人耳听觉特性
声学基础知识(1)
音高\频率\唱名\键盘位置关系 提琴C\523.2Hz \1 提琴C6\1KHz \і
钢琴:一百三十赫兹(130Hz) 钢琴:一千赫兹(1KHz)
提琴:一百三十赫兹(130Hz) 提琴:一千赫兹(1KHz)
音高\频率\唱名\键盘位置关系
二、响度:响度,又称声强或音量,它表示的是声音能量的强弱程度, 主要取决于声波的振幅大小。
第六节 声波的传播
一、波阵面和声线:声波由声音发出后,在介质中向各个方向传播,在某一时刻由声
波到达的各点所连成的面称为波阵面。波阵面为平面的称平面波(如管子中的声波), 波阵面为球面的波称为球面波(点声源);波的传播方向称为声线或波射线。
横波:质点的振动方向和波的传播方向相互垂直,这种波称为横波。
响度是听觉的基础。正常人听觉的强度范围为0dB-140dB。超出人耳的可听频 率范围(即频域)的声音,即使响度再大,人耳也听不出来(即响度为零)。 当声音减弱到人耳刚刚可以听见时,此时的声音强度称为“听阈”;当声音 增强到使人耳感到疼痛时,这个阈值称为“痛阈”,听阈和痛阈随声压和频 率的变化而变化。听阈和痛阈随频率变化的曲线叫“等响度曲线”。
三、音色
音色是人们区别具有同样响度和音调的两个声音的主观感觉,音色也称音 品,由声音波形的谐波频谱和包络决定。
声音波形的基频所产生的听得最清楚的音称为基音,各次谐波的微小振动 所产生的声音称泛音。单一频率的音称为纯音,具有谐波的音称为复音。
第四章-人耳的听觉特性
80Hz 20方
1000Hz 40方
✓ 当声压级高于100dB时,等响曲线逐渐拉平。这说明当声 音达到一定程度(>100dB),声音的响度决定于声压级 ,而与频率关系不太大。
声学基础
③ 等响曲线
第四章 人耳的听觉特性
•最高最低频率可听极限 一般地,青少年20~20KHz,中年30~15KHz,老年100~10KHz。 •最小最大可听极限 人耳有一定的适应性,常人上限为120dB,经常噪声暴露的人 有可能达到135~140dB。下限频率与频率有关。
外耳道的作用是使声音从耳廓传到耳膜,并保护耳膜不受 外界物体的机械损伤。耳道的长度大约为27mm,直径为 5~7mm,其共振频率约为3000Hz,外耳道的共振效应是决 定听力灵敏度的一个重要因素。
声学基础
第四章 人耳的听觉特性
声学基础
第四章 人耳的听觉特性
➢听觉生理系统
中耳连接外耳和内耳,耳膜因受力而振动,进而推动中耳 室内的三块互相连接的听小骨运动。这三块听骨分别为锤 骨、砧(zhēn)骨、镫(dèng)骨,起杠杆放大作用。
中耳的作用是通过听骨的运动把外耳的空气振动和内耳的 液体运动有效地耦合起来。
声学基础
➢听觉生理系统
第四章 人耳的听觉特性
声学基础
第四章 人耳的听觉特性
声学基础
第四章 人耳的听觉特性
内耳的主要部分是耳蜗,耳蜗的外形有点像蜗牛壳,它围 绕着骨质中轴盘旋了2.75转,长约35mm,中轴是中空的 ,是神经纤维的通道。
人耳对声音高低的感觉主要与频率有关。频率高,感到音 细、高;频率低,感到音粗、低。音高与频率有正相关的 关系,但没有严格的比例关系,且因人而异。
声学基础
➢音色与谐和感
听觉的基本特征
听觉的基本特征
1、听觉范围。
人耳能够听到声波范围有两个方面,一个是声波的频率范围:人耳可听到范围,一个是声压的幅值范围:被听觉阈值(最低声压级,和声音的频率有关)和痛域(使人耳感到疼痛的声压级,与声音的频率关系不大)决定。
2、听觉的等响特性。
反映人们对不同频率的纯音乐的响度感觉的基本特性。
说明认为判断声音和相对与声压级和频率都有关系。
以低于或者高于原始声音的声压级重放音源,则会改变原始声音中的各频成分的相对响度关系,产生音色变化。
3、听觉阈值。
如果把可闻频段的信号保留,把不敏感频段的信号只反映强信号,对难以察觉的弱信号忽略不计,这样可以使信息量大大减少,从而压缩声音信息量。
4、听觉得掩蔽特性。
听觉得掩蔽性是指一个比较强的声音往往会掩盖较弱的声音,从而使其不能被听到,分为频域掩蔽和时域掩蔽
频域掩蔽:稳定条件下,一个包含多种频率成分的声音同时发声时,幅值较大的频率信号会掩蔽相邻幅值较小的频率信号,使之完全听不见,而且低于该频率的掩蔽交窄,高于该频率的掩蔽范围较宽,可达该频率的数倍。
时域掩蔽:人耳除了对同时发出的声音在相邻频率信号之间有掩蔽现象意外,在时间上相邻的声音之间也存在掩蔽现象。
人耳对声音感受的特点
人耳对声音感受的特点包括以下几个方面:
1、听觉范围:人耳能够感知的声音范围约为20 Hz至20,000 Hz。
低于20 Hz 的声音被称为次声,高于20,000 Hz的声音被称为超声。
不同年龄段的人可能对不同频率范围的声音更敏感。
2、声音响度:声音的响度是指声音的强度或音量。
人耳对不同响度的声音有不同的感受。
强度较高的声音会被感知为较大的响度,而强度较低的声音则会被感知为较小的响度。
3、频率感知:人耳对声音的频率也有不同的感受。
低频声音(例如低音乐器的声音)给人一种低沉的感觉,而高频声音(例如鸟儿的鸣叫声)给人一种尖锐的感觉。
4、声音定位:人耳能够通过左右两只耳朵接收到声音的差异,从而确定声音的方向和位置。
这种能力被称为声音定位。
通过分析声音的到达时间、声音的强度差异和频率差异等信息,人耳可以感知声源的位置。
5、声音质量:人耳对不同声音的质量也有感受。
声音的质量包括音调的纯净度、音色的浑厚度和谐振特性等。
不同声音的质量给人不同的感觉和情绪。
人耳的听觉特征重点
人耳的听觉特征1、振动产生声波,声波传播至耳,耳膜受到声压变化刺激听觉神经听觉神经传入大脑中枢,形成声音的存在感觉。
声音的传播过程(自然状态):当一个物体受外力作用时,产生一个往复的弹性振动,这样就产生了声波,经过介质(物体、空间或水)向四面八方传播。
当人耳接受声波的振动,通过听觉神经传达给大脑。
2、声音的产生是物理现象,人对声音的感觉是生理、心理活动。
①构成人耳听觉特性的要素构成声音产生与存在的客观因素是:振幅、频率、谐波构成人耳对声音的听觉特性的要素是:响度、音调、音色⑴响度:是人耳对声音强弱的感觉程度。
它首先决定于声音的振幅,其次是频率。
声学中把描述响度、振幅、频率之间的关系曲线叫等响度曲线。
单位:分贝(dB)与振幅的关系:a、声压级越高,人耳感觉声音响度越大b、人耳的声压范围是:0——120 dB与频率的关系:a、4—5KHz附近的声音最响,因外耳道与其产生共鸣b、低声压时,低频区的音响度大于高频音的响度c、常见声源的声压级dBλ窃窃私语:20——35女高音:35——105 男λ高音:40——95λ小提琴:40——100 交响乐:80 dB小鼓:55——105 打雷:120λ dBλ教师讲话:50——60 飞机起飞(3m处):140 dB⑵音调(音高):是人耳对声音高低的感觉,其变化主要取决于声音频率的对数值,其次是取决于声音的振幅。
频率越高,人耳感觉的音调随之升高,频率增加一倍,声学中称之增加一个“倍频程”,音乐上叫“提高一个八度”。
音调单位:美(mei)音调与频率的关系:a、人耳听觉的频率范围:20Hz——20KHz,其中700——3000Hz为最灵敏区b、语言的频率范围范围是100——10 KHz音乐的频率范围是50——15 KHz音调与声压(振幅)的关系:a、1K——2 KHz 以上的高音区,声压增大感觉音调提升b、500 Hz以下的声音,声压增大,感觉声音低沉,音调下降⑶音色(音品):指声音的音调和响度以外的音质差异。
人耳的听觉特征
人耳得听觉特征1、振动产生声波,声波传播至耳,耳膜受到声压变化刺激听觉神经听觉神经传入大脑中枢,形成声音得存在感觉。
声音得传播过程(自然状态):当一个物体受外力作用时,产生一个往复得弹性振动,这样就产生了声波,经过介质(物体、空间或水)向四面八方传播。
当人耳接受声波得振动,通过听觉神经传达给大脑。
2、声音得产生就是物理现象,人对声音得感觉就是生理、心理活动。
①构成人耳听觉特性得要素构成声音产生与存在得客观因素就是:振幅、频率、谐波构成人耳对声音得听觉特性得要素就是:响度、音调、音色⑴响度:就是人耳对声音强弱得感觉程度。
它首先决定于声音得振幅,其次就是频率。
声学中把描述响度、振幅、频率之间得关系曲线叫等响度曲线。
单位:分贝(dB)与振幅得关系:a、声压级越高,人耳感觉声音响度越大b、人耳得声压范围就是:0——120 dB 与频率得关系:a、4—5KHz附近得声音最响,因外耳道与其产生共鸣b、低声压时,低频区得音响度大于高频音得响度c、常见声源得声压级dBλ窃窃私语:20——35女高音:35——105 男λ高音:40——95λ小提琴:40——100 交响乐:80 dB小鼓:55——105 打雷:120λ dBλ教师讲话:50——60 飞机起飞(3m处):140 dB⑵音调(音高):就是人耳对声音高低得感觉,其变化主要取决于声音频率得对数值,其次就是取决于声音得振幅。
频率越高,人耳感觉得音调随之升高,频率增加一倍,声学中称之增加一个“倍频程”,音乐上叫“提高一个八度”。
音调单位:美(mei)音调与频率得关系:a、人耳听觉得频率范围:20Hz——20KHz,其中700——3000Hz为最灵敏区b、语言得频率范围范围就是100——10 KHz音乐得频率范围就是50——15 KHz音调与声压(振幅)得关系:a、1K——2 KHz 以上得高音区,声压增大感觉音调提升b、500 Hz以下得声音,声压增大,感觉声音低沉,音调下降⑶音色(音品):指声音得音调与响度以外得音质差异。
第三章人耳的听觉特性
LI 0 t 0
此时声象由 ΔLf与 Δt 共同决 定,可互相补偿也可互相校正。 (当Δ Lf<15dBΔ t<13ms时)1ms的 时间差相当于5dB的声级差。
t 0 LI 0
当两个扬声器信号相位相反,又有声级差可 形成界外立体声。
sin
LI L
( LIR
)
产
生
差
拍
。
(听觉:声音发颤)
增四度
3全
掩蔽效应
什么是掩蔽效应是 掩蔽效应的类型 掩蔽效应的一般特点 例 题
什么是掩蔽效应
当两个或两个以上的声音号同时存在 时,其中一个声音在听觉是会掩盖另一个 声音。(影响人对另一个声音的听觉能力)
掩蔽效应的类型
纯音的掩蔽效应 复音的掩蔽效应 噪声掩蔽 非同时掩蔽 中枢掩蔽
400
10 lg
p2 rms
p02
10 lg
400
0c
10 lg I 20 lg prms
I0
p0
4)响度级
测试条件 测试方法 响度级
测试条件
声源在被测试者的上方 声源为自由平面波 测量声压级时测试者不在场 用双耳听声音 年龄在18—25岁之间
测试方法
响度级
将某一频率的声音与1KZ的声音进行 比较,当感觉两者的响度一致时,1KZ声 音的声压级就是该声音的响度。一般用S表 示(单位为宋)。或用响度级P表示(单位 为方)二者的关系如下:
纯1度
11
纯八度
f2 f1 1:1
f2
f1
2 1
5全2半
15
纯五度
f2
f1
3 2
第五节、人耳的听觉感知特性
声压级
为什么引入声压级? 1、人耳有一个很奇怪的特点,其主观感受 的响度并不正比于声压的绝对值,而是大致 正比于声压的对数值。 2、人耳能听到的最低声压2×10-5Pa(听 阈值)到人耳感觉到疼痛20Pa(痛阈值) 的声压之间相差近100万倍,因此用声压 的绝对值来表示声音的强弱显然也是很不方 便的。
响度
人耳对声音强弱的主观感觉称为响度。 在客观的度量中,声音的强弱是由声波的振 幅(声压)决定的。 声压越大则响度越大。当人们用较大的力量 敲鼓时,鼓膜振动的幅度大,发出的声音响; 轻轻敲鼓时,鼓膜振动的幅度小,发出的声 音弱。
注意
响度与声波的振幅并不完全一致。 响度不仅取决于振幅的大小,还取决于频率 的高低。 振幅越大,说明声压级越大,声音具有的能 量也越大,而响度则说明对听觉神经刺激的 程度。
等响度曲线
由于响度是指人耳对声音强弱的一种主观感 受,因此,当听到其他任何频率的纯音同声 压级为40dB 的1kHz的纯音一样响 时,虽然其他频率的声压级不是 40dB, 但也定义为40phon。 这种利用与基准音比较的实验方法,测得一 组一般人对不同频率的纯音感觉一样响的响 度级与频率及声压级之间的关系曲线,称为 等响度曲线。--等响曲线
基于以上两方面的原因,所以常用声压的相 对大小 (称声压级)来表示声压的强弱。声 压级用符号SPL表示,单位是分贝 (d B), 可用下式计算:SPL=20LgP/Pref (3-1) P 为声压有效值;Pref为参考声压,一般取 2×10-5Pa,这个数值是人耳所能听到的1 kHz声音的最低声压,低于这一声压,人 耳就无法觉察出声波的存在了。
第五节、人耳的听觉感知特性
由于人耳听觉系统非常复杂,迄今为止人类 对它的生理结构和听觉特性还不能从生理解 剖角度完全解释清楚。 所以,对人耳听觉特性的研究目前仅限于心 理声学和语言声学。 人耳对不同强度、不同频率声音的听觉范围 称为可听域。
教育电声系统 - 人耳听觉特性
音频声学基础
立体声原理
声像及声像定位 德 . 波埃效应 两个发声源馈入信号时间差与声压差的综合作用 不同程度改变输送给两个声源的的声压或者两个信号的时间差, 声像将在y 1 、 y 2 间移动,在声像定位时,声级差ΔL p 与时间差 Δ t 的作用类似,大致对应关系 5dB = 1ms 德· 波埃效应是立体声系统声音重放分布 y1 y2 定向还原的基础
音频声学基础
立体声原理
在不同的空间环境里,声波到达人耳的的时间、强度和音色以 及直达声和反射声的比例都存在着差异,由此可以辨别出声源的方 向、所处位置和远近距离 立体声与单一声源形式相比有如下优点: 1、具有声源明显的方位感和分布感 2、提高了信息的清晰度和可懂度
3、具有较小的背景噪声影响
4、提高了信息的临场感、层次感和透明度 立体声系统能够比单一声源形式更好的
3500Hz
音频声学基础
人耳的听觉效应
复音的掩蔽规律 1、复音声波同样的中心频率,窄带复音声波的掩蔽作用大于 纯音声波,宽带复音声波大于窄带复音声波 2、提高掩蔽声的声压级可以展宽掩蔽的频率范围 3、复音声波包含的几个频率分量,最高的频率被掩蔽,中频 被掩蔽一部分,将形成音色变化
音频声学基础
人耳的听觉效应
神经冲动的传递
音频声学基础
声音与音质
人耳听觉感受的主要表现方面: 响度 是人耳对声波强弱程度的主观感受 响度主要取决于声压或声强,与声波的频率也有一定的关系 响度对应的声压值越低,表示感受越敏感
20Hz 可闻域的频率范围 20KHz
音频声学基础
声音与音质
响度级 是响度的描述单位,表示人耳感受一个声波信号与1000Hz的纯 音声波相比具有同样响时纯音的声压值 人耳对声压级变化感觉:声压级每增加10dB,响度值增加一倍
关于人耳对音频的感应
关于人耳对音频的感应
人耳的听觉特性人耳对声音的方位、响度、音调及音色的敏感程度是不同的。
存在较大的差异。
1、方位感:人耳对声音传播方向及距离、定位的辨别能力非常强。
人耳的这种听觉特性称之为”方位感“。
2、响度感:对微小的声音,只要响度稍有增加人耳即可感觉到,但是当声音响度增加到某一值后,即使再有较大增加,人耳的感觉却无明显的变化。
通常把可听声按倍频关系分为3份来确定低、中、高音频段。
即:低音频段2 O H z一1 6 0 H z、中音频段1 6 O H z一
2 5 O 0H z、高音频段2 50 0 H z一2 0 KH z。
3、音色感:是指人耳对音色所具有的一种特殊的听觉上的综台性感受。
4、聚焦效应:人耳的听觉特性可以从众多的声音中聚焦到某一点上。
如我们听交响乐时,把精力与听力集中到小提琴演奏出的声音上,其它乐器演奏的音乐声就会被大脑皮层抑制,使你听觉感受到的是单纯的小提琴演奏声。
这种抑制能力因人而异,经常做听力锻炼的人抑制能力就强,我们把人耳的这种听觉特性称为“聚焦效应”。
多做这方面的锻炼,可以提高人耳听觉对某一频谱的音色、品质、解析力及层次的鉴别能力。
医学专题第七章人耳的听觉特性4855
鼓膜的振动推动中耳室中三块互相连接的小
骨头——听骨运动。
第十页,共一百零三页。
返回(fǎnhuí)
3、听骨(tīnggǔ)
即位于中耳室中三块互相连接的小骨头。 这三块小骨头分别叫锤骨、砧骨(zhēngǔ)和镫骨, 它们起杠杆放大作用,将鼓膜的振动传到内 耳入口处的椭圆窗膜上。与鼓膜相连的是锤 骨,然后是砧骨和镫骨,这三块听小骨作关 节状连接。听小骨上附有能对强声起反射作 用的肌肉,使强声减低后再传入内耳,起到
§7-1 听觉 系统 (tīngjué)
声波通过人耳转化成听觉神经中的神经脉冲 信号,传到人脑中的听觉中枢,引起听觉。 因此,人们对声音的判别主要是由人耳感官 的结构、特性(tèxìng)造成的。
人耳可以分成三个主要部分,即外耳、中耳 和内耳。 如图:3-1-1
第二页,共一百零三页。
返回(fǎnhuí)
量感指量的多少,即表示高音或低音的多少 等。 各频段量感的多少并不代表(dàibiǎo)器材真正 的好坏,器材之间量感多少的相互搭配才是 最重要的。高、中、低各频段量感的分布也 可以说是频率响应曲线的一方面。
控制指对低频段的控制能力。
第二十七页,共一百零三页。
返回(fǎnhuí)
整体平衡线不是指频率响应曲线的平直,最主要讲高、 中、低频段的适当量感分配(fēnpèi)。低频基础要好,在整 个音乐里造成稳固、稳定状态。大部分 的音乐迷都希望 音乐是很厚实、丰润,不希望高频多过中频、低频,而
第十三页,共一百零三页。
返回(fǎnhuí)
耳蜗(ěr wō)
1、定义
• 耳蜗的外形有点(yǒudiǎn)象蜗牛壳,它是卷曲了2.75
环境工程学_第十二章_噪声_电磁辐射_放射性与其他污染防治技术
噪声、电磁辐射、放射性 与其他污染防治技术
噪声的基本概念
物理学:是声波的频率和强弱变化毫无规律, 杂乱无章的声音.
心理学: 人们不需要,使人烦躁的声音 种类: 空气动力性;机械性;电磁性;电声性 噪声污染的特点:
◦ 相对性 ◦ 局部性 ◦ 时间性 ◦ 慢性和间接性
噪声之源
噪声的频谱
(一)噪声分析的基本知识
声音的频率就是声源振动的频率; 人耳听到的声音有的低沉,有的尖锐主要是声音的音
调的高低引起的,而音调是人耳对声源振动频率的主 观感受。
声音可按频率分为:次声(<20Hz)、可听声(20~ 20000Hz)、超声(>20000Hz);
噪声控制主要研究可听声,可听声可分为:低频声 (<500Hz)、中频声(500~2000Hz)、高频声 (>2000Hz)。
会被环境噪声完全掩盖; 当噪声级超过90dB时,即使大喊大叫也难以进
行正常交谈。
噪声的危害
5、特强噪声会对仪器设备和建筑结构造成危害 当噪声级超过135dB时,电子仪器的连接部位
会出现错动,微调元件发生偏移,使仪器发 生故障而失效; 当超过150dB时,仪器的元件可能失效或损坏; 当噪声超过140dB时,轻型建筑物会遭受损伤。
声场:空间中存在声波的区域。 声能密度D:声场中单位体积媒质所含有的声能量,
单位:J/m3。
(一)声压、声能量、声强和声功率
3、声强I
单位时间内,通过和声波射线垂直的单位面积内的声 能量称为声强,即在传播方向上通过单位面积上的声 功率。单位:W/m2。
声强与离开声源的距离有关:
(一)声压、声能量、声强和声功率
有效声压pe:一段时间内声压的均方根值。由于人耳无 法感受声压的起伏,只能感受一个稳定的有效声压。
第四讲人耳听觉特性
可闻声的频段划分(二) 一.倍频程划分
1/3倍频程各中心频率:25,31.5,40,50,63,80,100,125,160,200, 250,315,400,500,800,1K,1.25K,1.6K,2K,2.5K, 3.15K,4K,5K,6.3K,8K,10K,12.5K,16K,20K
人耳的听觉范围
等响度曲线 一.等响度曲线:
声压不同、频率不同但听起来却有同等响度的声压级连接起来 组成的曲线
响度的单位为:宋(Song)
响度级单位为:方(Phon)
等响度曲线
一.等响度曲线表现出的规律:
低声压级时,等响度曲线上各频率声音声压级相差很大。
高声压级时,等响曲线较为平坦,说明在高声压时,各频率的听 感等响基本相同。 曲线簇在高频段,高响度级与低响度级的曲线斜率及其间隔基本 一致,说明高频段的响度变化与声压级增量基本一致,
第四讲
人耳听觉特性
常见声音的声压 一.声压
声源或噪音源 在发出最大马力时的太空穿梭机
大约的声压 (单位为 µ Pa)
2,000,000,000
交响乐团
在25米范围柴油货运火车高速前进 正常的谈话 图书馆2米范围的低语 播音室 人类耳朵能够听到最微弱的声音
2,000,000
200,000 20,000 2,000 200 20
课后练习 一.声级计是用来做什么,怎么使用? 二.听觉的生理与心理特性主要有哪些? 三.立体声听起来是什么感觉?
音色
一.音色:
1. 音色又称音质,是人耳对声音声谱的主观听觉反映。音色不但取
决于基频,而且与基频成整倍数的谐波密切有关 。
二.声与音的区别
1. 《乐记》: “单出曰声,杂比曰音” 2. 纯音:单一频率的音称为纯音。 3. 复合音,由好几个不同的频率所组成的频率。 4. 噪音:指任何难听的、不和谐的声或干扰,有时也指在有用频带 内的任何不需要的干扰 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学家利用电子断层摄影术(electron tomography),绘制 了几百张不同的角度的蛋白质结构图,并将它们重构成为一 个三维立体复合图。 绘制出的结构图像显示,人的内耳里有 大量的长着听觉细胞感受体(hair bundle)的毛细胞。这些 听觉细胞感受体在耳膜振动时随着空气的流动而摆动,就像 微风拂过时麦子的随风轻摆。通过近距离地放大可以看到, 每束听觉细胞感受体由单独的被称为“静纤毛”的纤毛组成。 相邻的静纤毛由蛋白质纤维联系起来,也称为“端部联 结”(tip links)。当静纤毛开始摆动,端部联结被拉伸,从而在一瞬间 打开了一个传声渠道,允许带正电荷的离子进入毛细胞,从 而引起神经传递物质释放,最终到达中枢神经系统,为大脑 所识别。这种方式我们可以简单看作是由机械地振动,引起 传声渠道的开放,将振动转化为电信号,并最终为我们以蝉 鸣、鸟叫或是人的语言的形式所听到。
(2)时域掩蔽 所谓时域掩蔽是指掩蔽效应发生在掩蔽声与 被掩蔽声不同时出现时,又称异时掩蔽。异时掩 蔽又分为超前掩蔽和滞后掩蔽。若掩蔽声音出现 之前的一段时间内发生掩蔽效应,则称为超前掩 蔽;否则称为滞后掩蔽。 产生时域掩蔽的主要原因是人的大脑处理信息需 要花费一定的时间,异时掩蔽也随着时间的推移 很快会衰减,是一种弱掩蔽效应。一般情况下, 导前掩蔽只有3ms—20ms,而滞后掩蔽却可以持 续50ms—100ms。
人耳听觉特性
一、人耳的构造 二、我们如何感知声音 三、人耳对声音的响度感觉 四、人耳对声音的音调感觉 五、人耳对声音的音色感觉
一、人耳构造
耳壳:阻抗匹配 外耳 耳道:传导 耳膜:接收声波振动 听小骨:杠杆放大 圆形窗
中耳
内耳: 耳蜗:形成神经脉冲,形成听觉
一、人耳的构造
看书:P45 图4-2 人耳结构功能类比: P46图4-3 外耳:拾音; 中耳:放大; 内耳:信号分析
可听声的强度和频率范围
等响度曲线
利用与基准音比较的方法,测出整个可听 范围的纯音响度级,这就是等响度曲线。 曲线表示了响度级、声压级与频率三者之 间的关系。
等响度曲线的特点:
★在较低的声压级上,等响上曲线各频率声音的声压级相差很大, 在较低的声压级上,等响上曲线各频率声音的声压级相差很大,
三、人耳对声音的响度感觉
响度是判断声音强弱的一种属性。人耳听觉的响度主要与声 音的强度和频率有关。 正常的听觉频率范围20—20KHz,强度范围-5dB—130dB 人们日常对话音量的动态范围为30dB至70dB,聆听音乐时约 为20dB至100dB。 对正常年轻人而言,對正常的年輕人而言,听觉频率范围 20—20KHz,但实际上人耳对于16KHz以上的高频声的响 应已经相当不敏感,特别是中老年人听觉频率感受的上限部 分的灵敏度衰减很多。
纯音间的掩蔽 ①对处于中等强度时的纯音最有效的掩 蔽是出现在它的频率附近。 ②低频的纯音可以有效地掩蔽高频的纯 音,而反过来则作用很小。 P51 图4-8
噪音对纯音的掩蔽: 噪音是由多种纯音组成,具有无限宽的 频谱 。 若掩蔽声为窄带噪声,被掩蔽声为纯音, 其中位于被掩蔽音附近的由纯音分量组成 的窄带噪声即临界频带的掩蔽作用最明显。
响度与响度级关系:
N =2 L N = 40 + 10 log 2 N
N为响度,LN为响度级
( L N − 40 ) /10
计权声级
如何将测量值与主观听感统一起来呢? 我们可以设计一种均衡网络,或者叫加权 网络,对低频和高频都加以适度的衰减, 这样中频便更突出。把这种加权网络接在 被测器材和测量仪器之间,于是器材中频 噪声的影响就会被该网络“放大”,换言 之,对听感影响最大的中频噪声被赋予了 更高的权重,此时测得的声级就叫计权声 级
最新研究: 日前柏克莱实验室的科学家首次绘制出了人类 内耳用于控制听觉和平衡的蛋白质结构。人类的 耳朵被誉为自然界最精密的“机械”,其耳内的 蛋白质结构,轻薄如细丝,称为蛋白质纤维,它 能将声音的机械振动转变为可以为大脑所识别的 电子信号。虽然它们仅有4纳米宽,160纳米长 (一纳米等于一百万分之一米),但一旦它们受 到损害,那么人的听力将受损。
响度级的单位为:“方”(phon) 以1000Hz纯音为基准声音,其他频率的纯 音和它相比较。
响度与强度的对数成正比。现代心理物理 学进行了响度的定量判断实验,并建立了 响度量表。 响度的单位为:“宋”(son)。 1 宋的定义为40dB、1000Hz 纯音所引起的 响度,大致相当于耳语的声级。
计权网络有多种曲线形状,分别以A、B、 C来表示,以针对不同的场合。相应地,测 得的参数就是A计权、B计权、C计权。 单位记作 dB(A) 、 dB(B) 和 dB(C) 。
A加权曲线是基于40 Phon的等响曲线, 当量测较低的声音时,建议使用它较佳. B加权曲线是基于70 Phon的等响曲线,当量测中 段的声音时建议使用它较适合, , C计权网络是基于100方等响曲线,在整个可听频 率范围内近于平直,它让所用频率的声音近于一 样程度的通过,基本上不衰减,因此C计权网络 表示总声压级。
声压在20~55 dB SPL范围内,建议使用A 加权曲线网络. 声压在55~85 dB SPL范围内,建议使用B 加权曲线网络. 声压在85~140 dB SPL范围内,建议使用C 加权曲线网络. 当在量测噪音时,无论其声压是低或高,建议 使用A加权曲线网络.
掩蔽效应
人耳对一个声音的听觉灵敏度因为另一个 声音的存在而降低的现象。 掩蔽量——因掩蔽效应听阈提高的分贝数 掩蔽量取决于声音之间的频谱关系、声压 级差以及到达听者耳朵的时间和相位关系。
二、我们如何感知声音
人可以通过两种途径听到声音: 第一种途径: 外界声音——鼓膜——听小骨及 其它组织——听觉神经——大脑 第二种途径(骨传导): 声音——头骨、颌骨——听觉神 经——大脑
正常人通过这两种途径都能听到声音,耳 聋的人则是通过第二种途径听到声音。 例如:伟大的音乐家贝多芬耳聋后就是用 牙咬住木棒的一端,另一端顶在钢琴上听 自己演奏的琴声。
所谓临界频带是指当某个纯音被以它为中心频率, 且具有一定带宽的连续噪声所掩蔽时,如果该纯 音刚好能被听到时的功率等于这一频带内噪声的 功率,那么这一带宽称为临界频带宽度。 临界频带的单位叫巴克(Bark),1Bark=一个临界 (Bark) 1Bark 频带宽度。频率小于500Hz时,1Bark约等于freq 500Hz 1Bark freq /100;频率大于500Hz时,1Bark约等于 9+41og(freq/1000),即约为某个纯音中心频率 的20%。 通常认为,20Hz--16kHz范围内有24个 子临界频带。而当某个纯音位于掩蔽声的临界频 带之外时,掩蔽效应仍然存在。
掩蔽类型 (1)频域掩蔽 是指掩蔽声与被掩蔽声同时作用时发 生掩蔽效应,又称同时掩蔽。这时,掩蔽 声在掩蔽效应发生期间一直起作用,是一 种较强的掩蔽效应。通常,频域中的一个 强音会掩蔽与之同时发声的附近的弱音, 弱音离强音越近,一般越容易被掩蔽;反 之,离强音较远的弱音不容易被掩蔽。
例如,—个1000Hz的音比另一个900Hz的音 高18dB,则900Hz的音将被1000Hz的音掩 蔽。而若1000Hz的音比离它较远的另一个 1800Hz的音高18dB,则这两个音将同时被 人耳听到。若要让1800Hz的音听不到,则 1000Hz 1000Hz的音要比1800Hz的音高45dB。 1800Hz 45dB 一般来说,低频的音容易掩蔽高频的 音;在距离强音较远处,绝对闻阈比该强 音所引起的掩蔽阈值高,这时,噪声的掩 蔽阈值应取绝对闻阈。
较高的声压级上,等响曲线较为平坦,说明各频率的声压级基本相同。 较高的声压级上,等响曲线较为平坦,说明各频率的声压级基本相同。
高频段的响度变化与声压级增量基本一致, ★高频段的响度变化与声压级增量基本一致,低频段声压级的微小变化会 导致响度的较大变化。 导致响度的较大变化。
这说明:在响度级较小时, 这说明:在响度级较小时,高、低频声音灵敏度降低较明显,而低 低频声音灵敏度降低较明显, 频段比高频段灵敏度降低更加剧烈,一般应特别重视加强低频音量。 频段比高频段灵敏度降低更加剧烈,一般应特别重视加强低频音量。