电路元件特性曲线的伏安测量法 实验报告

合集下载

电路元件特性曲线的伏安特性测量法 实验报告

电路元件特性曲线的伏安特性测量法 实验报告

实验报告课程名称:_______________________________指导老师:________________成绩:__________________ 实验名称:_______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.熟悉电路元件的特性曲线;2.学习非线性电阻元件特性曲线的伏安测量方法;3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。

二、实验内容和原理1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。

例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。

电流越大、温度越高,对应的灯丝电阻也越大。

一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。

该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。

当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。

电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。

线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。

该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。

非线性电阻的伏安特性在u-i 平面上是一条曲线。

普通晶体二极管的特点是正向电阻和反向电阻区别很大。

正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。

电路元件特性曲线的伏安测量法实验报告

电路元件特性曲线的伏安测量法实验报告

电路元件特性曲线的伏安测量法实验报告
伏安测量法实验报告
本实验旨在运用伏安测量法来观察电路元件的特性曲线。

通过对分立元件进行伏安测量,来分析元件的特性,以便进行电子系统的设计与应用。

实验目的:
1、观察电路元件特性曲线;
2、通过实验,分析电路元件的特性;
3、掌握伏安测量法实验技术;
4、了解电路元件特性测量的步骤和方法。

实验内容:
本实验共完成了电感串联L-C谐振管、PWR电阻负反馈和zener限流三种分立元件的
测量,具体步骤如下:
1、找出测量元件。

根据实验要求,准备所需的电子元件,及相应的测试仪器和电阻、电容;
2、连接电路。

按照试验仪示意图,连接元件及电路,并确保连线正确;
3、电流、电压表读数采集比较。

启动测量仪,根据实验要求,依次调节电压、电流
量观察表上的读数;
4、根据变化规律绘制特性曲线图。

观察表上的读数,据此绘制元件特性的时域变化
曲线;
5、完成特性曲线图的建立。

实验结果及分析:
通过本次实验,测量了三种分立元件的特性曲线,对其进行伏安测量,完成其特性曲
线图的建立,从而了解电路元件特性测量的步骤和方法,并熟悉伏安测量法的实验技术。

结论:。

《电路原理》实验报告

《电路原理》实验报告

《电路原理》实验报告实验一电阻元件伏安特性的测量一、实验目的1、学会识别常用电路和元件的方法。

2、掌握线性电阻及电压源和电流源的伏安特性的测试方法。

3、学会常用直流电工仪表和设备的使用方法。

二、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)表示,即I-U平面上的一条曲线来表征,即元件的伏安特性曲线。

线性电阻器的伏安特性曲线是一条通过坐标原点的直线该直线的斜率等于该电阻器的电阻值。

三、实验设备四、实验内容及实验数据测定线性电阻器的伏安特性按图1-1接线,调节稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相、I。

应的电压表和电流表的读数UR图1-1实验二 基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。

2、学会用电流表测量各支路电流。

二、实验原理1、基尔霍夫电流定律(KCL ):基尔霍夫电流定律是电流的基本定律。

即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。

2、基尔霍夫电压定律(KVL ):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。

这一定律实质上是电压与路径无关性质的反映。

基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

三、实验设备四、实验内容及实验数据实验线路如图4-1。

把开关K1接通U1,K2接通U2,K3接通R4。

就可以连接出基尔霍夫定律的验证单元电路,如图4-2。

图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。

图4-2中的I1、I2、I3的方向已设定。

三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。

2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。

伏安特性实验报告结论(3篇)

伏安特性实验报告结论(3篇)

第1篇一、实验概述伏安特性实验是电学基础实验之一,旨在通过测量电学元件在电压与电流作用下的关系,绘制出伏安特性曲线,从而分析元件的电阻特性。

本实验采用逐点测试法,对线性电阻、非线性电阻元件的伏安特性进行了测量和绘制。

二、实验目的1. 理解伏安特性曲线的概念,掌握伏安特性曲线的绘制方法。

2. 通过实验验证欧姆定律,了解电阻元件的伏安特性。

3. 分析非线性电阻元件的特性,掌握其应用领域。

三、实验原理1. 伏安特性曲线:在电阻元件两端施加电压,通过电阻元件的电流与电压之间的关系称为伏安特性曲线。

根据伏安特性的不同,电阻元件分为线性电阻和非线性电阻。

2. 线性电阻:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,斜率代表电阻值。

其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关。

3. 非线性电阻:非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

四、实验步骤1. 准备实验仪器:直流稳压电源、直流电压表、直流电流表、电阻元件、导线等。

2. 连接实验电路:将电阻元件与直流稳压电源、直流电压表、直流电流表连接成闭合回路。

3. 测量电压与电流:逐步调节直流稳压电源的输出电压,记录对应的电流值。

4. 绘制伏安特性曲线:以电压为横坐标,电流为纵坐标,将实验数据绘制成曲线。

五、实验结果与分析1. 线性电阻伏安特性曲线:实验结果表明,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线。

斜率代表电阻值,与实验理论相符。

2. 非线性电阻伏安特性曲线:实验结果表明,非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线。

在低电压下,电阻值较小,随着电压的增大,电阻值逐渐增大,直至趋于饱和。

这与实验理论相符。

3. 伏安特性曲线的应用:通过伏安特性曲线,可以分析电阻元件在不同电压下的电阻值,从而了解电阻元件的电阻特性。

在工程实践中,伏安特性曲线对于设计电路、选择电阻元件具有重要意义。

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1台2.直流电压表1块3.直流电流表1块4.万用表1块5.白炽灯泡1只6.二极管1只7.稳压二极管1只8.电阻元件2只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告实验一电阻元件伏安特性的测量一、实验目的:(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。

(2)学习直流稳压电源、万用表、电压表的利用方式。

二、实验原理及说明(1)元件的伏安特性。

若是把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。

(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。

元件的电阻值可由下式肯定:R=u/i=(mu/mi)tgα,期中mu 和mi别离是电压和电流在u-i平面坐标上的比例。

三、实验原件Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw四、实验内容(1)线性电阻元件的正向特性测量。

(2)反向特性测量。

(3)计算阻值,将结果记入表中(4)测试非线性电阻元件D3的伏安特性(5)测试非线性电阻元件的反向特性。

表1-1 线性电阻元件正(反)向特性测量表1-5二极管IN4007正(反)向特性测量五、实验心得(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时必然要考虑正确利用导线篇二:电学元件的伏安特性实验报告v1预习报告【实验目的】l.学习利用大体电学仪器及线路连接方式。

2.掌握测量电学元件伏安特性曲线的大体方式及一种消除线路误差的方式。

3.学习按照仪表品级正确记录有效数字及计算仪表误差。

准确度品级见书66页。

100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。

电路实验报告_3

电路实验报告_3

实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌握线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理说明电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。

一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。

1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。

图1-1 元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。

一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。

通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。

3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。

二极管的电阻值随电压或电流的大小、方向的改变而改变。

它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。

发光二极管正向电压在0.5~2.5V 之间时,正向电流有很大变化。

可见二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告元件伏安特性的测定实验报告摘要:本实验旨在通过测量电阻、二极管和电容的伏安特性曲线,探究元件的电流与电压之间的关系。

实验结果表明,电阻的伏安特性为线性关系,二极管的伏安特性为非线性关系,而电容的伏安特性则呈现出充放电的特点。

引言:伏安特性是描述电子元件电流与电压之间关系的重要参数。

通过测量元件的伏安特性曲线,可以了解元件的工作状态、性能以及应用范围。

本实验将选取常见的电阻、二极管和电容进行测量,以探究它们的伏安特性。

实验方法:1. 实验仪器:万用表、电源、电阻箱、示波器等。

2. 实验步骤:a. 将电阻、二极管和电容依次连接到电路中。

b. 通过电源调节电压,同时用万用表测量电流和电压。

c. 记录不同电压下的电流数值,并绘制伏安特性曲线。

结果与讨论:1. 电阻的伏安特性:实验中选取了一个100欧姆的固定电阻进行测量。

结果显示,在不同电压下,电流与电压呈线性关系,即伏安特性为直线。

这符合欧姆定律,即电流与电压成正比,电阻为常数。

通过斜率可以计算出电阻值。

2. 二极管的伏安特性:实验中选取了一颗常见的硅二极管进行测量。

结果显示,在正向偏置时,电流与电压呈非线性关系,即伏安特性为曲线。

随着电压的增加,电流迅速增大,但增长速度逐渐减慢。

而在反向偏置时,二极管基本上不导电。

这说明二极管具有单向导电性,可用于整流等电路。

3. 电容的伏安特性:实验中选取了一个100μF的电容进行测量。

结果显示,在充电过程中,电容两端的电压随时间线性增加,而电流逐渐减小。

当电容充满电后,电流变为零。

而在放电过程中,电容两端的电压随时间线性减小,电流逐渐增大。

这说明电容具有储存和释放电能的特性,可用于滤波等电路。

结论:通过本实验的测量结果,可以得出以下结论:1. 电阻的伏安特性为线性关系,即电流与电压成正比。

2. 二极管的伏安特性为非线性关系,即正向偏置时电流迅速增大,反向偏置时基本不导电。

3. 电容的伏安特性表现为充放电过程,可储存和释放电能。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告一、实验目的。

本实验旨在通过对电路中元件的伏安特性进行测定,掌握元件的电压-电流关系,并进一步了解元件的特性及其在电路中的应用。

二、实验仪器与设备。

1. 直流稳压电源。

2. 万用表。

3. 电阻箱。

4. 耐压表。

5. 电路连接线。

6. 待测元件。

三、实验原理。

在电路中,元件的伏安特性是指元件的电压与电流之间的关系。

对于电阻元件,其伏安特性为线性关系,即电阻元件的电流与电压成正比。

而对于二极管等非线性元件,其伏安特性则呈现出非线性关系。

四、实验步骤。

1. 将待测元件与电路连接线连接到电路中,注意连接的正确性和稳固性。

2. 调节直流稳压电源,使其输出电压逐渐增加,同时通过万用表记录电路中元件的电压和电流数值。

3. 根据记录的电压-电流数值,绘制出元件的伏安特性曲线。

4. 对非线性元件,如二极管等,进行反向电压测量,记录其反向击穿电压。

五、实验数据与分析。

通过实验测得的数据,我们可以得到元件的伏安特性曲线。

对于电阻元件,其伏安特性曲线为一条直线,而对于二极管等非线性元件,则呈现出非线性特性的曲线。

通过分析伏安特性曲线,我们可以了解元件的工作状态及其在电路中的作用。

六、实验结论。

通过本次实验,我们成功测定了元件的伏安特性,并绘制出了相应的伏安特性曲线。

通过对曲线的分析,我们可以更加深入地了解元件的特性及其在电路中的应用。

同时,我们也掌握了测定伏安特性的实验方法和步骤。

七、实验总结。

本次实验通过测定元件的伏安特性,使我们对元件的工作特性有了更深入的了解。

同时,实验过程中我们也掌握了一定的实验技能和操作方法。

在今后的学习和工作中,我们将能更加熟练地运用这些知识和技能,为电路设计和调试提供更加可靠的支持。

八、参考文献。

[1] 《电路原理与技术》。

[2] 《电子技术基础》。

以上为本次实验的实验报告,希望能对大家的学习和工作有所帮助。

电路元件伏安特性的测绘 实验报告

电路元件伏安特性的测绘 实验报告

广东第二师范学院学生实验报告院(系)名称班别姓名专业名称学号实验课程名称 电路与电子线路实验 实验项目名称 电路元件伏安特性的测绘 实验时间实验地点 实验成绩指导老师签名一、实验目的:(1) 学会识别常用电路元件的方法;(2) 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; (3) 掌握实验台上直流电工仪表和设备的使用方法.二、实验仪器: (1) 电路实验箱一台(2) 万用表一块,2AP9二极管一个,2CW51稳压管一个,不同阻值线性电阻器若干。

三、实验内容及步骤:1.测定线性电阻器的伏安特性按图3-3接线,调节稳压电源的输出电压U,从0V 开始缓慢地增加,一直到10V ,在表3—1记下相应的电压表和电流表的读数U R 和I 。

表3-1 测定线性电阻的伏安特性U R /V 0 1 2 3 4 5 6 7 8 9 10 I/mA1。

142.183。

224.275.226。

10 7。

128.139.1410。

162.测定半导体二极管的伏安特性按图3—4接线,R 为限流电阻器。

测二极管的正向特性时,其正向电流不得超过25mA ,二极管D 的正向压降U D+可在0~0.75V 之间取值。

在0.5~0.75V 之间应多取几个测量点.做反向特性实验的时候,只需将图1—3中的二极管D 反接,且其反向电压可加到30V 左右。

表3-2 测定二极管的正向特性U D+/V 0 0。

2 0.4 0。

45 0.5 0.55 0.60 0。

65 0.70 0。

75图3-4 二极管伏安特性测试 图3-3 线性电阻伏安特性测试I/mA 0 0 0.01 0.07 0.26 0.73 2。

05 6.03 17。

85 56.0表3-3 测定二极管的反向特性U D-/V 0 -5 -10 -15 -20 -25 -30I/mA 0 0 0—0.001-0。

001-0.002 -0.0023.测定稳压二极管的伏安特性(1)正向特性实验将图3-4中的二极管1N4007换成稳压二极管2CW51,重复实验内容2中的正向测量。

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电子元件的伏安特性曲线实验报告

电子元件的伏安特性曲线实验报告

电子元件的伏安特性曲线实验报告实验一电子元件伏安特性的测定一、实验目的1.掌握电压表、电流表、直流稳压电源等仪器的使用方法2.学习电阻元件伏安特性曲线的测量方法3.加深理解欧姆定律,熟悉伏安特性曲线的绘制方法二、原理若二端元件的特性可用加在该元件两端的电压U 和流过该元件的电流I 之间的函数关系I =f (U )来表征,以电压U 为横坐标,以电流I 为纵坐标,绘制I-U 曲线,则该曲线称为该二端元件的伏安特性曲线。

电阻元件是一种对电流呈阻力特性的元件。

当电流通过电阻元件时,电阻元件将电能转化为其它形式的能量,例如热能、光能等,同时,沿电流流动的方向产生电压降,流过电阻R 的电流等于电阻两端电压U 与电阻阻值之比,即RU I(1-1)这一关系称为欧姆定律。

若电阻阻值R 不随电流I 变化,则该电阻称为线性电阻元件,常用的普通电阻就近似地具有这一特性,其伏安特性曲线为一条通过原点的直线,如图1-1所示,该直线斜率的倒数为电阻阻值R 。

线性电阻的伏安特性曲线对称于坐标原点,说明在电路中若将线性电阻反接,也不会不影响电路参数。

这种伏安特性曲线对称于坐标原点的元件称为双向性元件。

白炽灯工作时,灯丝处于高温状态,灯丝的电阻随温度升高而增大,而灯丝温度又与流过灯丝的电流有关,所以,灯丝阻值随流过灯丝的电流而变化,灯丝的伏安特性曲线不再是一条直线,而是如图1-2所示的曲线。

半导体二极管的伏安特性曲线取决于PN 结的特性。

在半导体二极管的PN 结上加正向电压时,由于PN 结正向压降很小,流过PN 结的电流会随电压的升高而急剧增大;在PN 结上加反向电压时,PN 结能承受和大的压降,流过PN 结的电流几乎为零。

所以,在一定电压变化范围内,半导体二极管具有单向导电的特性,其伏安特性曲线如图1-3所示。

图1-1 线性电阻元件的伏安特性曲线图1-2 小灯泡灯丝的伏安特性曲线图1-4 稳压二极管的伏安特性曲线稳压二极管是一种特殊的二极管,其正向特性与普通半导体二极管的特性相似。

伏安特性实训报告

伏安特性实训报告

实训小组:XXX实训地点:XXX实验室实训时间:XXXX年XX月XX日一、实验目的1. 理解并掌握伏安特性的基本概念。

2. 学习使用伏安法测量电阻元件的伏安特性曲线。

3. 掌握电表、电阻箱等实验仪器的操作方法。

4. 分析实验数据,验证欧姆定律和二极管的伏安特性。

二、实验原理伏安特性是指在一定条件下,通过电阻元件的电流与施加在元件上的电压之间的关系。

本实验采用伏安法,通过改变电阻元件两端的电压,测量对应的电流值,绘制伏安特性曲线。

三、实验仪器与设备1. 直流稳压电源2. 电阻箱3. 电流表4. 电压表5. 电阻元件(线性电阻、非线性电阻)6. 导线若干7. 实验记录表格四、实验步骤1. 按照电路图连接实验电路,确保连接正确。

2. 调节电阻箱,改变电阻元件两端的电压,记录对应的电流值。

3. 重复步骤2,记录不同电压下的电流值。

4. 将实验数据填入实验记录表格中。

5. 使用绘图软件绘制伏安特性曲线。

6. 分析实验数据,验证欧姆定律和二极管的伏安特性。

五、实验结果与分析1. 线性电阻伏安特性曲线:实验结果表明,线性电阻的伏安特性曲线为一条直线,斜率为电阻值。

验证了欧姆定律的正确性。

2. 非线性电阻伏安特性曲线:实验结果表明,非线性电阻的伏安特性曲线为曲线,斜率随电压变化而变化。

这说明非线性电阻的电阻值随电压变化而变化。

3. 二极管伏安特性曲线:实验结果表明,二极管的伏安特性曲线为非线性曲线,存在正向导通和反向截止两个区域。

正向导通区域斜率较小,反向截止区域斜率较大。

六、实验结论1. 通过本次实验,掌握了伏安特性的基本概念和测量方法。

2. 理解了欧姆定律和二极管的伏安特性。

3. 学会了使用伏安法测量电阻元件的伏安特性曲线。

4. 提高了实验操作能力和数据分析能力。

七、实验心得1. 在实验过程中,要注意仪器的操作方法和数据记录的准确性。

2. 实验过程中,遇到问题要及时分析原因,并寻求解决办法。

3. 通过实验,加深了对电学知识的理解,提高了自己的实验技能。

直流电路元件伏安特性的测绘实验报告

直流电路元件伏安特性的测绘实验报告

一、实验目的与要求1、认识常用电路元件。

2、掌握万用表、电路原理实验箱的使用方法。

3、掌握线性电阻、非线性电阻元件伏安特性的测绘方法二、实验原理与仪器(一)实验原理1.任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关I=f(U)来表示,即用I-U平面上的一条曲线来表示,这条曲线称为该元件的伏安特性曲线。

图1.1线性电阻器的伏安特性曲线是一条通过坐标原点的直线,图1-1中a曲线所示,该直线的斜率的倒数等于该电阻器的电阻值。

2.用“伏安法”测量电阻根据欧姆定律可用“伏安法”测量电阻,即R=U/I。

但由于电压表和电流表内阻的存在,测量结果将存在误差。

用“伏安法”测量电阻有图A和图B两种接线方式,用图A测出的结果实际上是被测电阻R与电流表内阻R I之和,而用图B测出的却是被测电阻R与电压表内阻R V并联的结果。

当然,若R I<<R,或R V>>R则图2.2和图2.3有U/I≈R。

图2.2 图2.33.一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1-1中b所示。

正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性特别,如图1-1中c所示。

在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。

管子的稳压值稳定时,电流有一定的范围,电流超过此范围的极限值时稳压管会被反向击穿----电压骤降,这时须尽快去掉电源,管子短时击穿后可自行恢复。

电路元件伏安特性的测绘 实验报告

电路元件伏安特性的测绘 实验报告

电路元件伏安特性的测绘实验报告实验背景在电路原理及应用实验中,测绘电路元件的伏安特性是必不可少的实验内容。

电路元件的伏安特性描述了元件的电流与电压之间的关系,是分析电路性能和优化电路设计的重要手段。

本实验旨在通过测绘电路元件的伏安特性曲线,了解元件的工作性质和特点,并对电路的性能进行评估和分析。

实验目的1. 掌握测量电阻元件的伏安特性曲线方法;2. 掌握测量二极管元件的伏安特性曲线方法;3. 分析测绘得到的伏安特性曲线,理解元件的工作特性和性能。

实验设备与元件1. 直流稳压电源:用于为电路提供稳定的直流电压;2. 电压表:用于测量电路中的电压;3. 电流表:用于测量电路中的电流;4. 变阻器:用于调节电阻值;5. 电阻元件:包括不同阻值的电阻,用于测绘电阻元件的伏安特性曲线;6. 二极管元件:用于测绘二极管元件的伏安特性曲线。

实验步骤与测量方法1. 电阻元件伏安特性测绘:a. 将直流稳压电源的正极连接到电阻元件的一端,负极连接到电路的公共接地点;b. 在电路中并联一个适当阻值的电压表,接在电阻元件的两端,测量电阻元件的电压;c. 在电路中串联一个适当量级的电流表,将其接入电阻元件与直流稳压电源之间,测量电路中的电流;d. 调节直流稳压电源的输出电压,记录不同电压下测得的电流与电压值;e. 重复上述步骤,改变电阻元件的阻值,重复测量。

2. 二极管元件伏安特性测绘:a. 将直流稳压电源的正极连接到二极管的正极,负极连接到二极管的负极;b. 在电路中并联一个适当阻值的电压表,接在二极管的两端,测量二极管的电压;c. 在电路中串联一个适当量级的电流表,将其接入二极管与直流稳压电源之间,测量电路中的电流;d. 调节直流稳压电源的输出电压,记录不同电压下测得的电流与电压值;e. 重复上述步骤。

实验数据记录与结果分析1. 电阻元件伏安特性测绘:将测量得到的电流与电压值整理成表格,并绘制电阻元件的伏安特性曲线图。

电路元件伏安特性的测绘实验报告

电路元件伏安特性的测绘实验报告

电路元件伏安特性的测绘实验报告实验目的,通过测绘电路元件的伏安特性,了解电路元件的电流与电压之间的关系,掌握电路元件的基本特性。

实验仪器与设备,电流电压测量仪、电阻箱、直流电源、导线、电路元件(如电阻、二极管等)。

实验原理,在电路中,电流与电压之间存在一定的关系,这种关系被称为伏安特性。

在直流电路中,电流和电压之间的关系可以用欧姆定律来描述,I=U/R,其中I为电流,U为电压,R为电阻。

而对于非线性元件(如二极管),其伏安特性则不满足欧姆定律,需要通过实验测绘其伏安特性曲线。

实验步骤:1. 将实验仪器接线连接好,保证电路连接正确无误。

2. 依次测绘电路中各个元件的伏安特性曲线。

3. 根据测绘得到的数据,绘制伏安特性曲线图。

4. 分析曲线图,得出电路元件的特性参数。

实验数据与结果:以电阻为例,测绘得到的伏安特性曲线呈现为一条直线,通过测绘数据计算得到电阻的阻值为100Ω。

而对于二极管,测绘得到的伏安特性曲线为非线性曲线,符合二极管的特性。

从曲线图中可以得出二极管的导通电压约为0.7V。

实验结论:通过本次实验,我们成功测绘了电路元件的伏安特性曲线,并得出了电路元件的特性参数。

实验结果表明,不同的电路元件具有不同的伏安特性,对于线性元件来说,其伏安特性曲线为一条直线,而对于非线性元件(如二极管),其伏安特性曲线为非线性曲线。

实验总结:本次实验通过测绘电路元件的伏安特性曲线,加深了对电路元件特性的理解,掌握了测绘伏安特性曲线的方法。

同时,也对实验仪器的使用和实验操作技能有了进一步的提高。

通过这次实验,我们不仅仅是简单地获取了一些数据,更重要的是加深了对电路元件伏安特性的理解,为今后的电路设计与分析打下了坚实的基础。

实验中遇到的问题与解决方法:在实验过程中,我们遇到了一些电路连接错误导致的数据异常,通过仔细检查电路连接,及时发现并排除了问题,保证了实验数据的准确性。

在今后的学习与工作中,我们将继续深入学习电路理论知识,不断提高实验操作技能,为今后的科研与工程实践打下坚实的基础。

伏安特性测量实验报告

伏安特性测量实验报告

一、实验目的1. 理解并掌握伏安特性曲线的概念及其测量方法。

2. 通过实验验证欧姆定律,掌握线性电阻元件和非线性电阻元件的伏安特性。

3. 熟悉使用直流稳压电源、直流电压表、直流电流表等实验仪器。

二、实验原理伏安特性曲线是指在一定条件下,电阻元件两端的电压U与通过电阻元件的电流I 之间的关系曲线。

根据伏安特性的不同,电阻元件可分为线性电阻和非线性电阻。

1. 线性电阻元件的伏安特性:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,其斜率只由电阻元件的电阻值R决定。

根据欧姆定律,电阻元件两端的电压U与通过电阻元件的电流I之间存在线性关系,即U = IR。

2. 非线性电阻元件的伏安特性:非线性电阻元件的伏安特性曲线不是一条通过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻元件有白炽灯丝、普通二极管、稳压二极管等。

三、实验仪器与设备1. 直流稳压电源2. 直流电压表3. 直流电流表4. 线性电阻元件5. 非线性电阻元件6. 导线7. 电路板8. 实验记录本四、实验步骤1. 连接实验电路:将线性电阻元件和非线性电阻元件分别接入电路,连接直流稳压电源、直流电压表、直流电流表。

2. 设置电压值:调整直流稳压电源的输出电压,使其在预定范围内变化。

3. 测量电流与电压:记录不同电压值下,通过电阻元件的电流值。

4. 绘制伏安特性曲线:以电压U为横坐标,电流I为纵坐标,绘制线性电阻元件和非线性电阻元件的伏安特性曲线。

5. 分析与讨论:分析伏安特性曲线,验证欧姆定律,比较线性电阻元件和非线性电阻元件的伏安特性。

五、实验结果与分析1. 线性电阻元件的伏安特性曲线:根据实验数据,绘制线性电阻元件的伏安特性曲线。

曲线通过坐标原点,斜率等于电阻元件的电阻值。

验证了欧姆定律。

2. 非线性电阻元件的伏安特性曲线:根据实验数据,绘制非线性电阻元件的伏安特性曲线。

曲线不是通过坐标原点的直线,阻值随电压变化而变化。

伏安特性实验报告总结

伏安特性实验报告总结

伏安特性实验报告总结一、引言伏安特性实验是电路分析的一项重要实验内容,通过测量电流和电压的关系,可以得到电路元件的伏安特性曲线。

本次实验旨在通过实验数据的收集和分析,深入了解电流和电压之间的相互关系,探究电路中的电阻、电流源和电压源等基本概念。

二、实验设计与方法本次实验使用了直流电路,主要包括直流电源、电阻、电流表和电压表。

通过改变电路中的电阻值,测量电流和电压的变化,进而绘制伏安特性曲线。

三、实验结果与分析通过实验数据的记录和分析,我们得到了如下的实验结果:1. 当电路中的电阻增加时,电流的值会逐渐减小,呈现出线性关系。

2. 在不同电压情况下,电流的变化符合欧姆定律,即电流和电压之间存在线性关系。

3. 当电压达到一定值时,电流逐渐趋于饱和,不再随电压的增加而线性增大,而是趋于一个常数值。

基于以上实验结果,我们可以得出以下结论:1. 电路中的电流和电压之间遵循欧姆定律,即电流与电压成正比,电阻是恒定的。

2. 在伏安特性曲线的线性区域,电阻的值可以通过斜率来计算。

3. 电流的饱和现象可能是由于电阻的内部结构导致的,当电流太大时,会遇到瓶颈,无法继续增大。

四、存在的问题与改进在实验过程中,我们也发现了一些问题:1. 实验中的测量误差可能会对结果产生一定影响,尤其是在小电流值的测量上。

2. 实验数据的收集和分析过程中,可能存在一定的主观性,导致结果的不准确。

为了改进实验,我们可以采取以下措施:1. 加强对仪器的使用培训,提高测量的准确性。

2. 多次实验,取平均值来减小误差的影响。

3. 使用更精确的仪器和测量方法来提高实验结果的准确性。

五、实验的意义与应用通过伏安特性的实验研究,我们可以更好地理解电阻、电流和电压之间的关系,并为电路设计和分析提供一定的理论依据。

在实际应用中,伏安特性的研究可以帮助我们:1. 验证电路中元件的参数,比如电阻值、电流源和电压源的特性。

2. 分析电路中的功率分布和能量损失情况,优化电路结构。

电路元件的伏安特性曲线测量实验报告

电路元件的伏安特性曲线测量实验报告

电路基础实验报告第一次实验实验报告一、实验内容电路元件的伏安特性曲线测量二、实验目的1.学习并测量电路元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性曲线的逐点测试法,了解非线性元件的伏安特性曲线;3.掌握使用直流稳压电源和直流电压表的、直流电源表的方法.三、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,该曲线称为该元件的伏安特性曲线.线性电阻器是理想元件,在任何时刻它两端的电压与其电流的关系服从欧姆定律;非线性元件的伏安特性曲线不是一条通过原点的直线,它在I-U平面上的特性曲线各不相同. 四、实验仪器电阻箱,直流稳压电源,导线五、实验内容(一)测定电阻的伏安特性曲线1.实验电路图如下:2.按照电路图连接电路,检查无误后接通电源;3.调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数;4.数据记录及处理U/V 0.275 0.381 0.411 0.453 0.540 0.641 0.702 0.775 0.878 0.927 I/mA 2.7 3.7 4.0 4.5 5.3 6.3 7.0 7.7 8.7 9.2根据所得数据做出电阻伏安特性曲线如下图所示(MATLAB绘制):计算得到定值电阻的阻值为99.80Ω(二)测量二极管的伏安特性曲线1.正向电压条件下(1)实验电路图如下:(2)按照电路图连接电路,检查无误后接通电源;(3) 调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数;(注:正向电流不超过25mA,电压在0~0.75V内调节;在二极管阻值变化明显的区域(0.5~0.75V),应取较多的测量点);(4)二极管正向电阻数据记录U/V 0.182 0.225 0.346 0.367 0.383 0.416 0.437 0.461 0.479 0.486 I/mA 0.002 0.003 0.004 0.005 0.006 0.012 0.020 0.036 0.054 0.065 U/V 0.500 0.505 0.515 0.530 0.541 0.550 0.565 0.569 0.575 0.584 I/mA 0.089 0.100 0.126 0.179 0.229 0.278 0.388 0.424 0.475 0.579 U/V 0.589 0.595 0.598 0.601 0.605 0.612 0.613 0.621 0.626 0.628 I/mA 0.652 0.733 0.785 0.837 0.900 1.050 1.082 1.286 1.427 1.524 U/V 0.632 0.639 0.642 0.647 0.652 0.658 0.660 0.664 0.668 0.672 I/mA 1.640 1.947 2.15 2.34 2.62 2.96 3.14 3.40 3.72 4.05 2.反向电压条件下实验注意要点:测定反向特性时,互换稳压电源的输出端正、负连线,调节直流稳压电源,从0V开始缓慢地增大负向电压最大不超过30V.实验数据记录如下(由于电流表精度不足,数据测量较少且猜测误差较大):U/V 19.32 13.20 7.52 1.94I/mA 0.006 0.005 0.004 0.003(三)测量稳压二极管的伏安特性曲线1.正向情况下(1)实验电路图如下:(2)按照电路图连接电路,检查无误后接通电源(3)调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数(4)稳压二极管正向电阻数据记录:U/V 0.003 0.007 0.011 0.016 0.021 0.025 0.028 0.034 0.037 0.040 I/mA 0.59 1.00 1.41 1.99 2.50 2.98 3.27 3.97 4.28 4.69 U/V 0.046 0.049 0.053 0.054 0.058 0.063 0.067 0.069 0.074 0.080 I/mA 5.27 5.68 6.06 6.17 6.61 7.23 7.66 7.81 8.35 9.04 U/V 0.084 0.089 0.095 0.100 0.108 0.118 0.132 0.141 0.153 0.163 I/mA 9.48 10.03 10.71 11.31 12.19 13.22 14.84 15.81 17.19 18.34 U/V 0.169 0.178I/mA 19.03 19.95正向曲线如下:2.反向情况下(1)测定反向特性时,互换稳压电源的输出端正、负连线,调节直流稳压电源注:正反向电流不超过20mA(2)稳压二极管反向电阻数据记录:U/V -0.009 -0.013 -0.021 -0.024 -0.030 -0.032 -0.037 -0.046 -0.052 -0.062 I/mA -1.27 -1.68 -2.53 -2.91 -3.51 -3.74 -4.32 -5.27 -6.00 -7.09 U/V -0.066 -0.074 -0.082 -0.088 -0.094 -0.104 -0.109 -0.112 -0.120 -0.128 I/mA -7.58 -8.46 -9.36 -10.04 -10.73 -11.82 -12.41 -12.67 -13.57 -14.46 U/V -0.134 -0.139 -0.144 -0.152 -0.158 -0.165 -0.173 -0.176I/mA -15.15 -15.75 -16.31 -17.23 -17.97 -18.69 -19.60 -19.96反向曲线如下:将正向反向图画到一张图中:注:曲线使用了拟合程度更高的自然对数二次方回归.六、注意事项1.测量时,直流稳压电源输出电压应该从0V开始缓慢增大,应时刻关注电流表和电压表示数,随时记录实验数据;2.进行不同实验时,应先估算电压和电流值,合理选择仪表的量程,及时更换量程;仪表的极性也不可接错;3.理解区分二极管正向和反向特性曲线.七、思考1.如何计算线性电阻和非线性电阻的电阻值对于线性电阻,可以利用伏安法多次测量后作出伏安特性曲线,利用伏安特性曲线求出电阻;对于非线性电阻,同样可以通过实验绘制它的伏安特性曲线,然后在曲线上读出在某一电压电流条件下该非线性电阻的电阻值.2.分析常见元件的伏安特性曲线a.线性电阻的伏安特性曲线:由图中可以看出,线性电阻在加正向和反向压时,其伏安特性曲线都是一条直线,这说明线性电阻的阻值始终是一定值,其数值为伏安特性曲线斜率的倒数.b.钨丝电阻的伏安特性曲线:由图中看出,钨丝电阻在电压较小所加电压的的情况下电阻呈线性变化,随着所加电压增大,伏安特性曲线上点的切线斜率逐渐减小,电阻逐渐增大,在加反向电压时情况相似.c.普通二极管的伏安特性曲线:二极管在正向反向所表现出的电阻特性不同:二极管两端加正向电压时,随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递增,说明二极管在所加电压为正向的情况下,随着电压的增大,二极管电阻慢慢减小.二极管两端加反向电压时,随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递减,说明二极管在所加电压为反向的情况下,随着电压的增大,二极管电阻慢慢增大.d.稳压二极管的伏安特性曲线:稳压二极管在正向反向所表现出的电阻特性也有所不同:在稳压二极管两端加正向电压时,二极管电流随电压增大变化明显,并且随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递增,说明二极管在所加电压为正向的情况下,随着电压的增大,二极管电阻慢慢减小.在稳压二极管两端加反向电压时,在电压逐渐增大的过程中,在某一范围内电压增大过程中,电流变化微小;当电压到一定值时,电流变化较大,且随电压的增大,电阻减小.3.如果误将电流表并联到电路中,会出现什么后果由于电流表电阻比较小,会导致短路,可能会损坏仪器.4.假如在测量二极管的伏安特性曲线的实验中,漏接限流电阻R,会出现什么后果测量过程中,由于所加电压的不断增大,二极管电阻会不断减小. 如果漏接限流电阻,会导致电路中电流过大,可能损坏实验仪器,造成危险.5.本实验中,用伏安法测量电阻元件的伏安特性的电路模型采用如下图(a)所示。

《电路元件特性曲线的伏安测量法实验报告》

《电路元件特性曲线的伏安测量法实验报告》

《电路元件特性曲线的伏安测量法实验报告》导言:伏安法是分析电路元件的电学特性的一种常见的方法。

本实验旨在探究电路元件特性曲线的伏安测量法,使用伏安仪测量具有不同特性的二极管、电阻器与晶体管,并绘制它们的伏安特性曲线。

通过实验分析,我们可以更深刻地认识电子元件的特性及其工作原理。

一、实验仪器及原理本次实验使用的主要器材与仪器为直流电源、万用表、伏安仪,实验元件为二极管、电阻器和晶体管。

二、实验步骤1. 安装电路:将电路元件按实验要求安装在实验板上,并接好电路,注意连接正确。

2. 开启电源:调整直流电源的输出电压,使二极管的正向电压逐渐增加,记录其电压和电流的变化情况,绘制出二极管的伏安特性曲线。

3. 测量电阻器的伏安特性曲线:使用伏安仪测量电阻器不同电压下的电流值,记录每一个电压值对应的电流值,绘制出电阻器的伏安特性曲线。

4. 测量晶体管的伏安特性曲线:调节直流电源的电压,记录晶体管的三极管电流和三极管沟极电压(VCE),绘制出晶体管的伏安特性曲线。

三、实验结果与分析1. 二极管的伏安特性曲线二极管具有单向导电性。

当二极管正向偏置时,电流稳定上升,呈现出近似线性的直线性质;而当二极管反向偏置时,电流极小,呈现出一个近似垂直于横坐标轴的反向截止状态。

实验测得的二极管特性曲线如下图所示:![image.png](attachment:image.png)2. 电阻器的伏安特性曲线电阻器为无源元件,其特性曲线表现为直线性质。

由于电阻器内部电阻稳定,当电压升高时,电流也呈线性升高的趋势。

实验测得的电阻器特性曲线如下图所示:3. 晶体管的伏安特性曲线晶体管具有放大作用,其特性曲线表现为分别对应三极管的发射极电流与沟极电压,以及集电极电流与集电极-发射极电压之间的关系曲线,是一种非常重要的特性曲线。

实验测得的晶体管特性曲线如下图所示:四、实验结论本次实验探究了电路元件特性曲线的伏安测量法,并使用伏安仪测量了二极管、电阻器和晶体管的特性曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:电路元件特性曲线的伏安测量法实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1.熟悉电路元件的特性曲线;
2.学习非线性电阻元件特性曲线的伏安测量方法;
3掌握伏安测量法中测量样点的选择和绘制曲线的方法;
4.学习非线性电阻元件特性曲线的示波器观测方法。

二、实验内容和原理
1、电阻元件、电容元件、电感元件的特性曲线
在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。

例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。

电流越大、温度越高,对应的灯丝电阻也越大。

一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。

该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。

当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。

电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。

线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。

该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。

非线性电阻的伏安特性在u-i平面上是一条曲线。

普通晶体二极管的特点是正向电阻和反向电阻区别很大。

正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。

上述两种二极管的伏安特性均具属于单调型。

电压与电流之间是单调函数。

二极管的特性参数主要有开启电压V th,导通电压V on,反向电流I R,反向击穿电压V BR以及最大整流电流I F。

2、非线性电阻元件特性曲线的逐点伏安测量法
元件的伏安特性可以用直流电压表、电流表测定,称为逐点伏安测量法。

伏安法原理简单,测量方便,但由于仪表内阻会影响测量的结果,因此必须注意仪表的合理接法。

采用伏安法测量二极管特性时,限流电阻以及直流稳压源的变化范围与特性曲线的测量范围是有关系的,要根据实验室设备的具体要求来确定。

在综合考虑测量效率和获得良好曲线效果的前提下,测量点的选择十分关键,由于二极管的特性曲线在不同的电压的区间具有不同的性状,因此测量时需
要合理采用调电压或调电阻的方式来有效控制测量样点。

3、元件特性曲线的示波器观测法
正弦波信号发生器提供的输出电压,R是被测电阻元件,r为电流取样电阻。

示波器置于X—Y 工作方式,将电阻元件两端的电压接入示波器Y 轴输入端,取样电阻r 两端的电压接入X 轴输入端,适当调节Y 轴和X 轴的幅值,荧光屏上就能显示出电阻R 的伏安特性曲线。

通过双踪示波器的X—Y 模式则可测得电感和电容的特性曲线。

三、主要仪器设备
1.数字万用表
2.电工综合实验台
3.DG07多功能网络实验组件
4.信号源
5.示波器
四、操作方法和实验步骤
测定晶体二极管和稳压二极管的伏安特性:
选择稳压电源或者恒流源均可,本次实验使用了稳压源,并如图接线。

根据上次实验了解到的仪表技术参数,本次实验中直流电压表内阻约为5MΩ,而直流电流表内阻在1Ω至10Ω,被测量的元件电阻变化范围较大,但在测量点较密集的区域中电阻与电流表更接近,为尽量减小仪表内阻带来的影响,选用了电压表内接法,如图:
缓慢调节稳压源电压大小并记录二极管的电流和电压,在导通区段附近记录适当密集的点,当需要测量反向电压时,只需调转二极管接入电路的方向即可。

如此分别测量晶体二极管和稳压二极管的伏安特性并绘制曲线。

用示波器观测二极管、稳压管的伏安特性曲线:
如图接线,适当调整示波器,观察两种二极管的伏安特性曲线并拍摄显示器画面。

五、实验数据记录和处理
示波器显示下的二极管伏安特性曲线:
示波器显示下的稳压管伏安特性曲线:
六、实验结果与分析
由普通二极管数据作图如下,正负电压分别作图
由图中曲线观察得,普通二极管的导通电压约在0.51V附近,符合之前万用表测得的值,且在导通之后电流迅速增加;当加上反向电压时,电流基本维持在0附近,加压到-30V也并未能被导通。

由稳压二极管数据作图如下,正负电压分别作图
由图中曲线观察得,稳压二极管的导通电压约在0.68V附近,符合之前万用表测得的值,且在导通之后电流迅速增加;当加上反向电压时,电压到-4.5V附近进入稳压状态,电流突然增加,端电压维持稳定。

用multisim进行仿真:
七、讨论、心得
本次测定实验中有许多值得注意的细节,比如一开始限流电阻阻值的选定,电压表和电流表的内外接关系,都需要事先对被测二极管参数有基本的了解,才能合理选择,减小系统误差。

而测定过程中,为了更好地刻画伏安特性曲线,在某些位置要取密集的采样点,其他小斜率的区段为了保证效率往往只测几个稀疏的点,尤其要注意二极管的功率不能超过额定功率,时刻要控制电压和电流在安全范围内。

总而言之,通过本次试验,我熟悉了二极管的伏安特性,更好地理解了理论课程中二极管的工作原理和应用方式,还学到了示波器的观测方法和仿真技术。

相关文档
最新文档