自动控制原理-频率特性与系统性能的关系32页PPT
自动控制原理教学ppt
![自动控制原理教学ppt](https://img.taocdn.com/s3/m/99965a552379168884868762caaedd3383c4b5cd.png)
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
第四章 控制系统的频率特性PPT课件
![第四章 控制系统的频率特性PPT课件](https://img.taocdn.com/s3/m/6963a97daaea998fcd220e1b.png)
1·写出 G ( j w ) 和G( jw)表达式; 2·分别求出 w 0 和 w时的 G ( j w ) ;
3·求乃氏图与实轴的交点,交点可利用 ImG(jw)0或 G(jw)n180o
的关系式求出;
4·求乃氏图与虚轴的交点,交点可利用 ReG(jw)0或 G(jw)n90o
K;
(T 1s1 )(T 2s1 )
K ,T 1,T 20
试概略绘制系统开环幅相曲线。
解:由于惯性环节的角度变化为 ~-900,故该系统开环幅
相曲线中
起点为:
终点为:
系统开环频率特性
A (0)K,
(0)00
A ( ) 0 , ( )2 ( 90) 0 10 80
G (j)K [1 (1 T 1 T T 12 2 2 2) 1 (j (T T 1 22 T 22 ))]
即多环节传递函数的幅频特性是各环节模的乘积,相频特性是各环节 相位角之和。
7
自动控制原理
§4-2频率响应的极 频率响应G(jw)是输入频率w的复变函数,是一种变换,当w从0逐渐增长至
时,G(jw)作为一个矢量,其端点在复平面相对应的轨迹就是频率响
应的极坐标图,亦叫坐做乃标氏图图((Nyq乃uist氏曲线图) )
传递函数G(s)
S=jw
频率特性G(jw)
注:系统频率特性分析法是一种用“稳态”的方法(即输出稳态时 的正弦信号,不考虑过度过程)来分析系统的动态特性(稳,准, 快)
5
自动控制原理
二·频率特性的一些概念
G (jw ) U (w )jV (w )
幅频特性 A (w ) G (jw )[U (w )]2 [V (w )]2
(jw K)(j(wjw1T11)1()j(wjw2T21).1..)...
自动控制原理第5章频率特性
![自动控制原理第5章频率特性](https://img.taocdn.com/s3/m/5ed1e861cdbff121dd36a32d7375a417866fc1ed.png)
自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
自动控制原理-频率特性与系统性能的关系课件
![自动控制原理-频率特性与系统性能的关系课件](https://img.taocdn.com/s3/m/a8db2d0f42323968011ca300a6c30c225901f03d.png)
第四节 频率特性与系统性能的关 系
(2) ωc、γ与ts 之间的关系
根据:
ts=
3 ζωn
ts·ωc=3
4ζ4+1 -2ζ2 ζ
整理得
ts·ωc=
6 tgγ
调节时间 ts 与ωc以及γ有关。γ不变 时,穿越频率ωc 越大,调节时间越短。
第四节 频率特性与系统性能的关 系
例 采用频率法分析随动系统的性能,求 出系统的频域指标ωc、γ和时域指标 σ%、 ts。
系
闭环幅频特性曲线
系统的闭环频率 指标主要有:
1 零频幅值Mo
M(ω)
Mm
M0
0.707M(0)
432ω幅M程M=频o度0=o谐的带=谐谐最1闭上M时振幅闭宽振振大环反(,峰ω频环频频峰值峰映)输值=值幅率率值与了值M出反降值ωMωM零系出(与0映br到γr频)=统现输了0幅的时M.M7入系0值Mm快的o7相统(M之0速频ω等的0比b性率时),相=。。。的ω0没对.r在7频有稳0ω一率7误b定M定。差性0 的。ω
第四节 频率特性与系统性能的关 系
低频段的对数频率特性为:
L(ω)=20lgA(ω)=20lg
K ωv
=20lgK-v·20lgω
对数幅频特性曲线
对数幅频特性曲
L(ω)/dB
线的位置越高,开
ν=0 ν=1 -20ν ν=2 0 νK K
环增益K 越大,斜
率越负,积分环节
K
ω 数越多。系统稳态 性能越好。
1)=τ9=00o-.0712.38o+3.6o
L(ω)/dB
系统=2开1.环22传o 递函数 ξ=γ/100=0.21
ωGn=(s)=4ζ2S04(ω(+001c..05-12SζS+2+1=1)6).59
自动控制原理频率特性及其表示法ppt课件
![自动控制原理频率特性及其表示法ppt课件](https://img.taocdn.com/s3/m/e99ba8140b1c59eef9c7b42b.png)
实际系统具有“低通”滤波器特性 实际系统的输出量都随频率的升高而出现失真,
幅值衰减。
频率特性可应用到某些非线性系统的分析中去
自动控制原理
13
1 频率特性的基本概念
频率特性的求取
根据定义求取 对已知系统的微分方程,把正弦输入函数代
入,求出其稳态解,取输出稳态分量与输入正弦 量的复数比即可得到。
系统频率特性能间接地揭示系统的动态特性和 稳态特性,可简单迅速地判断某些环节或参数对系 统性能的影响,指出系统改进方向。
频率特性可以由实验确定,这对于难以建立动 态模型的系统来说,很有用处。
自动控制原理
2
5.1 频率特性及其表示法
1 频率特性的基本概念 2 频率特性的表示
自动控制原理
3
5.1 频率特性及其表示法
5.1 频率特性及其表示法 5.2 典型环节的频率特性 5.3 系统开环频率特性的绘制 5.4 用频率特性分析控制系统的稳定性 5.5 系统瞬态特性和开环频率特性的关系 5.6 闭环系统频率特性 5.7 系统瞬态特性和闭环频率特性的关系
自动控制原理
1
第5章 频域分析法
频率特性是控制系统在频域中的一种数学模 型,是研究自动控制系统的一种工程方法。
这个单位长度代表10倍频的距离,称之为 “十倍频”或“十倍频程”。
❖ 纵坐标用普通比例尺标度。
自动控制原理
21
A()
100
A
增 10
加
10 1
倍
0.1 0.01
自动控制原理
对数频率特性
L()
40
20 L 增加 20 dB
0
_20
_ 40 0.1
自动控制原理(胡寿松) 第五章ppt
![自动控制原理(胡寿松) 第五章ppt](https://img.taocdn.com/s3/m/21287233482fb4daa58d4b86.png)
线性系统的频率特性
1
控制系统的时域分析法是研究系统在典型输入信号作用的 性能,对于一阶、二阶系统可以快速、直接地求出输出的时域 表达式、绘制出响应曲线,从而利用时域指标直接评价系统的 性能。因此,时域法具有直观、准确的优点。然而,工程实际 中有大量的高阶系统,要通过时域法求解高阶系统在外输入信 号作用下的输出表达式是相当困难的,需要大量计算,只有在 计算机的帮助下才能完成分析。此外,在需要改善系统性能时, 采用时域法难于确定该如何调整系统的结构或参数。
2
在工程实践中 , 往往并不需要准确地计算系统响应的全部过
程,而是希望避开繁复的计算,简单、直观地分析出系统结构、
参数对系统性能的影响。因此,主要采用两种简便的工程分析 方法来分析系统性能,这就是根轨迹法与频率特性法,本章将 详细介绍控制系统的频率特性法。 控制系统的频率特性分析法是利用系统的频率特性(元件或 系统对不同频率正弦输入信号的响应特性)来分析系统性能的 方法,研究的问题仍然是控制系统的稳定性、快速性及准确性 等,是工程实践中广泛采用的分析方法,也是经典控制理论的
20
1.低频段
在T<<1(或<<1/T)的区段,可以近似地认为T0,从而有
L( ) 20 lg (T ) 2 1 20 lg1 0
故在频率很低时,对数幅频特性可以近似用零分贝线表示,这称 为低频渐近线。
21
2.高频段
在T>>1(或>>1/T)的区段,可以近似地认为
14
5.2 典型环节的频率特性
5.2.1 比例环节
传递函数:G(s)=K 频率特性:G(jω)=K 幅频特性:A(ω)=K 相频特性:φ(ω)=0 对数幅频和相频特性: L(ω)=20lgA(ω)=20lgK
自动控制原理控制系统的稳定性及特性PPT课件
![自动控制原理控制系统的稳定性及特性PPT课件](https://img.taocdn.com/s3/m/8d2b5424bb4cf7ec4afed0fc.png)
劳斯阵中s3行的各项全部为零,为此用不为零的最后一行(s4 行) 的各项组成辅助方程为 F(s) s4 5s2 4 0 将辅助方程对 s 求导数,得导数方程
dF (s) 4s3 10s 0 ds 第24页/共68页
用导数方程的系数取代
s6 1 6 9 4 s5 1 5 4
故有两个实部为正。 的根
第18页/共68页
例 3-8 已知系统的特征方s程3 4s 2 6 0
,
试判断系统的正的特征根的个数。
解:它有一个系数为负的,根据劳斯判据知系统不稳定。
但究竟有几个右根,需列劳斯表:
s3 1 1 s2 4 6 s1 2.5 s0 6
劳斯表中第一列元素符号改变两次,系统有2个 右半平面的根
故系统稳定。
第13页/共68页
3.3.3 稳定判据 1. Routh稳定判据 系统的特征方程为
必要条件:
(1)特征方程的各项系数ai(i=1,2,…,n)都不为零; (2)特征方程的各项系数ai(i=1,2,…,n)具有相同的符号。
充分条件: 劳斯阵列第一列所有元素为正。
第14页/共68页
劳斯阵列
c1
b1an3 an1b2 b1
b2
an1an4 anan5 an1
c2
b1an5 an1b3 b1
第15页/共68页
例3-5 已知系统的特征方程为 (s) s3 3s2 s 55 0
试用劳斯判据判断系统的稳定性。
解:构造劳斯表如下:
s3 1 1 s2 3 55 s1 52 3 0 s0 55 0
控制系统在典型输入信号作用下的动态过程的品质及?系统的稳定性是系统正常工作的首要条件系统的稳定性是系统正常工作的首要条件?系统的稳定性完全由系统自身的结构和参数决定系统的稳定性完全由系统自身的结构和参数决定?系统的稳定性完全由系统自身的结构和参数决定系统的稳定性完全由系统自身的结构和参数决定与系统的输入无关
自动控制原理课件
![自动控制原理课件](https://img.taocdn.com/s3/m/9e2ef3e94afe04a1b071de62.png)
例 设Ⅰ型系统的开环传递函数为
K G (s) = s (1 + Ts )
试绘制系统的Bode图。 图 试绘制系统的 解 系统开环对数幅频特性和相频特性分别为
L(ω ) = L1 (ω ) + L2 (ω ) + L3 (ω ) = 20 lg K − 20 lg ω − 20 lg 1 + T 2ω 2
开环相频特性: 开环相频特性:
ϕ(ω) = ∠G( jω) = ∑ϕi (ω)
i =1
n
(5-20) 20)
结论: 由此看出, 结论: 由此看出,系统的开环对数幅频特性 L(ω)等于各个串联环节对数幅频特性之和;系 等于各个串联环节对数幅频特性之和; 统的开环相频特性 ϕ(ω) 等于各个环节相频特性 之和。 之和。
4
惯性环节
1 G4 ( jω) = j0.2ω +1
L4 (ω) = −20 lg 1 + (0.2ω)2
ϕ4 (ω) = −arctg0.2ω
1 ω4 = = 5rad ⋅ s −1 对数幅频特性渐 转折频率 , 0.2 近线类似于 L3 (ω),相频特性类似于ϕ3 (ω)。
比例微分环节
G5 ( jω) = 1 + j0.05ω
5.3
系统的开环频率特性
控制系统开环频率特性的典型环节分解 开环对数频率特性曲线的绘制( 开环对数频率特性曲线的绘制(Bode图) 图 开环幅相特性曲线的绘制( 开环幅相特性曲线的绘制(Nyquist图) 图 最小相位系统( 最小相位系统(minimum phase system) )
5.3.1 系统的开环对数频率特性 一、控制系统开环传递函数的典型环节分解
的零型系统的Bode图。 图 的零型系统的 解 系统开环对数幅频特性和相频特性分别
自动控制原理PPT课件
![自动控制原理PPT课件](https://img.taocdn.com/s3/m/4c6350b733687e21ae45a918.png)
1.1 控制技术的发展及应用
控制概念的引入:
要求汽车沿道路中心线行驶(控制汽车的位置) 1 )预期:道路中心位置 2 )汽车当前位置相对预期位置的差 3 )操纵方向盘改变汽车位置使差减小
某一装置 代替人
汽车自 动驾驶 系统
1.1 控制技术的发展及应用
ቤተ መጻሕፍቲ ባይዱ
控制概念的引入
•温度调节装置(控制房间的温度)
1 )预期:要求的室内温度
闭环控制
1.3 开环控制和闭环控制
闭环控制
输入 误差
实际输出
控制器 对象
闭环控制
传感器
特点:系统的输出是由偏差控制的,被控量经过反馈影响偏差,产生 一个相应的控制作用去减小或消除偏差,使被控量与期望值趋与一致。
结果:控制结构复杂,成本高;
抗元件参数变化和外界干扰的能力强
闭环系统可能不稳定
1.3 开环控制和闭环控制
2 )室内当前温度相对预期温度的差
温 度
3 )打开或关闭加热开关改变室内温度使差减小
温度测量,比较功 能,自动打开、关 闭加热开关的装置
温度自 动控制 系统
1.1 控制技术的发展及应用
自动控制的概念
自动控制是指在没有人的直接参与的情况下,利用自 动控制装置(控制器)使工作对象(被控对象)自动地 按照预先规定的规律运行,或使它的某些物理量(被控 量)按预定的要求变化。
第一章基本要求及作业
1-1 什么是随动系统?
这类系统的参考量是预先未知的随时间任意变化的函数, 要求被控制量以尽可能小的误差跟随参考量的变化。
系统中:被控对象为指针,被控量为指针位移,输入电压为 给定输入量。
给定电压 电位器
放大器
电动机
自动控制原理第五章PPT课件
![自动控制原理第五章PPT课件](https://img.taocdn.com/s3/m/c35e0e0db9f3f90f77c61b33.png)
s (1 0 .1 s)
s1 0 .1 s
比例环节
一阶微分环节
积分环节
惯性环节
.
23
非最小相位环节 :开环零点、极点位于S平面右 半部分
➢ 比例环节:-K
➢ 惯性环节:1/(-Ts+1),式中. T>0
24
最小相位系统与非最小相位系统
除比例环节外,非最小相位环节和与之对应的最小相位环节的区别在于开环零极点的 位置,非最小相位环节对应于s右半平面开环零点或极点,而最小相位环节对应于s左半 平面开环零点或极点。
• 对于不稳定系统则不可以通过试验方法来确定,因 为输出响应稳态分量中含有由系统传递函数的不稳
定极点产生的发散或震荡分量。
.
8
线性定常系统的传递函数为零初始条件下,输出与输入的拉氏变换之比
其反变换为
G(s)= C(s) R(s)
g(t) 1 jG(s)estds
2 j j 式中位于G(s)的收敛域。若系统稳定,则可取零,如果r(t)的傅氏变换 存在,可令s=j,则有
d () 是 关 于 的 奇 函 数 。
.
5
.
6
因而
1
G (j) c b 2 2 ( () ) d a 2 2 ( () ) 2 ,
G (j) a r c ta n b ()c () a ()d () a ()c () d ()b ()
G ( j )c a (( )) jjd b ( ( ) )G (j )ej G (j)
Tddut0u0ui
TRC
uo t
取拉氏变换并带入初始条件uo0
1
1 A
U o ( s ) T s 1 [ U i( s ) T u o 0 ] T s 1 [ s 2 2 T u o 0 ]
自动控制原理--典型环节的频率特性
![自动控制原理--典型环节的频率特性](https://img.taocdn.com/s3/m/d418468e4bfe04a1b0717fd5360cba1aa8118ce6.png)
j 1
0j 1
Im
0
Re
0
积分与微分环节
L(dB) 40
积分环节
0
微分环节
40
( )
90
微分环节
0 90
积分环节
20dB / dec
20dB / dec
6
三、微分环节
传递函数: G s s
频率特性:
G(j)
j
ej
π 2
➢1. 幅频特性 A及相频特性
A ,
A
( )
0
1
T
4
2
L,
0
1
T 3dB
4
20lg 2T 2 1
2
近似曲线 精确曲线
对数幅频特性和相频特性:
L() 20 lg 1 (T )2 () tg1 T
0 L0 0
1 L 20 lg 1 3
T
2
4
L
2
L()(dB) 0 0.1 5
10 15 20
0.2
0.3 0.4
0.6 0.8 1
T
2
34
6 8 10
七、一阶不稳定环节
传递函数: G s 1
Ts 1
➢1. 幅相频率特性
频率特性: G j 1
jT 1
G j
1
jT 1
1
1 T2
T
j1 T2
U
jV
U
1 2
2
V
2
1 2
2
一阶不稳定系统的幅相频
率特性是一个为(-1,j0)
为圆心,0.5为半径的半圆。
180O 90O
Im
1
开环频率特性与系统性能的关系
![开环频率特性与系统性能的关系](https://img.taocdn.com/s3/m/794bd0e8bcd126fff6050b8b.png)
图1-41 开环系统增益变化对剪切频率的影响
1.2系统特性和闭环频率特性的关系 如图1-42所示,为闭环系统的频域特性图。
图1-42 闭环系统的频域特性图
ห้องสมุดไป่ตู้
系统的频域性能指标通常指:
b :系统的截止频率,定义为系统的对数幅 频特性下降 3d(B 或幅值下降为 A(0) 2)时所 对应的频率。
r :谐振频率,系统产生峰值时对应的频率。 :谐振峰值,指在谐振频率处对应的幅值。
M () 1 1 T 2 2
对于开环传递函数为
的二阶系 G(s)
n2
s(s 2n )
统,其对应的闭环传递函数为
(s)
s2
n2 2ns
n2
二阶系统的闭环频率特性为
( j) C( j) R( j)
(1
2 n2
1 )
j2 n
M ()e j
M
1
(1 2 )2 (2 )2
n2
n
2
(
)
arctg
1
n 2
n2
自动控制原理
Mr
频率响应的谐振峰值 较大时M,r 对应时域阶跃响应的超调量 必然也比较大;谐振频率M p 较高时,相应的峰值时间 值可 能较小;r 而截止频率 越高,则系tp统的快速反应性越好, 相应的时域响应的b调整时间 就会越短。
ts
对于具有单位反馈的一阶系统,其闭环传递
函数为 达式为
,(则s) 系Ts1统1 的闭环幅频特性表
自动控制原理
开环频率特性与系统性能的关系
1.1开环对数频率特性的基本性质
控制系统开环伯德图中的对数幅频特性分 为三个频段,定义控制系统开环对数幅频 特性图的中频段对应对数幅频特性穿越剪 切频率 c 这一段,在 c的前、后会有一个转 折频率,中间的这一段,我们称它为中频 段。低频段则指的是 频率值比较低的这部 分,高频段则是指 频率值比较高的那部分。
自动控制原理 第二十一章 频率特性和时域性能指标的关系
![自动控制原理 第二十一章 频率特性和时域性能指标的关系](https://img.taocdn.com/s3/m/90281c09bfd5b9f3f90f76c66137ee06eff94e6d.png)
Ts 1
L( )
3dB
c
1 T
b log
频域性能指标:
由频b 宽的c 定T1义知:A(我b们) 知1道2 一A(0阶) 惯 0性.70环7 ,节20的log调A整(时bt)s间是33Td:(B, 5)
则频宽越大,调整时间越小。
二阶系统:
开环频率特性为:Gk ( j
第七节 频率特性和时域性能指标的 关系
主要内容
通过频率特性曲线获得稳态性能指标 频率域性能指标 频率域特性指标与时域瞬态指标的关系
一、稳态性能指标分析:
如果通过频率特性曲线能确定系统的无差度阶数 (即积分
环节的个数)和开环放大系数k的话,则可求得系统的稳态误差。 (见第三章第六节 稳态误差分析)
数定义为幅值稳定裕度。所对应的频率 称为相角穿越频率。
即
L
hA2(01 lgg),A(满 足)。
(
) 180 。实际中常用对数幅值稳定裕度
相角稳定裕度 系统开环频率特性的幅值为1时,系统开环频率特性的相角
与180 之和定义为相角稳定裕度,所对应的频率 称为系统截 止频率或幅值穿越频率。即 180 ( ) , 满足 A( ) 1
闭环频率特性为:( j)
)
(
n2
(
j)((
j ) 2
n2
2
n
(
j)2 2 n ( j) n
j ))
2 A(
)e
j
(
)
频域性能指标主要有相位稳定裕度(开环指标)和频宽、谐振
峰值(闭环指标)。
幅频特性为:A()
n2
(n2 2 )2 (2 n )2
由带宽的定义知当 A()
1 A(0) 2
自动控制原理7第七节频率特性和时域性能指标的关系
![自动控制原理7第七节频率特性和时域性能指标的关系](https://img.taocdn.com/s3/m/3a25607f5b8102d276a20029bd64783e09127dde.png)
案例剖析:某型导弹控制系统设计优化
1. 调整控制器参数,改善系统频率特性。
2. 引入先进的控制算法,如自适应控制、鲁棒控 制等。
3. 对执行器和传感器进行改进,提高系统动态性 能。
优化效果:经过优化后,导弹控制系统的稳定性 和快速性得到了显著提高,超调量和稳态误差明 显减小。在实际飞行试验中,导弹的命中精度得 到了有效提升。
02 4. 对实验数据进行处理和分析,提取时域性能指 标。
03 5. 对比不同频率特性下的时域性能指标,分析它 们之间的关系。
数据采集、处理及结果展示
数据采集
使用高精度传感器采集系统响应数据,包括输出信号、误差信号等。
数据处理
对采集到的数据进行滤波、去噪等预处理操作,以提高数据质量。 然后,计算时域性能指标,如超调量、调节时间、稳态误差等。
05
实验验证与案例分析
实验设计思路及步骤介绍
实验设计思路及步骤介绍
01
步执行器、传感器等硬件设备 ,以及相应的软件系统。
03
2. 设计不同频率特性的控制器,如低通、高通、带通等,并 分别进行实验。
实验设计思路及步骤介绍
01 3. 对每个实验,施加相同的输入信号,并记录系 统响应数据。
高频段增益越大,系统的稳态误差越小。
稳态误差与带宽的关系
带宽越宽,系统的稳态误差越小。
04
典型系统频率特性和时域 性能指标关系探讨
一阶系统
频率特性
一阶系统的频率响应是单调的,没有谐振峰。其幅频特性随频率的增加而单调下降,相频特性则随频 率的增加而线性增加。
时域性能指标
一阶系统的主要时域指标包括上升时间、峰值时间和调节时间。这些指标与系统的阻尼比和自然频率 有关,阻尼比越小,上升时间和峰值时间越短,调节时间越长;自然频率越高,系统的响应速度越快 。