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设游戏过程中棋子出现在第n 站的概率为n P .(1)当游戏开始时,若抛掷均匀硬币3次后,求棋子所走站数之和X 的分布列与数学期望; (2)证明:()()1111982n n n n P P P P n +--=--≤≤; (3)若最终棋子落在第99站,则记选手落败,若最终棋子落在第100站,则记选手获胜.请分析这个游戏是否公平.【答案】(1)分布列见解析,数学期望92;(2)见解析;(3)游戏不公平. 【解析】 【分析】(1)由题意得出随机变量X 的可能取值有3、4、5、6,求出相应的概率,由此可得出随机变量X 的分布列,并计算出随机变量X 的数学期望;(2)棋子要到第()1n +站,分两种情况讨论:一是由第n 站跳1站得到,二是由第()1n -站跳2站得到,可得出111122n n n P P P +-=+,变形后可得出结论; (3)根据(2)中的{}n P 的递推公式得出100P 和99P 的大小关系,从而得出结论.【详解】(1)由题意可知,随机变量X 的可能取值有3、4、5、6,()311328P X ⎛⎫=== ⎪⎝⎭,()31313428P X C ⎛⎫==⋅= ⎪⎝⎭,()32313528P X C ⎛⎫==⋅= ⎪⎝⎭,()311628P X ⎛⎫=== ⎪⎝⎭.所以,随机变量X 的分布列如下表所示:所以,()13319345688882E X =⨯+⨯+⨯+⨯=; (2)依题意,当198n ≤≤时,棋子要到第()1n +站,有两种情况: 由第n 站跳1站得到,其概率为12n P ; 可以由第()1n -站跳2站得到,其概率为112n P -. 所以,111122n n n P P P +-=+. 同时减去n P 得()()111111198222n n n n n n P P P P P P n +---=-+=--≤≤;(3)依照(2)的分析,棋子落到第99站的概率为9998971122P P P =+, 由于若跳到第99站时,自动停止游戏,故有1009812P P =. 所以10099P P <,即最终棋子落在第99站的概率大于落在第100站的概率,游戏不公平. 【点睛】本题考查离散型随机变量的分布列和数学期望的求解,同时也考查了数列递推公式的求解,考查分析问题和解决问题的能力,属于难题. 21.已知函数()ln 1af x x x=+-,a R ∈. (1)若关于x 的不等式()1f x x >-+对[1,)x ∀∈+∞恒成立,求a 的取值范围. (2)设函数()()f x g x x=,在(1)的条件下,试判断()g x 在区间2[1,e ]上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.【答案】(Ⅰ)(1,)+∞;(Ⅱ)当2e a ≥时,()g x 在2[1,e ]上不存在极值;当12e a <<时,()g x 在2[1,e ]上存在极值,且极值均为正. 【解析】 【分析】(1)不等式恒成立问题,一般先利用变量分离转化为对应函数最值问题:212a x nx x x >--+的最大值,利用导数研究函数2()12m x x nx x x =--+最值,易得()m x 在[1,)+∞上单调递减,所以max ()(1)1m x m ==,因此1a >,(2)即研究()g x 导函数的零点情况,先求导数,确定研究对象为()212h x x x nx a =--,再求目标函数导数,确定单调性:先增后减,两个端点值都小于零,讨论最大值是否大于零,最后结合零点存在定理确定极值点个数. 【详解】解:(Ⅰ)由()1f x x >-+,得111anx x x+->-+. 即212a x nx x x >--+在[1,)+∞上恒成立. 设函数2()12m x x nx x x =--+,1x ≥. 则'()121m x x nx x =--+.∵[1,)x ∈+∞,∴10,210nx x -≤-+<. ∴当[1,)x ∈+∞时,'()1210m x nx x =--+<. ∴()m x 在[1,)+∞上单调递减.∴当[1,)x ∈+∞时,max ()()(1)1m x m x m ≤==. ∴1a >,即a 的取值范围是(1,)+∞.(Ⅱ)211()nx ag x x x x=-+,2[1,]x e ∈. ∴22111'()nx g x x x -=+332212a x x nx ax x---=. 设()212h x x x nx a =--,则'()2(11)11h x nx nx =-+=-. 由'()0h x =,得x e =.当1x e ≤<时,'()0h x >;当2e x e <≤时,'()0h x <.∴()h x 在[1,e)上单调递增,在2(e,e ]上单调递减. 且(1)22h a =-,()2h e e a =-,2()2h e a =-. 据(Ⅰ),可知2()(1)0h e h <<. (ⅰ)当()20h e e a =-≤,即2ea ≥时,()0≤h x 即'()0g x ≤. ∴()g x 在2[1,e ]上单调递减.∴当2e a ≥时,()g x 在2[1,e ]上不存在极值. (ⅱ)当()0h e >,即12ea <<时, 则必定212,[1,]x x e ∃∈,使得12()()0h x h x ==,且2121x e x e <<<<.当x 变化时,()h x ,'()g x ,()g x 的变化情况如下表:∴当12e a <<时,()g x 在2[1,e ]上的极值为12(),()g x g x ,且12()()<g x g x . ∵11211111()nx a g x x x x =+-111211x nx x ax -+=.设()1x x nx x a ϕ=-+,其中12ea <<,1x e ≤<. ∵()'10x nx ϕ=≥,∴()x ϕ在[)1,e 上单调递增,()(1)10x a ϕϕ≥=->,当且仅当1x =时取等号.∵11x e <<,∴1()0g x >. ∴当12e a <<时,()g x 在2[1,e ]上的极值21()()0g x g x >>. 综上所述:当2e a ≥时,()g x 在2[1,e ]上不存在极值;当12e a <<时,()g x 在2[1,e ]上存在极值,且极值均为正.注:也可由'()0g x =,得221a x x nx =-.令()21h x x x nx =-后再研究()g x 在2[1,e ]上的极值问题.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.(二)选考题:共10分.请考生在第22~23题中任选一题作答. 如果多做,那么按照所做的第一题计分.22.在平面直角坐标系xOy 中,曲线14cos :4sin x C y αα=⎧⎨=⎩(α为参数),将曲线1C 上的所有点的横坐标保持不变,纵坐标缩短为原来的12后得到曲线2C ;以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 33πρθ⎛⎫-= ⎪⎝⎭.(1)求曲线2C 和直线l 的直角坐标方程;(2)已知()M -,设直线l 与曲线2C 交于不同的A 、B 两点,求MA MB ⋅的值.【答案】(1)222:1164x y C +=,:60l y -+=;(2)1613. 【解析】 【分析】(1)利用两角差的正弦公式将直线l cos sin 60θρθ-+=,由此可将直线l 的极坐标方程化为直角坐标方程,利用伸缩变换可得出曲线2C 的参数方程,消参后可得出曲线2C 的直角坐标方程;(2)可知点M 在直线l 上,且该直线的倾斜角为3π,可得出直线l的参数方程为12x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),然后将直线l 的参数方程与曲线2C 的直角坐标方程联立,得到关于t 的一元二次方程,利用韦达定理可求出MA MB ⋅.【详解】(1)直线l 的极坐标方程为sin 33πρθ⎛⎫-= ⎪⎝⎭cos sin 60θρθ-+=,60y -+=.将曲线14cos :4sin x C y αα=⎧⎨=⎩(α为参数)上的所有点的横坐标保持不变,纵坐标缩短为原来的12后得到曲线2C ,则曲线2C 的参数方程为4cos 2sin x y αα=⎧⎨=⎩(α为参数), 消参后得221164x y +=, 因此,曲线2C 的直角坐标方程为221164x y +=; (2)由题意知()M -在直线l 上,又直线l 的倾斜角为3π, 所以直线l的参数方程为12x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数), 设A 、B 对应的参数分别为1t 、2t ,将直线l 的参数方程代入221164x y +=中,得213160t --=. 因为M 在2C 内,所以>0∆恒成立,由韦达定理得121613t t =-, 所以121613MA MB t t ⋅==. 【点睛】本题考查参数方程、极坐标方程与普通方程之间的互化,同时也考查了直线参数方程几何意义的应用,考查计算能力,属于中等题.23.设函数()()40f x x a x a =-+-≠.(1)当1a =时,求不等式()f x x <的解集;(2)若()41f x a ≥-恒成立,求a 的取值范围.【答案】(1)()3,5;(2)()[),01,-∞+∞.【解析】【分析】 (1)把1a =代入,利用零点分段讨论法去掉绝对值可求;(2)利用绝对值的三角不等式求出()f x 的最小值,然后求解关于a 的不等式即可.【详解】(1)当1a =时,()52,1143,1425,4x x f x x x x x x -≤⎧⎪=-+-=<<⎨⎪-≥⎩,当1x ≤时,()f x x <,无解;当14x <<时,()f x x <可得34x <<;当4x ≥时,()f x x <可得45x ≤<;故不等式()f x x <的解集为()3,5.(2)()()()444f x x a x x a x a =-+-≥---=-,4441a a a a -∴-≥-=. 当0a <或4a ≥时,不等式显然成立; 当04a <<时,11a ≤,则14a ≤<. 故a 的取值范围为()[),01,-∞+∞. 【点睛】本题主要考查含有绝对值不等式的解法及恒成立问题,零点分段讨论法是常用解此类不等式的方法.。

广东省珠海市2021届高三数学9月摸底考试试题 文(1)

广东省珠海市2021届高三数学9月摸底考试试题 文(1)

珠海市2021年9月高三摸底考试文科数学试题一、选择题:本大题共10小题,每题5分,总分值50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.请在答题卡上填涂相应选项。

1. 已知集合{}2,3,4M =,{}0,2,3,4,5N =()N M =则C CA.{}2,3,4B.{}0,2,3,4,5C.{}0,5D.{}3,52. 为了解72名学生的学习情形,采纳系统抽样的方式,从中抽取容量为8的样本,那么分段的距离为( )A A.9B.8C.10D.73. 在等比数列{}n a 中,有154a a =,那么3a 的值为()CA. 2±B. 2-C. 2D. 4 4. 已知复数z 知足(1)2i z -=,那么z =( )DA.1i --B.1i -+C.1i -D.1i +5. 以下函数中,概念域是R 且为增函数的是( )BA.xy e -= B.y x = C.ln y x = D.1y x =-6. 如右图为某几何体的三视图,那么其体积为( )DA . 2B . 4C . 34D . 327. 设R b a ∈,,那么“4>+b a ”是“2,2>>b a 且”的( )B A. 充分条件B. 必要条件C. 充分必要条件D. 既非充分又非必要条件8. 对任意的[2,1]x ∈-时,不等式022≤-+a x x 恒成立,那么实数a 的取值范围是( )D A . (]0,∞- B .(]3,∞- C .[)+∞,0 D . [)+∞,39.假设将一个质点随机投入如下图的长方形ABCD 中,其中AB=2,BC=1,那么质点落在以AB 为直径的半圆内的概率是( )BA .2πB .4πC .6πD .8π10. 设点0(,1)M x ,假设在圆22:1O x y +=上存在点N ,使得°30OMN ∠=,那么0x 的取值范围是( )A A. 3,3⎡⎤-⎣⎦ B. 1122⎡⎤-⎢⎥⎣⎦, C. []2,2- D. 3333⎡⎤-⎢⎥⎣⎦,二、填空题:本大题共5小题,每题5分,考生作答4小题,总分值20分. (一)必做题(11~13题)11. 不等式组280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域的面积为______________。

【市级联考】广东省珠海市2021届高三9月摸底考试数学理试题

【市级联考】广东省珠海市2021届高三9月摸底考试数学理试题

【市级联考】广东省珠海市2019届高三9月摸底考试数学理试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}260A x x x =--<,集合{}10B x x =->,则()R A B =( ) A .()1,3B .(]1,3C .[)3,+∞D .()3,+∞ 2.已知复数321i z i-=-,i 为虚数单位,则2||z =A .2B .132C .134D .23.已知等比数列{}n a 的前n 项和n S ,且415S =,2410a a +=,则2a = A .1 B .2- C .2 D .1- 4.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍 A .①②③ B .②③④ C .①③④ D .①④5.函数42()(23)f x x a x =+-,则()f x 在其图像上的点(12)-,处的切线的斜率为 A .1 B .1- C .2 D .2-6.平行四边形A BCD 中,1AB e =,2AD e =,E 为CD 中点.若12BE e e λμ+=,则λμ=A .38B .18- C .12- D .127.如图,圆锥顶点为P ,底面圆心为O ,过轴PO 的截面PAB ∆,C 为PA 中点,PA =6PO =,则从点C 经圆锥侧面到点B 的最短距离为A .B .C .6D .8.设12F F 、是双曲线2222(10):0x y C a ba b -=>>,的左右焦点,A 为左顶点,点P 为双曲线C 右支上一点, 12||10F F =,212PF F F ⊥,216||3PF =, O 为坐标原点,则OA OP ⋅=A .329-B .163C .15D .15-9.如图所示,平面直角坐标系xoy 中,阴影部分是由抛物线2y x 及线段OA 围成的封闭图形,现在在OAB ∆内随机的取一点P ,则P 点恰好落在阴影内的概率为A .23B .43C .49D .2910.S 为顶点的正四面体S ABC -D 为SC 的中点,则BD 与AC 所成角的余弦值为ABC.6 D .1611.函数11()ln(1)1x e x f x x x -⎧≤=⎨->⎩,若函数()()g x f x x a =-+只一个零点,则a 的取值范围是A .{}(0]2-∞,B .{}[0)2+∞-,C .(0]-∞,D .[0)+∞, 12.抛物线2:4C y x =与直线:(2)l y k x =-交于点M N 、二点,过点M 作x 轴的平行线与ON 交于A 点,过点A 作抛物线C 的切线,切点为B ,切线AB 与直线:2l x '=交于D 点.已知点(20)E ,,则22DE AE -= A .8B .8-C .16D .16-二、填空题 13.变量,x y 满足034040x y x y x y +≥⎧⎪+-≤⎨⎪--≤⎩,则2z x y =+的最小值为_____.14.由0,1,2,3,4五个数字任取三个数字,组成能被3整除的没有重复数字的三位自然数,共有_________个.15.数列{}n a 是等差数列,前n 项和为n S ,若545S =,660S =,则7a =___. 16.函数()sin(2)(0)f x x ϕϕ=+<的图象向左平移6π个单位长度,得到偶函数()g x 的图象,则ϕ的最大值为_________.三、解答题17.ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222b c a =+-.(Ⅰ)求角A(Ⅱ)若2a =,b =C .18.如图,四边形ABCD 是矩形,AB =2BC ,E 为CD 中点,以BE 为折痕将BEC ∆折起,使C 到C '的位置,且平面BEC '⊥平面ABED(1)求证:AE BC '⊥;(2)求二面角C AE B '--的余弦值.19.某芯片代工厂生产某型号芯片每盒12片,每批生产若干盒,每片成本1元,每盒芯片需检验合格后方可出厂.检验方案是从每盒芯片随机取3片检验,若发现次品,就要把全盒12片产品全部检验,然后用合格品替换掉不合格品,方可出厂;若无次品,则认定该盒芯片合格,不再检验,可出厂.(1)若某盒芯片中有9片合格,3片不合格,求该盒芯片经一次检验即可出厂的概率?(2)若每片芯片售价10元,每片芯片检验费用1元,次品到达组装工厂被发现后,每片须由代工厂退赔10元,并补偿1片经检验合格的芯片给组装厂.设每片芯片不合格的概率为(01)p p <<,且相互独立.①若某箱12片芯片中恰有3片次品的概率为()f p ,求()f p 的最大值点0p ;②若以①中的0p 作为p 的值,由于质检员操作疏忽,有一箱芯片未经检验就被贴上合格标签出厂到组装工厂,试确定这箱芯片最终利润X (单位:元)的期望.20.已知椭圆()2222:10x y C a b a b+=>>,12,F F 是其左右焦点,12,A A 为其左右顶点,12,B B 为其上下顶点,若126B F O π∠=,112F A =. (Ⅰ)求椭圆C 的方程;(Ⅱ)过12,A A 分别作x 轴的垂线12,l l ,椭圆C 的一条切线():0l y kx m k =+≠,l 与12,l l 交于二点,求证:12MF N MF N ∠=∠.21.已知函数21()ln f x x a x x=-+ (1)若3a =-时,讨论()f x 的单调性;(2)若()f x 有两个极值点12x x 、,求a 的取值范围.22.在直角坐标系xOy 中,直线l 过定点(1P ,且与直线OP 垂直.以坐标原点O为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0ρθθ-=.(1)求曲线C 的直角坐标方程和直线l 的参数方程;(2)设直线l 与曲线C 交于A B 、二点,求11||||PA PB +的值. 23.已知函数()3f x x a x =-+-.(1)若()f x 的最小值为4,求a 的值;(2)当[]24x ∈,时,()f x x <恒成立,求a 的取值范围.参考答案1.C【解析】【分析】先根据一元二次不等式计算出集合A 中表示元素范围,然后计算出A R 的范围,最后根据交集的含义计算()R A B ⋂的结果. 【详解】因为260x x --<,所以()2,3x ∈-即()2,3A =-,所以(][),23,R A =-∞-⋃+∞, 又因为()1,B =+∞,所以()[)3,R A B =+∞.故选:C.【点睛】本题考查集合的补集与交集混合运算,难度较易,注意一元二次不等式的解集的求解. 2.B【解析】【分析】先化简复数z 求出z ,再求2||z . 【详解】由题得32(32)(1)5,1(1)(1)22i i i i z z i i i --++===∴==--+, 所以213||2z =. 故答案为:B【点睛】(1)本题主要考查复数的运算和复数模的运算,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 复数(,)z a bi a b R =+∈的模||z =3.C【解析】【分析】先根据已知求出1,a q ,再求2a .【详解】由题得2311111231115,1,2,12210a a q a q a q a q a a q a q ⎧+++=∴==∴=⨯=⎨+=⎩. 故答案为:C【点睛】本题主要考查等比数列的通项和前n 项的和,意在考查学生对这些知识的掌握水平和分析推理计算能力.4.B【分析】逐一计算判断真假得解.【详解】 对于①,旧养殖法的平均数=27.50.06+32.50.0737.50.1242.50.17x ⨯⨯+⨯+⨯旧 47.50.252.50.1657.50.162.50.0667.50.0647.1+⨯+⨯+⨯+⨯+⨯=所以22222=27.5-47.10.06+32.5-47.10.07+37.5-47.10.12+42.5-47.10.17S ⨯⨯⨯⨯旧()()()()222247.5-47.10.2+52.5-47.10.16+57.5-47.10.1+62.5-47.10.06+⨯⨯⨯⨯()()()()267.5-47.10.06=107.34⨯() 新养殖法的平均数=37.50.02+42.50.1+47.50.22+52.50.34+57.50.23+62.50.05+67.50.04=52.35x ⨯⨯⨯⨯⨯⨯⨯新所以22222=37.5-52.350.02+42.5-52.350.1+47.5-52.350.22+52.5-52.350.34+S ⨯⨯⨯⨯新()()()()22257.5-52.350.23+62.5-52.350.05+67.5-52.350.04=39.7275⨯⨯⨯()()()因为22S S <旧新,所以新网箱产量的方差的估计值低于旧网箱产量的方差的估计值,故①错误.对于②,旧养殖法中,左边4个矩形的面积和为(0.012+0.014+0.024+0.034)×5=0.42,左边5个矩形的面积和为(0.012+0.014+0.024+0.034+0.04)×5=0.62,所以其中位数在45和50之间.新养殖法中,左边三个矩形的面积和为0.34,左边4个矩形的面积和为0.552,所以其中位数在50和55之间.所以新网箱产量中位数的估计值高于旧网箱产量中位数的估计值,所以②正确. 对于③,因为=47.1x 旧,=52.35x 新,所以新网箱产量平均数的估计值高于旧网箱产量平均数的估计值,故③正确.对于④,旧网箱频率最高组总产量估计值为47.5×100×0.2=950,新网箱频率最高组的总产量的估计值为52.5×100×0.34=1785,所以新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍,故④正确.故答案为B【点睛】(1)本题主要考查频率分布直方图中中位数的计算,考查方差和平均值的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)求频率分布直方图中的平均数,一般利用平均数的公式1122···n n x x p x p x p =+++计算.其中n x 代表第n 个矩形的横边的中点对应的数,n p 代表第n 个矩形的面积.求中位数一般先计算出每个小矩形的面积,通过解方程找到左边面积为0.5的点P ,点P 对应的数就是中位数.5.D【解析】【分析】先根据已知求a 的值,再利用导数的几何意义求切线的斜率.【详解】把点的坐标(1,-2)代入函数的解析式得-2=1+2a-3,所以a=0,所以f(x)=423x x -, 所以3()46,(1)462f x x x k f =-∴='=-=-',所以切线的斜率为-2.故答案为:D【点睛】(1)本题主要考查函数求导和导数的几何意义,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 函数()y f x =在点0x 处的导数0()f x '是曲线()y f x =在00(,())P x f x处的切线的斜率,相应的切线方程是000()()y y f x x x '-=-6.C【分析】 先求出1212BE e e =-+,即得,u λ的值. 【详解】 由题得22112111222BE BC CE e AB e e e e =+=-=-=-+, 所以11,1,22u u λλ=-=∴=-, 故答案为C【点睛】本题主要考查向量的线性运算和数乘向量,意在考查学生对这些知识的掌握水平和分析推理能力.7.A【分析】先画出圆锥的侧面展开图如图所示,再求线段BC 的长度,即得点C 经圆锥侧面到点B 的最短距离.【详解】先作出圆锥的侧面展开图如图所示,=,所以112?,AA APA ππ==∴∠==,所以2APB π∠=,所以=故答案为A 【点睛】(1)本题主要考查圆锥侧面两点间的最短距离,意在考察学生对这些知识的掌握水平和空间想象分析推理能力.(2)求曲面上两点间的最短距离,一般利用展开法,转化成平面上两点间的最短距离. 8.D 【分析】先求出双曲线的方程为221916x y -=,再求出点P 的坐标,最后求OA OP ⋅.【详解】由题得22225,3, 4.163a b a b b a⎧+=⎪∴==⎨=⎪⎩ 所以双曲线的方程为221916x y -=,所以点P 的坐标为(5,163)或(-5,-163), 所以16(3,0)(5,)153OA OP ⋅=-⋅=-.故答案为:D 【点睛】(1)本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 双曲线22221(00)x y a b a b -=>>,的通径为22b a. 9.D 【解析】 【分析】先利用定积分求出阴影部分的面积,再求△ABO 的面积,再利用几何概型的概率公式求P 点恰好落在阴影内的概率.【详解】由题得直线OA 的方程为y=2x,所以图中阴影部分的面积为2223200184(2)()|4333x x dx x x -=-=-=⎰, 1346,2ABO S ∆=⨯⨯=所以P 点恰好落在阴影内的概率为42369=.故答案为:D 【点睛】(1)本题主要考查利用定积分求面积,考查几何概型的概率的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()A P A =构成事件的区域长度试验的全部结果所构成的区域长度;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式. 10.C 【分析】取SA 的中点E,连接DE,则DE 和BD 所成的角BDE ∠或补角就是BD 与AC 所成角,再利用余弦定理求cos BDE ∠,即得BD 与AC 所成角的余弦值. 【详解】取SA 的中点E,连接DE,则AC||DE,所以DE 和BD 所成的角BDE ∠或补角就是BD 与AC 所成角, 设正四面体的边长为a,则221,4a a DE BD BE =∴=∴===,cos BDE ∠==.所以BD 与AC 故答案为C 【点睛】(1)本题主要考查异面直线所成的角,意在考查学生对该知识的掌握水平和分析推理能力.(2) 异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形).方法二:(向量法)•cos m n m nα=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量. 11.A 【解析】 【分析】先转化为y=f(x)与y=x-a 只有一个交点,再分析y=x-a 与1y (1)x e x -=≤只有一个交点,得a≤0,再分析y=ln(x-1)(x>1)与y=x-a 只有一个交点,即得a=2. 【详解】因为g(x)=f (x )-x+a 只有一个零点, 所以y=f(x)与y=x-a 只有一个交点, 作出函数y=f(x)与y=x-a 的图像,y=x-a 与1y (1)x e x -=≤只有一个交点,则-a≥0,即a≤0, y=ln(x-1)(x>1)与y=x-a 只有一个交点,它们则相切, 因为11,=12,2,011y x x x ==--'令,则故切点为(), 所以0=2-a,即a=2,综上所述,a 的取值范围为(]{}02-∞⋃,. 故答案为:A 【点睛】(1)本题主要考查零点问题,考查直线和曲线的位置关系,考查导数的几何意义,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题关键有两点,其一是准确画出y=f(x)与y=x-a 的图像,其二是分析y=x-a 与1y (1)x e x -=≤只有一个交点,和y=ln(x-1)(x>1)与y=x-a 只有一个交点得到a 的取值范围. 12.B 【分析】先求出直线MA,ON 方程,再求出D(2,22),b b+1(2,(2)),(2,0)A k x E --,再求22DE AE -的值. 【详解】联立抛物线C 与直线l 得:2224(1)40k x k x k -++=, 可设两交点M(1122(,(2)),(,(2)),x k x N x k x -- 所以121224(1),4,k x x x x k ++=⋅= 所以直线MA :1(2)y k x =-, 直线ON:22(2)k x y x x -=⋅ 联立这两条直线方程得点A 的坐标2112(2)(,(2)),2x x A k x x ---又211212(2)4,2,(2,(2))2x x x x A k x x -⋅=∴=-∴---,可设切点B 的坐标为(2,2b b )(b≠0),则过点B 的抛物线C 的切线方程为2by=224,.2x b by x b +⋅=+即又该切线过A 点,故21(2)2bk x b -=-+, 两边除以b,有12(2)b k x b-=-, 所以由题设交点D(2,22),b b +又1(2,(2)),(2,0)A k x E --,故2222212()[16[(2)]]b DE AE k x b+-=-+-2222()[16()]8.b b b b=+-+-=-故答案为B 【点睛】(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是求得D(2,22),b b +1(2,(2)),(2,0)A k x E --.13.-2 【解析】 【分析】先作出不等式组对应的可行域,再利用数形结合分析求解. 【详解】由题得不等式组对应的可行域如图所示,联立0,2,2,(2,2)40x y x y C x y +=⎧∴==-∴-⎨--=⎩. 因为2z x y =+,所以122z y x =-+,当直线122zy x =-+经过点C(2,-2)时,直线的纵截距2z最小,z 最小.此时z 最小值为2+2(-2)=-2. 故答案为:-2 【点睛】(1)本题主要考查线性规划,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2) 解答线性规划时,要加强理解,不是纵截距最小,z 就最小,要看函数的解析式,如:2y x z =-,直线的纵截距为z -,所以纵截距z -最小时,z 最大.14.20 【分析】百位数为1,2,3,4,分四种情况讨论得解. 【详解】当百位是1时,有102,120,123,132,共4个;当百位为2时,有201,204,210,213,231,234,240,243,共8个;当百位为3时,有312,321,324,342,共4个;当百位为4时,有402,420,423,432,共4个,一共20个. 共答案为:20 【点睛】(1)本题主要考查计数原理,意在考察学生对这些知识的掌握水平和分析推理能力.(2) 排列组合一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法. 15.17 【解析】 【分析】设等差数列{a n }的公差为d ,由S 5=45,S 6=60.可得115465545,66022a d a d ⨯⨯+=+=,解出即可得出1,a d ,即可求出7a . 【详解】由题得1171545452,5,2,56217656602a d a d a a d ⨯⎧+=⎪⎪∴==∴=+⨯=⎨⨯⎪+=⎪⎩. 故答案为:17 【点睛】本题主要考查等差数列的前n 项和和通项,意在考察学生对这些知识的掌握水平和分析推理计算能力.16.56π-【分析】首先,结合平移得到g (x )=sin (2x +3π+φ),然后根据g (x )为偶函数即可求解. 【详解】图象向左平移6π得到f (x+6π)=sin (2x+3π+φ), ∴g (x )=sin (2x+3π+φ),∵g (x )为偶函数,因此3π+φ=kπ+2π,又φ<0,故φ的最大值为56π-. 故答案为56π-【点睛】(1)本题主要考查三角函数图像的变换,考查三角函数的奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.(2)函数sin()y A wx ϕ=+,当()2k k z πϕπ=+∈时是偶函数,当()k k z ϕπ=∈时是奇函数. 17.(1) 6A π=;(2) 2C π=或6π 【分析】(1)利用三角形面积公式和余弦公式,得A ,即tan A =,再根据三角形内角的取值范围,求得角A 的值;(2)根据正弦定理求得角B 的值,再根据三角形的内角和,求得角C 的值. 【详解】(1)ABC ∆中,2221sin 22b c a bc A bc A +-===∴ 222cos 2b c a A A bc +-==∴ tan A =0A π<<∴ 6A π=(2)2a =,b =,6A π=∴由sin sin a b A B=得1sin 2sin 22b A B a ===506B π<<且B>A ∴ 3B π=或23π ∴ 2C π=或6π 【点睛】本题考查了三角形面积公式和余弦定理,正弦定理的应用,三角形面积公式中既含有角,又含有边,可与正弦定理和余弦定理联系起来,为解三角形提供条件;已知三边关系,可转化为接近余弦定理的形式,运用余弦定理理解三角形,注意整体代入思想的应用.18.(1)见解析;(2)2【分析】(1)先证明AE ⊥平面BEC ',再证明AE BC ⊥'.(2)先证明BEC ∠'是二面角C AE B '--的平面角,再解三角形求得二面角C AE B '--的余弦值为2. 【详解】 (1)证明:四边形ABCD 是矩形,AB =2BC ,E 为CD 中点∴ ADE ∆、BCE ∆都是等腰直角三角形 ∴ 045AED BEC ∠=∠= ∴ 090AEB ∠=平面BEC '⊥平面ABED∴ AE ⊥平面BEC ' ∴ AE BC ⊥'(2)解:由(1)知BC E ∆'是等腰直角三角形,∴ 045BEC ∠='由(1)知AE ⊥平面BEC '∴ EB AE ⊥,EC AE '⊥∴ BEC ∠'是二面角C AE B '--的平面角∴二面角C AE B '--【点睛】(1)本题主要考查空间线面位置关系的证明,考查二面角的求法,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.(2) 二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形).方法二:(向量法)首先求出两个平面的法向量,m n ;再代入公式•cos m n m nα=±(其中,m n 分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号)19.(1)2155;(2)①014p =,②72 【解析】 【分析】(1)利用古典概型和排列组合的知识求得该盒芯片经一次检验即可出厂的概率.(2) ①先求出()()93312 1f p C p p =-,再利用基本不等式求()f p 的最大值点0p ;②先分析得到1124n B ,⎛⎫~ ⎪⎝⎭ ,再确定这箱芯片最终利润X 的期望.【详解】(1)设“该盒芯片经一次检验即可出厂”的事件为A则()393122155C P A C == 答:该盒芯片可出厂的概率为2155. (2)①某箱12片芯片中恰有3片次品的概率()()933121f p C p p =-312121333(1)9[]2712p p p p C +++-⨯≤1231213274C ⎛⎫= ⎪⎝⎭当且仅当31p p =-,即14p =时取“=”号 故()f p 的最大值点014p =.②由题设知,014p p ==设这箱芯片不合格品个数为n 则1124n B ,⎛⎫~ ⎪⎝⎭故()11234E n =⨯= 则()12012303272E X =---⨯=∴这箱芯片最终利润X 的期望是72元.【点睛】(1)本题主要考查古典概型的概率的计算,考查独立重复试验的概率和基本不等式,考查二项分布,意在考察学生对这些知识的掌握水平和分析推理能力.(2) 在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1)k k n k n n P k C p p ξ-==-,(0,1,2,3,...k n =).正好是二项式[(1)]n p p -+的展开式的第1k +项.所以记作ξ~(,)B n p ,读作ξ服从二项分布,其中,n p 为参数. 若ξ~(,),B n p 则.E np ξ=D ξ=(1)np p -. 20.(1)2214x y +=;(2)见解析【分析】(1)解方程组2222c a c a b c ⎧=⎪⎪⎪-=-⎨⎪=+⎪⎪⎩.(2)先证明1122411MF NF m k k k -⋅===--,所以12MF N π∠=,同理可得22MF N π∠=,所以 12MF N MF N ∠=∠.【详解】(1)由题设知22222c a a c a b c =⎪⎪⎪-=-⎨⎪=+⎪⎪⎩2a =,1b =,c =∴椭圆C 的方程为2214x y += (2)由题设知,1:2l x =-,2:2l x =l 与C 的方程联立消y 得()()222148410?*?kx kmx m +++-=l 与C 相切 ∴ “*?的()()222264161410k m k m ∆=-+-= 得2241m k -= l 与1l 、2l 联立得()22M k m ,--+,()22N k m +,又())1200F F 、 ∴1122411MF NF m k k k -⋅===-- ∴ 11MF NF ⊥,即12MF N π∠=同理可得22MF N π∠=∴ 12MF N MF N ∠=∠【点睛】(1)本题主要考查椭圆方程的求法,考查直线椭圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)解答本题的关键是证明1122411MF NF m k k k -⋅===--,所以1.2MF N π∠= 21.(1) ()f x的减区间是1),增区间是(0和(1)+∞,(2) (,-∞ 【分析】(1)利用导数求函数的单调区间.(2)先转化为()3221212a x ax f x x x x x+='+=++有两个不等异号正零点,构造函数()321(0)g x x ax x =++>,再对a 分0a ≥和a <0讨论,得到a的取值范围是,2⎛-∞- ⎝⎭.【详解】(1)3a =-时,()213ln f x x x x=--,0x >()322132312x x f x x x x x -='+=+- ()221x x x x ⎛=- ⎝⎭⎝⎭1x <<时()0f x '<,0x <<或1x >时()0f x '>∴ ()f x 的减区间是1⎫⎪⎪⎝⎭,增区间是0⎛ ⎝⎭和()1+∞, (2)若()f x 有两个极值点12x x 、,则须()3221212a x ax f x x x x x +='+=++有两个不等异号正零点 令()321(0)g x x ax x =++>, 故须()g x 有两个不等异号正零点则()26g x x a ='+ ①0a ≥时,()0g x >∴ ()g x 不可能有两个不等正零点故()f x 不可能有两个极值点②0a <时,()226666a g x x a x x x ⎛⎡⎤⎛⎫=+=--= ⎪⎢⎥ ⎝⎭⎣⎦⎝'0x <<()0g x '<;x >时,()0g x '>故()g x 在0⎛ ⎝上单减,在⎫+∞⎪⎪⎭上单增∴须()min 10g x g ==<解得a < 32762a <-<-,3271254a <-<-∴ 13a a -<<- 而3120g a a ⎛⎫-=-> ⎪⎝⎭,()()32235431318110g a a a a a -=--+=-++>∴故()g x 在0⎛ ⎝上和⎫+∞⎪⎪⎭上各一个异号零点 ∴ ()g x 有两个不等异号正零点∴ ()f x 有两个极值点综上,a 的取值范围是,2⎛⎫-∞- ⎪ ⎪⎝⎭.【点睛】(1)本题主要考查利用导数求函数的单调区间,考查利用导数研究函数的极值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是证明a <0时,()g x 在0⎛ ⎝上单减,在⎫+∞⎪⎪⎭上单增,须()min 10g x g ==<.22.(1)22y x = ,112x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).(2)【分析】(1)利用极坐标公式求曲线C 的直角坐标方程,利用直线的参数方程写出直线l 的参数方程.(2)利用直线参数方程t 的几何意义求11PA PB+的值. 【详解】(1)曲线C 的直角坐标方程为22y x = 直线l的参数方程为112x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数). (2)设A B 、对应的参数分别为12t t 、将直线l 与曲线C的方程联立得240?*?t -+=则12t t 、是“*?的二根则12124t t t t ⎧+=⎪⎨=⎪⎩ 故12t t 、同正∴1212121111t t PA PB t t t t ++=+===【点睛】(1)本题主要考查直线的参数方程,考查极坐标和直角坐标的互化,考查直线参数方程t 的几何意义,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 直线参数方程中参数t 的几何意义是这样的:如果点A 在定点P 的上方,则点A 对应的参数A t 就表示点A 到点P 的距离||PA ,即A t PA =.如果点B 在定点P 的下方,则点B 对应的参数B t 就表示点B 到点P 的距离||PB 的相反数,即B t PB =-.23.(1) 7a =或1-;(2) (13),【分析】(1)利用绝对值三角不等式求()f x 的最小值为|a-3|=4,即得a 的值.(2)分3423x x ≤≤≤<,讨论分别得到a 的取值范围,即得a 的取值范围.【详解】 (1) ()f x 的最小值为4∴ ()33f x x a x a =-+-≥-∴ 34a -=解得7a =或1-.(2)①34x ≤≤时,()f x x <恒成立等价于3x a -<恒成立即33a x a -<<+在34x ≤≤时恒成立即3334a a -<⎧⎨+>⎩解得16a <<②23x ≤<时,()f x x <恒成立等价于23x a x -<-恒成立 即333x a a x >-+⎧⎪+⎨>⎪⎩在23x ≤<时恒成立 须32323a a -+<⎧⎪+⎨<⎪⎩ 解得13a <<综上,a 的范围是()13,. 【点睛】(1)本题主要考查绝对值三角不等式,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 重要绝对值不等式:a b a b a b -≤-≤+,使用这个不等式可以求绝对值函数的最值,先要确定是使用左边还是右边,如果两个绝对值中间是“-”号,就用左边,如果两个绝对值中间是“+”号,就使用右边.再确定中间的“±”号,不管是“+”还是“-”,总之要使中间是常数.。

广东省珠海市2021届高三9月摸底考试数学(理)试题

广东省珠海市2021届高三9月摸底考试数学(理)试题

广东省珠海市2018届高三9月摸底考试数学(理)试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合 A = {x | 2x 2 + x -1 ≤ 0 ,x ∈ R } ,集合 B = {x | lg x < 2 ,x ∈ R } ,则 (C R A ) B =A .(12,100)B .(12,2)C .[12,100)D .φ 2. 在线段 AB 上任取一点 P ,点 P 恰好满足 | AP |23>| AB | 的概率是 A .23 B .49 C .19 D .133.对复数 z = a + bi (a ,b ∈ R ) ,设命题 p : 若 z 2 = 8i ,则 a = b = 2 或 a = b = -2 ;命题 q :若 z 2 < 0 ,则 a = 0 , b ≠ 0 .则下列命题中是真命题的是A .p ∨ qB .⌝p ∨ ⌝qC .⌝p ∧ ⌝qD .⌝p ∧ q 4.S n 为等比数列{a n }的前 n 项和, a 2 + a 3 + a 4 = 42 , a 3 + a 4 + a 5 = 84 ,则 S 3A .12B .21C .36D .48 5.定义在 R 上的偶函数 f (x ) , 满足 x ≥ 0 时 , f '(x ) < 0 , 则关于 x 的不等式f (| x |) ≤ f (-3) 的解集为A .(-3 ,3)B .[-3 ,3]C .(-∞ ,- 3) U(3 ,+ ∞)D .(-∞ ,- 3] U[3 ,+ ∞) 6.如图,是某几何体的三视图,则该几何体的体积是A .11B .7C .14D .9 7.(131)(3x-+2 x )6 展开式的常数项值为 A .5049B .-5049C .3591D .-3591 8.执行右边的程序框图 , 输入 n=1 , 若要求出 3m +2m 不超过 500 的最大奇数 m则和 两个空白框内应该填A .A>=500? 输出 mB .A<=500?输出 m=m-2C .A>=500?输出 m=m-2D .A<=500?输出 m 9.已知曲线C 1: 211sin,:sin()223y x C y x π==-,则下列 说法正确的是 A .把曲线 C 1向左平移23π个单位长度,得到曲线C 2 B .把曲线C 1向右平移23π个单位长度,得到曲线C 2 C .把曲线C 1 向左平移3π个单位长度,得到曲线C 2 D .把曲线C 1 向右平移3π个单位长度,得到曲线C 2 10.已知抛物线 C :y 2=4x ,过点 P (-2 ,0) 作直线 l 与 C 交于 A B 两点,直线 l 的斜率为 k ,则 k 的取值范围是A .(,0)(0,22-⋃B .[,22-C .(22-D .2[(0,]22- 11. 设 x ,y ,z 均为大于 1 的实数,且 log 2 x =log 3 y =log 5z ,则 x 3 , y 5 , z 2 中最小的是A .z 2B .y 5C .x 3D .三个数相等 12.整数列{a n }满足a n +1- a n -1 < 3n +12, a n +2-a n > 3n+1-12, a 2 = 3 ,则 a 2018 = A .1010332- B .1009332- C .1019332- D .1018332-二、填空题13.向量,a b 的夹角为θ,2,223,a b a b b =+=,则θ=____________14.变量 x , y 满足0045010x y x y x y ≥⎧⎪≤≤⎪⎨+-≤⎪⎪--≤⎩,则2z x y =+的最大值为___________ 15.以双曲线 C : 22221(0,0)x y a b a b-=>>的右顶点 A 为半径作圆,与双曲线右支交于 P 、Q 二点,若2PAQ π∠=,则双曲线 C 的离心率为___________.16.用一张16 ⨯10 长方形纸片,在四个角剪去四个边长为 x 的正方形(如图),然后沿虚线折起,得到一个长方体纸盒,则这个纸盒的最大容积是__________.三、解答题17.ABC ∆中,角A B C ,,的对边长分别为a b c ,,,满足222cos cos cos 1sin B C A B C +-=.(1)求角A 的大小;(2)若1a =,3B π=,求ABC ∆的面积.18.如图,四边形ABCD是矩形,AB =1BC =,2DE EC =,PE ⊥平面ABCD ,3PE =(1)求证:AC PB⊥;(2)求二面角A PB C --的正切值.19.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每台新机随机购买第一盒墨150元,优惠0元;再每多买一盒墨都要在原优惠基础上多优惠一元,即第一盒墨没有优惠,第二盒墨优惠一元,第三盒墨优惠2元,……,依此类推,每台新机最多可随新机购买25盒墨.平时购买墨盒按零售每盒200元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如下表:以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.(1)求ξ的分布列;(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望. 20.已知曲线1L 上的点到二定点1(0)F c -,、2(0)F c , (0)c >的距离之和为定值128||F F >,以2F 为圆心半径为4的圆2L 与1L 有两交点,其中一交点为B ,B 在y 轴正半轴上,圆2L 与x 轴从左至右交于M N ,二点,030BNM ∠=.(1)求曲线1L 、2L 的方程;(2)曲线23:2L x y =,直线2x =与1L 交于点P ,过P 点的直线l 与曲线3L 交于12K K 、二点,过12K K 、做3L 的切线12l l 、,12l l 、交于D .当P 在x 轴上方时,是否存在点D ,满足1122||||||||DF PF PF DF -=-,并说明理由.21.函数2()ln(1)f x x m x =++(1)讨论()f x 的单调性;(2)若函数()f x 有两个极值点12x x 、,且12x x <,求证:2112()2ln 2f x x x >-+ 22.选修4-4:极坐标与参数方程在平面直角坐标系xoy 中,曲线5cos :()3sin x C y θθθ=⎧⎨=⎩为参数,直线l 过点(21)P -,与曲线C 交于A B 、二点,P 为AB 中点.以坐标原点O 为极点,x 轴正半轴为极轴,以平面直角坐标系xoy 的单位1为基本单位建立极坐标系.(1)求直线l 的极坐标方程;(2)00()Q x y ,为曲线C 上的动点,求005y x -的范围. 23.选修4-5:不等式选讲已知函数()|21||1|f x x x =++-(1)求关于x 的不等式()2f x ≥的解集;(2)x R ∀∈,00x ∃>,使得00()a f x x x ≥+(0)a >成立,求实数a 的取值范围。

广东省珠海市第三中学2021-2022学年高三上学期市二模数学试卷

广东省珠海市第三中学2021-2022学年高三上学期市二模数学试卷

绝密★启用前广广广珠海市广广广广2021-2022广广广广广广广广广一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1.设全集U=R,集合A={1,2,3,4,5},B={x∈R|x>2},则下图中阴影部分所表示的集合为( )A. {0,1}B. {1}C. {1,2}D. {0,1,2}2.(1−2x)5的展开式中,x3的系数为( )A. −160B. −80C. 80D. 1603.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,则飞行目标被雷达发现的概率为( )A. 0.26B. 0.7C. 0.72D. 0.984.已知圆O:x2+y2=2与抛物线C:y2=2px(p>0)的准线相切,则p的值为( )A. √2B. 2C. 2√2D. 45.某圆锥母线长为2,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为( )A. 2B. 1C. 2√3D. √36.在平面直角坐标系中,点P在射线y=43x(x>0)上,点Q在过原点且倾斜角为θ(θ为锐角)的直线上.若∠POQ=π4,则sin2θ的值为( )A. −725B. 725C. −2425D. 24257.某奥运村有A,B,C三个运动员生活区,其中A区住有30人,B区住有15人,C区住有10人.已知三个区在一条直线上,位置如图所示.奥运村公交车拟在此间设一个停靠点,为使所有运动员步行到停靠点路程总和最小,那么停靠点位置应在( )A. A区B. B区C. C区D. A,B两区之间8.设x1,x2分别是函数f(x)=x−a−x和g(x)=xlog a x−1的零点(其中a>1),则x1+9x2的取值范围是( )A. [6,+∞)B. (6,+∞)C. [10,+∞)D. (10,+∞)二、多选题(本大题共4小题,共20.0分。

在每小题有多项符合题目要求)9.设i为虚数单位,若(1+i)n=(1−i)n,则n可以是( )A. 2020B. 2022C. 2024D. 202610.已知函数f(x)=lnxx,下列说法正确的有( )A. 曲线y=f(x)在x=1处的切线方程为y=x−1B. f(x)的单调递减区间为(e,+∞)C. f(x)的极大值为1eD. 方程f(x)=−1有两个不同的解11.已知P为双曲线x23−y2=1上的动点,过点P作双曲线的两条渐近线的垂线,垂足分别为A,B,设直线PA,PB的斜率分别为k1,k2,线段PA,PB的长分别为m,n,则下列结论中正确的有( )A. ∠APB=2π3B. k1k2=−13C. mn=34D. |AB|≥9412.在正三棱锥P−ABC中,设∠APB=∠APC=∠BPC=θ,PA=2,则下列结论中正确的有( )A. 当θ=π2时,P到底面ABC的距离为2√33B. 当正三棱锥P−ABC的体积取最大值时,则有θ=π3C. 当θ=π6时,过点A作平面α分别交线段PB,PC于点E,F(E,F不重合),则△AEF周长的最小值为2√3D. 当θ变大时,正三棱锥P−ABC的表面积一定变大三、填空题(本大题共4小题,共20.0分)13.已知向量a⃗,b⃗ 夹角为45∘,且|a⃗|=1,|2a⃗+b⃗ |=√10,则|b⃗ |=.14.写出一个值域为(−∞,0),在(−∞,+∞)上单调递增的函数f(x)=.15.已知公差不为0的等差数列{a n}的前n项和为S n,若a4,S5,S7∈{−5,0},则S n的最小值为.16.用一张A4纸围绕半径为r的石膏圆柱体包裹若干圈,然后用裁纸刀将圆柱体切为两段,如图 ①所示.设圆柱体母线与截面的夹角为θ(0<θ<π2),如图 ②.将其中一段圆柱体外包裹的A4纸展开铺平,如果忽略纸的厚度造成的误差,我们会发现剪裁边缘形成的曲线是正弦型曲线,如图 ③.建立适当的坐标系后,这条曲线的解析式可设为f(x)=Asinωx(A>0,ω>0).若f(x)的最小正周期为2π,则r=.此时,若再有A=2,则sinθ=.四、解答题(本大题共6小题,共70.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档