高中物理确定带电粒子在磁场中运动轨迹的四种方法
人教版高中物理选选择性必修二1.3 带电粒子在匀强磁场中的运动
3. 带电粒子在匀强磁场中的运动
学习目标
1、理解洛伦兹力对粒子不做功,带电粒子初速度方向与磁感应强 度方向垂直时,粒子在匀强磁场中做匀速圆周运动; 2、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式, 知道它们和哪些因素有关; 3、能够解答带电粒子在匀强磁场中运动相关问题。
v qB
T质子 : T氚核 : T
m质子 e
: 3m质子 e
: 4m质子 2e
1: 3: 2
小结(一):分析粒子的圆周运动,要从粒子的动力学规律入手,由洛伦兹力 提供向心力,得到相关物理量间之间的关系;
五、带电粒子圆周运动的深入分析
1.轨迹圆心的确定
(1)圆心一定在垂直于速度的直线上
(2)圆心一定在弦的中垂线上
B
F v
电子的运动轨迹是什么样的?
加垂直于线圈平面向 里磁场,电子初速度 向左,与磁场方向垂 Байду номын сангаас进入匀强磁场。
电子的运动轨迹为圆
四、观察电子在磁场中的运动轨迹
3、仅改变磁感应强度的大小,电子运动有什么变化?
B
r mv qB
v
顺时针旋转励磁电流旋钮,励 磁电流逐渐增大,匀强磁场磁 感应强度逐渐增大
课堂练习
例题1
一个质量为 1.67 1027 kg、电荷量为1.61019 C的带电粒子,以 5105 m/s的初速 度沿与磁场垂直的方向射入磁感应强度为0.2T的匀强磁场。求: (1)粒子所受的重力和洛伦兹力的大小之比; (2)粒子在磁场中运动的轨道半径; (3)粒子做匀速圆周运动的周期。
解:(1)粒子所受重力 G mg 1.67 1027 9.8N 1.641026 N
带电粒子在磁场中的运动,方法规律讲解
洛伦兹力 带电粒子在磁场中的运动教学目标:1.掌握洛仑兹力的概念;2.熟练解决带电粒子在匀强磁场中的匀速圆周运动问题 教学重点:带电粒子在匀强磁场中的匀速圆周运动 教学难点:带电粒子在匀强磁场中的匀速圆周运动 教学方法:讲练结合,计算机辅助教学 教学过程:一、洛伦兹力 1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
由以上四式可得F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2.洛伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
【例1】磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将达到平衡态。
【例2】 半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。
p 型中空穴为多数载流子;n 型中自由电子为多数载流子。
用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表判定上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原因。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
高中物理之带电粒子在磁场中的运动知识点
高中物理之带电粒子在磁场中的运动知识点带电粒子在磁场中的运动特点带电粒子在磁场中的运动往往比较复杂,我们只考虑其中几种特殊情况:不考虑粒子本身的重力(一般如:电子、质子、粒子、离子等不考虑它们的重力);磁场为匀强磁场。
①初速度v0与磁场平行:此时洛伦兹力F=0,粒子将沿初速度方向做匀速直线运动。
②初速度与磁场垂直:由于洛伦兹力总与粒子运动方向垂直,粒子在洛伦兹力作用下做匀速圆周运动,其向心力由洛伦兹力提供,所以其轨道半径为,运动周期为。
由此可见:荷质比相同的粒子以相同的速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同。
它们运动的周期T与粒子的速度大小无关,与粒子的轨道半径R无关,只要是荷质比相同的粒子,进入同一磁场,其周期相同。
规律方法“一点、两画、三定、四写”求解粒子在磁场中的圆周运动问题(1)一点:在特殊位置或要求粒子到达的位置(如初位置、要求经过的某一位置等);(2)两画:画出速度v和洛伦兹力F两个矢量的方向;(3)三定:定圆心、定半径、定圆心角;(4)四写:写出基本方程带电粒子在匀强磁场中的运算1圆心的确定①因为洛伦兹力指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点,如下图甲的P、M两点)的F洛的方向,其延长线的交点即为圆心.(也可以说是任意两点的切线方向的垂直线交点)②做粒子入射点速度方向的垂直线,做出入射点、出射点连线的中垂线,两线的交点即是圆心O.2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角)。
并注意以下两个重要的几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,φ=α=2θ=ω。
②相对的弦切角(θ)相等,与相邻的弦切角(θ')互补,即θ+θ'=180°。
3粒子在磁场中运动时间的确定利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则注意圆周运动中有关对称规律如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
高中物理确定带电粒子在磁场中运动轨迹圆心的方法学法指导
高中物理确定带电粒子在磁场中运动轨迹圆心的方法学法指导李树学带电粒子垂直进入磁场,在洛仑兹力的作用下,做匀速圆周运动,找到圆心,画出轨迹,是解这类题的关键。
下在举例说明圆心的确定方法。
一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。
做a、b点速度的垂线,交点O1即为轨迹圆的圆心。
图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122B r mU e=(/)/tan(/)二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B ,方向向里。
一带正电荷量为q 的粒子,质量为m ,从O 点以某一初速度垂直射入磁场,其轨迹与x 、y 轴的交点A 、C 到O 点的距离分别为a 、b 。
试求:(1)初速度方向与x 轴夹角;(2)初速度的大小。
图3解析:(1)粒子垂直射入磁场,在xOy 平面内做匀速圆周运动,如图4所示,OA 、OC 是圆周上的两条弦。
做两条弦的垂直平分线,交点O 1即为圆轨迹的圆心,以O 1为圆心,1=R 为半径画圆。
正电荷在O 点所受的洛仑兹力F 的方向(与初速度垂直)和粒子的初速度v 的方向(与1垂直斜向上),也在图上标出。
图4设初速度方向与x 轴的夹角为θ,由几何关系可知,∠O 1OC =θ。
带电粒子在匀强磁场中运动的规律总结画图分析技巧
带电粒子在匀强磁场中运动的规律总结、画图分析技巧本文适用于高三学生复习参考、或者高二(已学习带电粒子在匀强磁场中的运动相关章节内容)的学生。
文中系统总结了带电粒子在匀强磁场中运动的相关知识点,列举了这类问题常用的方法技巧,比如,找半径的方法,粒子轨迹圆心的确定方法,周期的算法,粒子运动时间的算法;超出书本之外的方法技巧:如常用的画圆弧技巧,需要用到的几何知识,粒子运动最长时间最短时间的确定方法,磁聚焦类问题规律方法,并附有相关例题,以及详细的画图(附手绘画图步骤)、解析过程。
详见如下具体内容,谨供有需要的学生参考。
一些用红色字迹显示的结论,可以在理解的基础上记忆。
目录一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式、圆心的确定方法 (2)二、基本画图技巧 (2)三、常用画图相关几何知识、规律1.对称性的应用(1)直线边界磁场(附证明过程) (3)(2)圆形边界磁场(附证明过程) (4)2.缩放圆法 (5)3.旋转圆法 (5)四、粒子在有界磁场中运动过程的最长、最短时间的确定方法 (5)五、磁聚焦类问题原理(附详细证明过程)、规律与分析方法 (6)六、带电粒子在磁场中运动的多解情形举例 (8)七、精选带电粒子在匀强磁场中运动例题,附手绘画图步骤、分析过程、解答过程……………………………………………………9—23一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式(并附有推理过程)、圆心的确定方法1.基本知识点:物理情景模型:以下内容只讨论匀强磁场。
当带电粒子以一定的初速度v 沿垂直磁场方向进入匀强磁场时,带电粒子只受洛伦兹力,洛伦兹力与粒子运动的速度方向总是垂直的,因此,洛伦兹力只改变粒子的速度方向,不改变粒子运动的速度大小,由F 洛=qvB ,可知,v 大小不变,F 洛大小也不变,如右图,这一特征符合物体做匀速圆周运动的动力学特征——向心力总与物体运动的速度方向垂直,只改变速度方向,不改变速度大小。
磁偏转问题圆心确定四法
磁偏转问题圆心确定四法带电粒子(不计重力)垂直射入匀强磁场,粒子的运动轨迹是圆周或圆弧。
这类问题是常见的典型的力学、磁场知识结合的综合题,在高考中多次考查,是考试的难点。
求解这类问题的关键是:定圆心画出轨迹,求出半径,确定圆心角等。
其中解决带电粒子在有界磁场中的运动、确定圆心是解题的难点。
下面介绍磁偏转问题圆心确定常用的四种方法:一、半径法适用情况:如果已知带电粒子的出射速度和入射速度方向,分别作出过入射点和出射点速度方向的垂线,两垂线的交点便是圆心,如图所示。
【例题1】电视机的显像管中,电子束的偏转是使用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示,磁场方向垂直于圆面。
磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点而达到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度为多大?(已知电子质量为m,电荷量为e)解题要点:二、角平分线法适用情况:如果已知带电粒子的出射速度和入射速度方向,则入射速度方向的延长线和出射速度方向的反向延长线夹角的角平分线与入射速度垂线的交点就是圆心。
如图所示。
【例题2】一质量为m、带电荷量为q的粒子,以速度v0从O点沿y轴正方向射入磁感应强度为D的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区域后,从D 处穿过x 轴,速度方向与x 轴正方向夹角为30°,不计重力。
求:(1)圆形磁场区域的最小面积;(2)粒子从O点进入磁场区域到达D点所经历的时间及D点坐标。
解题要点:三、垂直平分线法适用情况:如果已知带电粒子的入射速度方向和做圆周运动轨迹的一条弦,先作出过入射点速度方向的垂线,然后作弦的垂直平分线,两垂线的交点便是圆心。
【例题3】如图,虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的空间存在磁感应强度为B的匀强磁场,方向垂直纸面向外,O是MN上的一点,从O点可以向磁场区域发射电荷量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向。
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法 带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下: 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r =,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v 0从M 点沿半径方向射入磁场区,并由N 点射出,O 点为圆心。
当∠MON =120°时,求:带电粒子在磁场区的偏转半径R 及在磁场区中的运动时间。
解析:分别过M 、N 点作半径OM 、ON 的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN 所对的轨道圆心角为60°,O 、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r /tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
图6 所示。
O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
磁场中粒子运动方向
磁场中粒子运动方向
在磁场中,带电粒子的运动方向由洛伦兹力决定。
洛伦兹力是作用在带电粒子上的一种力,由磁场和电场共同产生。
1. 垂直于磁场方向的运动
当带电粒子的运动方向垂直于磁场方向时,洛伦兹力的方向垂直于粒子的运动方向和磁场方向。
在这种情况下,粒子在磁场中做圆周运动,轨迹呈圆形。
2. 平行于磁场方向的运动
当带电粒子的运动方向平行于磁场方向时,洛伦兹力为零,粒子沿直线运动,磁场对其运动方向没有影响。
3. 倾斜于磁场方向的运动
如果带电粒子的运动方向与磁场方向成一定角度,粒子的运动轨迹将呈螺旋形。
在这种情况下,粒子的运动可以分解为垂直于磁场方向的圆周运动和平行于磁场方向的直线运动。
需要注意的是,除了粒子的电荷量和速度外,磁场强度也会影响洛伦兹力的大小,从而影响粒子的运动轨迹。
在实际应用中,磁场中粒子的运动原理被广泛应用于质谱仪、粒子加速器等设备中。
带电粒子在有界匀强磁场中的运动(学生版)-高中物理
带电粒子在有界匀强磁场中的运动考情探究1.高考真题考点分布题型考点考查考题统计选择题平行边界有界磁场问题2024年广西卷选择题四边形边界有界磁场问题2024年河北卷选择题圆形边界有界磁场问题2024年湖北卷2.命题规律及备考策略【命题规律】高考对带电粒子在有界磁场中的运动的考查较为频繁,以选择题和计算题中出现较多,选择题的难度一般较为简单,计算题的难度相对较大。
【备考策略】1.理解和掌握带电粒子在有界磁场中圆心和半径确定的方法。
2.能够在四种常见有界磁场和四种常见模型中处理带电粒子在磁场中的运动问题。
【命题预测】重点关注和熟练应用各种有界磁场的基本规律。
考点梳理一、洛伦兹力的大小和方向1.定义:运动电荷在磁场中受到的力称为洛伦兹力。
2.大小(1)v∥B时,F=0。
(2)v⊥B时,F=qvB。
(3)v与B的夹角为θ时,F=qvB sinθ。
3.方向(1)判定方法:左手定则掌心--磁感线从掌心垂直进入。
四指--指向正电荷运动的方向或负电荷运动的反方向。
拇指--指向洛伦兹力的方向。
(2)方向特点:F⊥B,F⊥v。
即F垂直于B、v决定的平面。
(注意B和v可以有任意夹角)。
4.洛伦兹力的特点:洛伦兹力不改变带电粒子速度的大小,只改变带电粒子速度的方向,洛伦兹力对带电粒子不做功。
二、带电粒子在匀强磁场中的运动1.若v∥B,则粒子不受洛伦兹力,在磁场中做匀速直线运动。
2.若v⊥B,则带电粒子在匀强磁场中做匀速圆周运动。
3.半径和周期公式(1)由qvB=m v2r,得r=mvqB。
(2)由v=2πrT,得T=2πmqB。
三、带电粒子在有界磁场中圆心、半径和时间的确定方法圆心的确定半径的确定时间的确定基本思路①与速度方向垂直的直线过圆心②弦的垂直平分线过圆心③轨迹圆弧与边界切点的法线过圆心利用平面几何知识求半径利用轨迹对应圆心角θ或轨迹长度L求时间①t=θ2πT;②t=Lv 图例说明P、M点速度垂线交点P点速度垂线与弦的垂直平分线交点某点的速度垂线与切点法线的交点常用解三角形法(如图):R=Lsinθ或由R2=L2+(R-d)2求得R=L2+d22d(1)速度的偏转角φ等于AB所对的圆心角θ(2)偏转角φ与弦切角α的关系:φ<180°时,φ=2α;φ>180°时,φ=360°-2α考点精讲考点一四类常见有界磁场考向1直线边界磁场直线边界,粒子进出磁场具有对称性(如图所示)图甲中粒子在磁场中运动的时间t=T2=πmBq图乙中粒子在磁场中运动的时间t=1-θπT=1-θπ2πm Bq=2m(π-θ)Bq图丙中粒子在磁场中运动的时间t=θπT=2θmBq题型训练1.如图,在边界MN 上方足够大的空间内存在垂直纸面向外的匀强磁场。
带电粒子在磁场中运动解题方法及经典例题
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
带电粒子在磁场中的运动 课件
答案:(1)1.25×10-11 N C板带正电,D板带负电(2)8.1×10-14 kg<m≤2.89×10-13 kg(3)4.15 m/s
解析:(1)微粒在极板间所受电场力为:代入数据得:F=1.25×10-11 N由于微粒带正电且在两板间做加速运动,故C板带正电,D板带负电。
(3)如图,微粒在台面以速度v做以O为圆心,R为半径的圆周运动,从台面边缘P点沿与XY边界成θ角飞出做平抛运动,落地点为Q,水平距离为s,下落时间为t。设滑块质量为M,获得速度v0后在t内沿与平台前侧面成φ角方向,以加速度a做匀减速运动到Q点,经过位移为k。
(1)求微粒在极板间所受电场力的大小并说明两板的极性;(2)求由XY边界离开台面的微粒的质量范围;(3)若微粒质量m0=1×10-13 kg,求滑块开始运动时所获得的速度。(可能用到的数学知识:余弦定理a2=b2+c2-2bccos A,正弦定理 ,其中a、b、c分别为三角形的三条边的长度,A和B分别是边长为a和b的三角形两条边所对应的角)
(1)求离子的比荷 ;(2)若发射的离子被收集板全部收集,求θ的最大值;(3)假设离子到达x轴时沿x轴均匀分布。当θ=37°,磁感应强度在B0≤B≤3B0的区间取不同值时,求单位时间内收集板收集到的离子数n与磁感应强度B之间的关系。(不计离子在磁场中运动的时间)
(2)如图1所示,以最大值θm入射时,有Δx=2R(1-cos θm)=L或2Rcos θm=L
--
当堂练3 放置在坐标原点O的粒子源,可以向第二象限内放射出质量为m、电荷量为q的带正电粒子,带电粒子的速率均为v,方向均在纸面内,如图所示。若在某区域内存在垂直于xOy平面的匀强磁场(垂直纸面向外),磁感应强度大小为B,则这些粒子都能在穿过磁场区后垂直射到垂直于x轴放置的挡板PQ上,求: (1)挡板PQ的最小长度;(2)磁场区域的最小面积。
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反.先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心.当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O’的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
高中物理:带电粒子在匀强磁场中的运动
高中物理:带电粒子在匀强磁场中的运动【知识点的认识】带电粒子在匀强磁场中的运动1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)【命题方向】常考题型:带电粒子在匀强磁场中的匀速圆周运动如图,半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A. B. C. D.【分析】由题意利用几何关系可得出粒子的转动半径,由洛仑兹力充当向心力可得出粒子速度的大小;解:由题,射入点与ab的距离为.则射入点与圆心的连线和竖直方向之间的夹角是30°,粒子的偏转角是60°,即它的轨迹圆弧对应的圆心角是60,所以入射点、出射点和圆心构成等边三角形,所以,它的轨迹的半径与圆形磁场的半径相等,即r=R.轨迹如图:洛伦兹力提供向心力:,变形得:.故正确的答案是B.故选:B.【点评】在磁场中做圆周运动,确定圆心和半径为解题的关键.【解题方法点拨】带电粒子在匀强磁场中的匀速圆周运动一、轨道圆的“三个确定”(1)如何确定“圆心”①由两点和两线确定圆心,画出带电粒子在匀强磁场中的运动轨迹.确定带电粒子运动轨迹上的两个特殊点(一般是射入和射出磁场时的两点),过这两点作带电粒子运动方向的垂线(这两垂线即为粒子在这两点所受洛伦兹力的方向),则两垂线的交点就是圆心,如图(a)所示.②若只已知过其中一个点的粒子运动方向,则除过已知运动方向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆心,如图(b)所示.③若只已知一个点及运动方向,也知另外某时刻的速度方向,但不确定该速度方向所在的点,如图(c)所示,此时要将其中一速度的延长线与另一速度的反向延长线相交成一角(∠PAM),画出该角的角平分线,它与已知点的速度的垂线交于一点O,该点就是圆心.(2)如何确定“半径”方法一:由物理方程求:半径R=;方法二:由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定.(3)如何确定“圆心角与时间”①速度的偏向角φ=圆弧所对应的圆心角(回旋角)θ=2倍的弦切角α,如图(d)所示.②时间的计算方法.方法一:由圆心角求,t=•T;方法二:由弧长求,t=.二、解题思路分析1.带电粒子在磁场中做匀速圆周运动的分析方法.2.带电粒子在有界匀强磁场中运动时的常见情形.直线边界(粒子进出磁场具有对称性)件)形边界(粒子沿径向射入,再沿向射出)3.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点.(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍.三、求解带电粒子在匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.(1)两种思路①以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;②直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.(2)两种方法物理方法:①利用临界条件求极值;②利用问题的边界条件求极值;③利用矢量图求极值.数学方法:①利用三角函数求极值;②利用二次方程的判别式求极值;③利用不等式的性质求极值;④利用图象法等.(3)从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.。
【金版教程】2014年高中物理 第三章《第6节 带电粒子在匀强磁场中的运动》课件 新人教版选修3-1
所以,沿着与磁场垂直的方向射入磁场的带电粒子,在匀 强磁场中做 匀速圆周 运动. v2 公式:qvB=m r 2πm 周期:T= qB mv 半径:r= qB .
判一判 动.( )
(1)带电粒子进入磁场后,一定做匀速圆周运
(2)洛伦兹力的作用是既改变了速度的方向,也改变了速度 的大小.( )
角)θ的2倍,即α=2θ,如图所示.
只有当带电粒子以垂直于磁场的方向射入匀强磁场中时, 带电粒子才能做匀速圆周运动,两个条件缺一不可.
典题研析 例1 已知氢核与氦核的质量之比m1∶m2=1∶4,电荷量 之比q1∶q2=1∶2,当氢核与氦核以v1∶v2=4∶1的速度垂直于 磁场方向射入磁场后,分别做匀速圆周运动,则氢核与氦核半 径之比r1∶r2=________,周期之比T1∶T2=________. [思路点拨] 粒子在匀强磁场中做匀速圆周运动,一般情况
(2)找圆心:在画出粒子在磁场中的运动轨迹的基础上,找 出圆心的位置,圆心一定在与速度方向垂直的直线上,找圆心 通常有两种方法:①已知入射方向和出射方向时,过入射点和 出射点分别作入射方向和出射方向的垂线,其交点就是圆心, 如图甲;②已知入射方向和出射点的位置时,利用圆上弦的中 垂线必过圆心的特点找圆心.通过入射点作入射方向的垂线, 连接入射点和出射点,作其中垂线.这两条垂线的交点就是偏 转圆弧的圆心,如图乙.
mv 2πm qB ,轨道半径为r= qB .
4.
回旋加速器由两个D形盒组成,带电粒子在D形盒中做
圆周运动,每次在两个D形盒之间的窄缝区域被电场加速,带 q2B2R2 电粒子最终获得的动能为Ek= . 2m
01课前自主学习
一、带电粒子在匀强磁场中的运动 1. 洛伦兹力演示仪 电子枪能产生 电子束 ,玻璃泡内的稀薄气体能显示
高中物理 3.6带电粒子在匀强磁场中的运动
提出问题
沿着与磁场垂直的方向射入磁场的带电 粒子,在匀强磁场中做什么运动?
V - F洛
一、带电粒子在匀强磁场中的运动
1、垂直射入匀强磁场的带电 粒子,它的初速度和所受洛伦 兹力的方向都在跟磁场方向垂 直的平面内,没有任何作用使 粒子离开这个平面,所以粒子 只能在这个平面内运动。
ev θ
B
d
1.圆心在哪里? A
2.轨迹半径是多少?
F
3、圆心角θ =?
d
v
B
30°
4.穿透磁场的时间如何求?
Fv
qvB=mv2/r r=mv/qB
θ =30°r
r=d/sin 30o =2d
O
m=qBr/v=2qdB/v
t/T= 30o /360o
小结:
t=( 30o /360o)T= T/12 1、两洛伦兹力的交点即圆心
气泡室
气泡室是由一密闭容 器组成,容器中盛有 工作液体,当其处于 过热状态时,带电粒 子所经轨迹上不断与 液体原子发生碰撞 , 而以这些离子为核心 形成气泡 。
二、质谱仪
s1
s2
照相底片
. . . . ... . .. . . . . .. . s3 ................ .............
例3、一带电粒子在磁感强度为B的匀强磁场中做 匀速圆周运动,如它又顺利进入另一磁感强度为 2B的匀强磁场中仍做匀速圆周运动,则( )
A.粒子的速率加倍,周期减半 B.粒子的速率不变,轨道半径减半 C.粒子的速率减半,轨道半径变为原来的 1/4 D.粒子速率不变,周期减半
例4、一个带电粒子沿垂直于磁场的方向射入一 个匀强磁场,粒子后段轨迹如图所示,轨迹上的 每一小段都可近似看成是圆弧.由于带电粒子使 沿途的空气电离,粒子的能量逐渐减少(带电量 不变).从图中情况可以确定( )
高中物理 带电粒子在匀强磁场中的运动教案 新人教版选修3
带电粒子在匀强磁场中的运动:确定带电粒子在磁场中运动轨迹的方法1、物理方法:作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。
2、物理和几何方法:作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。
3、几何方法:①圆周上任意两点连线的中垂线过圆心②圆周上两条切线夹角的平分线过圆心③过切点作切线的垂线过圆心一:无界磁场中的运动如图所示,一个带负电的粒子以速度v由坐标原点射入磁感应强度为B的匀强磁场中,速度方向与x轴、y轴均成45°。
已知该粒子电量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?mv/qB -mv/qB二:有界磁场中的运动:(一)双界磁场中的运动6、如图所示,比荷为e/m的电子从左侧垂直于界面、垂直于磁场射入宽度为d、磁感受应强度为B的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为()A、2Bed/mB、Bed/mC、Bed/(2m)D、2Bed/m【例3】电子自静止开始经M、N板间(两板间的电压为u)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示。
求匀强磁场的磁感应强度。
(已知电子的质量为m ,电量为e )解析:电子在M 、N 间加速后获得的速度为v ,由动能定理得:21mv 2-0=eu 电子进入磁场后做匀速圆周运动,设其半径为r ,则:evB =m rv 2电子在磁场中的轨迹如图,由几何得:222d L L+=rd L 22+ 由以上三式得:B =emu d L L2222+(二) 单界磁场中的运动:粒子从同一直线边界射入, 再从这一边界射出时,速度与边界的夹角相等【例1】一个负离子,质量为m ,电量大小为q ,以速率v 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中,如图所示。