第四章《相似图形》测试题

合集下载

北师版九年级数学 第四章 图形的相似(单元综合测试卷)

北师版九年级数学  第四章 图形的相似(单元综合测试卷)

第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:23.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C =⋅D .AD AB AB BC=6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .28.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③13412DEC S =-△;④12DH HC =.则其中正确的结论有()A .①②③B .①②③④C .①②④D .①③④二、填空题(本大题共8小题,每小题3分,共24分)11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AF AC =.17.如图,菱形ABCD 的边长为5,对角线AC 、BD 相交于点O ,E 为BC 边的中点,连接DE 交AC 于点F .若6AC =,则EF 的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.三、解答题(本大题共9小题,共66分)19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:2【答案】D【分析】本题考查了相似三角形的性质,直接根据相似三角形的性质即可得出答案,熟练掌握相似三角形的面积的比等于相似比的平方是解此题的关键.【解析】解:∵两个相似三角形的面积之比为9:4,∴两个相似三角形的相似比为3:2,∵相似三角形的周长比等于相似比,∴这两个三角形的周长之比为3:2,故选:D .3.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C=⋅D .AD AB AB BC=【答案】D 【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解析】解:A 、∵∠=∠BDC ABC ,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;B 、∵DBC BAC ∠=∠,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;C 、∵2D C A B C C =⋅,∴BC AC DC BC=,又∵C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;D 、AD AB AB BC=不能判定BDC ABC ∽ ,故此选项符合题意.故选:D .【点睛】本题考查了相似三角形的判定,熟悉相似三角形的判定定理是解题的关键.6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:【答案】C 【分析】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的性质及相似三角形的判定与性质是解答本题的关键.根据平行四边形的性质得到AB CD =,进而推得12BE CD =,再证明BEF DCF ∽△△,根据相似三角形的性质,即得答案.7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .2则 1.6PM =,设FA x =米,由32FD FA =得,8.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S =-△;④12DH HC =.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④ ≌,ABE ADE(SAS)∴.∠=∠ABE ADE∴∠=∠,CBE CDE,BC CF=在Rt ADC 中,根据勾股定理求出由面积公式得:1122AD DC AC ⨯=22DM ∴=,45DCA ∠=︒ ,二、填空题11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.【答案】100︒/100度【分析】利用相似多边形对应角相等、对应边成比例即可求解.【解析】解: 四边形ABCD ∽四边形A B C D '''',70B B '∴∠=∠=︒,3601306070100C '∴∠=︒-︒-︒-︒=︒100C α'∴∠=∠=︒,故答案为:100︒.【点睛】本题考查了相似多边形的性质,解题的关键是知道相似多边形的对应边的比相等,对应角相等.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.【答案】1:2【分析】本题主要考查了平行线分线段成比例定理,熟练掌握该定理是解题的关键,根据DE CB ∥,由平行线分线段成比例定理可得::AE EB AD CD =,将已知条件代入即可求解.【解析】解:∵DE CB ∥,4=AD ,8DC =,∴::4:81:2AE EB AD CD ===.故答案为1:2.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.【答案】∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB【分析】利用相似三角形的判定可求解.【解析】解:①当∠ACP =∠B ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠ACP =∠B ;②当∠APC =∠ACB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠APC =∠ACB ;③当AP :AC =AC :AB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加AP :AC =AC :AB ;故答案为∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB .【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.【答案】32a +-【分析】本题考查了位似变换的性质、相似三角形的性质,根据相似三角形的性质求出1112x a --=+是解题的关键.设B 点横坐标为x ,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点N ,根据平行线分线段成比例定理得到CM BC CN B C =',根据相似三角形的性质求出1112x a --=+,计算即可.【解析】设B 点横坐标为x ,如图,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点NBM B N '∴∥,BCM B CN ∴'△∽△,CM BC CN B C∴'=,∵ABC 和A B C ''△是位似比为1:2的位似图形,即1112x a --=+,解得32a x +=-,B ∴点横坐标为32a +-.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AC =.∵D为BC中点,DG BF∥∴12CG CDCF CB==,即:CG又E为AD的中点,BE的延长线交∴12AE AFAD AG==,即:AF17.如图,菱形ABCD的边长为5,对角线AC、BD相交于点O,E为BC边的中点,连接DE交AC于点F.若6AC=,则EF的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.(2)如图,点M 是BC 的中点时,由折叠知,,MB MP MC =∴MP MQ =,即,P Q 两点重合.△MPE 中,MPE B ∠=∠=【点睛】本题考查矩形的性质,折叠的性质,相似三角形的判定和性质;由折叠得到角相等,线段相等是解题的关键.三、解答题19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.【答案】15DF =【分析】本题考查了平行线分线段成比例;根据平行线分线段成比例列式求出DE ,再根据DF DE EF =+计算即可.【解析】解:∵123l l l ∥∥,∴AB DE BC EF =,即4810DE =,∴5DE =,∴51015DF DE EF =+=+=.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=【答案】证明见解析【分析】根据平行线分线段成比例可得=AG AE AC AB 和AG AD AC AE=,即得AE AD AB AE =【解析】证明:∵EG BC ∥,∴=AG AE AC AB ,∵DG EC ∥,∴AG AD AC AE =,∴AE AD AB AE=.【点睛】本题考查比例线段,解题的关键是掌握平行线分线段成比例.22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.【答案】(1)见解析(2)253【分析】(1)根据高线的定义,得到90ADB CEA ∠=∠=︒,再根据A A ∠=∠,即可得证;(2)证明ADE ABC △△∽,列出比例式进行求解即可.【解析】(1)解:∵线段BD 、CE 是ABC 的两条高,∴90ADB CEA ∠=∠=︒,∵A A ∠=∠,∴ACE ABD ∽;(2)∵ACE ABD ∽,∴AD AB AE AC =,∴AD AE AB AC=,∵A A ∠=∠,∴ADE ABC △△∽,∴AD DE AB BC =,即:6510BC=,∴253BC =.【点睛】本题考查相似三角形的判定和性质.熟练掌握相似三角形的判定方法,证明三角形相似,是解题的关键.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?∵AB MM A B '''∥∥,CE A B ∴⊥'',CMM CA B ''' ∽,MM CD '24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .【答案】(1)详见解析(2)详见解析(3)详见解析【分析】(1)在BC 上取一点D ,使得AD BC ⊥即可;(2)取AB 的中点P ,取格点T ,连接PT 交BC 于点Q ,线段PQ 即为所求;(3)取格点P ,Q ,连接PQ 交BC 于点E ,连接AE 即可,本题考查作图,相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.【解析】(1)解:如图①中,线段AD 即为所求;(2)解:如图2中,线段PQ 即为所求;(3)解:如图③中,点E 即为所求.25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)【答案】(1)见详解(2)()22M a b '--,【分析】(1)利用位似变换的性质,2OC OC '=,2OB OB '=,再结合()00O ,,()31B -,,()21C ,,即可分别作出B ,C 的对应点B ',C ',再连接即可作答;(2)探究坐标变化规律,可得结论.【解析】(1)解:如图,OB C ''△即为所求:(2)解:因为()31B -,,()21C ,,且由(1)的图可知()62B '-,,()42C '--,,所以变化后点()M a b ,的对应点M '的坐标为()22a b --,.【点睛】本题考查作图−位似变换,解题的关键是掌握位似变换的性质,属于中考常考题型.26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.【答案】(1)证明见解析(2)18【分析】本题考查了相似三角形的判定与性质,含30度角的直角三角形以及勾股定理等知识点,熟记相关定理内容是解题关键.(1)证EDC EBA ∽ 即可;(2)过C 作CF AD ⊥于F ,AG EB ⊥于G .可求出,,EF CF AG ;证EFC EGA ∽V V 得::EF EG CF AG =,即可求解;【解析】(1)证明:∵90ADC ∠=︒,180EDC ADC ∠+∠=︒,∴90EDC ∠=︒,∵90ABC ∠=︒,∴EDC ABC ∠=∠,∵E E ∠=∠,∴EDC EBA∽,V V ∴::ED EB EC EA =,∴··ED EA EC EB =;(2)解:如图2中,过C 作CF AD ⊥于F ,AG EB ⊥于G .在Rt CDF △中,60ADC ∠=∴30DCF ∠=°,∵5CD =,∴15,22DF CD ==CD CF =27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.【答案】(1)2AF BE=(2)2AF BE =,理由见解答过程(3)62-或62+【分析】(1)根据ABC 是等腰直角三角形,得2AF BC =,再由正方形的性质即可解答;(2)连接BD CD ,,根据ABD △和DEF 都是等腰直角三角形,可证明BDE ADF ∽,然后根据线段比例即可解答;(3)分当点F 在线段AE 上或点F 在线段AE 的延长线两种情形,分别画出图形,利用勾股定理求得AF ,再由(2)得出BE 的长度即可.【解析】(1)解:∵ABC 是等腰直角三角形,∴2AF BC =,∵四边形DEFG 是正方形,∴BC GF BE ==,∴2AF BE =.故答案为:2AF BE =.(2)解:2AF BE =,理由如下:如图2,连接BD ,在Rt BAC 中,45BAC ∠=∴2sin 2BD BAC AD ∠==,在正方形DEFG 中,sin ∠∴BD DE AD DF=,∴45EDF BDA ∠=∠=︒,∴EDF BDF BDA ∠-∠=∠∴BDE ADF ∽,∴2AF AD ==,即AF 由(1)知,DE FE DG ==在Rt ADE △中,2,DE =∴222AE AD DE =-=∴23AF AE FE =-=-由(2)知,2AF BE =由(1)知,2DE FE DG ===,在Rt ADE △中,2DE =,∴2223AE AD DE =-=,∴232AF AE FE =-=+,由(2)知,2AF BE =,∴()223223226222222BE +++====⨯∴当正方形DEFG 旋转到A 、E 、F 三点共线时【点睛】本题主要考查四边形的综合题,主要考查了相似三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识点,灵活运用相关判定和性质定理是解题的关键.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.【答案】(1)AFD ∠的大小为定值,理由见解析(2)见解析∵AD DC =,60ADC ∠=∴ADC △为等边三角形,∴AC AD =,60CAD ∠=︒∵FH FA =,60AFD ∠=︒∴AFH 为等边三角形,∴AF AH =,60FAH ∠=∵CAF CAH CAH ∠+∠=∠∴CAF DAH ∠=∠,∴AFC AHD ≌,∴DH CF =,∵CD C D ¢=,CDF C ∠=∠∴CDF C DF ' ≌,∴C F CF '=,∴DH C F '=;(3)解:如图:由54AC FG '=,可设5AC a ='则4FG a =,DH C F CF '==∵AFH 为等边三角形,∴60AHF AFH ∠=∠=︒,∴120AHD ∠=︒由(2)AFC AHD ≌,。

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。

第四章 相似图形(A、B)卷

第四章 相似图形(A、B)卷

北师大版八年级(下)数学第四章 相 似 图 形 ( A 卷 )一、选择题(每小题3分,共30分)1. 如图,下列条件中不能判定ACD ABC △∽△的是( )A .AB ADBC CD=(B)ADC ACB ∠=∠(C)ACD B ∠=∠(D) AB AD AC ⋅=2 2.下列两个图形一定相似的是 . ( ) A.三角形与四边形 B.两个正五边形 C.两个六边形D.两个四边形3.若a cb d =,则下列式子中正确的是 ( ) A.ac n bd c +=+ B.ac bd = C.c n n n b d ++= D.a a cb b d+=+4.若32xx y=+,则y x 的值为 ( )(A)12(B)23(C)13(D)255.如图,P 是Rt ABC △的斜边BC 上异于B 、C 的一点,过P 点作直线截ABC △,使截得的三角形与ABC △相似,满足这样条件的直线共有( )条 A.1 B.2 C.3 D.4 6.两相似三角形的周长之比为1:4,那么他们的对应边上的高的比为 ( )A 、1:2B 、2:2C 、2:1D 、1:47.下列各组线段中,能成比例的是A.3679,,, B.2568,,, C.36918,,, D.11121314,,,A CDB8.如图,D 为ABC △的边BC 上的一点,连接AD ,要使ABD CBA △∽△,应具备下列条件中的( )A.AC AB CD BD = B.BC BD AB ⨯=2C.AB BC CD AD = D.CB CD AC ⨯=29.如图,将DEF △缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP FP 、,取它们的中点B C 、,得到ABC △,则下列说法正确的有( ) ①ABC △与DEF △是位似图形;②ABC △与DEF △是相似图形;③ABC △与DEF △的周长比是1:2;④ABC △与DEF △的面积比是1:2. A .1个 (B .2个 (C)3个 (D .4个10.如果两个等腰直角三角形斜边的比是1:2,那么它们面积的比为( ) (A)1:1(B)(C)1:2(D)1:4二、填空题(每小题3分,共18分)11. 两个矩形相似,它们的对角线之比为1:3,那么它们的相似比为______________,周长比为_______________,面积比为_________________。

第四章 相似图形测试(4)(含答案)-

第四章 相似图形测试(4)(含答案)-

H DF E CB AG第四章相似图形测试(4)一、选择题:1.下列结论正确的是( )A.等腰三角形相似;B.腰长相等的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角对应相等的两个等腰三角形不一定相似2.如图,在□ABCD中,E是AB延长线上一点,H是AD上一点, ED和CH相交于点G,•交BC边于点F,则图中相似的三角形有( )A.3对B.4对C.5对D.6对3.下列四组图形中,必成相似形的是( )A.有一个角是40°的两个等腰三角形;B.有三个角对应相等的两个四边形C.有一个角是105°的两个等腰三角形;D.邻边之比为1:3的两个平行四边形4.已知,a,b,c,d四条线段成比例,其中a=3,c=9,d=15,则线段b的长为( )A.5B.6C. 95D.455.两个相似多边形的面积比是4:9,那么它们的周长比是( )A.4:9B.16:81C.2:3D.9:46.下列命题不正确的是( )A.两个位似图形一定相似;B.位似图形的对应边一定平行C.两个位似图形的位似比就是相似比;D.两个相似图形一定是位似图形二、填空题1.如果23a b cx y z===,那么a b cx y z++++=__________.(其中x+y+z≠0)2.如果长为3cm,5cm,15cm和xcm的线段是成比例线段,那么x=_______.3.△ABC∽△A′B′C′,且AB:A′B′=3:2,且△ABC的周长为18cm,•则这两个三角形的周长和为_____.4.将一个矩形沿两条较长边的中点连线对折,得到的矩形与原矩形相似,则原矩形长与宽的比是_________.5.在Rt△ABC中,∠C=90°,CD⊥AB于D,下面的式子错误的是________.A.AC2=A D·ABB.AB2=A C·BC;C.BC2=B D·ABD.CD2=A D·BD6.某一时刻,一根4米长的旗杆的影长为6•米,•同时附近的一座建筑物的影长为36米,那么这座建筑物高________米.三、计算题1.已知a、b、c、d四条线段成比例,且a=4,d=16,b=c,求线段c的长.2.如图,DE∥BC,AD=5,BD=2,△ADE的面积为20,则梯形DBCE的面积是多少?AD ECB3.如图,D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=70°,∠AED=50°,那么AD·AB=AE·AC成立吗?为什么?ADEBC4.如图,小军欲测量学校旗杆AB的高度,他站在旗杆影子上前后移动,•直到他本身影子的顶端与旗杆影子的顶端重叠,此时他距离旗杆2米,已知小军的身高1.6米,•他的影长1米,求旗杆的高度.5.如图,一油桶高1.2米,桶内有油,一根木棒长1.5米,从桶盖小口斜插入桶内,•一端到底,另?一端恰与桶盖小口相齐.抽出木棒,量得棒上未浸油部分长0.5米,•则桶内油的高度是多少6.把如图所示的△ABC放大,且使放大后的△A′B′C′与△ABC相位似,•位似比为2:1,位似中心是BC的中点O.答案:一、1.D 2.B 3.C 4.A 5.C 6.D二、:1 5.B 6.24 三、1.由a 、b 、c 、d 成比例得a cb d= 所以ab=bc,因为b=c,所以c 2=ad=4×16=64,•所以c=8 2.DE ∥BC ⇒∠ADE=∠B,∠AED=∠C ⇒△ADE ∽△ABC⇒22525()()5249ADE ABCS AD SAB ===+ 即202549ABCS=得S △ABC =1965所以S 梯DBCE =S △ABC -S △ADE = 1965-20=9653.成立,理由是∠A=40°,∠C=70°⇒∠B=50° ∠AED=50°△ABC ∽△AED ∠A=∠A⇒AB ACAE AD=⇒AD ·AB=AE ·AC 4.由题意得△ECD ∽△EAB ⇒CD ED AB EB =⇒1.6111AB =+⇒ AB=4.8答:旗杆高4.8米.5.设桶内油的高度是x 米,根据题意得1.20.51.2 1.5x -=解得x=0.8 答:桶内油的高度是0.8米.6.连接OA 、OB 、OC 并延长至A ′、B ′、C ′,使OA ′=2OA,OB ′=2OB,OC ′=2OC,•顺次连接A ′、B ′、C ′,即得△A ′B ′C ′.。

第四章《相似图形》单元测验卷

第四章《相似图形》单元测验卷

第四章《相似图形》单元测验一、选择题:(3分×10=30分)1.若32=yx,则3x-2y=() A.3 B.2 C.1 D.02.甲、乙两地相距3.5km,画在地图上的距离为7cm,则这张地图的比例尺为()A.2:1 B.1:50000 C.1:2 D.50000:13. 已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为()A.1:2 B.1:4 C.2:1 D.4:14. 下列四个三角形,与左图中的三角形相似的是()5. 如图, 在Rt△ABC中, ∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=()A、2B、4 C、、36. 如图,丁轩同学在晚上由路灯A C走向路灯B D,当他走到点P时,发现身后他影子的部刚好接触到路灯A C的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯B D的底部,已知丁轩同学的身高是 1.5m,两个路灯的高度都是9m,且AP=BQ,则两路灯之间的距离是()A.24m B.25m C.28m D.30m7. 如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A.1:2B.1:4C.1:5D.1:68. 如图,AB是斜靠在墙上的长梯,梯脚B距墙脚1.6m,梯上点D距墙1.4m,BD长0.55m则梯子的长为( )A.3.85mB.4.00mC.4.40mD.4.50m9.如图所示,给出下列条件:①B A C D∠=∠;②A D C A C B∠=∠;③A C A BC D B C=;④ABADAC∙=2.其中单独能够判定A B C A C D△∽△的个数有()A.1 B.2 C.3 D.410.已知点C是线段AB的黄金分割点,且CB>AC,则下列等式中成立的是()A.AB2=AC·CB B.CB2=AC·AB C.AC2=CB·AB D.AC2=2BC·AB二、填空题:(4分×5=20分)11、已知线段a、b、c、d是成比例线段,且a = 2㎝,b = 0.6㎝,c=4㎝,那么d= ㎝.12. 已知,32===fedcba则fbea++=___________.13.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得20cm50cmO A AA'==,,这个三角尺的周长与它在墙上形成的影子的周长的比是.14. 如图,在△ABC中,AB=4cm,AC=2cm,在AB上取一点D,当AD=___________ cm时,△ACD∽△ABC.15. 如图,D是△ABC的边AB上的一点,过点D作DE∥BC交AC于E,若AD:BD = 4:3,则S△ADE:S四边形 BCED=______________.三、解答题:(共50分)16.(9分)如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,ΔABC∽ΔDAC.(第4题)A.B.C.D.DBA第14题第13题第15题DCBA(第5题)(第6题)(第7题)(第8题)(1)求AB 的长;(2)求CD 的长;(3)求∠BAD 的大小.17.(7分)如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中...画出..△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△OAB 的位似比为2:1.18.(10分)如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上,若这个矩形的长PN 是宽PQ 的2倍,求长、宽各是多少?19.(12分)已知:R t O AB △在直角坐标系中的位置如图所示,(34)P ,为O B 的中点,点C为折线O A B 上的动点,线段PC 把R t O AB △分割成两部分.问:点C 在什么位置时,分割得到的三角形与R t O AB △相似?(注:在图上画出所有符合要求的线段PC ,并求出相应的点C 的坐标).20.(12分)如图, △ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)△AEF 与△ABE 相似吗?说说你的理由.(2)BD 2=AD ·DF 吗?请说明理由.附加题:21.(10分)在R t ABC △中,902BAC AB AC ∠=== ,,点D 在B C 所在的直线上运动,作45ADE ∠= (A D E ,,按逆时针方向).如图,若点D 在线段B C 上运动,D E 交A C 于E .①求证:A B D D C E △∽△;②当AD E △是等腰三角形时,求A E的长.(第19题图)45A B DC E(2)设边宽为xmm,则长为2xmm,∵PNMQ为矩形,∴PQ∥BC,PN∥AD,根据平行线的性质可以得出:、,由题意知PN=2xmm,AD=80mm,BC=120mm,AP=xmm,即,,∵AP+BP=AB,∴=1,解得x=30,2x=60.即长为60mm,宽为30mm.解:过P作PC1⊥OA,垂足是C1,则△OC1P∽△OAB.点C1坐标是(3,0).(2分)过P作PC2⊥AB,垂足是C2,则△PC2B∽△OAB.点C2坐标是(6,4).(4分)过P作PC3⊥OB,垂足是P(如图),则△C3PB∽△OAB,∴.(6分)易知OB=10,BP=5,BA=8,∴,.(8分)∴.(9分)符合要求的点C有三个,其连线段分别是PC1,PC2,PC3(如图).(10分)解:(1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°.由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.推出△ABD∽△DCE.②分三种情况:(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.(ⅱ)当AD=DE时,由①知△ABD∽△DCE,又AD=DE,知△ABD≌△DCE.所以AB=CD=2,故BD=CE=2$\sqrt{2}-2$,所以AE=AC-CE=4-2$\sqrt{2}$.(ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C,故∠ADC=∠AED=90°.所以DE=AE=$\frac{1}{2}$AC=1.。

第四章 图形的相似 自我检测

第四章 图形的相似   自我检测

北师大版九年级数学 第四章 图形的相似 自我检测 (时间:90分钟,满分:100分) 一、选择题(每题2分,共14分) 1、下列说法中正确的有 ( )①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的等腰直角三角形都相似;④所有的等边三角形都相似。

A 、1个 B 、2个 C 、3个 D 、4个 2、A B ∥C D ∥EF ,则在图中下列关系 ( ) A 、BD DF CE AC = B 、DF CE AC BD = C 、BF DF AE AC = D 、DFCEBD AC = 3、如图,P 是Rt △ABC 斜边AB 上任意一点(A 、B 两点除外),过P 点作一直线,使截得的三角形与Rt △ABC 相似,这样的直线可以作 ( )条。

A 、1 B 、2 C 、3 D 、4 4、把1m 的线段进行黄金分割,则分成的较短的线段长为( )m 。

A 、253- B 、215- C 、215+ D 、253+ 5、如图,△ABC 与△DEF 是位似图形,相似比是2︰3,已知AB=4,则DE=( ) A 、38B 、5C 、6D 、96、如图,已知D E ∥BC ,CD 和BE 相交于点O ,S △DOE ︰S △COB =4︰9,则AE ︰EC=( ) A 、2︰1 B 、2︰3 C 、4︰9 D 、5︰47、如图,在Rt △ABC 中,∠C=900,放置边长分别为4、6、χ的三个正方形,则χ的值为 ( ) A 、24 B 、12 C 、10 D 、8二、填空题(每题3分,共18分) 8、已知:432cb a ==,且18=++c b a ,则a = 。

9、如图,AD 是△ABC 的中线,AE=EF=FC ,BE 交AD 于点G ,则=ADAG。

10、把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 。

11、如图,在Rt △ABC 中,∠C 为直角,C D ⊥AB 于点D ,BC=3,AB=5,△AD C ∽△CDB 的相似比为 。

北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

K 从点 P 出发沿折线 PE ﹣﹣ 以E每F 秒 1 个单位长的速度匀速运
动.点 P、K 同时开始运动,当点 K 到达点 F 时停止运动,点 P 也
随之停止.设点 P、K 运动的时间是 t 秒( t>0 ).
(1)当 t=1 时, KE= , EN= ;
(2)当 t 为何值时,△
的面A积PM与△
( 1 )求证:△
ABM ∽△ EFA ;
(2)若 AB=12 ,BM=5 ,求 DE 的长.
21 .如图,在平行四边形 ABCD 中,过点 A 作 AE ⊥ BC ,垂足为
E,连接 DE,F 为线段 DE 上一点,且∠
AFE= ∠ B .
( 1 )求证:△
ADF ∽△ DEC ;
(2)若 AB=4 ,AD= ,AE=3 ,求 AF 的长.
( 2)如图所示,以 B 为位似中心,画出△A2B2C2,使△A2B2C2 与△
ABC 位似,且位似比为 2:1 ,点 C2 的坐标是( 1 ,0),
故答案为:( 1)(2 ,﹣ ;2 ()2 )(1 ,0)
23 .解:( 1)当 t=1 时,根据题意得, AP=1 ,PK=1 , ∵ PE=2 , ∴ KE=2 ﹣ 1=1 , ∵四边形 ABCD 和 PEFG 都是矩形, ∴△ APM ∽△ ABC ,△ APM ∽△ NEM ,
按比例尺 1:2,把△ 缩EF小O,则点 E 的对应点 E ′的坐标为(

A.(2,﹣ 1 )或(﹣ 1) 2 , B.(8,﹣ 4 )或
(﹣ 8 ,﹣ 4 )
C.(2,﹣ 1 )
D.(8 ,﹣ 4 )
5.如图,已知 AD 为△ AB的C角平分线,
交DEA∥C 于ABE,如

第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册

第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册

第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册考生注意:本试卷共三道大题,23道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.在比例尺是1:8000的地图上,中山路的长度约为25cm,该路段实际长度约为()A.3200m B.3000m C.2400m D.2000m2.如图,用放大镜将贺兰山旅游图标放大,这两个图形之间属于以下哪种图形变换()A.相似B.平移C.轴对称D.旋转3.已知=,则下列式子中正确的是()A.a:b=c2:d2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a﹣d):(b﹣d)4.下列说法中,不正确的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正八边形都相似5.以下四组线段中,成比例的是()A.3,4,6,8B.2,3,4,5C.1,2,3,4D.5,6,7,8 6.如果两个相似三角形的相似比是1:2,那么它们的周长比是()A.2:1B.1:4C.1:D.1:27.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC相似的是()A.B.C.D.8.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6)B.(9,6)C.D.(10,6)9.如图,在▱ABCD中,E是AB边的中点,则S△AEG:S平行四边形ABCD的值为()A.B.C.D.10.如图,在矩形ABCD中,E、F分别在BC、CD上运动(不与端点重合),连接BF、AE,交于点P,且满足.连接CP,若AB=4,BC=6,则CP的最小值为()A.2﹣3B.2﹣2C.5D.3二.填空题(6小题,每题3分,共18分)11.若,则=.12.如图,已知AC∥EF∥BD,如果AE:EB=2:3,CD=6,那么DF的长等于.13.如图,在▱ABCD中,AD=16,∠ABC的平分线交AD于点F,交CD的延长线于点E,若S△EDF:S四边形FBCD=9:55,则AB=.14.若,则k=.15.如图,△ABC∽△CBD,AB=9,BD=25,则BC=.16.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与△PDC相似,则AP=.第II卷第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.已知,求的值.18.如图,AB∥CD∥EF,BF=20.(1)若AC=3,CE=5,求DF的长;(2)若AC:CE=2:3,求DF的长.19.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.20.如图,在△ABC中,AD是角平分线,点E在边AC上,且AD2=AE•AB,连接DE.(1)求证:△ABD∽△ADE;(2)若CD=3,CE=2,求AE的长.21.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线,若∠ABE=∠C,=.(1)求证:△AEB∽△ADC.(2)求△BDE与△ABC的面积比.22.如图,在正方形ABCD中,点E在边AD上,过点D作DK⊥BE于K,且DK=.(1)若AE=ED,求正方形ABCD的周长;(2)若∠EDK=22.5°,求正方形ABCD的面积.23.如图,AB=4,CD=6,F在BD上,BC、AD相交于点E,且AB∥CD∥EF.(1)若AE=3,求ED的长.(2)求EF的长.24.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12.求的值.25.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.。

最新北师大版第四章 相似图形(4.1~4.3)同步训练(含答案)

最新北师大版第四章 相似图形(4.1~4.3)同步训练(含答案)

第四章《相似图形》4.1~4.3水平测试班级 学号 姓名 成绩一、选择题1、下列各组中的四条线段成比例的是( )A 、a =2,b =3,c =2,d =3B 、a =4,b =6,c =5,d =10C 、a =2,b =5,c =23,d =15D 、a =2,b =3,c =4,d =1 2、已知dcbc =,则下列式子中正确的是( ) A 、a ∶b =c 2∶d 2 B 、a ∶d =c ∶bC 、a ∶b =(a +c )∶(b +d )D 、a ∶b =(a -d )∶(b -d )3、已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A 、AM ∶BM =AB ∶AM B 、AM =215-AB C 、BM =215-AB D 、AM ≈0.618AB 4、下面图形中,相似的一组是 ( )A B C D5、下面给出的图形中,不是相似的图形的是 ( ) A 、刚买的一双手套的左右两只 B 、仅仅宽度不同的两快长方形木板 C 、一对羽毛球球拍 D 、复印出来的两个“春”字6、我们已经学习和掌握了不少在平地上测量建筑物高度的方法,如果在同一个斜坡上,在同一时刻,测得在斜坡上自己的影子和一幢大楼的影子长,那么由自己的身高( ). A 、也能够求出楼高B 、还须知道斜坡的角度,才能求出楼高C 、不能求出楼高D 、只有在光线垂直于斜坡时,才能求出楼高 7、把ab =21cd 写成比例式,不正确的写法是( )A 、bd ca 2=B 、b dc a =2 C 、bd c a =2 D 、da b c 2=8、有以下说法①如果线段d 是线段a ,b ,c 的第四比例项,则有dc ba=②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项 ④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1 其中正确的判断有( ) A 、1个 B 、2个 C 、3个 D 、4个 二、填空题1、如果53=-b b a ,那么ba=________. 2、黄金矩形的宽与长的比大约为________(精确到0.001) 3、同一底片印出来的不同尺寸的照片也是________。

北师大版九年级数学上册第四章图形的相似测评卷含答案

北师大版九年级数学上册第四章图形的相似测评卷含答案

第四章测评卷(时间:45分钟,满分:100分)一、选择题(本大题共6小题,每小题5分,共30分.下列各题给出的四个选项中,只有一项符合题意)1.已知点C是直线AB上的一点,且AB∶BC=1∶2,那么AC∶BC等于().A.3∶2B.2∶3或1∶2C.1∶2D.3∶2或1∶22.若△ABC∽△DEF,△ABC与△DEF的相似比为2∶3,则S△ABC∶S△DEF为().A.2∶3B.4∶9C.√2∶√3D.3∶23.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形较美观.若取黄金比为0.6,则x为().A.216B.135C.120D.1084.如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=().A.3B.4C.5D.65.(2022·江苏扬州中考) 如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D 在BC边上,DE交AC于点F.给出下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD.其中所有正确结论的序号是().A.①②B.②③C.①③D.①②③6.一个钢筋三角形框架三边长分别为20 cm,50 cm,60 cm,现要再做一个与其相似的钢筋三角形框架,而只有长是30 cm和50 cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有().A.1种B.2种C.3种D.4种二、填空题(每小题4分,共20分)7.已知c 4=b 5=a 6≠0,则b+c a 的值为 .8. (2021·山东菏泽中考)如图,在△ABC 中,AD ⊥BC ,垂足为D ,AD=5,BC=10,四边形EFGH 和四边形HGNM 均为正方形,且点E ,F ,G ,N ,M 都在△ABC 的边上,那么△AEM 与四边形BCME 的面积比为 .9.在矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC.若△APD 是等腰三角形,则PE 的长为 .10.如图,在△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段AC 的长为 .11. (2021·四川遂宁中考)如图,在正方形ABCD 中,点E 是CD 边上一点.连接BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连接AF ,有以下五个结论:①∠ABF=∠DBE ;②△ABF ∽△DBE ;③AF ⊥BD ;④2BG 2=BH ·BD ;⑤若CE ∶DE=1∶3,则BH ∶DH=17∶16.你认为其中正确的有 .(填序号)三、解答题(共50分)12.(10分)设a ,b ,c 是△ABC 的三边长,且a -b b =b -c c =c -a a ,判断△ABC 为何种三角形,并说明理由.13.(12分)如图,在▱ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√3,AF=4√3,求AE的长.14.(12分)检查视力时,规定人与视力表之间的距离为5 m,现因房间两面墙的距离为3 m,因此,使用平面镜来解决房间小的问题,若使平面镜能呈现完整的视力表,如图,由平面镜成像原理,作出了光路图,其中视力表AB的上下边沿A,B发出的光线经平面镜MM'的上下沿反射后射入人眼C处.如果视力表的全长为0.8 m,请你计算出平面镜的长为多少米时恰好能呈现完整的视力表.15.(16分)如图,在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)△ABC与△FCD相似吗?请说明理由.(2)F是线段AD的中点吗?为什么?(3)若S△ABC=20,BC=10,求DE的长.第四章测评卷一、选择题1.D2.B3.B4.B5.D6.B二、填空题7.3 28.1∶39.3或6510.4√211.①②③④三、解答题12.△ABC为等边三角形.理由略.13.(1)证明: 因为四边形ABCD是平行四边形, 所以AB∥CD,AD∥BC,所以∠C+∠B=180°,∠ADF=∠DEC.因为∠AFD+∠AFE=180°,∠AFE=∠B,所以∠AFD=∠C.所以△ADF∽△DEC.(2)6.14.0.32 m.15.(1)相似.理由略.(2)是.理由略.(3)83.。

最新北师大版第四章 相似图形达标检测(2)(含答案)-

最新北师大版第四章 相似图形达标检测(2)(含答案)-

第四章 相似图形达标检测一、选择题:(每小题3分,共30分) 1.厨房角柜的台面是三角形(如图1所示),如果把各边中点连线所围成的三角形铺成黑色大理石(图中阴影部分),其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是( ) A.41 B.44 C.31 D.43ED BCAEODBCA(1) (2) (3)2.如图2,在△ABC 中,∠BAC=90,D 是BC 中点,AE ⊥AD 交CB 的延长线于E,则下列结论正确的是( )A.△AED ∽△ACBB.△AEB ∽△ACDC.△BAE ∽△ACED.△AEC ∽△DAC 3.在梯形ABCD 中,AD ∥BC.AC,BD 相交于O ,如果AD :BC=1:3, 那么下列结论正确的是( )A.S △COD =9 S △AODB.S △ABC =9 S △ACDC.S △BOC =9 S △AODD.S △DBC =9 S △AOD4.如图3,在平行四边形ABCD 中,E 为CD 中点, AE 交BD 于O ,S △DOE =12㎝2,则S △AOB等于( )A.24㎝2B.36㎝2C.48㎝2D. 60㎝25.有同一块三角形地的甲乙两地图,比列尺分别为1:100和1:500,那么在甲乙地图上表示这一块地的三角形面积之比为( )A.25B.5C.251 D.51 6.如果mn=ab,则下列比列式中错误的是( )A.b n m a = B.b m n a = C.b n a m = D.nba m = 7.下列各命题中正确的是( )A.有一个角等于1000的两个等腰三角形相似;B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似;D.底边对应相等的两个等腰三角形相似 8.如图4,若∠1=∠2=∠3,则图中相似三角形有( ) A.1对 B.2对 C.3对 D.4对ED21CAEDBC A(4) (5) (6) 9.如果k b a cc a b c b a =+=+=+,且a+b+c 0≠,则k 的值为( ) A.31 B.21 C. 21或-1 D.-1 10.如果线段AB=10,点C 是AB 上靠近点B 的黄金分割点,则AC 的值为( ) A.0.168 B.6.18 C.3.82 D.6.18或3.82 二填空题:(每小题3分,共30分) 11.若45=-b b a ,则=ba. 12.已知△ABC ∽△DEF,且△ABC 的三边长分别为,2,14,2△DEF 的两边长分别为1,7,则第三边长为 .13.如果两个相似多边形的周长之比为2:3,则它们的面积之比为 .14.如图5,△ABC 中AB 〉AC,过AC 上一点D 作直线DE ,交AB 于E ,使△ADF 与△ABC 相似,这样的直线最多可作 条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章《相似图形》测试题
姓名___________ 班级__________ 分数_________
一、选择题(8×3′=24′)
1、下列说法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜边上的中线与斜边的比为1∶2;⑤两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的个数有( )个 A 、1 B 、2 C 、3 D 、4
2、在坐标系中,已知A (-3,0),B (0,-4),C (0,1),过点C 作直线L 交x 轴于点D,使得以点D 、C 、O 为顶点的三角形与△AOB 相相似,这样的直线一共可以作出( )条. A 、6 B 、3 C 、4 D 、5
3、Rt ∆ABC 中,CD 是斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F 。

图中共有8个三角形,如果把一定相似的三角形归为一类,那么图中的三角形可分为( )类。

A .2 B .3 C .4 D .5
4、如图,点M 在BC 上,点N 在AM 上,CM=CN ,
CM
BM
AN AM =
,下列结论正确的是( ) A .∆ABM ∽∆ACB B .∆ANC ∽∆AMB C .∆ANC ∽∆ACM D . ∆CMN ∽∆BCA
5、在梯形ABCD 中,AB ∥CD ,AB=a ,CD=b ,两腰延长线交于点M ,过M 作DC 的平行线,交AC 、BD 延长线于E ,EF 等于( ) A .
b a ab - B .b a ab -2 C .b a a + D .b
a ab
+2 6、如图,△ABC 中,AD ⊥BC 于D ,下列条件:⑴∠B +∠DAC =90°;⑵∠B =∠DAC ;⑶CD AD =AC AB
;⑷BC BD AB •=2其中一定能够判
定△ABC 是直角三角形的有( )
A 、1
B 、2
C 、3
D 、4
7、如图,D 、E 分别是△ABC 的边AB 、AC 上的点,∠1=∠B ,AE =EC =4,BC =10,AB =12,则△ADE 和△ACB 的周长之比为( ) A 、12 B 、13 C 、14 D 、1
6
8、在△ABC 与△C B A '''中,有下列条件:①
C B BC B A AB ''='';⑵C
A AC C
B B
C ''=''③∠A =∠A ';④∠
C =∠C '。

如果从中任取两个条件组成一组,那么能判断△ABC ∽△C B A '''的共有( )组。

A 、1
B 、2
C 、3
D 、4
二、填空题(9×3′=27′)
第3题 A B C D E
F
第4题 A
B C N A B C D
E M
F (第5题) A B D C 第6题
第7题
B
E
F H
I
第10题
G
C
D A
9、设x 3 =y 5 =z 7 ,则x+y y =______,y+3z 3y-2z
=______.
10、如图,四边形EFGH 是∆ABC 内接正方形,BC=21cm ,高AD=15cm ,则内接正方形边长EF=____________。

11、如图,要使∆AEF 和∆ACB 相似,已具备条件__________________,还需补充的条件是_________,或_________,或_________。

12、平行四边形ABCD 中,AB=28,E 、F 是对角线AC 上的两点,且AE=EF=FC ,DE 交AB 于点M ,MF 交CD 于点N ,则CN=_________。

13、RT ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。

14、已知:AM :MD=4:1,BD :DC=2:3,则AE :EC=_________。

15、如图,C 为线段AB 上的一点,△ACM 、△CBN 都是等边三角形,若AC =3, BC =2,则△MCD 与△BND 的面积比为 。

16、如图,在梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点,S △AOD :S △COB =1:9,
则S △DOC :S △BOC = 。

17、如图,已知点D 是AB 边的中点,AF ∥BC,CG ∶GA=3∶1,BC=8,则AF = 。

三、解答题(共69分) 18、(6′)已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F ,求证:EF GF CF ⋅=2。

A B
C
D
F G E
19、(8′)如图:四边形ABCD 中,∠A=∠BCD=90°,①过C 作对角线BD 的垂线交BD 、AD 于点E 、F ,求证:DA DF CD ⋅=2
;②如图:若过BD 上另一点E 作BD 的垂线交BA 、
第12题 A B C D E F N M 第13题 C B D 第14A C D M E 第11题 A E F
A
B
C
D
M
N
第15题 A
B
D
O
第16题
A
B D
F
G C
E
第17题
BC 延长线于F 、G ,又有什么结论呢?你会证明吗?
A
B
D F
E
A
B
C
D
F E
G
20、(6′)如图,在△ABC 中,DE ∥BC ,且S △ADE :S 四边形BCED =1:2,BC =26。

求DE 的长。

21、(6′)如图,矩形EFGH 内接于△ABC ,AD ⊥BC 于点D ,交EH 于点M ,BC =10㎝,AM =8㎝,S △ABC =100㎝2。

求矩形EFGH 的面积。

22、(6′)已知:如图,△ABC 中,AE =CE ,BC =CD ,求证:ED =3EF 。

A
B
C
D
E
A
B
C
D E
F
M
H
G
A
B
C
D
E
F
23、(6′)已知:如图,在△ABC 中,∠BAC =900
,AD ⊥BC 于D ,E 是AB 上一点,AF ⊥CE 于F , AD 交CE 于G 点,求证:∠B =∠CFD 。

24、(6′)已知:如图,∠BDC =∠CEA =∠FGB ,求证:BE·BA+CD·CA=BC 2。

25、(9′)矩形ABCD 中,AB =4,BC =6,M 是BC 的中点,DE ⊥AM ,E 是垂足。

①求△ABM 的面积;②求DE 的长;③求△ADE 的面积。

A B
C
D
E F G
A
B
C
D
E F G
E M D
C B A
26、(8′)如图:△PQR 是等边三角形,∠APB =120°。

(1)求证:QR 2
=AQ ·RB ; (2)若AP =72,AQ =2,PB =14。

求RQ 的长和△PRB 的面积。

27、(8′)如图,矩形ABCD 中,CH ⊥BD ,垂足为H ,P 点是AD 上的一个动点(P 与A 、D
不重合),CP 与BD 交于E 点。

已知CH =13
60
,DH ∶CD =5∶13,设AP =x ,四边形ABEP 的面积为y 。

(1)求BD 的长;(2)用含x 的代数式表示y 。

R
Q
P
B
A
H E
D
C
B
A
P。

相关文档
最新文档