大学物理习题册A参考答案(1)
大学物理A1习题册参考答案-第5-6章
A1r 2r ab1、 下列几个叙述中哪一个是正确的?A 、电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;C 、场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正可负; D 、以上说法都不正确。
[ ] 1. C解释:A 答案点电荷可能有正负;B 答案场强是矢量2、 关于高斯定理的理解有下面几种说法,其中正确的是 A 、如果高斯面内无电荷,则高斯面上E处处为零; B 、如果高斯面上E处处不为零,则该面内必无电荷;C 、如果高斯面内有净电荷,则通过该面的电通量必不为零;D 、如果高斯面上E处处为零,则该面内必无电荷。
[ ] 2. C解释:A 答案通量为零不一定场强为零;D 答案考虑等量异号电荷,可以使得处处为零。
3、 在静电场中,下列说法中哪一个是正确的?A 、带正电荷的导体,其电势一定是正值;B 、等势面上各点的场强一定相等;C 、场强为零处,电势也一定为零;D 、场强相等处,电势梯度矢量一定相等。
[ ] 3. D解释:A 答案电势是个相对值,要参考零电势的选择。
4、 如图所示,在电荷为Q -的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为1r 和2r ,则移动过程中电场力做的功为 A 、012114Q r r πε⎛⎫-- ⎪⎝⎭; B 、012114qQ r r πε⎛⎫- ⎪⎝⎭;C 、012114qQ r r πε⎛⎫-- ⎪⎝⎭; D 、()0214qQ r r πε-- [ ]4. C解释:电场力做功等于电势能差,注意正负号。
5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 5. D解释:由高斯定理依次求出各部分场强即可。
大学物理课后习题1第一章答案
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理习题册及解答第二版第一章质点的运动
7 汽车在半径为200m的圆弧形公路上刹车,刹车开始阶段的路程
随时间的变化关系为 S 20t 0.2t3(SI),汽车在t=1s时的切向加速
度
,法向加速度大小为 ,加速度的大小和方向为
和
。
at
d 2S dt 2
1.2t
1.2m / s2
an
2
R
1 dS R dt
2
(20 0.6t 2 )2 R
第一章 质点的运动(一)
一、选择题
1 某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则
该质点作 (A)匀加速直线运动,加速度沿x轴正方向. (B)匀加速直线运动,加速度沿x轴负方向. (C)变加速直线运动,加速度沿x轴正方向. (D)变加速直线运动,加速度沿x轴负方向.
2
一质点在某瞬时位于位矢 r(
2
4 一质点沿x方向运动,其加速度随时间变化关系为a =3+2t(SI) , 如果初始时质点的速度v0为5m/s,则当t为3s时,质点的速度v
=_2__3_m_/_s_
5.一质点作半径为 0.1 m的圆周运动,其角位置的运动学方程为:
π
1 t2
(SI)
42
则其切向加速度为 a
R
R d 2
0.1m / s2
定要经过2m的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零. (D) 物体加速度越大,则速度越大.
3. 在相对地面静止的坐标系内, A、B 二船都以3m/s 的速率匀
速行驶, A 船沿x轴正向, B船沿y轴正向,今在船 A 上设置与静
(A)
1 2
大学物理课后习题册答案 第二版王建邦主编
参考答案 第一章1-1 已知质点运动学方程分量式为2x t =262y t =- (1)求轨道方程,并画出轨迹图;(2)求1t =到2t =之间的∆r ,r ∆和v ;(本题中x ,y的单位是m ,t 的单位是s ,v 的单位为1s m -⋅。
)[答案] (1)262x y =-,(2)26-i j ,0,26-i j .(1)由质点在水平方向、竖直方向的位置-时间函数关系:2x t=262y t =-消去t ,得轨道方程为262x y =-轨迹为抛物线,如题1-1图所示。
(2)将质点的位矢分量式:2x t =262y t =-代入位矢()()()t x t y t ==+r r i j ,可得质点的位置矢量22(62)t t =+-r i j 。
代入时间参量t ,得质点在某一时刻的位置r 。
由质点位移和平均速度的定义,可求得21∆=-r r r 21r r r ∆=- t∆=∆r v1-2 如图1-2所示,一足球运动员在正对球门前25.0m 处以120.0m s -⋅的初速/y率罚任意球,已知球门高为3.44m 。
若要在垂直于球门竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球(足球可视为质点)?[答案] 171.1169.92θ≥≥,127.9218.89θ≥≥. 以踢球点为坐标原点取平面坐标系xOy 。
按高中物理,设斜抛小球初速度0v ,斜抛仰角0θ,写出小球水平方向、竖直方向的位置-时间函数关系:00cos x v t θ= (1)2001sin 2y v t gt θ=- (2)消去t 得足球的轨迹方程 202200tan 2cos gy x x v θθ=-依题意以25.0x m =,120.0v m s -=⋅及3.440m y ≥≥代入后,可解得 171.1169.92θ≥≥ 127.9218.89θ≥≥。
1-3 一质点在xy 平面内运动,在某一时刻它的位置矢量(45)m =-+r i j ,经5s t ∆=后,其位移(68)m ∆=-r i j 。
大学物理课后习题答案
一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
以时间t 为变量,写出质点位置矢量的表示式;计算第1秒内质点的位移;计算0t = s 时刻到4t = s 时刻内的平均速度;求出质点速度矢量表示式,计算4t = s 时质点的速度;计算0t = s 到4t = s 内质点的平均加速度;求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和解:23d d 23++==t t txv 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x 将t =3s 代入证1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一力作用下,物体A 从静止开始均匀加速的下滑,在∆t= s 内下降的距离h= m 。
求物体开始下降后3s 末,轮一点的切向加速度与法向加速度。
解:物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s3='t 切向加速度,即在s 3='t 时的法向加速度为1—10 一电梯以21.2m s -的加速度下其中以乘客在电梯开始下降后0.5s 时用手在离电梯底板1.5m 高处释放以小球,求此小球落到底板上所需的时地面下降的距离。
《大学物理A》力学部分习题解答
Y
V BA
V B地
V 地A
0
图 1.12
V A地
X
1.31、一质点沿 X 轴运动,其加速度 a 与坐标 X 的关系为
a 2 6 x 2 ( SI ) ,如果质点在原点处的速度为零,试求其在任意位置处的速
度? 解: a
dv dv dx dv v 2 6 x 2 ,利用分离变量积分解此题 dt dx dt dx
dt
,
x
k t k v0 (1 e m ) , m
t 时, x 有最大值且为 xmax
第三章
k v0 m
。
3.1、一质量为 1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系 数=0.20,滑动摩擦系数=0.16,现对物体施一水平拉力 F=t+0.96(SI),则 2 秒末物体的速度大小 v=______________。 题意分析:在 01 s 内, F<mg=1.96 ,未拉动物体.当拉力大于(克服)最大 静摩擦力后,物体开始运动,力对时间积累的效果称为:合外力对物体在 dt 时间内 的冲量。 解题思路:从题意分析中得出解题思路:由力对时间的积累,即力对时间的 积分,求出冲量,再求速度。 解题:在 1 s2 s 内, I (t 0.96) d t mg (t 2 t1 ) 0.89 N s
t1 0
t2
20
20 0
18( N ) .
3.5、一质量为 m 的物体,以初速 v0 成从地面抛出,抛射角 300 ,如忽略空
气阻力,则从抛出到刚要接触地面的过程中 (1) 物体动量增量的大小为 (2) 物体动量增量的方向为 提示: p p2 p1 。 。
大学物理a考试题及答案详解
大学物理a考试题及答案详解一、选择题(每题2分,共20分)1. 根据牛顿第二定律,作用在物体上的力F与物体的质量m和加速度a之间的关系是:A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A2. 光在真空中的传播速度是:A. 299,792 km/sB. 299,792 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 km/s答案:C3. 根据能量守恒定律,一个封闭系统的总能量:A. 随时间增加B. 随时间减少C. 保持不变D. 无法确定答案:C4. 一个物体从静止开始做匀加速直线运动,其位移s与时间t的关系是:A. s = 1/2at^2B. s = at^2C. s = 2atD. s = at答案:A5. 两个点电荷之间的库仑力与它们之间的距离r的关系是:A. F ∝ 1/r^2B. F ∝ r^2C. F ∝ 1/rD. F ∝ r答案:A6. 根据麦克斯韦方程组,电磁波在真空中的传播速度与光速的关系是:A. 相同B. 不同C. 无法确定D. 无关系答案:A7. 一个物体在水平面上受到一个恒定的力F作用,其加速度a与力F和摩擦力f的关系是:A. a = F - f/mB. a = F/m - fC. a = (F - f)/mD. a = F/m + f答案:C8. 根据热力学第一定律,一个系统的内能变化ΔU与做功W和热传递Q的关系是:A. ΔU = W + QB. ΔU = W - QC. ΔU = Q - WD. ΔU = -W - Q答案:A9. 一个单摆的周期T与摆长L和重力加速度g的关系是:A. T = 2π√(L/g)B. T = 2π√(g/L)C. T = 2πL/gD. T = 2πg/L答案:A10. 根据相对论,一个物体的质量m与其速度v和光速c的关系是:A. m = m0/√(1 - v^2/c^2)B. m = m0√(1 - v^2/c^2)C. m = m0(1 - v^2/c^2)D. m = m0 + v^2/c^2答案:A二、填空题(每空1分,共10分)1. 一个物体的动量p等于其质量m乘以速度v,即 p = ________。
大学大学物理习题解答参考答案-导体与电介质的静电场(一)
20XX年复习资料大学复习资料专业:班级:科目老师:日期:导体与电介质的静电场(一)20XXXX-1-1. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ] 20XXXX-1-2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A)N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]20XXXX-1-3. 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:(A) 1 = -, 2 = +.(B) 1 =σ21-, 2 =σ21+. (C) 1 =σ21-, 1 =σ21-. (D) 1 = -, 2 = 0. [ ]20XXXX-1-4. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ ] 20XXXX-1-5. 一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q 0PM N A B +σ12(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204r E ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 20XXXX-1-6. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh . [ ] 20XXXX-1-7. 一带电大导体平板,平板二个表面的电荷面密度的代数和为 ,置于电场强度为0E 的均匀外电场中,且使板面垂直于0E 的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为:(A) 002εσ-E ,002εσ+E . (B) 002εσ+E ,002εσ+E . (C) 002εσ+E ,002εσ-E . (D) 002εσ-E ,002εσ-E . [ ] 20XXXX-1-8. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B板接地,则AB 间电场强度的大小E 为 (A) S Q 012ε . (B) SQ Q 0212ε-. (C) S Q 01ε. (D) SQ Q 0212ε+. [ ] 20XXXX-1-9. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R q επ . (B) 204R q επ . O P r a b d b a hh σ 0E +Q 1 +Q 2 A B q q R 1 R 2(C) 102R q επ . (D) 20R qε2π . [ ] 20XXXX-1-20XXXX. 两个同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若分别带上电荷q 1和q 2,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A) U 1. (B) U 2.(C) U 1 + U 2. (D) )(2121U U +. [ ]20XXXX-1-20XXXX. 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为(A) 0 . (B) dq 04επ. (C)R q 04επ-. (D) )11(40R d q -πε. [ ]20XXXX-1-20XXXX. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为1和2,如图所示.则比值1 / 2为(A) d 1 / d 2. (B) d 2 / d 1.(C) 1. (D) 2122/d d . [ ]20XXXX-1-20XXXX. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.[ ]20XXXX-1-20XXXX. 一半径为R 的薄金属球壳,带电荷-Q .设无穷远处电势为零,则球壳内各点的电势U 可表示为: (041επ=K ) (A) R Q K U -<. (B) RQ K U -=. R O d +q d 1 d 2 σ2 σ1P(C) R Q K U ->. (D) 0<<-U RQ K . [ ] 20XXXX-1-20XXXX. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A) 球壳内、外场强分布均无变化.(B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ ] 20XXXX-1-20XXXX. 在带有电荷+Q 的金属球产生的电场中,为测量某点场强E ,在该点引入一电荷为+Q/3的点电荷,测得其受力为F .则该点场强E 的大小(A) Q F E 3=. (B) QF E 3>. (C) QF E 3<. (D) 无法判断. [ ] 20XXXX-1-20XXXX. 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀.(B) 内表面不均匀,外表面均匀.(C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ ]20XXXX-1-20XXXX. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D 通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]20XXXX-1-20XXXX. 关于静电场中的电位移线,下列说法中,哪一个是正确的?(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ ]20XXXX-1-20XX. 一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r -0)E . [ ]导体与电介质的静电场(二)20XXXX-2-1. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E > E 0,两者方向相同. (B) E = E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ ]20XXXX-2-2. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ ]20XXXX-2-3. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]20XXXX-2-4. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动.(C) 向下运动. (D) 是否运动不能确定. [ ]20XXXX-2-5. 两只电容器,C 1 = 8 F ,C 2 = 2 F ,分别把它们充电到 20XXXX00 V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0 V . (B) 20XX0 V .(C) 600 V . (D) 20XXXX00V . [ ]20XXXX-2-6. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 20XXXX 、电场强度的大小E 、电场能量W 将发生如下变化:(A)U 20XXXX 减小,E 减小,W 减小.(B) U 20XXXX 增大,E 增大,W 增大.(C) U 20XXXX 增大,E 不变,W 增大.(D) U 20XXXX 减小,E 不变,W 不变. [ ] E E 0+q mC 1 C 220XXXX-2-7. C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则 (A) C 1极板上电荷增加,C 2极板上电荷增加.(B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ ]20XXXX-2-8. C 1和C 2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示. 则 (A) C 1上电势差减小,C 2上电势差增大.(B) C 1上电势差减小,C 2上电势差不变.(C) C 1上电势差增大,C 2上电势差减小.(D) C 1上电势差增大,C 2上电势差不变. [ ]20XXXX-2-9. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ ]20XXXX-2-10. C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小.(B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小. (D) C 1的电容减小,电容器组总电容增大. [ ]20XXXX-2-11. C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷增大. [ ]20XXXX-2-12. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ ]C 1 C 2C 1 C 2C 1 C 212C 1 C 220XXXX-2-13. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ ]20XXXX-2-14. 如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ ]20XXXX-2-15. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ]20XXXX-2-16. 用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将(A) 都增加.(B) 都减少.(C) (a)增加,(b)减少.(D) (a)减少,(b)增加. [ ]20XXXX-2-17. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ ]20XXXX-2-18. 两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小.(B) C 1上的电荷大于C 2上的电荷.(C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. [ ]20XXXX-2-19. 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两qF F 充电后仍与电源连接 充电后与电源断开C 1C 2极板间距离拉大,则极板上的电荷Q、电场强度的大小E和电场能量W将发生如下变化(A) Q增大,E增大,W增大.(B) Q减小,E减小,W减小.(C) Q增大,E减小,W增大.(D) Q增大,E增大,W减小.[]20XXXX-2-20. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.[]。
《新编大学物理》(上、下册)教材习题答案
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理A 练习题 第8章《光的偏振》答案
第8章 光的偏振一、选择题1(B),2(B),3(B),4(A),5(B),二、填空题(1). 2, 1/4(2). 1/ 2(3). I 0 / 2, 0(4). 1.48 tan560(5). 遵守通常的折射,不遵守通常的折射. 传播速度,单轴三、计算题1. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏 振片后的光强 I 1=I 0 / 2.透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5°2. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2I 2=I 1cos 260°=I 0 / 83. 如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).解:(1) 经P 1后,光强I 1=21I 0 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 0 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16得 cos α=1 / 2 即 α =60°4.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33;tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°.四研讨题1. 为了得到线偏振光,就在激光管两端安装一个玻璃制的“布儒斯特窗”(见图),使其法线与管轴的夹角为布儒斯特角。
大学物理习题与答案解析
a d dvtt28j(m2/)s
大学物理
3、质点作直线运动,加速度 a2Asint,已知
t 0时质点初始状态为x 0
动学方程为xAsi n .t0
、v0 A、该质点运
解:
vv0
t
a
0
dt A
t2As
0
intdt
AAcostA
Acost
t
t
即 a2ct, t a 2c
vx vy
vvx 2vy 2a24c2t22a
大学物理
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
当它升空时的速度为 v 100 m/s
.
3
解: x 1 at 2 2
a2t2x2 352 000190m2/s
答:B
v(m / s)
2
0到7秒的位移为:
0
r 2 22 2 2 2 2 3 1 i 3 .5 im1
坐标为:x23 .55 .5 m
t(s) 24 5 7
大学物理
3、一质点沿x轴运动的规律是 xt24t5,其中x以m 计,t以s计,则前3s内它的位移和路程分别是
(A)位移和路程都是3m. (B) 位移和路程都是-3m .
dvy dy
则
a vy
dvy dy
kvy2
分离变量得 :
dvy kdy vy
两边积分得 :
v dvy
y
k dy
v v0 y
0
v v0eky
大学物理
3、一质点沿半径为1 m 的圆周运动,运动方程
为 23t,3 式中以弧度计,t以秒计,求:(1) t=2 s
《大学物理A1》试练习题及答案
《大学物理A1》试练习题及答案力学部分一、选择题1.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 DA.匀加速直线运动,加速度沿x 轴正方向.B.匀加速直线运动,加速度沿x 轴负方向.C.变加速直线运动,加速度沿x 轴正方向.D.变加速直线运动,加速度沿x 轴负方向.2.某一滑雪装置,其在水平面上的运动学方程为x =3t 2-5(SI),则该质点作(a=6)AA.匀加速直线运动,加速度沿x 轴正方向.B.匀加速直线运动,加速度沿x 轴负方向.C.匀速直线运动,加速度沿x 轴正方向.D.匀速直线运动,加速度沿x 轴负方向.3.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 B A.5m . B.2m .C.0.D.-2 m . 4.一质点在平面上由静止开始运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 BA.匀速直线运动.B. 变速直线运动.C. 抛物线运动.D.一般曲线运动.5.一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s 为单位,则4秒末质点的速度和加速度为 ( B )A.12m/s 、4m/s 2;B.-12 m/s 、-4 m/s 2 ;C.20 m/s 、4 m/s 2 ;D.-20 m/s 、-4 m/s 2;6.一质点在y 轴上运动,其坐标与时间的变化关系为x =4t 2-2t ,式中x 、t 分别以m 、s 为单位,则2秒末质点的速度和加速度为 ( B )A.14m/s 、-8m/s 2;B.-14 m/s 、-4 m/s 2 ;C.14 m/s 、8m/s 2 ;D.-14 m/s 、-8 m/s 2;7.下列哪一种说法是正确的 C -12A.运动物体加速度越大,速度越快B.作直线运动的物体,加速度越来越小,速度也越来越小C.切向加速度为正值时,质点运动加快D.法向加速度越大,质点运动的法向速度变化越快8.下列哪一个实例中物体和地球构成的系统的机械能不守恒? CA.物体作圆锥摆运动.B.抛出的铁饼作斜抛运动(不计空气阻力).C.物体在拉力作用下沿光滑斜面匀速上升.D.物体在光滑斜面上自由滑下. 9.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f BA.恒为零.B.不为零,但保持不变.C.随F 成正比地增大.D.开始随F 增大,达到某一最大值后,就保持不变10.谐振动过程中,动能和势能相等的位置的位移等于 A.4A ± B. 2A ± C. 23A ± D. 22A ± 11.质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 AA.9 N·s . B .-9 N·s .C.10 N·s .D.-10 N·s .12.一质点作匀速率圆周运动时 CA.它的动量不变,对圆心的角动量也不变。
大学物理学课后答案(湖南大学出版社)1 - 副本
第十二章 真空中的静电场12.4 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零. [解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向. 再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2. .12.8 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).图12.4第十三章 静电场中的导体和电介质13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势迭加,大小为 000111444o q q Q q U r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q 1 = σ1S 和q 2 = σ2S ,在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0,A 、C 间的场强为 E 2 = σ2/ε0. 设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ② 即 σ1d 1 = σ2d 2. ③解联立方程①和③得 σ1 = qd 2/S (d 1 + d 2), 所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C); q 2 = q - q 1 = 1×10-8(C). B 、C 板上的电荷分别为 q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C).(2)两板电势差为 ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0,所以 ε0 = 10-9/36π, 因此 ΔU = 144π = 452.4(V).由于B 板和C 板的电势为零,所以 U A = ΔU = 452.4(V).13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为 120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-. 当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为 W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为 W 1:W 2 = C 1:C 2 = 1:2.图13.3图13.4第十四章 稳恒磁场14.1 通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B = ?[解答]电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律:002d d 4I rμπ⨯=l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为 012d d 4I l B aμπ=, 由于 d l = a d φ, 积分得 11d LB B =⎰3/200d 4I aπμϕπ=⎰038Ia μ=. OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为022d sin d 4I l B rμθπ=, 由于 l = b cot(π - θ) = -b cot θ, 所以 d l = b d θ/sin 2θ;又由于 r = b /sin(π - θ) = b /sin θ,可得 02sin d d 4I B bμθθπ=,积分得3/402/2d sin d 4LI B B b ππμθθπ==⎰⎰3/400/2(cos )48IIb bππμθππ=-=同理可得CD 段在O 点产生的磁场B 3 = B 2. O 点总磁感应强度为012338I B B B B a μ=++=. [讨论](1)假设圆弧张角为φ,电流在半径为a 的圆心处产生的磁感应强度为04IB aμϕπ=.(2)有限长直导线产生的磁感应大小为 012(cos cos )4IB bμθθπ=-. 对于AC 段,θ1 = π/2、θ2 = 3π/4;对于CD 段,θ1 = π/4、θ2 = π/2,都可得0238IB B bπ==.上述公式可以直接引用.14.2 如图所示的载流导线,图中半圆的的半径为R ,直线部分伸向无限远处.求圆心O 处的磁感应强度B = ?[解答]在直线磁场公式012(cos cos )4I B Rμθθπ=-中,令θ1 = 0、θ2 = π/2,或者θ1 = π/2、θ2 = π,就得半无限长导线在端点半径为R 的圆周上产生的磁感应强度 04I B Rμπ=.两无限长半直线在O 点产生的磁场方向都向着-Z 方向,大小为B z = μ0I /2πR . 半圆在O 处产生的磁场方向沿着-X 方向,大小为B x = μ0I /4R . O 点的磁感应强度为0042x z IIB B RRμμπ=--=--B i k i k . 场强大小为B ==与X 轴的夹角为 2arctan arctan z x B B θπ==.14.3 如图所示的正方形线圈ABCD ,每边长为a ,通有电流I .求正方形中心O 处的磁感应强度B = ?[解答]正方形每一边到O 点的距离都是a /2,在O 点产生的磁场大小相等、方向相同.以AD 边为例,利用直线电流的磁场公式:012(cos cos )4I B Rμθθπ=-,令θ1 = π/4、θ2 = 3π/4、R = a /2,AD 在O 产生的场强为 AD B =, O 点的磁感应强度为 4AD B B ==, 方向垂直纸面向里.14.14 同轴电缆由导体圆柱和一同轴导体薄圆筒构成,电流I 从一导体流入,从另一导体流出,且导体上电流均匀分布在其横截面积上,设圆柱半径为R 1,圆筒半径为R 2,如图所示.求:(1)磁感应强度B 的分布; (2)在圆柱和圆筒之间单位长度截面的磁通量为多少? [解答](1)导体圆柱的面积为 S = πR 12, 面电流密度为 δ = I/S = I/πR 12.在圆柱以半径r 作一圆形环路,其面积为 S r = πr 2, 包围的电流是 I r = δS r = Ir 2/R 12.根据安培环路定理00d r LI I μμ⋅==∑⎰B l ,由于B 与环路方向相同,积分得 2πrB = μ0I r ,所以磁感应强度为 B = μ0Ir /2πR 12,(0 < r < R 1).在两导体之间作一半径为r 的圆形环中,所包围的电流为I ,根据安培环中定理可得 B = μ0I /2πr ,(R 1 < r < R 2).在圆筒之外作一半径为r 的圆形环中,由于圆柱和圆筒通过的电流相反,所包围的电流为零,根据安培环中定理可得 B = 0,(r > R 2).(2)在圆柱和圆筒之间离轴线r 处作一径向的长为l = 1、宽为d r 的矩形,其面积为 d S = l d r = d r , 方向与磁力线的方向一致,通过矩形的磁通量为 d Φ = B d S = B d r ,总磁通量为 210211d ln 22R R II R r r R μμΦππ==⎰.14.19 均匀带电细直线AB ,电荷线密度为λ,可绕垂直于直线的轴O 以ω角速度均速转动,设直线长为b ,其A 端距转轴O 距离为a ,求:(1)O 点的磁感应强度B ; (2)磁矩p m ;(3)若a >>b ,求B 0与p m .[解答](1)直线转动的周期为T = 2π/ω,在直线上距O 为r 处取一径向线元d r ,所带的电量为 d q = λd r , 图14.17 图14.23形成的圆电流元为 d I = d q/T = ωλd r /2π,在圆心O 点产生的磁感应强度为 d B = μ0d I /2r = μ0ωλd r /4πr , 整个直线在O 点产生磁感应强度为001d ln 44a b a a bB r r aμωλμωλππ++==⎰, 如果λ > 0,B 的方向垂直纸面向外.(2)圆电流元包含的面积为S = πr 2,形成的磁矩为 d p m = S d I = ωλr 2d r /2, 积分得 233d [()]26a bm ap r r a b a ωλωλ+==+-⎰.如果λ > 0,p m 的方向垂直纸面向外.(3)当a >>b 时,因为 00ln(1)( (44)b B a a μωλμωλππ=+=+, 所以 04bB aμωλπ≈.33[(1)1]6m a b p aωλ=+-3223[33()()]62a b b b a ba a a ωλωλ=++≈.第十六章 电磁感应 电磁场与电磁波.16.2 一长直载流导线电流强度为I ,铜棒AB 长为L ,A 端与直导线的距离为x A ,AB 与直导线的夹角为θ,以水平速度v 向右运动.求AB 棒的动生电动势为多少,何端电势高?[解答]在棒上长为l 处取一线元d l ,在垂直于速度方向上的长度为 d l ⊥ = d l cos θ; 线元到直线之间的距离为 r = x A + l sin θ,直线电流在线元处产生的磁感应强度为 0022(sin )A I IB r x l μμππθ==+. 由于B ,v 和d l ⊥相互垂直,线元上动生电动势的大小为 0cos d d d 2(sin )A Iv l Bv l x l μθεπθ⊥==+, 棒的动生电动势为0cos d 2sin LAIv lx l μθεπθ=+⎰00cos d(sin )2sin sin LA A Iv x l x l μθθπθθ+=+⎰0sin cot ln 2A A Ivx L x μθθπ+=, A 端的电势高.[讨论](1)当θ→π/2时,cot θ = cos θ/sin θ→0,所以ε→0,就是说:当棒不切割磁力线时,棒中不产生电动势.(2)当θ→0时,由于sin sin sin lnln(1)A A A A x L L L x x x θθθ+=+→,所以02AIvLx μεπ→,这就是棒垂直割磁力线时所产生电动势.16.6 如图,有一弯成θ角的金属架COD 放在磁场中,磁感应强度B 的方向垂直于金属架COD 所在平面,一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v 向右滑动,v 与MN 垂直,设t = 0时,x = 0,求下列两情形,框架内的感应电动势εi .(1)磁场分布均匀,且B 不随时间改变; (2)非均匀的交变磁场B = Kx cos ωt . [解答](1)经过时间t ,导体杆前进的距离为 x = vt , 杆的有效长度为 l = x tan θ = v (tan θ)t , 图16.2 O图16.6动生电动势为 εi = Blv = Bv 2(tan θ)t .(2)导体杆扫过的三角形的面积为S = xl /2 = x 2tan θ/2 = v 2t 2tan θ/2,通过该面的磁通量为3tan cos 2kx BS t θΦω== 33tan cos 2kv t t θω=感应电动势为d d i tΦε=-323tan (3cos sin )2kv t t t t θωωω=--, 即:32tan (sin 3cos )2i kv t t t t θεωωω=-.16.10 长为b ,宽为a 的矩形线圈ABCD 与无限长直截流导线共面,且线圈的长边平行于长直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所示.求回路中的电动势ε. [解答]电流I 在r 处产生的磁感应强度为02IB rμπ=, 穿过面积元d S = b d r 的磁通量为0d d d 2IbB S r rμΦπ==, 穿过矩形线圈ABCD 的磁通量为001d ln()22x a xIb Ib x a r r x μμΦππ++==⎰,回路中的电动势为d d t Φε=-0d 11d [ln()()]2d d b x a I xI x t x a x tμπ+=-+-+00cos [ln()sin ]2()I b x a av t t x x x a μωωωπ+=++. 显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势.*16.11 如图,一个矩形的金属线框,边长分别为a 和b (b 足够长).金属线框的质量为m ,自感系数为L ,忽略电阻.线框的长边与x 轴平行,它以速度v 0沿x 轴的方向从磁场外进入磁感应强度为B 0的均匀磁场中,B 0的方向垂直矩形线框平面.求矩形线框在磁场中速度与时间的关系式v = v (t )和沿x 轴方向移动的距离与时间的关系式x = x (t ).[解答]由于b 边很长,所以线框只有右边在做切割磁力线的运动.当线框速度为v 时,产生的动生电动势为 ε = B 0av . 当线框中的电流为i 时,产生的自感电动势的大小为d d L iL tε=.根据奥姆定律得 ε + εL = iR ,由于不计电阻,所以有0d 0d iB av Lt+=. ① 右边所受的力为 F = iaB 0,根据牛顿第二定律得 0d d v iaB mt=, 微分得 22d d d d i vaB m t t=, ② 联立①和②式得微分方程 2202()d 0d aB v v t mL+=,这是简谐振动的微分方程,其通解为图16.10图16.11sin v A B =+. 当t = 0时,v = v 0,所以A = v 0.加速度a t = d v /dt )A B =-+, 当t = 0时,a t = 0,所以B = 0.速度方程为0v v =.由于v = d x /d t ,所以0d d x v t v t ==⎰⎰00v C =+.当t = 0时,x = 0,所以C = 0,所以位移方程为00x v aB =.16.13 两个共轴的导体圆筒称为电缆,其内、外半径分别为r 1和r 2,设电流由内筒流入,外筒流出,求长为l 的一段电缆的自感系数(提示:按定义L = NΦ/I ,本题中NΦ是图中阴影部分面积的磁通量).[解答]在内外半径之间,磁感应强度的大小为 B = μ0I /2πr ,其中r 是场点到轴线之间的距离,B 的方向是以轴线为中心的同心圆.在r 处取一长为l 的面积元d S = l d r ,通过面积元的磁通量为 d Φ = B d S ,总磁通量为 210021d ln 22r rI Il rl r r r μμΦππ==⎰, 电缆的自感系数为 021ln 2l r L Ir μΦπ==. [讨论]电缆单位长度的自感系数为 0201ln 2r L L l r μπ==.16.17 长直导线与矩形单匝线圈共面放置,导线与线圈的长边平行,矩形线圈的边长分别为a 、b ,它到直导线的距离为c (如图),当矩形线圈中通有电流I = I 0sin ωt 时,求直导线中的感应电动势.[解答]如果在直导线中通以稳恒电流I ,在距离为r 处产生的磁感应强度为B = μ0I /2πr .在矩形线圈中取一面积元d S = b d r ,通过线圈的磁通量为00d d ln22a c ScIb r Ib a cB S r cμμΦππ++===⎰⎰, 互感系数为 0ln2b a cM IcμΦπ+==. 当线圈中通以交变电流I = I 0sin ωt 时,直导线中的感应电动势大小为00d (ln )cos d 2b I a cMI t t cμεωωπ+==.图16.13b 图16.17。
杭电大学物理答案1
选择题_03图示单元十二 磁感应强度 毕奥-萨伐尔定律及应用一 选择题01. 一园电流在其环绕的平面内各点的磁感应强度B【 C 】(A) 方向相同,大小相等; (B) 方向不同,大小不等; (C) 方向相同,大小不等; (D) 方向不同,大小相等。
02. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,如图所示。
设图中123,,O O O 处的磁感应强度为123,,B B B则 【 B 】(A) 123B B B ==;(B) 12300B B B ==≠ ;(C) 1230,0,0B B B =≠=;(D) 1230,0,0B B B =≠≠。
03. 如图所示,两个半径为R的相同的金属环在,a b 两点接触(,a b 连线为环直径), 并相互垂直放置,电流I 由a 端流入,b 端出,则环中心O 点的磁感应强度大小为: 【 A 】(A) 0; (B) 04IRμ;(C)4R; (D)0IRμ。
04. 两条无限长载流导线,间距0.5cm ,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为: 【 A 】(A) 0; (B) 02000μπ;(C) 04000μπ; (D) 0400μπ。
05. 载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则12:a a 为 【 D 】 (A) 1:1; (B):1;选择题_02图示(C) :1;(D) :8。
06.两条长导线相互平行放置于真空中,如图所示,两条导线的电流为12I I I ==,两条导线到P 点的距离都是a ,P 点的磁感应强度方向 【 B 】(A) 竖直向上; (B) 竖直向下; (C) 水平向右; (D) 水平向左。
07. 如图所示,两根长直载流导线垂直纸面放置,电流11I A =,方向垂直纸面向外;电流22I A =,方向垂直纸面向内。
大学物理学课后习题参考答案
习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。
(完整版)(上海交大)大学物理上册课后习题答案1质点运动
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +v v v其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +v v v,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=v v ,有速度:sin Rcos v R t i t j ωωωω=-+v v v而v v ϖ=,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)rt i t j =++v v v,式中r ϖ的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。
解:(1)由24(32)r t i t j =++v v v ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)从0=t 到1=t s 的位移为:j i j j i r r r ϖϖϖϖϖϖϖϖ243)54()0()1(+=-+=-=∆(3)由d rv dt =v v ,有速度:82v t i j =+v v v0=t 和1=t 秒两时刻的速度为:(0)2v j =v v,(1)82v i j =+v v v 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+v v v ,式中r ϖ的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =v v ,有:22v t i j =+v v v ,d v a dt=v v ,有:2a i =v v ;(2)而v v ϖ=,有速率:12222[(2)2]21v t t =+=+∴tdv a dt=21t =+,利用222t n aa a =+有: 22221n t a a a t =-=+。
大学物理习题册及解答(第二版)第一章 质点的运动
2 t =2
= −16m/s
2
dv a= =10 −18t dt
t =2
= −26m/s
2.一质点在 一质点在Oxy平面上运动,运动方程为 平面上运动, 一质点在 平面上运动 运动方程为x=3t, y=3t2-5(SI), 求(1)质 质 点运动的轨道方程,并画出轨道曲线 并画出轨道曲线;(2)t1=0s和 t2=120s时质点的 点运动的轨道方程 并画出轨道曲线 和 时质点的 的速度、加速度。 的速度、加速度。 解:(1)从运动方程中消去时间就得到轨道方程 从运动方程中消去时间就得到轨道方程
s = v2t
h = H 2,
1 ∴ H' = H 2
Qd s d h
2
2 H2
= −4 H < 0
所以上条件为S极大的条件
5.河水自西向东流动,速度为10km/h.一轮船在水中航行,船 相对于河水的航向为北偏西300,相对于水的航速为20km/h.此 时风向为正西,风速为10km/h.试求在船上观察到的烟囱冒出 的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)
dθ 则其切向加速度为 a = Rα = R = 0.1m/ s dt
2 t 2
π 1 θ = + t (SI) 4 2
2
2
6 在一个转动的齿轮上,一个齿尖P沿半径为R的圆周运动,其路 程S随时间的变化规律为 S = v 0 t + 1 2 bt 2 ,其中v0和b都是正的常 量.则t时刻齿尖P的速度大小为v0 + bt,加速度大小为 .
v1 = 2 gh
h
v v2
因为完全弹性碰撞,小 S 2 1 球弹射的速度大小为: v2的方向是沿水平方向,故小球与斜面碰撞后作平抛运动,弹出 的水平距离为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2): v
v0 R ds dt R v0t
dsv
t
积分:
s
0
0
v0 R dt R v0t
可得
v t ln 1 0 R R
B. 牛顿运动定律
一、选择
1.B;4.B;
二、填空
2. 4 m/ s;2.5 m/s。3. amax = g(μcos sin)。4. v = 2i。
1 1 1 1 2 mv 2 3m v 2 kL2 -------------------⑶ 3m v20 2 2 2 2
由式⑵得: v 3v20 / 4 x0 3k / m / 4 -------------------⑷ 由式⑶转变为: 3mv20 4mv kL ,用式⑴、⑵代入得:
五、计算
1. 解:设两辆车质量各为 m,碰撞后的速度为 v,滑动时所受摩擦力为k·2mg,滑动时加 速度为 a,则有
k·2mg = 2ma a = k g
又因 所以 v2 = 2as
v 2 k gs 19.8 m/s
碰撞过程两汽车系统动量守恒,在 v 方向则有 mv10cos + mv20sin = 2mv 其中,为 v10 与 v 间的夹角。由上式可得 v10cos + v20sin = 2v = 39.6 m/s 当 v10、v20 均小于 14 m/s 时,不能满足以上关系,可知他们说的话不可信,至少有一辆汽
v2 d2s 2 at2 2 a an R dt
质点在 1 秒末的速度的大小:v = 3 m/s
2
2
a
9 2
2
2
88.96 m/s 2
4. 解:(1)设在半径 r1 处转一圈所需时间为 在 r2,r3,…,rn 处转一圈所需时间分别为
2 2
若小球和物体相撞后粘在一起,动量守恒: mv0 = (m + M)v 可得物体的速度大小:v = 0.364 m/s 弹簧压缩量:x = 0.038 m,系统动能损失更大,为完全非弹性碰撞。 4. 解:B 速度达到最大值 v20,A 才将要动 有 故
1 2 1 2 kx0 3m v20 2 2
t 1 2 R1 R2 N R2 R1 4164 s 69.4 min 2 v d v dr 2 dt r dt
(2) = v/r = 26 rad/s
据题意取 dr = 1/N = 1.538×106 m,dt = 2r/v
d v dr v2 dr 3.31 103 rad/s 2 2 dt r dt 2 r 3
五、计算
2 2 2. 解:过程一,弹簧力对 A 做功: kx / 2 mv A1 / 2 ,得: v A1 x k 2 2
m
2
过程二,A、B 发生弹性碰撞:mvA1 = mvA2 + mvB2, mv A1 / 2 mv A 2 / 2 mvB 2 / 2 ,得:
vB 2 v A1 x k
m sin cos M m cos 2
C. 功和能
一、选择
1. D;5. C
二、填空
仅供参考,如有错误,敬清指出 long-wy@
2
1. 无关,有关,有关,无关,A = (E2 E1);3. 290;4. R(N 3mg)/2;零、正、负
三、判断
3. ×;4.√;5. √
J 00 J0 R2m / 4
三、判断
仅供参考,如有错误,敬清指出 long-wy@
5
1. ×;2. ×;3. ×;4. ×;5. √
四、简答
1. 答: 对于非刚体则不同。 因非刚体各成分的相对位置可以变化, 这样成对内力可以做功, 所以非刚体动能的增量不仅决定于外力对它做的功,而且还与内力的作用有关。而刚体各 成分相对位置不变,它的内力是不做功的。 2. 答:角动量守恒定律。 3. 动量守恒的条件是力学系统不受外力或外力的矢量和为零。 机械能守恒也是有条件的,即只有在保守力场中才成立。 如果物体在运动过程中,所受合力相对于固定点(或固定轴)的力矩为零,则物体相对该固 定点(或固定轴)的角动量守恒。对正在转动的物体来讲,只有当外力矩 M = 0 时,才能保 持角动量不发生改变,即角动量守恒。 角动量守恒可解释开普勒第二定律
A. 质点运动学
一、选择
1. D;2. B;3. D;5. B
二、填空
2. s/t, 2v0 /t;4. h1v/( h1 h2);5. vt cos v, vt sin
三、判断
2. ×;4. √;5. ×
四、简答
1. 答:能。矢量与标量的区分。如匀速圆周运动。
五、计算
3. 解:(1):s = 2R = 2(m),t = 1s r = 0, v r / t 0 , v s / t 2 m/s (2): v ds / dt 2 t
四、简答
2. 答:B 受 6 个力:拉力 F,重力 mBg,地面对 B 的支持力 N,地面对 B 的摩擦力 f,A 对 B 的正压力 NAB,A 对 B 的摩擦力 fAB。其中 F、f、 fAB 做功,mg、N、NAB 不做功。F 做正功,f 与 fAB 做负功。 A 受 3 个力:重力 mAg,B 对 A 的支持力 NBA,B 对 A 的摩擦力 fBA。mBg 与 NBA 不 做功。fBA 做功,做正功。 3. 答:相对于车厢参考系,摆球动能与势能相互转换,其和不变,即机械能保持不变。 动能与参考系的选择有关。相对于地面参考系,摆球在平衡位置两边对应位置的速度值不 同,其动能不一样,可见机械能会变化。 A B F
v20 x0 k / 3m -------------------⑴
对 A、B、K 系统:B 过平衡位置后,由于 vB > vA,弹簧被拉长,且 vB,vA。当 vB = vA = v 时,弹簧拉的最长 L 动量守恒 机械能守恒 3mv20 = mv + 3mv = 4mv-------------------⑵
t2
t1 = 2r1 /v
2 r2 2 r1 r 2r t1 v v v 2r t3 t 2 v 2r tn tn 1 v
等差数列,根据等差数列求和公式 n(a1 + a2)/2,取 t1 = 2R1 /v,tn = 2R2 /v,项数 n = N(R2 R1),有
仅供参考,如有错误,敬清指出 long-wy@
4
车速度超过“限制速度” 。 3. 解:研究系统为小球和物体及弹簧,系统水平方向上不受外力,动量守恒,取 X 轴正方 向向右,有 mv0 = mv1 Mv,可得物体的速度大小:v = 0.6 m/s
2
物体压缩弹簧,根据动能定理:kx2/2 = Mv2/2,可得弹簧压缩量:x = 0.06 m 碰撞前的系统动能: Ek 0 mv0 / 2 8 J 碰撞后的系统动能: Ek mv1 / 2 Mv / 2 3.8 J ,所以系统发生的是非完全弹性碰撞。
仅供参考,如有错误,敬清指出 long-wy@
1
v2 dv v2 5. 解:(1): Fn m , Ft m Fn m R R dt
故
dv v2 R dt
t dv 2 v0 v 0 R dt v
积分:
可得
v
v0 R R v0t
gR cos 和 vB 2 x k
m
代入得: x
7mgR
2K
3. 解:mv0 =(m + M)v, m M gs 0 得:
1 m M v2 2
ቤተ መጻሕፍቲ ባይዱ
v2 0.1 2 gs
1 2 1 2 mv mv0 50 J 2 2 1 2 子弹对木块所做的功等于木块动能的增量: W2 Mv 0.495 J 2
1
11 10
t
6
rad / s 2 , 1
2 2 11 10 900 rad , N1 1 450 圈 21 2
对于气轮机:1r1 = 2r2,可得2 = /15 rad/s2 因为:2N1r1 = 2N2r2,可得 N2 = N1r1 /r2 = 180 圈 2. 解:当物体下降 x 距离时,物体和滑轮的运动方程为 mg T = ma T R = MR2/2,T = T , = a/R
五、计算
1. 解:(1)皮带无滑动:v1 = v2,1r1 = 2r2,2 = 2t t = 1r1 /r22,2 = 0.8 rad/s2,1 = 2600/60 = 20 rad/s,t = 10 s (2)对于发电机:10 = 2600/60 = 20 rad/s,11 = 2300/60 = 10 rad/s
D. 冲量和动量
一、选择
2. C;3. D;4. C;5. B
二、填空 1. 20 i ,20 i ;3. v0 mu/(M + m);mMu/(M + m);4. v/2;5.零,mg2/,mg2/ 三、判断
3.×;4. ×;5. √
四、简答
2. 答:石板受到的冲力很大,但石板的质量 m 大,所以石板的速度变化并不大。冲力大, 故石板易击碎石板;因石板面积大,故作用于人体单位面积的力并不大,人可毫无损伤。 3. 答:向下猛拉时,重球惯性大,作用时间短,力来不及传到上线,下线已被拉断。如果 慢慢线,因为线有弹性,拉力会传到上线。忽略线的质量,则上线与下线中的拉力相等。 但由于上线还要受到重球的作用,所以上线所受力大于下线,上线断开。
木块对子弹所做的功等于子弹动能的增量: W1 W1 W2,子弹的动能大部分损失,克服木块中的摩擦力做功,转变为热能。