薄壁零件加工方法和工艺分析

合集下载

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 背景介绍薄壁零件是指壁厚较薄,形状复杂的零件,通常用于汽车、航空航天、电子等领域。

随着现代工业的发展,对薄壁零件的需求越来越大,但是薄壁零件的加工过程中容易产生变形、残余应力等问题,给加工工艺提出了更高的要求。

薄壁零件的加工难度主要体现在以下几个方面:一是薄壁零件在加工过程中容易变形,特别是在切削加工过程中会出现振动、共振等问题;二是薄壁零件在加工过程中很容易产生残余应力,影响零件的精度和稳定性;三是薄壁零件通常要求加工精度高,加工表面要求光洁度要求高。

对薄壁零件的机械加工工艺进行深入研究和分析,对提高零件加工质量和效率具有重要意义。

本文将通过对薄壁零件的加工特点、机械加工方法、加工工艺优化、加工设备选择和注意事项等方面进行分析,希望能为薄壁零件的加工提供一些参考和帮助。

1.2 研究目的薄壁零件的机械加工工艺分析本文旨在探讨薄壁零件的机械加工工艺,通过对薄壁零件加工特点、机械加工方法、加工工艺优化、加工设备选择以及加工注意事项等方面进行深入分析,以期为相关行业提供一定的参考和指导。

薄壁零件因其结构特殊、加工难度大、容易变形等特点,在实际生产中存在一定的挑战。

通过对薄壁零件的机械加工工艺进行研究分析,可以帮助企业更加有效地解决加工过程中所面临的问题,提高生产效率、降低生产成本,提升产品质量和市场竞争力。

研究目的的关键在于深入了解薄壁零件的加工特点和加工工艺,找出存在的问题并提出解决方案,为制造工程技术人员提供可行的指导意见和建议。

通过本文的研究,希望能够为薄壁零件的机械加工工艺提供更加系统和全面的分析,为相关领域的技术人员提供参考和借鉴,推动薄壁零件的机械加工技术不断创新和提升。

1.3 研究意义薄壁零件在机械加工领域中起着重要的作用,其加工工艺的优化对于提高产品质量、降低生产成本具有重要意义。

由于薄壁零件的特殊性,其加工过程中容易出现变形、裂纹等问题,因此需要对其加工进行深入研究和优化。

薄壁零件的加工特点及工艺分析

薄壁零件的加工特点及工艺分析

薄壁零件的加工特点及工艺分析机械加工肯定少不了薄壁零件的加工,而这类零件加工更需要仔细认真,所以了解其加工特点及工艺很有必要。

以下是店铺为你整理推荐薄壁零件的加工特点及工艺分析,希望你喜欢。

薄壁零件的加工特点1)易受力变形:因工件壁薄,在夹紧力的作用下容易产生变形,从而影响工件的尺寸精度和形状精度;(2)易受热变形:因工件较薄,切削热会引起工件热变形,使工件尺寸难于控制;(3)易振动变形:在切削力(特别是径向切削力)的作用下,容易产生振动和变形,影响工件的尺寸精度、形状、位置精度和表面粗糙度。

薄壁零件的加工工艺薄壁零件加工精度的容易受到多方面因素的影响,归纳起来主要有以下三方面:(1)受力变形;(2)受热变形;(3)振动变形。

如果采用传统的数控加工工艺,很难加工出符合精度要求的薄壁零件,甚至使薄壁产生破裂。

主要原因如下:(1)在粗加工时,切削量较大,在切削力、夹紧力、残余应力和切削热的作用下,会使薄壁产生一定程度的变形。

(2)半精加工和精加工时,随着材料的去除,工件的刚度已降至非常低,薄壁部分的变形会进一步加剧。

因此,根据薄壁零件的结构特点和加工精度要求,对于薄壁零件,应尽可能选择高速切削技术来加工。

采用高速切削技术,可有效地降低切削力和切削热,消除工件的残余应力,以提高薄壁零件的尺寸稳定性,同时要兼顾加工效率。

除采用高速切削技术外,薄壁零件的加工,还要合理安排加工顺序,尽可能保证内外轮廓线依次交叉切削加工。

以进一步消除工件变形带来的尺寸误差。

薄壁零件的加工举例1、工序的划分本任务划分为两道工序,共分(1)工序一:薄壁加工;(2)工序二:铣凸台和椭圆槽。

(3)工序三:孔加工。

其中工序一是难点。

划分2个工步,具体加工顺序如下:(1)选择φ10 mm双刃键槽铣刀粗加工薄壁内外轮廓线,刀补值选8.3mm,留出半精加工余量,深度方向分层切削,留0.2mm余量;(2)换φ10 mm 四刃立铣刀,采用高速切削技术半精加工薄壁内外轮廓线,刀补值选8.1 mm,深度方向分别留0.1mm余量;(3)用φ10 mm四刃立铣刀,采用高速切削技术,精加工薄壁两条轮廓线,并根据实际测量尺寸控制零件加工精度。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 简介薄壁零件在机械加工领域中起着重要的作用,其加工难度和技术要求较高。

对薄壁零件的机械加工工艺进行深入分析和研究具有重要意义。

本文旨在探讨薄壁零件加工的相关问题,通过对薄壁零件的定义、加工难点以及机械加工工艺的分析,来探讨如何选择合适的加工方案,并对加工工艺进行优化,提高加工效率和产品质量。

在工艺优化的过程中,需要考虑到薄壁零件的特点和加工需求,不断完善工艺流程,优化加工参数,提高加工质量和生产效率。

本文还将讨论工艺优化的重要性以及未来研究方向,以期为薄壁零件的机械加工工艺提供一定的参考和借鉴。

1.2 研究背景薄壁零件在现代工业生产中得到了广泛应用,其轻量化、高强度和高性能的特点使其在航空航天、汽车制造、电子设备等领域发挥着重要作用。

由于薄壁零件的特殊性,其加工难度较大,容易出现变形、裂纹等质量问题,给生产制造带来了挑战。

通过深入分析薄壁零件的机械加工工艺,探讨加工中存在的难点和问题,并提出相应的加工方案和工艺优化措施,对于提高薄壁零件加工质量和效率具有重要意义。

薄壁零件加工的难点主要包括材料轻薄、刚度低、易变形等特点,导致加工过程中容易出现振动、共振、切削变形等问题。

针对这些问题,现有研究主要集中在加工参数优化、刀具选择、切削力控制等方面进行探讨,但仍存在一定的局限性。

有必要对薄壁零件的机械加工工艺进行进一步深入的研究和分析,以期提出更有效的解决方案,实现薄壁零件加工质量的提升和成本的降低。

2. 正文2.1 薄壁零件的定义薄壁零件是指在加工过程中其壁厚相对较薄的零件。

薄壁零件通常用于各种工业领域,包括航空航天、汽车制造、电子设备等。

由于其壁厚较薄,薄壁零件在机械加工过程中常常面临一些特殊的挑战和难点。

薄壁零件的定义可以从几个方面来说明。

薄壁零件的壁厚通常小于其最小尺寸的10%,这就要求在加工过程中需要特别注意避免壁厚过薄导致变形或破裂的问题。

薄壁零件的结构通常比较复杂,需要高精度的加工,以保证零件的质量和性能。

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析什么是薄壁零件?薄壁零件是指壁厚相对较薄,外形也相对复杂,常见于汽车、电子、机械等领域的零件,如汽车车门、电子设备外壳等。

薄壁零件加工的难点薄壁零件加工的难点主要在于以下两个方面:1.零件壁厚薄:由于零件壁厚相对较薄,所以容易产生振动和翘曲等变形现象,而且易热变形,导致加工难度增加。

2.外形复杂:薄壁零件外形通常比较复杂,加工难度也大。

薄壁零件加工的常用方法单点加工法单点加工法是指通过刀具对薄壁零件进行加工的方法。

该方法适用于对平面零件和简单形状的薄壁零件进行加工。

常见的单点加工法包括:1.铣削:用铣刀对薄壁零件进行加工,可实现高速、高效、高精度的加工。

2.钻孔:用钻头对薄壁零件进行加工,也可加工一定程度的凸凹面。

3.车削:用刀具对薄壁零件进行加工,通常适用于对旋转体进行加工。

轧制加工法轧制加工法是指通过轧制的方式对薄壁零件进行加工。

该方法适用于对较大尺寸的薄壁零件进行加工,如汽车车身等。

常见的轧制加工法包括:1.深冲模:利用模具对薄壁零件进行加工,可加工多曲面、异形和复杂形状的零件。

2.拉伸模:利用模具对薄壁零件进行加工,适合加工尺寸大、平面面积较小的零件。

其他加工法除了上述两种方法外,还有一些其他的薄壁零件加工方法,如:1.冷却加工法:通过冷却液对薄壁零件进行加工,可减少热变形和振动。

2.激光加工法:通过激光对薄壁零件进行加工,可实现高精度、高效率的加工。

结论薄壁零件的加工难度比较大,但是通过一些常用的加工方法,如单点加工法和轧制加工法,以及一些其他的加工方法,如冷却加工法和激光加工法,就可以有效地解决加工难题,对薄壁零件进行高精度、高效率的加工。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指其壁厚比较薄,通常小于等于1mm的零件。

由于壁厚薄,导致材料之间的连接薄弱,易受力变形和振动产生,因此在加工过程中需要格外注意,以避免加工不合格或产生质量问题。

本文将对薄壁零件的机械加工工艺进行分析。

1. 材料选择对于薄壁零件的机械加工,材料的选择是至关重要的一步。

一般来说,薄壁零件要求材料具有高强度、良好的韧性和刚度,并且要耐腐蚀、抗疲劳和抗热变形。

常用的材料包括不锈钢、铜、铝、钛、镍基合金等。

在选择材料时,还应注意材料的厚度,以确保在加工和组装时能有足够的强度和稳定性。

2. 设计与加工工艺的匹配在进行薄壁零件的设计时,需要考虑到加工工艺的限制,以避免造成加工难度和工艺问题。

具体而言,需要注意以下几个方面:(1) 避免长而狭窄的几何形状长而狭窄的几何形状会导致加工难度大,容易发生弯曲和变形等问题。

因此,在设计时应避免采用这种几何形状。

(2) 设计圆角和缺口圆角和缺口可以减少应力集中,降低变形和裂纹的风险。

因此,在设计时应尽可能添加这些元素。

(3) 避免切向切削和钻孔切向切削和钻孔会产生较大的横向力和挤压力,导致变形和振动。

因此,在加工时应尽量避免使用这些方式。

3. 先试后加工在对薄壁零件进行机械加工前,应先进行试验或模拟,以确保加工过程中不会发生变形或其他质量问题。

试验的方式可以是材料试验、构件试验或但部分试验等,以检验零件强度和可靠性。

4. 选用适当的加工技术在薄壁零件加工中,应选用适当的加工技术,包括切削、钻孔、冲压、锻造、焊接等。

在进行切削加工时,需注意切削参数的选择和加工速度的控制,以避免刃口和切削力对零件造成影响。

对于钻孔,应选择适当的钻头和工艺,并控制出钻孔后的质量问题。

冲压与锻造时,需要考虑加工次数、力度和质量要求。

采用焊接时,需注意焊接布局和焊缝质量。

5. 保证设备精度和稳定性在进行薄壁零件加工时,需要保证设备的精度和稳定性。

设备精度应符合加工要求,并保证设备的稳定性和工作效率,以确保加工零件尺寸精度和表面质量。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺随着制造业的发展,数控加工技术逐渐成为最常用的加工方法之一。

而在数控加工领域中,数控铣削技术是常见的加工方法之一。

本文将介绍典型薄壁零件数控铣削加工工艺,包括工艺准备、加工流程、刀具选择和切削参数等方面的内容。

一、工艺准备1.1 材料选择因为薄壁零件通常是轻型结构件,所以材料一般选择铝合金、镁合金、不锈钢等轻质、高强度的材料。

1.2 工件夹紧在加工薄壁零件时,一定要保证工件夹紧牢固。

否则,易造成加工过程中工件的振动或位移,导致加工精度降低。

1.3 加工精度要求由于薄壁零件的厚度较小,所以在加工过程中要保证加工精度高,以防加工出错或造成损失。

二、加工流程2.1 预处理将所选材料进行预处理,包括去表面氧化层、去毛刺等。

2.2 下刀编制好数控加工程序后,进行下刀和切割。

2.3 清洗清洗零件,以便检查和测试。

2.4 检测检测零件的精度、结构、特性等。

如果不合格,要重新加工。

进行表面处理,包括抛光、喷漆、防锈等。

三、刀具选择在加工薄壁零件时,需要选用比较特殊的刀具。

常用的刀具主要包括切割刀具、削铣刀具、倒角刀具、钻头等。

3.1 切割刀具为了保证零件表面的质量和精度,需要选用切割刀具。

切割刀具的作用是将零件中的材料割离,形成所需的几何形状。

在进行倒角时,需要选用倒角刀具。

倒角刀具能够将薄壁零件边缘处的角进行倒角处理,使其具有更好的平滑度和美观度。

3.4 钻头在加工薄壁零件时,常常需要进行孔加工。

钻头是一种常用的刀具,在加工孔时经常被使用。

四、切削参数在加工薄壁零件时,需要注意切削参数的选择。

切削参数对加工质量起着重要的影响。

4.1 切削速度切削速度是指刀具在切割过程中移动的速度。

切削速度过快,容易导致刀具磨损、表面质量差等问题。

切削速度过慢,加工效率低下。

切削深度是指刀具在一次切削过程中切入材料的深度。

切削深度过大,会导致切屑对切削影响的加重,影响加工质量和效率。

总之,在加工薄壁零件时需要注意工艺准备、加工流程、刀具选择和切削参数等方面的内容。

薄壁零件的加工方法及影响因素

薄壁零件的加工方法及影响因素

薄壁零件的加工方法及影响因素薄壁零件日益广泛地应用在各行各业,所以薄壁零件的加工不能轻易忽视。

以下是店铺为你整理推荐薄壁零件的加工方法及影响因素,希望你喜欢。

薄壁零件的加工方法(1)采用开口套装夹:用开口套改变三爪卡盘的三点夹紧为整圆抱紧,即用三爪卡盘夹持开口套使其变形并均匀抱紧薄壁套后再车削内孔。

(2)采用大弧形软爪装夹:改装三爪卡盘的三个卡爪,在三个通用卡爪上焊接大弧形软爪,增大夹持面积,减小薄壁套的夹紧和车削变形。

注意在把大弧形软爪与原三爪卡盘的三个卡爪焊接后适当放置一段时间,让其自然变形,然后对大弧形软爪应有足够的径向厚度,使其有足够的刚度。

在使用一定时间后,再次进行“白干自”的精密车削,确保精度不变。

(3)直径大、尺寸精度和形位精度要求较高的圆盘薄壁工件,可装夹在花盘上车削。

在花盘上用螺钉固定一个定位盘,注意在固定前要用千分表调整定位盘的外圆与车床主轴同轴,用两个或四个压板轴向压紧薄壁套后就可以车削内孔。

在夹紧时注意不要完全压紧一个压板后,再压紧另一个压板,而是对称地逐渐使各个压板压紧薄壁套,这样不会因夹紧力而使薄壁套变形,车削完整后,也是对称地逐渐松开各个压板。

薄壁零件加工的影响因素影响薄壁零件加工精度的因素有很多,但归纳直来主要有以下三个方面:(1)受力变形因工件壁薄,在夹紧力的作用下容易产生变形,从而影响工件的尺寸精度和形状精度,如图1所示。

(2)受热变形因工件较薄,切削热会引起工件热变形,使工件尺寸难于控制。

(3)振动变形在切削力(特别是径向切削力)的作用下,很容易产生振动和变形,影响工件的尺寸精度、形状、位置精度和表面粗糙度。

薄壁零件的简介薄壁零件已日益广泛地应用在各工业部门,因为它具有重量轻,节约材料,结构紧凑等特点。

但薄壁零件的加工是车削中比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。

对于批量大的生产,我们可利用数控车床高加工精度及高生产效率的特点,并充分地考虑工艺问题对零件加工质量的影响,为此对工件的装夹、刀具几何参数、程序的编制等方面进行试验,有效地克服薄壁零件加工过程中出现的变形,保证了加工精度,为今后更好的加工薄壁零件提供了好的依据及借鉴。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指壁厚相对较薄的零件,通常壁厚小于3毫米。

由于薄壁零件的特殊性,其机械加工工艺需要特殊的处理方法,以下是对薄壁零件机械加工工艺的分析。

1. 加工前的准备:在进行薄壁零件的机械加工前,需要进行充分的准备工作。

要对薄壁零件的尺寸、形状和加工要求进行详细的了解和测量,确定加工方案。

要选择合适的材料以满足薄壁零件的强度和刚度要求。

还需要检查加工设备和刀具的状况,确保其正常工作。

2. 机床选择:在选择加工薄壁零件的机床时,需要考虑其承载能力和减振性能。

薄壁零件的加工对机床的稳定性有很高的要求,因此应选择具有较高刚性和较低振动的机床。

常用的机床有龙门铣床、数控机床等。

3. 夹紧方式:薄壁零件的夹紧方式也需要特别注意。

由于薄壁零件的刚度较低,夹紧力过大会导致变形或破坏,因此需要采用一些特殊的夹紧方法。

可以使用气体夹紧或真空吸盘夹紧来避免变形。

4. 工艺参数的选择:对于薄壁零件的机械加工,工艺参数的选择非常重要。

在确定切削速度、进给速度和切削深度时,需要综合考虑零件的材料、壁厚和加工要求等因素。

一般来说,应采用较小的切削深度和进给速度,以减小振动和变形的可能性。

5. 刀具选择:在加工薄壁零件时,刀具的选择也十分重要。

应优先选择刚度较高、刀片角度合适的刀具,以确保刀具与工件的接触面积尽可能小。

要定期对刀具进行检查和磨削,保持其良好的切削性能。

6. 切削方式:在薄壁零件的机械加工中,切削方式也需要特殊考虑。

应尽量采用切削速度高、进给速度小的方法,以减小振动和变形的风险。

避免使用过大切削力的方法,以减少对零件的变形影响。

7. 加工顺序:薄壁零件的加工顺序也需要合理安排。

一般来说,应从外表面向内部进行加工,逐渐减小夹持力度,以减小变形的可能性。

要合理选择加工路径,避免过长的刀具移动距离,减少振动和变形。

薄壁零件的机械加工工艺需要特别的谨慎和认真。

在加工前的准备、机床选择、夹紧方式、工艺参数的选择、刀具选择、切削方式和加工顺序等方面都需要特殊的考虑。

薄壁件的三种加工方法

薄壁件的三种加工方法

薄壁件的三种加工方法
薄壁件是指壁厚相对较薄的零件,通常用于汽车、电子、航空航天等工业领域。

由于其特殊的结构和加工要求,薄壁件的加工方法也有一些特殊之处。

本文将介绍三种常见的薄壁件加工方法。

一、拉伸法
拉伸法是一种常用的薄壁件加工方法,通过拉伸薄壁板材来改变其形状和尺寸。

该方法适用于形状简单、壁厚均匀的薄壁件加工。

首先,将薄壁板材固定在拉伸机上,然后施加拉力使其产生塑性变形,最终得到所需形状的薄壁件。

这种方法可以快速高效地加工薄壁件,但对板材的材质和加工工艺要求较高。

二、冲压法
冲压法是一种常见的薄壁件加工方法,适用于形状复杂、壁厚较薄的薄壁件加工。

冲压法利用冲压设备将金属板材加工成所需形状的薄壁件。

首先,将金属板材放置在冲压机上,然后通过冲压模具对板材进行冲击,使其产生塑性变形,最终得到所需形状的薄壁件。

冲压法具有加工速度快、精度高的优点,但对冲压设备和模具的要求较高。

三、焊接法
焊接法是一种常用的薄壁件加工方法,适用于薄壁件的连接和修补。

焊接法通过熔化和连接金属材料,将多个薄壁件组合成一个整体。

焊接法可以用于不同材质、不同厚度的薄壁件的连接,具有连接牢固、结构简单的优点。

常见的焊接方法包括电弧焊、气体保护焊、激光焊等。

焊接法的缺点是加工过程中会产生热变形和应力集中等问题,需要通过控制焊接参数和采取适当的焊接工艺来解决。

薄壁件的加工方法包括拉伸法、冲压法和焊接法。

不同的加工方法适用于不同形状、不同壁厚的薄壁件加工。

在实际应用中,需要根据具体的要求和条件选择合适的加工方法,以确保薄壁件的质量和性能。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指在工程结构中壁厚很薄的零件,其壁厚一般小于3mm。

薄壁零件因其壁厚薄,加工难度大,所以在工艺上有着独特的要求。

本文将对薄壁零件的机械加工工艺进行分析,希望能够为相关行业提供参考。

一、薄壁零件的特点1. 壁厚薄:薄壁零件的壁厚一般小于3mm,有的甚至只有几毫米,这就要求在加工过程中必须考虑到其薄壁的性质,避免因加工引起的变形和破裂。

2. 结构复杂:由于薄壁零件在工程结构中常常承担比较复杂的功能,因此结构也相对复杂,这就对加工工艺提出了更高的要求。

3. 材质优质:为了保证薄壁零件的承载能力和使用寿命,通常采用高强度、优质的金属材料进行加工,如不锈钢、铝合金等。

4. 精度要求高:薄壁零件通常用于精密仪器、汽车零部件等领域,对其加工精度要求也很高,所以加工工艺更要精益求精。

二、薄壁零件的机械加工工艺1. 工艺规划:在进行薄壁零件的机械加工之前,必须进行详细的工艺规划和制定加工工艺流程。

根据零件的结构特点和加工要求,合理确定加工顺序、刀具选择、切削参数等,确保在加工过程中能够保持零件的尺寸、形状和表面质量。

2. 材料选择:针对不同的薄壁零件,需选择合适的材料进行加工。

常用的材料有铝合金、不锈钢、镁合金等,其机械性能和切削性能各不相同,需要根据实际情况进行选择。

3. 加工工艺控制:在进行薄壁零件的机械加工过程中,必须严格控制加工工艺。

尤其是在切削过程中要注重刀具的刀具形状和刃口状态、切削速度、进给量和切削深度等参数的合理选择和控制,避免因切削引起的变形和表面质量问题。

4. 刀具选择:薄壁零件的机械加工过程中,需要选择合适的刀具进行加工。

通常情况下,采用高硬度、高强度的硬质合金刀具或刻线刀具,以保证加工效率和加工质量。

5. 夹紧与支撑:薄壁零件在加工过程中要进行合理的夹紧和支撑,避免因切削引起的振动和变形问题,提高加工稳定性和精度。

6. 加工检测:在薄壁零件的机械加工过程中,需要进行合理的加工检测工序。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析【摘要】本文针对薄壁零件的机械加工工艺进行了深入的分析。

介绍了薄壁零件的特点,包括轻盈柔软、易变形等问题。

然后,详细讨论了薄壁零件的机械加工方法,包括铣削、钻孔、车削等。

接着,探讨了薄壁零件在加工过程中需要重点控制的工艺参数,以确保加工质量。

接着,总结了薄壁零件加工中常见的问题,如变形、破裂等,并提出了相应的加工改进方法,如优化刀具选择、加工参数调整等。

强调了薄壁零件机械加工工艺的重要性,并展望了未来发展趋势,指出需要加强技术创新和自动化设备的应用。

通过本文的研究,可以为薄壁零件的机械加工提供有益的参考和指导。

【关键词】薄壁零件、机械加工工艺、特点、方法、工艺控制、常见问题、改进方法、重要性、未来发展趋势1. 引言1.1 薄壁零件的机械加工工艺分析薄壁零件的机械加工工艺分析是工程制造领域中一个重要的研究课题。

随着现代工业的发展,越来越多的机械零件变得更为轻薄,因此薄壁零件的加工工艺也变得越来越复杂。

薄壁零件相比普通零件具有更高的技术要求,需要更为精密的加工工艺来保证其质量和性能。

薄壁零件的机械加工方法通常包括车削、铣削、钻削等传统加工工艺,同时还涉及到电火花加工、激光加工等先进加工技术。

针对薄壁零件加工过程中的特点,加工工艺控制尤为关键,需要特别注意切削参数的选择、工件固定方式、刀具选用等方面的问题,以确保加工过程中不会出现变形、裂纹等质量问题。

在薄壁零件的加工过程中,常见的问题包括振动导致的表面质量不良、加工精度不高等,这些问题可能会影响零件的使用性能。

加工改进方法也是非常重要的,可以通过优化加工工艺、调整设备参数等方式来提高零件的加工质量。

薄壁零件的机械加工工艺分析对于确保零件质量、提高生产效率具有重要意义。

未来随着技术的不断进步,薄壁零件的加工工艺也将不断完善,为工程制造领域带来更多的发展机遇。

2. 正文2.1 薄壁零件的特点薄壁零件是指壁厚相对较薄的零件,通常在1mm以下,具有以下几个特点:1. 结构轻巧:薄壁零件由于壁厚较薄,整体重量相对较轻,适用于要求轻量化设计的产品。

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法一、概述薄壁件是指壁厚小于2mm的机械零件,具有重量轻、节省材料、结构紧凑等特点。

数控车床是现代加工制造业中应用广泛的设备,对于薄壁件的加工具有独特优势。

本文将重点介绍数控车床在薄壁件加工中的技巧和方法,以提高加工效率和产品质量。

二、材料选择与装夹方式1.材料选择:薄壁件常用的材料有铝合金、钛合金、不锈钢等,这些材料具有较好的塑性和切削性能。

在选择材料时,应充分考虑其物理性能和加工工艺性。

2.装夹方式:针对薄壁件易变形的特点,应采用合适的装夹方式,如真空吸附、专用夹具等,以保证工件在加工过程中保持稳定。

三、刀具选择与切削参数优化1.刀具选择:针对薄壁件的加工特点,应选用锋利、耐磨的刀具,如硬质合金刀具、涂层刀具等。

同时,刀具的几何参数对切削力、切削热等方面都有影响,应根据工件材料和加工要求进行合理选择。

2.切削参数优化:切削参数的合理选择对于薄壁件的加工至关重要。

应综合考虑切削深度、进给速度、切削速度等参数,以减小切削力、切削热对工件的影响,防止工件变形。

四、加工技巧1.轻切快走:在加工过程中,应采用轻切快走的加工方式,以减小切削力对工件的影响。

同时,合理使用切削液,降低切削温度。

2.分层加工:对于厚度较大的薄壁件,可以采用分层加工的方式,减小各层之间的切削力,避免工件变形。

3.工艺优化:在编制加工程序时,应充分考虑工件的形状、材料特性等因素,合理安排粗加工、半精加工和精加工的顺序,以提高加工效率和产品质量。

4.热处理:在加工过程中,可对工件进行适当的热处理,以提高其硬度和耐磨性。

同时,合理安排热处理工艺参数,防止工件变形或开裂。

5.检测与修正:在加工过程中,应定期检测工件的尺寸和形位公差,如有偏差应及时修正。

同时,对加工过程中出现的问题进行分析和总结,不断优化加工方法和工艺参数。

五、结论通过以上分析可知,数控车床在薄壁件加工中具有独特优势。

在实际生产中,应根据具体情况选择合适的材料、装夹方式、刀具和切削参数。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺典型薄壁零件指的是壁厚比较薄的机械零部件,其加工工艺要求高,因为薄壁零件具有易变形、易损坏等特点,所以数控铣削加工工艺尤为重要。

本文将介绍典型薄壁零件数控铣削加工的工艺流程、注意事项以及优化方案。

1. 零件设计和准备在进行数控铣削加工前,首先需要进行零件的设计和准备。

设计时需要根据零件的实际情况,合理确定加工工序、夹持方式和刀具选择。

在准备阶段,需要准备好数控铣床和相应的工具。

2. 夹持工件夹持工件是数控铣削加工的第一步,对于薄壁零件需要特别注意夹持方式。

通常采用夹具夹紧的方式,可以增加工件的稳固性,同时需要保证夹持力不会对薄壁零件造成变形。

3. 刀具选择和加工参数设定选择合适的刀具和加工参数对于数控铣削加工来说至关重要。

对于薄壁零件来说,需要选用合适的刀具和适当的进给速度、转速等加工参数,以减小切削力,降低对工件的影响。

4. 加工操作在进行数控铣削加工时,需要严格按照程序要求进行操作。

特别是在对薄壁零件进行加工时,需要小心谨慎,避免发生碰撞、振动等情况,以免对工件造成损坏。

5. 检测和修整加工完成后,需要对工件进行检测和修整。

特别是对于薄壁零件来说,需要注意检测工件的尺寸精度和表面质量,及时修整不合格的部分。

二、典型薄壁零件数控铣削加工的注意事项1. 选择合适的材料对于薄壁零件来说,材料的选择至关重要。

需要选择具有较好加工性能和机械性能的材料,以减小加工难度和提高工件的使用寿命。

4. 避免振动和冲击在进行数控铣削加工时,需要小心谨慎,避免对薄壁零件产生振动和冲击。

合理选择刀具和加工参数,以避免产生不必要的振动和冲击。

1. 刀具选用对于薄壁零件的数控铣削加工,需要选择具有良好刚性和稳定性的刀具,以减小切削力和振动。

同时应该根据工件的实际情况,选择不同的刀具类型以提高加工效率。

2. 加工参数优化在数控铣削加工时,需要根据薄壁零件的实际情况,合理选择进给速度、转速、切削深度等加工参数,以减小切削力,提高加工效率。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺一、加工工艺概述在现代机械加工中,数控铣削技术已经成为广泛采用的一种加工方式。

它具有高效率、高精度、高稳定性等诸多优点,能够满足各种复杂形状的零部件加工需求。

而在制造业中,薄壁零件的加工一直以来都是一个难点,因为它们具有较大的面积,容易发生振动和变形,导致加工质量不佳。

因此,采用数控铣削加工工艺来生产薄壁零件,显得尤为重要。

1. 材料准备首先需要选定适合薄壁零件加工的材料,一般采用铝合金、镁合金、钛合金等轻合金材料。

然后进行材料的切割、碾磨等预处理工作,以优化后续加工的效果。

2. CAD制图在进行数控铣削加工前,需要对零件进行三维模型设计,以制定详尽的加工工艺方案。

在CAD制图过程中,需要考虑加工精度、表面质量、加工时间等多个因素,确定好各种加工参数,包括加工路径、刀柄发生器等。

3. CAM编程在CAD制图完成后,需要进行CAM编程,将机器指令和实际加工过程相一致。

在CAM编程中,需要考虑加工路径,以及刀柄进给速度、切削进给速度等参数,调整加工节奏和刀具尺寸等。

4. 加工调试CAM编程完成后,需要先进行一次加工调试。

调试过程中,需要不断调整加工参数,以充分发挥数控铣削加工的优势,并保证加工精度和表面光洁度达到标准要求。

5. 实际加工过程综合考虑加工条件、切削速度、进给速率等因素,进行实际的数控铣削加工。

在加工过程中,需要密切关注加工状态,调整加工参数,以保证产品精度和表面质量。

三、关键问题控制1.加工稳定性的控制薄壁零件加工面积较大,容易发生振动和变形,因此需要掌握加工稳定性的控制方法。

首先要选择合适的工件夹持方式,确保工件在加工过程中不产生任何变形。

同时,合理设计加工刀具尺寸和结构,采用具有高刚性的刀具,以提高加工精度和稳定性。

2.表面光洁度的控制薄壁零件加工表面质量要求较高,表面光洁度是一个很关键的指标。

因此,在加工过程中需要选用具有高刚度、高切削能力的刀具,并适当降低装夹紧密度,避免过度压缩,从而保证零件表面光滑克服表面氧化和氧化皮的形成。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析在机械制造加工过程中,薄壁零件是一类机械加工工艺的难点。

其具有结构精细、形状复杂、壁厚薄等特点,而在加工过程中容易出现变形、翘曲和表面质量不良等问题,加工难度较大。

针对这些问题,需要进行全面分析和合理处理。

1. 薄壁零件的特点薄壁零件是指对称薄壁结构且壁厚小于零件直径的零件。

其具有结构精细,形状复杂,尺寸精度高,要求壁厚均匀,一般采用双面加工。

同时,由于其壁厚薄,容易出现变形、翘曲的现象,对加工设备要求严格,加工难度大,因此在进行薄壁零件加工时需要特别注意。

对于薄壁零件的机械加工工艺,需要选用适当的切削工具和加工方法,合理处理变形和翘曲问题。

常用的加工工艺如下:(1) 选择合适的加工方法为防止薄壁零件在加工过程中变形,应尽可能采用高温加工、低速加工来避免过硬的工具或高速切削,避免形成热疲劳和振动等现象。

一般采用割线式铣削、缩径技术、调整切削参数和切削力、减小表面靠刀量等加工方法,以保证加工质量。

为提高薄壁零件的加工质量,需要选用合适的刀具和磨具,以保证加工精度和表面质量。

在薄壁零件的加工中,一般使用不锈钢刀片、高速钢刀片或金刚石刀片等,切削刃要锋利,刀片要光滑,避免刀身过硬或影响加工效率。

(3) 加强加工设备的稳定性为防止薄壁零件在加工过程中变形、翘曲、抖动等现象,需要加强加工设备的稳定性,调整加工速度、切削力和落刀深度等参数,以保证加工设备的稳定性和减小变形的发生。

(4) 控制加工过程的温度为提高薄壁零件的加工质量,需要控制加工过程的温度,以避免过高或过低的温度对零件的影响。

一般采用水冷或喷水冷却器来降低温度,以达到保证加工质量的目的。

综上所述,对于薄壁零件的机械加工工艺分析,需要选择适当的加工方法和切削工具,加强对加工设备的稳定性,控制加工过程的温度,以保证加工质量和提高效率。

同时,还需要加强对加工过程中的变形和翘曲等问题的预处理和特殊控制,以达到更好的加工效果。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺
随着数控技术的不断发展和普及,传统的机械加工方式已逐渐被数控加工所取代。


有复杂形状的零件加工越来越受到重视,薄壁零件的加工也成为数控铣削加工中的一个重
要领域。

本文将介绍几种常见的典型薄壁零件数控铣削加工工艺。

一、空间曲面薄壁零件的加工
1. 先导铣削法:先导铣削法是指在进行数控铣削之前,通过手工或其他加工方式,
先将工件的主要外形进行加工,以便在数控铣削中能够准确定位和定位,确保加工精度。

这种方法通常适用于工件的结构单一,不涉及过多曲面的薄壁零件。

2. 内壁铣削法:对于空间曲面薄壁零件的加工,往往会涉及到一些内壁的加工。


壁铣削法是指利用特殊形状的刀具进行内壁加工,通常采用搅拌刀或球头刀进行加工。


种方法相比传统的刀具在内壁加工过程中更容易掌握,提高加工质量和效率。

3. 全固定装夹法:对于薄壁零件的加工来说,固定装夹是一个非常关键的环节,直
接关系到加工精度和质量。

全固定装夹法是指在加工过程中,将工件的切削力用于装夹上,使其实现稳定加工。

这种方法适用于一些形状复杂、精度要求高的薄壁零件。

典型薄壁零件的数控铣削加工工艺有很多种,根据不同的零件形状和要求,选择合适
的加工工艺能够提高加工效率和质量,满足工程的需求。

随着数控技术的不断发展和应用,相信在将来的发展中,还会出现更多的创新加工工艺,以适应各种需要。

薄壁零件加工方法和工艺分析.pdf

薄壁零件加工方法和工艺分析.pdf

薄壁零件的工艺分析及加工方法单位名称:陕西长岭电子科技有限责任公司作者:安小康2017年3月 2 日薄壁零件的工艺分析及加工方法作者:安小康职业技能鉴定等级:二级单位名称:陕西长岭电子科技有限责任公司单位地址:宝鸡市渭滨区清姜璐75号2017年3月2 日目录摘要 (1)关键词 (1)1工艺方案分析 (2)1.1薄壁零件图 (2)1.2零件图分析 (2)1.3确定加工方法 (2)2工件装夹 (3)2.1定位基准选择 (3)2.2确定零件定位基准 (3)2.3装夹方式选择 (3)2.4确定装夹方式 (3)3刀具和切削用量选择 (3)4零件加工 (5)5加工注意事项 (7)5.1安全文明生产 (7)5.2刀具的选择 (7)5.3削用量的要求 (7)6影响薄壁加工因素及解决方法 (8)6.1受力变形 (8)6.2受热变形 (9)6.3振动变形 (9)总结 (10)参考文献 (11)摘要薄壁工件因为具有重量轻、节约材料、结构紧凑等特点,薄壁零件已日益广泛地应用在各工业部门。

但薄壁零件的加工是比较棘手的,原因是薄壁零件刚性差、强度弱,在加工中极容易变形,不易保证零件的加工质量。

薄壁零件的加工问题,一直是较难解决的。

薄壁件目前一般采用数控车削的方式进行加工,为此要对工件的装夹、刀具几何参数、程序的编制等工艺分析方面进行试验,合理的选择加工方法从而有效地克服了薄壁零件加工过程中出现的变形,保证加工精度。

关键词:薄壁工件工艺分析程序编制加工方法1工艺方案分析1.1薄壁零件图1.2零件图分析该零件图是薄壁套类零件由外圆、内孔、外螺纹组成。

尺寸标注完整,表面粗糙度为1.6,选用毛坯是45号钢。

毛坯尺寸Φ35mm×50mm,表面无热处理等要求。

1.3确定加工方法确定加工方法的原则是保证加工表面加工精度和表面粗糙度。

薄壁类零件应按粗、精加工工序。

薄壁件通常需要加工工件的内、外表面。

内表面的粗加工和精加工都会导致工件变形,所以应按粗精加工分序。

航空薄壁零件的加工工艺

航空薄壁零件的加工工艺

航空薄壁零件的加工工艺航空薄壁零件的加工工艺是指将给定的材料通过一系列工艺处理和加工,使得最终成品符合航空行业中对零件质量、尺寸、精度要求,并适用于飞机等航空器件的装配和使用。

航空薄壁零件加工工艺通常包括以下几个步骤:1. 材料准备:航空薄壁零件通常使用高强度、轻质的材料,如铝合金、钛合金等。

在加工之前,首先需要对材料进行处理和准备,如材料的切割、热处理、表面清洁等。

材料的处理和准备对最终产品的质量和性能影响很大,因此必须严格控制每个步骤的工艺参数。

2. 零件加工:航空薄壁零件的加工通常采用数控机床进行,因为数控机床具有高精度、高效率和稳定性好等优点。

加工工艺通常包括车削、铣削、钻削、铆接、切割等。

在加工过程中,需根据零件的设计要求和工艺要求,合理选择刀具、工艺参数和加工路径,并严格控制加工过程中的加工质量和尺寸精度。

3. 表面处理:航空薄壁零件的表面处理对于提高零件的耐腐蚀性、耐磨性和表面光洁度非常重要。

常见的表面处理方法包括阳极氧化、电镀、喷涂、磷化等。

表面处理工艺需要根据零件材料的特性选择合适的方法,并控制处理参数和工艺流程,以保证表面处理效果和质量。

4. 检验与质量控制:航空薄壁零件的加工过程中需要进行严格的检验和质量控制,以确保产品的质量和性能满足航空行业的要求。

常见的检验方法有尺寸测量、外观检查、力学性能测试等。

质量控制包括对每个加工步骤和工艺参数进行监测和调整,以保证零件的尺寸精度、表面质量和机械性能。

在航空薄壁零件的加工过程中,还需要注意以下几个方面:1. 工艺规划和优化:在加工之前,需要对零件的结构和要求进行详细分析,从而制定合理的加工工艺流程和步骤,并对工艺进行持续优化,以提高加工效率和质量。

2. 设备与刀具选择:根据零件的特性和加工要求,需要选择合适的数控机床、刀具和夹具。

设备的选型和使用对加工质量和效率具有重要影响。

3. 清洁与防护:在加工过程中,需要保持加工设备和工作环境的清洁和整洁,防止杂质和污染物对零件质量的影响。

薄壁套零件的加工工艺分析与程序设计

薄壁套零件的加工工艺分析与程序设计

图2六爪卡盘薄壁套零件的加工工艺分析与程序设计赵金凤(德州职业学院,山东德州253000)1薄壁套的工艺分析1.1薄壁套结构分析如图1所示为一薄壁套零件,生产类型为单件或小批量生产,无热处理工艺要求,薄壁套类零件孔壁较薄,该薄壁套结构简单,主要由内孔与外圆组成。

1.2薄壁套的工艺分析因薄壁套孔壁较薄,装夹过程中很容易变形,因此装夹难度较大,一般可采用以外圆定位和内孔定位夹紧的方法来完成。

1)以内孔定位。

该薄壁套的基准是准26+0.030mm 孔轴线,外圆、内孔精度及表面粗糙度要求较高;右端面与准26+0.030mm 孔轴线有垂直度要求,加工时应在一次装夹中完成;准300 -0.03mm 外圆既有圆度形位公差要求,又有同轴度要求,又因内孔存在阶台,无法一次装夹工件完成全部加工内容,因此可采取先加工完零件右端面及内孔,再使用芯轴或胀力芯轴装夹完成零件外圆加工的方法。

2)以外圆定位。

如果该薄壁套批量较大,基准是准300-0.03mm 的轴线,可以选择以外圆定位加工内孔,采用特制软卡爪、六爪卡盘(圆形包胎),如图2所示,夹持薄壁套,避免夹持变形,包胎选用轻、软材料,最好使用铜、铝制品,避免夹伤工件。

摘要:合理的数控加工工艺与加工程序是保证产品质量、提高生产效率的关键因素。

文中结合薄壁套的结构,分析加工工艺,设计加工程序,保证薄壁套的加工质量,同时也提高了加工效率。

关键词:薄壁套;加工工艺分析;程序设计中图分类号:TH 162文献标志码:A文章编号:1002-2333(2015)06-0070-02图1薄壁套零件41+0.0500.02准300-0.03准20+0.10准0.03 1.6C 140451.6A 0.02A3.2其余准26+0.03准380-0.1A作用也增强。

此外,在实际工程设计中,跨音速压气机的攻角设计是一个极其重要的参数,应当避免沿叶高局部正攻角过大,使得压气机局部槽道激波被推向上游从而引起整个压气机转子失速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄壁零件加工方法和工
艺分析
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
薄壁零件的工艺分析及加工方法
单位名称:陕西长岭电子科技有限责任公司
作者:安小康
2017年 3月 2 日
薄壁零件的工艺分析及加工方法
作者:安小康
职业技能鉴定等级:二级
单位名称:陕西长岭电子科技有限责任公司
单位地址:宝鸡市渭滨区清姜璐75号
2017年 3月 2 日
目录
摘要 (1)
关键词 (1)
1工艺方案分析 (2)
薄壁零件图 (2)
零件图分析 (2)
确定加工方法 (2)
2工件装夹 (3)
定位基准选择 (3)
确定零件定位基准 (3)
装夹方式选择 (3)
确定装夹方式 (3)
3刀具和切削用量选择 (3)
4零件加工 (5)
5加工注意事项 (7)
安全文明生产 (7)
刀具的选择 (7)
削用量的要求 (7)
6影响薄壁加工因素及解决方法 (8)
受力变形 (8)
受热变形 (9)
振动变形 (9)
总结 (10)
参考文献 (11)
摘要
薄壁工件因为具有重量轻、节约材料、结构紧凑等特点,薄壁零件
已日益广泛地应用在各工业部门。

但薄壁零件的加工是比较棘手的,原
因是薄壁零件刚性差、强度弱,在加工中极容易变形,不易保证零件的
加工质量。

薄壁零件的加工问题,一直是较难解决的。

薄壁件目前一般采
用数控车削的方式进行加工,为此要对工件的装夹、刀具几何参数、程
序的编制等工艺分析方面进行试验,合理的选择加工方法从而有效地克
服了薄壁零件加工过程中出现的变形,保证加工精度。

关键词:薄壁工件工艺分析程序编制加工方法
1工艺方案分析
薄壁零件图
零件图分析
该零件图是薄壁套类零件由外圆、内孔、外螺纹组成。

尺寸标注完整,表面粗糙度为,选用毛坯是45号钢。

毛坯尺寸Φ35mm×50mm,表面无热处理等要求。

确定加工方法
确定加工方法的原则是保证加工表面加工精度和表面粗糙度。

薄壁类零件应按粗、精加工工序。

薄壁件通常需要加工工件的内、外表面。

内表面的粗加工和精加工都会导致工件变形,所以应按粗精加工分序。

内外表面粗加工后,再内外表面精加工,均匀的去除工件表面多余部分,这样有利于消除切削变形。

加工方法多种多样,应结合零件的形状,尺寸,位置,选择合理快捷的加工方法。

尺寸公差要求较高,公差值较小。

取其基本尺寸加工编程便可。

2工件装夹
定位基准选择
定位基准选择极为重要,他影响到工件加工的尺寸,位置精度从而影响到工件整体的加工质量。

确定零件定位基准
根据基准重合原则以工件左端面或者右端面作为定位基准
装夹方式选择
为了防止工件在切削力的作用下,发生位移偏动。

影响工件的位置精度,加工质量甚。

至损害刀具机床以及操作安全,合理的装夹具有重要意义。

确定装夹方式
装夹方法:先用三爪自定心卡盘毛坯左端,加工内孔工件精度要求。

3刀具和切削用量选择
切削用量公式:
Vc=πdn/1000(m/min)
N≤1200/p-k
式中Vc ------切削速度,单位m/min;
d-------切削刃上选定点处所对应的工件或道具的回转直径,单位mm;
n------ 工件的转速,单位为r/min;
P------被加工螺纹螺距,单位为mm;
K------保险系数,一般为80;
表3-1工件加工道具卡片
表3-2工件加工工序卡片
表3-3切削用量选择
4零件加工
零件主要由外圆台阶,内孔,螺纹组成。

编程如下:O0011内孔加工
T0303
M03 S800
G00 X23 Z2
G71 U1
G71 P10 Q20 W0
N10 G00 X23
G01 Z0
X28
Z-41
N20 G01 X23
G00 X100
Z100
M05
M30
T0404
M03 S1000
G00 X23 Z2
G70 P10 Q20
M05
M30
O0022外圆加工
T0101
M03 S800
G00 X37 Z2
G71 U1
G71 P10 Q20 W0 N10 G00 X29
G01 Z0
Z-41
N20 G01 X37
G00 X100
Z100
M05
M30
T0101
M03 S1000
G00 X37 Z2
G70 P10 Q20
G00 X100
Z100
M05
M30
5加工注意事项
安全文明生产
加工过程中必须遵守安全文明生产准则,不得戴手套操作机床。

戴好防护镜,女生应戴工作帽。

刀具的选择
加工孔的车孔刀杆悬伸距较大,刚性差,容易产生振动,并在径向分力的作用下,容易发生让刀现象,影响加工孔的精度。

因此加工薄臂零件孔
时应尽可能增加刀杆的刚性。

同时,为了容易排屑,应在车刀前面开有断屑槽或卷屑槽,在合适的刃倾角下控制切屑排出的方向。

切削用量的要求
薄壁零件车削时变形是多方面的。

装夹工件时的夹紧力,切削工件时的切削力,工件阻碍刀具切削时产生的弹性变形和塑性变形,使切削区温度升高而产生热变形。

从《金属切削原理》中可以知道:背吃刀量ap,进给量f,切削速度V是切削用量的三个要素。

所以,粗加工时,背吃刀量和进给量可以取大些;精加工时,背吃刀量一般在―,进给量一般在―r,甚至更小,切削速度6―120m/min,精车时用尽量高的切削速度,但不易过高。

6影响薄壁加工因素及解决方法
工件在装夹时,应减小夹紧力对零件变形的影响通常的做法是在薄臂环处增设一个开口过渡环,减小夹紧误差,提高加工精度。

为减小夹紧变形,可以使夹紧位置选在刚性较强的部位,或采取轴等同周期夹紧的办法,以减小径向变形,或在零件上制出加强刚性的辅助凸台作为夹紧部位,在加工完成后再切除。

加工较长的套筒类零件或深孔时,可以先加工外圆表面,再以外圆定位来加工深孔。

加工这类零件时,由于零件较长,所以在装夹加工时,应采取一些特殊的工艺措施,防止孔轴心线偏斜,影响位置精度。

对加工精度要求较高的薄壁类零件,应把粗加工、半精加工、精加工分开进行。

粗、半精、精加工分开,可避免因粗加工引起的各种变形,包括粗加工时,夹紧力引起的弹性变形、切削热引起的热变形以及
粗加工后内应力重新分布引起的变形。

内应力是引起零件变形的主要因素,为了防止零件的变形,除应严格地进行材料的热处理,使工件具有较好的组织外,在粗加工、精加工之间,最好增加一道去应力工序,以最大限度的消除工件内部的应力。

受力变形
因工件较薄在夹紧力的作用下容易产生变形,从而影响工件的尺寸精度和形状精度。

减小受力变形方法:
增加装夹接触面开缝套筒或一些特制的软卡爪。

使接触面增大,让夹紧力均布在工件上,从而使工件夹紧时不易产生变形。

应采用轴向夹紧夹具车薄壁工件时,尽量不使用径向夹紧,所示轴向夹紧方法。

工件靠轴向夹紧套(螺纹套)的端面实现轴向夹紧,由于夹紧力F沿工件轴向分布,而工件轴向刚度大,不易产生夹紧变形。

增加工艺肋有些薄壁工件在其装夹部位特制几根工艺肋,以增强此处刚性,使夹紧力作用在工艺肋上,以减少工件的变形,加工完毕后,再去掉工艺肋。

受热变形
因工件较薄,切削热会引起工件热变形,使工件尺寸难于控制。

减少受热变形方法:
用高速钢刀具粗加工时,以水溶液冷却,主要降低切削温度;精加工时,中、低速精加工时,选用润滑性能好的极压切削油或高浓度的极压乳化液,主要改善已加工表面的质量和提高刀具使用寿命硬质合金刀
具,粗加工时,可以不用切削液,必要时也可以采用低浓度的乳化液或水溶液,但必须连续地、充分地浇注;精加工时采用的切削液与粗加工时基本相同,但应适当提高其润滑性能在车削过程中充分使用切削液不仅减小了切削力,刀具的耐用度得到提高,同时也保证了零件的加工质量。

振动变形
在切削力(特别是径向切削力)的作用下,很容易产生振动和形,影响工件的尺寸精度、形状、位置精度和表面粗糙度。

控制或减小振动的途径:
自激振动与切削过程本身有关,也与工艺系统的结构性能有关。

因此控制自激振动的基本途径是减少或消除激振力。

合理选择切削用量:
车削加工在速度V=20~60m/min时容易产生自振,高于或低于此范围则振动减弱。

因此,在精密加工时宜采用低速切削,一般加工宜采用高速切削。

进给量f增大,自振强度下降。

总结
根据本文的薄壁件工艺分析以及加工方法,能够合理的掌握切削用量、刀具、夹具的选择。

解决实际加工中遇到的薄壁件问题,保证加工质量和尺寸精度,提高工作效率,对加工生产具有重要的参考意义。

参考文献:
(1)熊显文,数控加工技术,北京:化学工业出版社,2008
(2)刘伟雄,数控加工理论与编程技术,北京:机械工业出版社1996
(3)赵玉刚等,数控技术,北京:机械工业出版社,2003。

相关文档
最新文档