基于PLC的水箱温度控制系统

合集下载

基于PLC的水温恒温控制系统

基于PLC的水温恒温控制系统

水 , 上升到液 位后 ( 水 一定 的位置 ) 启动搅拌 电机 , , 测量 水箱水温并 与 设定值 比较 , 若温度差 小于 5 , 要采用 P D调节 加热 。当水 温高 于设 I 定值5 0 —1 ℃时 , 要进 冷水 。 当水温 在设 定值 0 5 — ℃范 围内 , 仍采 用 PD调节 加热 。当水温高 于设定值 l ℃以上 时 , 用进水 与风机冷 却 I O 采 同时进行 的方法实现降温控制 。此外对 温度 、 流量 、 加热 的电功 率要 进 行实测并显示 。若进水 时无 流量或加热 、 冷却时水温无变化应报警 。 3恒温控制装置 的 I . / 0设计地址表 本 系统的输入 信号有启 动开关 、 停止 开关 、 液位开关 、 流量检测 开 关、 温度传感 器等。输出信号控制 的对象有 水泵 、 水阀 、 冷却风机 、 搅拌 电机 、 电加 热 、 状态显示 、 温度显示 等。采用 F X系列 P C L 控制 , 其输入 、
冷却 风扇 继 电器
C 3
Y2 2
温度显示 3 信号地址 流量显示 L D E 信号地址
C 4 C 5
Y3 2
Y 4 功率显示 L D 2 E 信号地址
4恒温控制装置 的 I . , o电气接 口设计 图 根 据本系统的控制要求 , I 其 / O电气接 口图设计如图 2 所示。
S 1 X0 B l 系统启 动开关
输 S 2 X1 系统停 止开关 B 5 入 S X1 上 液位 开关 Q1 l 信 号 S 2 X1 下液位 开关 Q 2
K 3 A
K4 A HL
Y 4
K A5 Y 7
搅拌 电机
电加热水 报警指示灯
8 2 码 0~Y1 显示数据用 4 1 Y1 7

基于PLC的水温控制系统设计

基于PLC的水温控制系统设计

自动化技术0 前言温度是一种最基本的环境参数,它不仅与我们的日常生活息息相关,同时在工业生产、农业生产过程中,许许多多农产品的生长环境、工业产品的加工工艺流程都需要实时进行温度检测,才能生产出合格的产品。

为保证产品的质量,要求我们对温度进行精确控制。

例如:在某水箱水温控制系统中,控制要求如下:水箱水温由加热器控制,其功率为2kW;水温要求控制在50℃~60℃之间,当温度低于50℃时,启动加热器;当水温高于60℃时,关闭加热器,实现温度的自动调节与控制。

1 控制系统设计方案温度测量可采取不同的方式,如生活中的温度计,利用水银热胀冷缩原理,可反映出实时的天气温度。

在工业控制中,不仅要求进行温度的检测,而且要求能对产品的生产环境温度进行控制,使温度保持在要求的范围内,实现自动调节。

基于此,笔者在水箱水温控制系统设计中,采用基于可编程逻辑控制器(PLC)的温度测量与控制模块,可达到精确控制、灵活调节的效果。

2 控制系统硬件设计该系统硬件主要由西门子S7-200 SMART SR40PLC、模拟量扩展模块EM AT04、K型热电偶传感器、加热电阻丝、交流接触器KM和电源开关等组成。

在系统设计中需要解决两个问题:一是如何实现温度的测量?二是如何使水箱水温保持在50o C-60 o C之间?■2�1 温度测量电路首先温度测量采用应用广泛的K型热电偶传感器,它是一种自发电式传感器,工作时不需要外加电源。

K型热电偶测量温度范围在0℃~1200℃之间,具有良好的线性热电特性曲线;同时因为K型热电偶传感器具有造价低、测量精确度较高、测量温度范围广等特点。

这里选择型号为MT 的K型热电偶,其测量温度范围为0℃~600℃,满足本项目的水温测量要求。

在温度测量时,考虑到温度是一个随时间连续变化的模拟信号,经温度传感器转换的电信号也是一个模拟量,它不能作为输入信号直接与PLC相连,需要经过模-数转换,才能接入PLC的输入端。

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

摘要本次毕业设计的课题是基于PLC的液位控制系统的设计。

在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。

本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定ABSTRACTThe subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge.Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction.Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.目录中文摘要 (I)英文摘要 (II)1 绪论 (1)1.1 PLC的产生、定义及现状 (1)1.1.1PLC的产生、定义 (1)1.1.2PLC的发展现状 (1)1.2过程控制的发展 (2)1.3本文研究的目的、主要内容 (3)1.3.1本文研究的目的、意义 (3)1.3.2本文研究的主要内容 (3)2 FX2系列PLC和控制对象介绍 (5)2.1 三菱PLC控制系统 (5)2.1.1 CPU模块 (5)2.1.2 I/O模块 (6)2.1.3电源模块 (6)2.2 过程建模 (6)2.2.1 一阶单容上水箱对象特性 (6)2.2.2 二阶双容下水箱对象特性 (11)3 PID调节及串级控制系统 (15)3.1 PID调节的各个环节及其调节过程 (15)3.1.1比例控制及其调节过程 (16)3.1.2比例积分调节 (16)3.1.3比例积分微分调节 (17)3.2 串级控制 (18)3.2.1串级控制系统的结构 (18)3.2.2串级控制系统的特点 (19)3.2.3串级控制系统的设计 (19)3.3 扩充临界比例度法 (21)3.4 三菱FX2系列PLC中PID指令的使用 (22)3.5在PLC中的PID控制的编程 (23)3.5.1回路的输入输出变量的转换和标准化 (23)3.6变量的范围 (25)4 控制方案设计 (27)4.1 系统设计 (27)4.1.1上水箱液位的自动调节 (27)4.1.2上水箱下水箱液位串级控制系统 (29)4.2 硬件设计 (29)4.2.1检测单元 (29)4.2.3控制单元 (30)4.3软件设计 (31)5 运行 (32)5.1 上水箱液位比例调节 (32)5.2 上水箱液位比例积分调节 (32)5.3 上水箱液位比例积分微分调节 (32)致谢 (35)参考文献 (36)1 绪论1.1 PLC的产生、定义及现状1.1.1PLC的产生、定义一、可编程控制器的产生20世纪60年代,在世界技术改造的冲击下,要求寻找一种比继电器更可靠、功能更齐全、响应速度更快的新型工业控制器。

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。

该系统常用于水处理、供水系统、工业生产等领域。

本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。

PLC作为控制器,能够实现对水位的监测、控制和保护。

首先,本设计将使用传感器来监测水箱的液位。

液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。

传感器将通过模拟信号将液位信息传输给PLC。

PLC将读取并处理传感器的信号,得到水箱的液位信息。

其次,PLC将根据液位信息来控制水泵的运行。

当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。

当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。

通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。

此外,本系统还将具备一定的保护功能。

当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。

同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。

为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。

程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。

同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。

最后,本设计将进行系统的仿真和调试。

通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。

在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。

通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。

同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。

基于PLC的热水箱恒温控制系统设计-开题报告

基于PLC的热水箱恒温控制系统设计-开题报告

毕业设计(论文) 开题报告
题目:
系部专业
姓名学号
指导教师:
年月日
系统模块框图
4.预期成果
第一、开通电源,状态指示灯1亮。

第二、通过按键键入设定温度,数码显示管1显示设定温度。

第三、数码显示管2显示恒温箱内的实时温度。

第四、当数码显示管2上显示的温度低于键盘显示板1上的设定温度时,蜂鸣器报警。

加热装置加热。

水泵2开始运行,状态指示灯3亮,水泵2抽取储水箱2中的热水注入恒温箱的第二组金属管,同时储水箱3中的第二组金属管端口有水流出。

第五、当数码显示管2所显示的温度等于数码显示管1的设定温度时,蜂鸣器停止报警,加热装置停止工作,水泵2停止工作,状态指示灯3熄灭。

第六、当数码显示管2上显示的温度高于数码显示管1上的设定温度时,蜂鸣器报警,水泵1开始运行,状态指示灯2亮。

水泵1抽取储水箱1中的冷水注入恒温箱的第一组金属管,同时储水箱3中的第一组金属管端口有水流出。

第七、当数码显示管2所显示的温度等于数码显示管1的设定温度时,蜂鸣器停止报警,水泵1停止工作,状态指示灯2熄灭。

《基于PLC的面向加热水箱大滞后系统控制算法实现与优化》范文

《基于PLC的面向加热水箱大滞后系统控制算法实现与优化》范文

《基于PLC的面向加热水箱大滞后系统控制算法实现与优化》篇一一、引言随着工业自动化技术的快速发展,可编程逻辑控制器(PLC)在工业控制系统中扮演着越来越重要的角色。

然而,对于加热水箱这类大滞后系统,传统的控制算法往往难以实现精确和稳定的控制。

因此,本文将探讨基于PLC的面向加热水箱大滞后系统的控制算法实现与优化,以期提高系统的控制精度和稳定性。

二、问题背景及研究意义加热水箱系统由于其固有的大滞后特性,常常导致温度控制不稳定,影响了生产效率和产品质量。

传统的PID控制算法虽然简单易行,但对于大滞后系统往往难以达到理想的控制效果。

因此,研究基于PLC的面向加热水箱大滞后系统的控制算法实现与优化,对于提高工业生产效率和产品质量具有重要意义。

三、相关技术综述在控制算法领域,针对大滞后系统的控制方法主要包括预测控制、模糊控制、神经网络控制等。

其中,预测控制通过建立系统模型,对未来输出进行预测,从而实现对系统的精确控制;模糊控制则利用模糊逻辑对系统进行控制,具有较强的鲁棒性;神经网络控制则通过模拟人脑神经网络的工作方式,实现对系统的自适应控制。

这些方法在加热水箱大滞后系统的控制中均有应用,但各有优缺点。

四、基于PLC的控制算法实现本文提出一种基于PLC的预测控制算法,实现对加热水箱大滞后系统的精确控制。

该算法通过建立系统的数学模型,预测未来一段时间内的温度变化趋势,并根据预测结果调整加热功率,从而实现精确的温度控制。

在实现过程中,我们采用了PLC的编程语言进行算法编写和调试,确保了算法的可靠性和稳定性。

五、算法优化及实验结果分析为了进一步提高算法的控制精度和稳定性,我们采用了多种优化措施。

首先,我们对系统模型进行精确的辨识和优化,提高了模型的预测精度。

其次,我们引入了自适应调节机制,根据系统实际运行情况动态调整算法参数,以适应不同工况下的控制需求。

最后,我们采用了鲁棒性较强的模糊逻辑对算法进行优化,提高了算法的鲁棒性和抗干扰能力。

基于PLC的热水箱恒温控制系统

基于PLC的热水箱恒温控制系统

基于PLC的热水箱恒温控制系统温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。

在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。

对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。

例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等。

温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。

可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。

它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。

第一章绪论1.1 引言可编程序控制器(Programmable Controller,简称PLC)是以微处理器为基础,综合了计算机技术、控制技术、通讯技术等高新技术的工业装置。

现代PLC不仅具有传统继电器控制系统的控制功能,而且能扩展输入输出模块,特别是可以扩展一些智能控制模块,构成不同的控制系统,将模拟量输入输出控制和现代控制方法融为一体,实现智能控制、闭环控制、多控制功能一体的综合控制系统。

在工农业生产中,常用闭环控制方式控制温度、压力、流量等连续变化的模拟量,PID控制是常见的一种控制方式。

由于其不需要求出控制系统的数学模型,算法简单、鲁棒性好、可靠性高,在使用模拟量控制器的模拟控制系统和使用计算机(包括PLC)的数字控制系统中得到了广泛的应用。

本文针对恒温水箱温控系统的要求,以PLC为温度控制系统的核心,利用PID控制算法实现水箱的恒温控制。

1.2选题的背景温度是是工业上常见的被控参数之一,特别在冶金、化工、机械制造等领域,恒温控制系统被广泛应用于热水器等一些热处理设备中。

基于plc水箱温度控制系统任务书

基于plc水箱温度控制系统任务书

基于PLC水箱温度控制系统任务书1. 引言水箱温度控制是一种常见的自动化控制系统,在许多工业和家庭应用中都得到了广泛应用。

PLC(可编程逻辑控制器)作为一种可靠和灵活的控制设备,被广泛应用于水箱温度控制系统中。

本文旨在研究和探讨基于PLC的水箱温度控制系统的设计和实施。

2. PLC水箱温度控制系统的基本原理2.1 温度传感器的选择和安装在水箱温度控制系统中,温度传感器是非常重要的组成部分。

合适的温度传感器可以准确测量水箱内的温度,并将数据传输给PLC进行处理。

根据具体的应用需求,可以选择热电偶、热敏电阻或红外线传感器等不同类型的温度传感器。

2.2 PLC的选择和配置 PLC是水箱温度控制系统的关键设备,其主要功能是接收温度传感器的信号,并根据预设的控制算法来控制水箱内的温度。

在选择PLC时,需要考虑其输入输出点数、通信接口、编程灵活性以及可靠性等因素。

配置PLC时,需要将温度传感器接口和输出控制装置等正确连接。

2.3 控制算法的设计和实现根据水箱温度控制系统的要求,设计合适的控制算法对水箱内的温度进行调控。

常用的控制算法包括比例控制、积分控制和微分控制等。

通过PLC的编程能力,实现对温度传感器数据的实时采集和处理,并输出相应的控制信号控制加热或制冷设备的运行。

3. PLC水箱温度控制系统的设计和实现3.1 硬件设计在PLC水箱温度控制系统的硬件设计中,需要确定合适的外围设备,如水泵、加热设备和制冷设备等。

根据系统的要求和实际应用场景,选择适当的设备并与PLC进行联接。

同时,需要设计合理的电路连接和线缆布局,确保系统的可靠性和稳定性。

3.2 软件设计软件设计是PLC水箱温度控制系统中不可或缺的一部分。

通过PLC编程软件,按照控制算法的要求,编写合适的逻辑程序。

程序应包括实时采集温度数据、控制算法的计算和控制输出的生成等功能。

在程序设计中,还需要考虑故障处理、报警功能和数据记录等相关功能的实现。

3.3 系统测试和调试完成PLC水箱温度控制系统的设计和编程后,进行系统测试和调试是必不可少的一步。

PLC恒温水箱控制系统毕业设计

PLC恒温水箱控制系统毕业设计

PLC恒温水箱控制系统毕业设计首先,我们将使用一种可编程逻辑控制器(PLC)来实现该系统。

PLC是一种专业设计用于自动化控制系统的计算机硬件设备。

它可以通过逻辑程序对输入信号进行处理,并根据程序中定义的逻辑规则来控制输出信号。

在本设计中,PLC将作为核心控制单元来实现恒温水箱控制。

其次,我们需要设计一个温度传感器来实时监测水箱内的温度。

温度传感器可以通过感知器的温度变化来产生相应的电信号,并将其传递给PLC进行处理。

在设计过程中,我们需要选择一个高精度、可靠性高的温度传感器,以确保控制系统的准确性和稳定性。

接下来,我们需要设计一个恒温控制回路,并将其连接到水箱中的加热器。

该控制回路可以根据PLC传递过来的温度数据,自动调整加热器的工作状态,以维持恒定的水箱温度。

在设计过程中,我们需要充分考虑水箱的体积、加热器的功率和加热时间等因素,以确保系统能够快速响应温度变化,并达到恒温的要求。

此外,为了满足实际生产的需求,我们需要在系统中设置一些安全保护措施。

例如,当水箱内温度超过设定的上限或下限时,PLC应该能够自动切断加热器的供电,以防止温度过高或过低导致的不可逆损坏。

此外,我们还可以设置报警系统,当温度超过安全范围时,发出警报以提醒操作人员及时处理。

最后,我们需要设计一个人机界面(HMI),以便操作人员能够方便地监控和控制系统的运行状态。

HMI应该提供实时的温度显示、温度设定功能以及对加热器工作状态的控制等。

另外,为了便于维护和故障排除,HMI还应提供一些系统参数的查看和修改功能。

综上所述,PLC恒温水箱控制系统是一个涉及多种技术和设备的复杂系统。

在实际的设计和实现过程中,我们需要仔细考虑系统的功能需求、硬件选型、软件编程以及安全保护等方面的问题,以确保系统能够稳定、高效地运行。

通过本篇文章的介绍,相信读者对PLC恒温水箱控制系统的设计和实现有了更深入的了解。

基于PLC的水温控制系统设计与实现

基于PLC的水温控制系统设计与实现

摘要 : 以三 菱 P L C控制 器为例 , 对温度控 制 系统进行 简单的介 绍。主要从硬件设计 以及软件设计入手 , 并对整 个系统进
行 了连接 调试 , 经过 实践测定 , 证 明 了该ห้องสมุดไป่ตู้系统的稳 定性 以及抗 干扰 能力比较 强, 实际应用价值 比较 高。
关键词 : P L C; 水 温控 制 ; 系统 设 计 中图分类号 : T P 2 文献标 识码 : A
文章编 号: 1 6 7 3 - 1 1 3 1 ( 2 0 1 4 ) 0 2 - 0 0 7 6 - 0 1
在众多的温度系统之中,基于单片机 的温度控制系统其 工作运行情况稳定 以及温度控制精度非常高,但 是较之于其
3软 件设 计
P L C编程是采用手持编程器 , 水温传感器选择 DS I 8 B 2 0 ,
( 2 ) P I D控制 。 P I D 控 制 是 控 制 系 统 中 较 为 受 欢 迎 的 一 种 方式 , 控 制 效 果 也 十 分好 。
外界输入 的输入方式有两种 ,一是无源触点式输入 以及 有源传感器 的输入 , 这些器件与 P L C的连接是通过 P L C端子 的, 通过 P L C公共端子形成 闭合 的有 电源 电路后才能正常工 作, 所 以必须考虑到供 电。在输入 电路 中增加 了光耦 , 这是 由 于P L C输入 电路 中, 内部电源 的高 电平是 2 4 V, 远远高于单片 机 的高电平, 所 以要增加光耦进行隔离 。为了限制电流量 , 在 光耦输入部分要接 入 1 千欧的电阻一个 , 在输出部分接入 3 . 4
压 范 围为 1 2 V ~ 2 4 V。
( 1 ) 采样周期的选择。 为了使得数字模拟 的精度得 以提高, 我们希望采样 的周期尽可能减少 , 这样就能使得控制效果更加

基于PLC的控制恒温水箱的设计

基于PLC的控制恒温水箱的设计

基于PLC的控制恒温水箱的设计摘要:本文基于PLC控制系统,设计并实现了具有恒温功能的水箱。

本系统主要由双控制系统、水温传感器、PID控制算法和温度信号采集模块等组成。

实验结果表明,本设计的水箱控制系统能够稳定并精确地控制水温在设定温度范围内,同时具有智能化、便捷性等优点。

关键词:恒温水箱,PLC,PID控制算法,温度采集模块一、引言恒温水箱作为现代工业生产所必须的一个设备,主要用于物体的冷却、加热或保温等操作。

随着技术的不断发展,人们逐渐意识到,采用传统的控制手段进行温度控制,存在工作量大、控制精度低、智能化程度差等问题。

因此,本文提出了一种基于PLC控制系统的恒温水箱设计,该设计可以实现温度的自动调节和控制,并具有精度高、智能化好等优点,特别适合现代化的工业生产要求。

二、系统硬件设计1. 箱体本设计的水箱主要采用钢材作为箱体,具有一定的机械强度和耐高温性能,能够经受较为严酷的工业环境。

箱体内部设置温度传感器和用于加热和冷却水的进出口。

2. 控制系统本系统主要采用经典的PID控制算法,可根据实时采集的温度信号进行迭代调节,并精确地控制水温在设定范围内。

同时采用PLC作为主控制器,对各种控制动作进行实时监控与处理,并实现数据存储和远程控制等功能。

3. 电气装置本设计中的电气控制图主要包括各种控制开关、接线端子、继电器等。

其中,继电器主要用于控制水箱内部的电热器和冷却机的开关,实现加热或冷却功能。

三、系统软件设计1. PLC程序设计本设计中的PLC程序主要负责接收温度传感器采集的温度信号,并使用PID算法进行控制处理。

具体的控制流程包括:采集温度信号、判断当前温度是否在设定范围内、根据PID算法进行温度调节、输出控制电信号给电热器或冷却机。

2. 控制界面设计本设计中制定了一套友好的控制界面,可以方便地设置水箱的温度范围、工作模式和控制参数等。

同时,该界面还具有一定的数据记录和统计功能,实现了数据的备份和远程监控的便利操作。

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

2024年7月16日
11
基于PLC的液位控制系统设计
液位控制系统的硬件组成
计算机液位控制系统电路图如图所示。在本控制系统中、用计算机实现控 制算法, PLC控制系统带有A/D模块SM331和D/A模块SM332。电动调节阀作为 执行机构。
控制系统硬件电路连接图
2024年7月16日
12
基于PLC的液位控制系统设计
液位变送器 : 采用液位变送器 BP800采用工业用的扩散硅压力变送器, 含不绣钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补 偿 。压力传感器用来对上水箱和下水箱的液位进行检测,变送器为二 线制,故工作时需串接24VDC电源 。
电动调节阀 : 采用智能型电动调节阀,用来进行控制回路流量的调节。。 电动调节阀号为: QSVP-16K。具有精度高、技术先进、体积小、重量轻、 推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作 方便等优点,控制信号为4—20mADC或1—5VDC,输出4—2OmADC的阀位信 号,使用和校正非常方便。
2
基于PLC的液位控制系统设计
建立数学模型
被控对象的数学模型 :
将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型 就是h与Q1之间的数学表达式。根据动态物料平衡关系有:
2024年7月16日
3
基于PLC的液位控制系统设计
表示为增量形式:
式中: ΔQ1,ΔQ2,Δh分别为偏离某一平衡状态的增量;A为水箱截 面积。
基于PLC的液位控制系统设计
本文设计的主要目的是控制下水箱的液位。使下水箱的 液位在某一比较小的范围变化。
研究对象是双容水箱的串级系统。 液位控制系统的组成:
控制器 电动调节阀 上水箱、下水箱 液位变送器等 电动调节阀用于调节上水箱的进水量大小,液位变送器 用于检测上水箱和下水箱的液位。控制器的输出量用于控制 调节阀的开度。

基于PLC的水箱温度控制系统

基于PLC的水箱温度控制系统

【摘要】本文研究的是可编程控制器在水箱恒温控制系统中的应用,水箱恒温控制装置主要用来完成对水箱中液体的液位和温度检测,并对温度参数进行调节。

系统中温度控制是一个非常重要的部分。

通过铂热电阻对温度进行测量,将测量到的温度传到PLC中。

PLC 对采集到的温度值与给定值进行比较,经过PID运算后,调节双向晶闸管在设定周期内通断时间的比例,改变加热丝中电流大小及加热时间,以完成对温度的控制要求。

本系统硬件部分主要由CPU224、EM235、双向晶闸管等组成;软件部分主要由PID 控制来完成。

关键词:PLC CPU224 EM235 双向晶闸管PID控制Abstract: In this paper, is the programmable controller in the water tank temperature control system application, water tank temperature control system is mainly used to complete the tank liquid level and temperature detection, and adjust the temperature parameters. System, temperature control is a very important part. By platinum RTD temperature measurement will be measured in the temperature reached the PLC. PLC on the collected temperature values compared with a given value, after a PID operation, the regulator Triac off the set period of time the ratio of change in heating wire in the current size and heating time to complete the right temperature control requirements.The system hardware mainly by the CPU224, EM235, bi-directional thyristor etc.; software, some of the major by the PID control to complete.Key words:PLC CPU224 EM235 Triac PID Control目录1.前言 (1)1.1恒温系统应用 (1)1.2PLC的结构 (1)1.2.1中央处理单元(CPU) (1)1.2.2存储器 (1)1.2.3电源 (2)1.3PLC的工作原理 (2)1.3.1 PLC的基本工作原理 (2)1.3.2 PLC 编程方式 (3)1.4PLC的控制系统发展趋势 (3)1.5PLC控制系统的构成设计原则及步骤 (4)1.5.1 PLC的设计原则 (4)1.5.2 PLC的设计步骤 (5)2硬件设计 (7)2.1工作过程 (7)2.2I/O地址分配 (7)2.3选择硬件 (8)2.3.1 CPU224 (8)2.3.2双向晶闸管 (9)2.3.3热电阻原理构造 (10)3 PID的介绍 (11)3.1PID的工作原理 (11)3.2PID参数整定 (12)3.3PID模块介绍 (13)3.3.1 PID回路表的格式及初始化 (13)3.3.2 PID程序 (15)4程序 (18)4.1顺序功能流程图 (18)4.2程序设计 (21)结束语 (26)谢辞 (27)参考文献 (28)1.前言1.1恒温系统应用在日常生活、工业生产和实验室中电热恒温箱的应用随处可以见到。

基于PLC的水箱温度控制系统

基于PLC的水箱温度控制系统

【摘要】本文研究的是可编程控制器在水箱恒温控制系统中的应用,水箱恒温控制装置主要用来完成对水箱中液体的液位和温度检测,并对温度参数进行调节。

系统中温度控制是一个非常重要的部分。

通过铂热电阻对温度进行测量,将测量到的温度传到PLC中。

PLC 对采集到的温度值与给定值进行比较,经过PID运算后,调节双向晶闸管在设定周期通断时间的比例,改变加热丝中电流大小及加热时间,以完成对温度的控制要求。

本系统硬件部分主要由CPU224、EM235、双向晶闸管等组成;软件部分主要由PID 控制来完成。

关键词:PLC CPU224 EM235 双向晶闸管PID控制Abstract:In this paper, is the programmable controller in the water tank temperature control system application, water tank temperature control system is mainly used to complete the tank liquid level and temperature detection, and adjust the temperature parameters. System, temperature control is a very important part. By platinum RTD temperature measurement will be measured in the temperature reached the PLC. PLC on the collected temperature values compared with a given value, after a PID operation, the regulator Triac off the set period of time the ratio of change in heating wire in the current size and heating time to complete the right temperature control requirements.The system hardware mainly by the CPU224, EM235, bi-directional thyristor etc.; software, some of the major by the PID control to complete.Key words:PLC CPU224 EM235 Triac PID Control目录1.前言 (1)1.1恒温系统应用 (1)1.2PLC的结构 (1)1.2.1中央处理单元(CPU) (1)1.2.2存储器 (1)1.2.3电源 (2)1.3PLC的工作原理 (2)1.3.1 PLC的基本工作原理 (2)1.3.2 PLC 编程方式 (3)1.4PLC的控制系统发展趋势 (3)1.5PLC控制系统的构成设计原则及步骤 (4)1.5.1 PLC的设计原则 (4)1.5.2 PLC的设计步骤 (5)2硬件设计 (7)2.1工作过程 (7)2.2I/O地址分配 (7)2.3选择硬件 (8)2.3.1 CPU224 (8)2.3.2双向晶闸管 (9)2.3.3热电阻原理构造 (10)3 PID的介绍 (11)3.1PID的工作原理 (11)3.2PID参数整定 (12)3.3PID模块介绍 (13)3.3.1 PID回路表的格式及初始化 (13)3.3.2 PID程序 (15)4程序 (19)4.1顺序功能流程图 (19)4.2程序设计 (22)结束语 (27)辞 (28)参考文献 (29)1.前言1.1恒温系统应用在日常生活、工业生产和实验室中电热恒温箱的应用随处可以见到。

基于plc的鱼缸水温控制系统的设计

基于plc的鱼缸水温控制系统的设计

基于plc的鱼缸水温控制系统的设计基于PLC的鱼缸水温控制系统的设计引言:鱼缸是一种常见的宠物养殖设备,而水温对于鱼类的生存和繁殖起着至关重要的作用。

设计一个基于PLC的鱼缸水温控制系统是非常有必要的。

本文将详细介绍这个系统的设计方案。

一、系统概述1.1 系统目标本系统旨在实现对鱼缸水温的自动监测和控制,保持水温在合适的范围内,提供一个良好的生存环境给鱼类。

1.2 系统组成该控制系统主要由以下几个部分组成:- PLC(可编程逻辑控制器):负责接收传感器数据并控制执行器。

- 传感器:用于检测鱼缸内部的水温。

- 执行器:用于调节鱼缸内部的水温。

- 人机界面(HMI):用于显示当前水温和设置目标水温等信息。

1.3 工作原理本系统通过不断地检测鱼缸内部的水温,并根据预设的目标水温进行调节。

当检测到当前水温超出预设范围时,PLC将通过执行器来调节鱼缸内部的水温,直到水温恢复到目标水温为止。

二、系统设计2.1 硬件设计2.1.1 PLC选择在本系统中,我们选择了一款功能强大且稳定可靠的PLC作为控制器。

该PLC具有多个输入输出接口,可以方便地连接传感器和执行器,并支持多种通信协议。

2.1.2 传感器选择为了准确地监测鱼缸内部的水温,我们选择了一款高精度的温度传感器。

该传感器具有快速响应、抗干扰能力强等特点,可以提供准确的水温数据。

2.1.3 执行器选择为了能够精确地调节鱼缸内部的水温,我们选择了一款电磁阀作为执行器。

该电磁阀具有快速开关、耐用等特点,可以根据PLC的控制信号来调节水流量,从而实现对水温的调控。

2.1.4 人机界面设计为了方便用户操作和监测系统运行状态,我们设计了一个人机界面(HMI),通过触摸屏显示当前水温和设置目标水温等信息。

用户可以通过触摸屏来设置目标水温,并实时监测水温的变化。

2.2 软件设计2.2.1 PLC程序设计PLC程序是本系统的核心,它负责接收传感器数据、进行逻辑控制,并发送控制信号给执行器。

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是现代工业控制的重要组成部分,广泛应用于工业生产和日常生活中。

本文将就基于PLC的水箱液位控制系统进行毕业设计进行介绍。

本文毕业设计的目标是设计并实现一个基于PLC的水箱液位控制系统,实现水箱的液位控制和监测。

系统包括液位传感器、PLC控制器、水泵和电磁阀等组成。

首先,设计师需要根据实际需求选择合适的液位传感器,并将其与PLC控制器进行连接。

液位传感器用于监测水箱中的液位,根据液位的变化输出相应的信号给PLC控制器。

接下来,设计师需要使用PLC编程软件编写相应的PLC控制程序。

程序的主要功能是根据液位传感器的信号,控制水泵和电磁阀的开启和关闭。

当水箱的液位低于一些设定值时,PLC控制器会开启水泵将水箱填满;当液位超过一定设定值时,PLC控制器会关闭水泵,同时开启电磁阀,将多余的水排出。

除了基本的液位控制功能外,设计师还可以在PLC控制程序中添加其他功能,如报警功能。

当水箱的液位异常高或异常低时,PLC控制器可以通过声音或灯光等方式发出警报,提醒操作人员进行处理。

在整个系统的设计和实现过程中,设计师需要考虑如何提高系统的可靠性和安全性。

例如,可以在PLC控制程序中设置容错机制,确保系统在出现异常情况时能够正常运行;同时,在选择和配置水泵和电磁阀时,要考虑其工作负荷和可靠性,以确保系统的稳定运行。

在毕业设计完成后,设计师需要对系统进行测试和调试。

首先,需要检查液位传感器的安装和连接是否正常,确保其能够准确地监测水箱的液位变化;然后,利用测试仪器对PLC控制器的输出和输入进行测试,确保其能够按照预期进行控制。

总结而言,基于PLC的水箱液位控制系统是一项非常具有实用价值的毕业设计。

通过该设计,不仅可以提高水箱的自动化程度,还可以提高水资源的利用效率,减少人工操作错误的可能性。

同时,本设计也为进一步研究和开发更先进的基于PLC的控制系统提供了宝贵的经验和借鉴。

基于plc水箱温度控制系统任务书

基于plc水箱温度控制系统任务书

基于plc水箱温度控制系统任务书项目名称:基于PLC水箱温度控制系统项目背景:随着现代工业的发展,温度控制对于许多工业过程的稳定运行至关重要。

特别是在水箱温度控制方面,准确的温度控制可以有效地提高生产效率,并确保产品质量。

传统的水箱温度控制方式通常依靠人工操作,存在人为误差大、控制效果不稳定等问题。

因此,采用PLC(可编程逻辑控制器)技术来实现水箱温度的自动控制具有重要的意义。

项目目标:本项目旨在设计一种基于PLC的水箱温度控制系统,实现对水箱温度的自动控制,提高生产效率和产品质量。

项目内容:1. 系统硬件设计:设计适合水箱温度控制的PLC控制器,并选择合适的传感器进行温度检测。

2. 系统软件设计:编写PLC控制程序,实现温度控制算法,包括温度检测、控制命令生成和执行等功能。

3. 系统界面设计:设计人机界面(HMI),实现温度信息的显示和操作界面的交互。

4. 系统测试和调试:对设计的系统进行全面的测试和调试,在实验室环境中验证系统的性能和稳定性。

项目计划:1. 第一周:调研水箱温度控制系统的现有技术和产品,并制定本项目的详细需求。

2. 第二周:进行系统硬件设计,包括选择适合的PLC控制器和温度传感器。

3. 第三周:进行系统软件设计,包括编写PLC控制程序和界面设计。

4. 第四周:进行系统集成和测试,验证系统的功能和性能。

5. 第五周:进行系统调试和优化,确保系统的稳定性和可靠性。

6. 第六周:编写项目总结报告并进行项目验收。

项目成果:1. 完成一个基于PLC的水箱温度控制系统原型,实现对水箱温度的自动控制。

2. 提供系统的设计文档、软件源代码和用户操作手册。

3. 编写项目总结报告,总结项目的实施过程和成果。

备注:本项目需要合理安排时间和资源,确保项目按计划顺利完成。

项目实施过程中,应注重团队协作和沟通,以提高项目的效率和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于P L C的水箱温度控制系统Revised as of 23 November 2020【摘要】本文研究的是可编程控制器在水箱恒温控制系统中的应用,水箱恒温控制装置主要用来完成对水箱中液体的液位和温度检测,并对温度参数进行调节。

系统中温度控制是一个非常重要的部分。

通过铂热电阻对温度进行测量,将测量到的温度传到PLC中。

PLC对采集到的温度值与给定值进行比较,经过PID运算后,调节双向晶闸管在设定周期内通断时间的比例,改变加热丝中电流大小及加热时间,以完成对温度的控制要求。

本系统硬件部分主要由CPU224、EM235、双向晶闸管等组成;软件部分主要由PID 控制来完成。

关键词:PLC CPU224 EM235 双向晶闸管 PID控制Abstract: In this paper, is the programmable controller in the water tank temperature control system application, water tank temperature control system is mainly used to complete the tank liquid level and temperature detection, and adjust the temperature parameters. System, temperaturecontrol is a very important part. By platinum RTD temperature measurement will be measured in the temperature reached the PLC. PLC on the collected temperature values compared with a given value, after a PID operation, the regulator Triac off the set period of time the ratio of change in heating wire in the current size and heating time to complete the right temperature control requirements.The system hardware mainly by the CPU224, EM235, bi-directionalthyristor etc.; software, some of the major by the PID control to complete. Key words:PLC CPU224 EM235 Triac PID Contro l目录1.前言恒温系统应用在日常生活、工业生产和实验室中电热恒温箱的应用随处可以见到。

在生活中我们保存食物用到恒温箱,工业生产中一些生产原料的保存用到恒温箱,实验室里,特别是生物的培育实验室,恒温箱的应用更是普遍。

可编程控制器即PLC是在计算机技术、通信技术和继电器控制技术的发展基础上开发出来的,现在已经广泛应用于工业控制的各个领域。

它以微处理器为核心,用编写程序进行逻辑控制、定时、计数和算术运算等,并通过数字量和模拟量是输入/输出来控制设备或生产过程。

在本设计中,我们针对实验水箱而设计的一个恒温系统,针对温度控制的特点以及实现准确温度控制的意义,设计了一种基于PID的恒温检测控制系统。

PLC的结构PLC 实质是一种专用于工业控制的计算机其硬件结构基本上与微型计算机相同。

1.2.1中央处理单元(CPU)中央处理单元(CPU)是PLC 的控制中枢,它按照PLC 系统程序赋予的功能接收并存储从编程器键入的用户程序和数据、检查电源、存储器I/O以及警戒定时器的状态;并能诊断用户程序中的语法错误。

当PLC 投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O 映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后,按指令的规定执行逻辑或算数运算, 运算的结果送入I/O 映象区或数据寄存器内。

等所有的用户程序执行完毕之后,最后将I/O 映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行直到停止运行。

为了进一步提高PLC 的可靠性,近年来对大型PLC 还采用双CPU 构成冗余系统或采用三CPU 的表决式系统,这样即使某个CPU 出现故障整个系统仍能正常运行。

1.2.2存储器存放系统软件的存储器称为系统程序存储器;存放应用软件的存储器称为用户程序存储器。

(1) PLC 常用的存储器类型①RAM (Random Assess Memory),这是一种读/写存储器(随机存储器) ,其存取速度最快,由锂电池支持。

②EPROM (Erasable Programmable Read Only Memory),这是一种可擦除的只读存储器,在断电情况下存储器内的所有内容保持不变(在紫外线连续照射下可擦除存储器内容)。

③ EEPROM(Electrical Erasable Programmable Read Only Memory),这是一种电可擦除的只读存储器,使用编程器就能很容易地对其所存储的内容进行修改。

(2) PLC 存储空间的分配虽然各种PLC 的CPU 的最大寻址空间各不相同,但是根据PLC 的工作原理其存储空间一般包括以下三个区域:系统程序存储区;系统RAM 存储区(包括I/O 映象区和系统软设备等);用户程序存储区。

①系统程序存储区在系统程序存储区中存放着相当于计算机操作系统的系统程序,包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断子程序、等由制造厂商将其固化在EPROM 中,用户不能直接存取,它和硬件一起决定了该PLC 的性能。

②系统RAM 存储区系统RAM 存储区包括I/O 映象区以及各类软设备如:逻辑线圈、数据寄存器、计时器、计数器、变址寄存器、累加器、等存储器。

a I/O 映象区由于PLC 投入运行后只是在输入采样阶段才依次读入各输入状态和数据在输出刷新阶段才将输出的状态和数据送至相应的外设,因此它需要一定数量的存储单元(RAM)以存放I/O 的状态和数据,这些单元称作I/O 映象区,一个开关量I/O 占用存储单元中的一个位(bit),一个模拟量I/O 占用存储单元中的一个字(16 个bit),因此整个I/O 映象区可看作两个部分组成:开关量I/O 映象区,模拟量I/O 映象区。

b 系统软设备存储区除了I/O 映象区区以外,系统RAM 存储区还包括PLC 内部各类软设备(逻辑线圈、计时器、计数器、数据寄存器和累加器等)的存储区,该存储区又分为具有失电保持的存储区域和无失电保持的存储区域,前者在PLC 断电时由内部的锂电池供电,数据不会遗失,后者当PLC 断电时数据被清零。

c 用户程序存储区用户程序存储区存放用户编制的用户程序,不同类型的PLC 其存储容量各不相同。

1.2.3电源PLC 的电源在整个系统中起着十分重要得作用。

如果没有一个良好的可靠得电源系统是无法正常工作的,因此PLC 的制造商对电源的设计和制造也十分重视,一般交流电压波动在+10%(+15%)范围内可以不采取其它措施,而将PLC 直接连接到交流电网上去。

PLC的工作原理1.3.1 PLC的基本工作原理(1)PLC采用“顺序扫描,不断循环”的工作方式1)每次扫描过程。

集中对输入信号进行采样。

集中对输出信号进行刷新。

2)输入刷新过程。

当输入端口关闭时,程序在进行执行阶段时,输入端有新状态,新状态不能被读入。

只有程序进行下一次扫描时,新状态才被读入。

3)一个扫描周期分为输入采样,程序执行,输出刷新。

4)元件映象寄存器的内容是随着程序的执行变化而变化的。

5)扫描周期的长短由三条决定:CPU执行指令的速度;指令本身占有的时间;指令条数。

6)由于采用集中采样。

集中输出的方式。

存在输入/输出滞后的现象,即输入/输出响应延迟。

(2)PLC与继电器控制系统、微机区别1)PLC与继电器控制系统区别前者工作方式是“串行”,后者工作方式是“并行”。

前者用“软件”,后者用“硬件”。

2)PLC与微机区别前者工作方式是“循环扫描”。

后者工作方式是“待命或中断”。

1.3.2 PLC 编程方式PLC最突出的优点采用“软继电器”代替“硬继电器”。

用“软件编程逻辑”代替“硬件布线逻辑”。

PLC编程语言有梯形图、布尔助记符语言,等等。

尤其前两者为常用。

梯形图语言特点:(1)每个梯形图由多个梯级组成。

(2)梯形图中左右两边的竖线表示假想的逻辑电源。

当某一梯级的逻辑运算结果是“1”,有假想的电流流过。

(3)继电器线圈只能出现一次,而它的常开、常闭触点可以出现无数次。

(4)每一梯级的运算结果,立即被后面的梯级所利用。

(5)输入继电器受外部信号控制。

只出现触点,不出现线圈。

PLC的控制系统发展趋势(1)PLC发展的潮流目前,国外PLC制造商不断推出新产品。

西门子最初推出S5系列,然后推出 S7系列;三菱开始是F系列,FX系列,现在是Q系列(A1、A2、A2X)。

大趋势是功能越来越多,集成度越来越高,网络功能越来越强。

特别是网络,因为联网是一个大潮流。

现在各种PLC都在发展自己的网络,一般从结构上有两种,一种在PLC模块上做了一个通信输出口,可以直接与计算机联接实现点对点通信(RS232联接);另一种是通过多点联接(RS485联接),这适用于多层PLC。

这方面,西门子的产品具有代表性,它具有自己的PROFIBUS协议的网络标准,现在已经被世界上绝大多数国家接受,几乎已经成为国际标准,获得广泛的应用。

目前网络是一个发展趋势。

网络的控制中心一般有两台计算机,通过电缆与现场的PLC站相连,每个站就放在被控设备的附近,从设备到PLC站之间的电缆很短,从PLC站到控制中心只需一根电缆线,这样成本就大大降低了。

(2)PLC的最新发展动态一是PLC网络化技术的发展,其中有两个趋势,一方面,PLC 网络系统已经不再是自成体系的封闭系统,而是迅速向开放式系统发展,各大品牌PLC除了形成自己各具特色的PLC网络系统,完成设备控制任务之外,还可以与上位计算机管理系统联网,实现信息交流,成为整个信息管理系统的一部分。

另一方面,现场总线技术得到广泛的采用,PLC与其他安装在现场的智能化设备,比如智能化仪表,传感器,智能型电磁阀,智能型驱动执行机构等,通过一根传输介质(比如双绞线,同轴电缆,光缆)连接起来,并按照同一通信规约互相传输信息,由此构成一个现场工业控制网络,这种网络与单纯的PLC远程网络相比,配置更灵活,扩容更方便,造价更低,性能价格比更好,也更具开放意义。

相关文档
最新文档