医学图像分割方法汇总
医学分割模型总结

医学分割模型总结医学分割模型在医学图像处理中起到了重要的作用,它能够将医学图像中的目标区域与背景区域进行有效的分割。
本文将介绍医学分割模型的基本原理、常用方法和应用领域。
一、医学分割模型的基本原理医学分割模型是基于计算机视觉和机器学习的技术,旨在自动识别和分离医学图像中的目标区域。
医学图像通常包括CT、MRI、X射线等,这些图像在临床上起到了重要的作用。
医学分割模型通过分析图像的像素信息,将图像中的目标区域与背景区域进行区分和分割,从而帮助医生准确诊断和治疗疾病。
二、常用的医学分割方法1.基于阈值分割的方法:该方法通过设定一个固定的阈值,将图像中灰度值高于或低于该阈值的像素分为目标区域或背景区域。
这种方法简单快速,但对于图像中灰度值变化较大的情况下效果较差。
2.基于边缘检测的方法:该方法通过检测图像中的边缘信息,将目标区域与背景区域分离。
常用的边缘检测算法包括Sobel算子、Canny算子等。
这种方法对于边缘明显的图像效果较好,但对于边缘不明显或存在噪声的图像效果较差。
3.基于区域生长的方法:该方法从一个种子点开始,根据像素之间的相似性逐步生长,直到达到停止准则。
这种方法能够克服边缘检测方法的缺点,对于边缘不明显或存在噪声的图像效果较好。
4.基于深度学习的方法:近年来,深度学习在医学图像分割中得到了广泛应用。
深度学习模型如卷积神经网络(CNN)能够从大量的医学图像数据中学习到图像特征,并进行目标与背景的准确分割。
常用的深度学习模型包括U-Net、SegNet等。
三、医学分割模型的应用领域医学分割模型在临床上有着广泛的应用。
以下是一些常见的应用领域:1.肿瘤分割:医学分割模型能够帮助医生在CT或MRI图像中准确分割出肿瘤区域,从而进行肿瘤的定位和评估,指导治疗方案的制定。
2.脑部分割:医学分割模型能够从脑部CT或MRI图像中分割出不同的脑组织区域,如灰质、白质和脑脊液等,为脑部疾病的诊断和治疗提供依据。
医学图像分割方法综述

原理: 分裂合并的思想将图像先看成一个区域,然后区域不断被 分裂为四个矩形区域,直到每个区域内部都是相似的。研究重 点是分裂和合并规划的设计。
缺点: 分裂技术破坏区域边界。
example
• 在想要分割的部分选择一个或者多个种子 • 相邻像素就会以某种算法进行检测 • 将符合检测条件的像素加入到区域中 • 逐渐生长为满足约束条件的目标区域
途径: 先用基于区域的分裂合并方法分割图像,然后用边界信息对区 域间的轮廓进行优化;先在梯度幅值图像中检测屋脊点和波谷点, 通 过最大梯度路径连接奇异点获得初始图像分割,然后采用区域合并技 术获得最终结果等
其它分割方法
基于模糊理论:图像分割问题是典型的结构不良问题,而模糊集理论具 有描述不良问题的能力。基于模糊理论的图像分割方法包括模糊阈值 分割方法、模糊聚类分割方法和模糊连接度分割方法等。
优点:实现简单,对不同类灰度值或其他特征相差很大 时,能有效分 割。常做医学图像的预处理。
缺点: 不适应多通道和特征值相差不大的图像;对噪声和灰度不均匀 很敏感;阈值选取困难。
直方图
• 图像区域由灰度值区分开
基于阈值的图像分割
阈值:
选择灰度值作为阈值
g m in和g m a x
遍历整幅图像检测像素是否在此区域内
分类: 形变模型包括形变轮廓(deformable contour) 模型(又称 snake或active contour ),三维形变表面(deformable surface )模型。
形变轮廓模型: 使轮廓曲线在外能和内能的作用下向物体边 缘靠近,外力推动轮廓运动,而内力保持轮廓的光滑性。
基于阈值的图像分割
医学成像中的图像分割算法对比与评估

医学成像中的图像分割算法对比与评估图像分割在医学成像领域中扮演着重要的角色,它可以将图像中的结构或感兴趣区域从背景中分离出来,为医生提供更准确的诊断和治疗方案。
随着医学成像技术的不断发展,各种图像分割算法也在不断涌现。
本文将对医学成像中常用的图像分割算法进行对比与评估。
首先我们介绍一下几种常用的医学成像图像分割算法:阈值分割、区域生长、边缘检测和基于深度学习的分割算法。
阈值分割是一种简单而有效的图像分割方法。
它通过设置一个或多个阈值,将图像中亮度或颜色与指定阈值相似的像素分割为一个区域。
这种方法对于医学成像中明显的目标物体或特征分割效果较好,但对于比较复杂的图像,由于灰度或颜色分布不均匀,容易出现分割错误的情况。
区域生长是一种基于像素相似性的图像分割方法。
它从一个或多个种子点开始,将与种子点像素相似的像素逐步加入到同一个区域中。
这种方法对于医学成像中目标物体边缘清晰、像素相似性高的情况,分割效果较好。
但对于目标物体边缘模糊、像素相似性较低的情况,容易导致分割结果不准确。
边缘检测是一种常用的图像分割方法,它可以在图像中检测出物体的边界或边缘。
边缘检测算法通常基于图像的梯度值或边缘响应值来确定边缘的位置。
这种方法对于医学成像中目标物体边缘清晰、对比度高的情况,分割效果较好。
但对于目标物体边缘模糊、对比度较低的情况,容易导致分割结果缺失或不准确。
基于深度学习的图像分割算法是近年来快速发展的一种方法。
深度学习通过神经网络模型学习大量的医学图像数据,从而实现更准确的分割结果。
这种方法具有较好的鲁棒性和准确性,在医学成像领域取得了许多重要的研究成果。
针对以上几种常用的图像分割算法,我们可以从多个角度来评估它们的性能。
首先是分割的准确性,即算法能否准确地将目标物体从背景中分割出来。
其次是分割的鲁棒性,即算法对于图像质量、噪声干扰和其他异常情况的抗干扰能力。
还有分割的计算效率,即算法的运行时间和资源消耗是否合理。
医疗图像处理中的图像分割方法教程

医疗图像处理中的图像分割方法教程医疗图像处理是近年来发展迅速的领域,它利用计算机技术对医学图像进行处理和分析,为医生提供准确的诊断和治疗方案。
而图像分割作为医疗图像处理的重要组成部分,旨在将医学图像中的对象从背景中区分出来,以提供更详细、更准确的信息。
在医疗图像处理中,图像分割方法具有不可忽视的重要性。
以下将介绍一些常用的医疗图像分割方法,以帮助读者更好地理解和应用。
1. 基于阈值的分割方法基于阈值的分割方法是图像处理中最简单、最直观的一种方法。
它假设图像中的目标与背景具有明显的灰度差异,并通过设置合适的阈值来分割图像。
在医疗图像处理中,可以利用生理特征或者病灶的灰度分布来确定阈值,帮助准确地分割出病变区域。
2. 基于边缘检测的分割方法基于边缘检测的分割方法通过检测图像中的边缘来实现分割。
边缘是图像中灰度变化明显的位置,可以有效区分目标与背景。
常用的边缘检测算法包括Sobel算子、Canny算子等。
通过这些算法可以提取出图像中的边缘信息,然后将目标与背景分离。
3. 基于区域生长的分割方法基于区域生长的分割方法是一种基于灰度值相似性的分割方法。
它从种子点开始,通过逐渐生长的方式将相似灰度值的像素点合并到一个区域中,直到满足一定的停止标准。
这种方法可以有效地处理医疗图像中的噪音和弱边缘问题,得到更加准确的分割结果。
4. 基于图像统计特征的分割方法基于图像统计特征的分割方法利用图像中不同区域的统计特征来实现分割。
例如,可以利用均值、方差、纹理等特征来描述不同区域的差异,并根据这些差异进行分割。
这种方法可以克服基于灰度值的分割方法在处理复杂医学图像时的缺陷,并得到更准确的分割结果。
5. 基于机器学习的分割方法基于机器学习的分割方法利用先前已知的标记样本训练分类器,然后将分类器应用于待分割图像中。
常用的机器学习算法包括支持向量机、决策树、神经网络等。
通过这些算法可以将图像中的像素点分为不同的类别,从而实现图像的分割。
医学影像处理中的图像分割算法使用技巧

医学影像处理中的图像分割算法使用技巧医学影像处理是一门涉及医学图像采集、存储、处理和分析的学科。
医学图像中通常包含大量的信息,因此图像分割是医学影像处理中必不可少的一环。
图像分割是将医学图像中感兴趣的区域从背景中分离出来的过程,它通常用于检测病变区域、提取感兴趣的解剖结构或组织等。
在医学影像处理的图像分割中,有许多算法可供选择,下面将介绍一些常用的图像分割算法以及它们的使用技巧。
1. 阈值分割阈值分割是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像中大于或小于特定阈值的像素分离出来。
阈值分割适用于图像中目标和背景的灰度值存在明显差异的情况,例如CT扫描中的骨骼分割。
在使用阈值分割时,需要根据图像的特点选择适当的阈值,并进行阈值的优化和调整,以获得更好的分割效果。
2. 区域生长区域生长是一种逐像素地将图像分割为几个连通区域的方法。
它通过选择种子点和定义生长准则来实现图像的分割。
区域生长适用于图像中目标的灰度值相似的情况,例如MRI图像中的脑部分割。
在使用区域生长时,需要选择适当的种子点,并根据具体情况设置生长准则,以获得准确的分割结果。
3. 边缘检测边缘检测是通过寻找图像中不连续的灰度值变化来实现图像分割的方法。
它可以准确地检测出图像中的边缘信息,并将其作为分割结果。
边缘检测适用于图像中目标的边界清晰的情况,例如X射线图像中的器官分割。
在使用边缘检测进行图像分割时,需要选择适当的边缘检测算法,并进行参数调整以获得满意的分割效果。
4. 水平线剖分水平线剖分是一种基于灰度值水平变化的分割方法。
它通过对图像的水平方向进行剖分和分析,将图像中的区域分隔开。
水平线剖分适用于图像中存在明显的水平变化的情况,例如胸部X射线图像中的肺部分割。
在使用水平线剖分进行图像分割时,需要选择适当的剖分方法,并进行参数的调整以获得理想的分割效果。
5. 基于机器学习的分割基于机器学习的分割方法是近年来发展起来的一种分割方法。
医疗影像处理中的医学图像分割与特征提取

医疗影像处理中的医学图像分割与特征提取引言:医学影像技术在现代医疗中扮演着重要的角色,它不仅能够帮助医生发现疾病,还可以提供丰富的信息用于准确的诊断和治疗。
医生通常需要对医学图像进行分割和特征提取,以便更好地理解和分析图像中的结构与组织。
本文将介绍医学图像分割与特征提取的基本概念、方法和应用。
一、医学图像分割医学图像分割是指将医学图像中感兴趣的区域从背景中分离出来的过程。
它是医学图像处理中的关键步骤,其准确性直接影响到后续的特征提取和分析结果。
在医学图像分割中,常用的方法包括基于阈值法、边缘检测法、区域生长法和图像分割算法等。
阈值法是最简单的图像分割方法之一,它通过设定一个固定的阈值,将灰度值低于阈值的部分设置为背景,高于阈值的部分设置为前景。
虽然这种方法简单且易于理解,但其结果可能受到图像噪声和灰度不均匀等因素的影响,从而导致分割结果不准确。
边缘检测法是通过检测图像中的边缘信息来进行分割。
常用的边缘检测算法有Sobel算子、Canny算子等。
这些算法可以检测出图像中的边缘,但通常会产生一些不连续的边缘线,需要进一步处理才能得到准确的分割结果。
区域生长法是一种基于相似性的分割方法。
它从用户提供的种子点开始,通过判断相邻像素的相似性将相邻的像素合并为一个区域,直到遍历完所有相似像素。
这种方法能够有效地处理一些复杂的图像,但对于边界不明显或存在灰度突变的区域,可能会产生错误的分割结果。
图像分割算法是一种更加先进的医学图像分割方法。
它基于图论、聚类、最大流最小割等理论,结合图像的特征和上下文信息进行分割。
这种方法能够克服其他方法的缺点,提高分割的准确性和鲁棒性。
二、医学图像特征提取医学图像特征提取是指从医学图像中提取出有意义的特征信息,以便于医生进行进一步的分析和诊断。
特征可以是图像的灰度级别、纹理、形状、强度分布等。
常用的特征提取方法包括基于灰度共生矩阵、Gabor滤波器、形状描述子、小波变换等。
灰度共生矩阵是一种用于描述图像纹理特征的方法。
医疗影像处理中的图像分割算法使用方法

医疗影像处理中的图像分割算法使用方法在医疗影像处理领域,图像分割是一种非常重要的技术,它可以将医学图像中的目标或感兴趣区域从背景中分离出来,为医生提供更准确的诊断和治疗信息。
本文将介绍医疗影像处理中常用的图像分割算法及其使用方法。
1. 阈值分割算法阈值分割是最简单直观的图像分割方法之一。
它基于图像中像素灰度值的分布特性,通过设定一个或多个阈值,将像素分为不同的区域。
常见的阈值分割方法有固定阈值法、自适应阈值法和多阈值法等。
固定阈值法是指通过设定一个固定的阈值来将像素分为两个区域,一般选择灰度值在阈值以上的像素为目标区域,阈值以下的像素为背景区域。
自适应阈值法则是基于图像局部灰度分布的统计特性,根据不同区域的灰度分布情况,将局部的阈值设定为不同阈值,从而实现更准确的分割。
多阈值法则是将图像分为多个区域,每个区域对应一个阈值。
通过设置多个阈值,可以分割出更多的目标区域。
2. 基于边缘的分割算法边缘是图像中目标和背景之间的边界,通过检测图像中的边缘信息,可以有效地分割出目标区域。
常用的边缘检测算法有Sobel、Canny、拉普拉斯等。
Sobel算子是一种基于梯度的边缘检测算法。
它通过计算像素点一阶导数的幅值来检测边缘。
Sobel算子在水平和垂直两个方向上计算梯度,并将两个方向上的梯度合并得到最终的边缘图像。
Canny算子是一种综合性能比较优秀的边缘检测算法。
它结合了高斯滤波、梯度计算、非极大值抑制和双阈值等步骤,可以更准确地提取出边缘。
拉普拉斯算子是一种基于二阶导数的边缘检测算法。
它通过计算像素点的二阶导数的值来检测边缘。
拉普拉斯算子对图像中的高频部分比较敏感,能够提取出边缘的细节信息。
3. 基于区域的分割算法基于区域的分割算法是将图像分为多个区域,每个区域具有相似的特性。
常用的基于区域的分割算法有区域生长、分水岭等。
区域生长算法是一种按照像素灰度值相似性进行分割的方法。
从一个种子像素开始,逐渐将与种子像素相邻的像素加入到目标区域中,直到无法再添加相邻像素为止。
医学图像分割方法汇总

医学图像分割方法汇总本文主要介绍在医学图像分割方面的几种典型算法,详细介绍每种算法的工作原理,通过对具体的医学图像实验来对比每种方法在分割方面的优点和缺点,分析结果产生的原因,从而在后面的实际应用中选择最合适的算法。
1阈值法分割1-1 简单阈值分割简单的阈值处理是图像分割中最为简单基础的一种分割方法。
对于一副灰度图像,使用给定的阈值。
图像中的像素超过这个阈值的一律设置为最大值(对于八位灰度图像,最大值一般为255),像素小于这个阈值的设置为0.下图 1.2是利用五个不同的阈值对脑部图像(图1.1)的分割结果。
(从上到下,从左到右一次使用的阈值分别为最大值的0.1,0.3,0.5,0.7,0.9倍)。
图1.1原始脑部图像图1.2 使用不同阈值分割后的结果从实验结果来看,使用简单的阈值分割,过程十分简便,原理简单易懂,但是要是得到比较好的分割结果需要进行多次试验。
1-2 otsu阈值分割法Otsu阈值分割法又称大津阈值分割法。
它的原理是对图像所有的像素范围进行遍历(对8位灰度图像来说呢,就是从0遍历到255),找出合适的T(阈值),把原始图像分割成前景图像和背景图像并且两者之间的类方差最大。
原理:对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。
图像的总平均灰度记为μ,类间方差记为g。
假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:ω0=N0/ M×N (1)ω1=N1/ M×N (2)N0+N1=M×N (3)ω0+ω1=1 (4)μ=ω0*μ0+ω1*μ1 (5)g=ω0(μ0-μ)^2+ω1(μ1-μ)^2 (6)将式(5)代入式(6),得到等价公式:g= ω0ω1(μ0-μ1)^2 (7)这就是类间方差找出使得g(类方差)的值到达最大的T(值),就是我们需要的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学图像分割方法汇总本文主要介绍在医学图像分割方面的几种典型算法,详细介绍每种算法的工作原理,通过对具体的医学图像实验来对比每种方法在分割方面的优点和缺点,分析结果产生的原因,从而在后面的实际应用中选择最合适的算法。
1阈值法分割1-1 简单阈值分割简单的阈值处理是图像分割中最为简单基础的一种分割方法。
对于一副灰度图像,使用给定的阈值。
图像中的像素超过这个阈值的一律设置为最大值(对于八位灰度图像,最大值一般为255),像素小于这个阈值的设置为0.下图1.2是利用五个不同的阈值对脑部图像(图 1.1)的分割结果。
(从上到下,从左到右一次使用的阈值分别为最大值的0.1,0.3,0.5,0.7,0.9倍)。
图1.1原始脑部图像图1.2 使用不同阈值分割后的结果从实验结果来看,使用简单的阈值分割,过程十分简便,原理简单易懂,但是要是得到比较好的分割结果需要进行多次试验。
1-2 otsu阈值分割法Otsu阈值分割法又称大津阈值分割法。
它的原理是对图像所有的像素围进行遍历(对8位灰度图像来说呢,就是从0遍历到255),找出合适的T(阈值),把原始图像分割成前景图像和背景图像并且两者之间的类方差最大。
原理:对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。
图像的总平均灰度记为μ,类间方差记为g。
假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:ω0=N0/ M×N (1)ω1=N1/ M×N (2)N0+N1=M×N (3)ω0+ω1=1 (4)μ=ω0*μ0+ω1*μ1 (5)g=ω0(μ0-μ)^2+ω1(μ1-μ)^2 (6)将式(5)代入式(6),得到等价公式:g= ω0ω1(μ0-μ1)^2 (7)这就是类间方差找出使得g(类方差)的值到达最大的T(值),就是我们需要的结果。
下图1.3是使用otsu阈值分割法对图1.1脑部图像的分割结果。
图1.3 使用ostu阈值分割得到的结果2 区域生长方法分割区域生长方法是从被分割对象的种子区域(通常是一个或者多个像素点)开始,在种子区域的相邻像素中寻找与种子区域具有某种给定的相似特征(通常是灰度值)的像素加入种子区域。
并利用新的种子区域重复上述过程,直到种子区域不再扩大。
区域生长是指从某个像素出发,按照一定的准则,逐步加入邻近像素,当满足一定的条件时,区域生长终止。
区域生长的好坏决定于1.初始点(种子点)的选取。
2.生长准则。
3.终止条件。
区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标的提取。
简单来说下三个法则,对出需要分割的图像:1、选取图像中的一点(或者一组点)为种子点(种子点的选取需要具体情况具体分析)。
2、在种子点处进行8邻域或4邻域扩展,判定准则是:如果考虑的像素与种子像素灰度值差的绝对值小于某个门限T,则将该像素包括进种子像素所在的区域。
3、当不再有像素满足加入这个区域的准则时,区域生长停止。
2-1 经典区域生长算法本算法使用的是一组种子点,种子点的选取一般遵循选取图像中较为明亮的部分,可以使用im2bw函数来选取种子点,通过调整二值化的参数来调整种子点的数目。
然后对种子点的4领域的像素进行判断,符合要求的加入种子点。
重复上述过程知道种子点数目不再变化为止。
实验仍然使用图1.1的脑部图像为样本。
选取两组种子点和两个不同的生长条件。
实验结果如下:表2-1使用经典区域生长算法使用的参数图2-1经典区域生长算法的实验结果从实验结果上来看,对经典的区域生长算法的分割结果影响较大的因素有种种子点生长准则4邻域的像素点和种子点绝对值小于104邻域的像素点和种子点绝对值小于15 使用otsu 得到的种子点 图2-1从左到右从上到下第一幅图 图2-1从左到右从上到下第二幅图设置像素值大于200为种子点 图2-1从左到右从上到下第三幅图 图2-1从左到右从上到下第四幅图设置像素大于220的为种子点 图2-1从左到右从上到下第五幅图 图2-1从左到右从上到下第六幅图子点的选取,和生长准则的制约,需要经过多次试验才可能得到满意的结果。
但是这种方法存在非常明显的缺点,由于算法使用迭代来查找符合条件的种子点,所以空间和实践的开销很大!2-2 连接门限阈值处理这种方法和上面的经典区域生长算法稍微有些不同,在这里可以人为地给出感兴趣的像素点的上限和下限,在区间的像素是我们感兴趣的,然后对邻域像素进行判断,是否在感兴趣的区间之中,重复此操作,直到感兴趣的区域不再扩大。
实验结果如下图2-2:表2-2 连接门限阈值分割才去的参数种子位置下门限上门限输出图像(107,69)180 210 图2-2从左到右第二幅图像(60,116)150 180 图2-2从左到右第三幅图像(81,112)210 250 图2-3从左到右第四幅图像(1)原始脑部头像(2)(3)(4)图2-2 使用连接门限阈值处理得到的分割结果使用连接门限阈值处理分割医学图像的好处是,可以根据需要分割出自己特别感兴趣的那一部分。
但是这种方法非常难以选择种子点,种子点的选取对结果影响非常之大,同时当图像中感兴趣的那部分不连通的时候,分割后的图像往往是不完整的。
2-2 置信连接法分割图像该算法计算包含在区域的的所有像素的平均值和标准差。
在实验中,人为提供一个因子,用这个因子来乘以标准差来确定感兴趣的围。
算法的流程分为三个步骤:1):选定种子点2):测试种子点的相邻像素点是否符合感兴趣的条件,如果符合则包含进感兴趣的区域。
感兴趣的区域不再扩大,结束以一次迭代。
3):使用新得到的感兴趣区域,重新计算像素的亮度值的均值和标准差,重复步骤2.直到感兴趣的区域不再扩大为止。
可以用一个公式来阐述感兴趣的区域:I(X) ∈[m-f*σ,m+f*σ]其中m是像素亮度的均值,σ是像素的标准差,f是用户自定义的系数,可以根据效果不同来自动调整。
在本次实验中,我仍然使用和以上实验相同的数据和种子点,实验中选取的f值为2.5(可以适当调节)。
实验结果如下图2-3:(1)原始脑部头像(2)使用(107,69)种子点的分割结果(3)使用(60,116)种子点的分割结果 (4)使用(81,112)种子点的分割结果图2-3使用置信连接法分割图像的结果从分割结果上看,使用置信连接分割图像效果好坏的关键是种子点的选取和f 值的设定,可以多次试验来得到最佳结果。
3 分水岭算法分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。
分水岭的概念和形成可以通过模拟浸入过程来说明。
在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
使用分水岭算法对医学图分割的好处是可以感受到很细微的边缘,由于医学图像部组织一般区别较小,这使得分水岭算法在医学图像领域得到广泛应用。
但是另一方面,由于分水岭算法对图像的边缘信息过于敏感,在具体应用中,经常会出现过度分割的现象。
需要注意的是:实验中,并不是直接对原始的灰度图像应用分水岭算法,而是使用梯度图作为输入图像。
使用分水岭算法进行图像分割的典型流程如下:(1):计算原始图像的梯度。
(2):计算前景标记(这些是每个对象部连接的像素)(3):计算背景标记(这些不属于任何对象的像素)(4):对原始的梯度图想进行修改,将前景标记和背景标记设置成局部极小值(5):对修改后的梯度图像使用分水岭分割实验结果如下图3-1所示:(1)原始脑部头像(2)使用标记分水岭算法分割后的图像图3-1 使用标记分水岭算法对脑部头像进行分割的结果当我们在实验中使用分水岭算法来分割某些细胞图像时,发现直接使用以上算法,会导致黏在一起的细胞没被分割,这时候就得在使用分水岭算法的时候避免过度分割,对于这种情况,采取的一般方法是在基于watershed的图像分割中,使用imextendedmin函数来过滤掉特别小的局部最小,避免过度分割。
本实验中,我使用的实验素材是互相粘连的细胞。
实验结果如下图3-2所示:(1)互相粘连的细胞图(2)分水岭算法过度分割(3)去除掉部分极小区域后,使用分水岭算法的结果图3-2 使用去除局部极小的分水岭算法的分割效果图4 聚类分割算法以上的几种算法都是需要首先对图像进行观测,缺乏严格的数学衡量。
因此,在现实的图像世界中,以上的几种方法往往会出现错误。
聚类则是在数学定义上更为严格的普适性方法。
具体定义是,假设图像的像素点是许多样本的集合,不同样本之间的相似度用距离(这里的距离有很多种定义,具体看实际应用)来衡量,当两个样本的距离较小时认为两者划分为同一类,反之则为不同的类。
4-1 k-means聚类分割算法K-means算法是最为经典的基于划分的聚类算法,它的原理也较为简单。
算法的描述如下:(1)适当选择k个类的初始中心;(2)在第i次迭代中,对任意一个样本,求其到k各中心的距离,将该样本归到距离最短的中心所在的类;(3)利用均值等方法更新该类的中心值;(4)对于所有的k个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
算法示意图如图4-1所示:图4-1 k-means聚类过程(两个“x”代表中心点的变化情况)把k-means应用到图像分割上,最为关键的是k-means算法中关于距离的的定义和关于初始中心的选择。
对于灰度图像而言,强调像素之间的欧氏距离和几何距离毫无意义,所以对于k-means算法实现对图像分割,首要的任务是重新定义k-means算法中的“距离”。
由于图像是一个二维矩阵,这对于选择初始中心点和计算“距离”来说都是不适合的。
在实验中,为了简化计算,我首先将灰度图像I(M*N)转化为一个(M*N,1)的列数组X。
然后把像素之间的“距离”定义为它们的像素的亮度差值。
对于初始中心的选择,采取均匀选取(每隔一定的像素选择一个作为中心),划分的块数通过反复试验来找到最佳分割结果。
在实验中,我选取不同的初始中心点和k-means算法不同的k值,实验中选择的参数如表4-1,分割结果如下图4-2:表4-1 k-means 聚类分割实验中k 值和初始中心点参数选择表初始中心选择K 值选择3个划分区域 4个划分区域 5个划分区域从X 中随机选取K 个质心点图(2)图(3) 图(4) 根据X 的分布围均匀的随机生成K 个质心 图(5)图(6) 图(7)(1)原始脑部头像 (2)(3)(4)(5)(6)(7)从实验结果上看,使用k-means进行分割的结果要好于以上的三种分割算法,但是其缺点也比较明显,为了得到最终的分割结果,k-means算法需要经过多次迭代,在时间效率上不如以上的三种算法,另外有可能经过多次迭代,中心点的位置仍然不能收敛,这时候需要就需要设置一定的阈值作为迭代结束条件。