北师大版七年级数学上册《2.3绝对值》同步练习含答案
2.3-绝对值-课件-2021-2022学年北师大版数学-七年级上册
两只狗分别
距原点多远?
-3
-2
-3所对应的
点与原点的
距离是3
-1
0
1
2
两只狗在数
轴上的位置
有什么关系?
3
在数轴上,表示互为相反数
的两个点,位于原点的两侧,
且与原点的距离相等.
4
5
3所对应的
点与原点
的距离是3
在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对
值.用“| |”表示.
-3
-2
-1
0
1
处的A地,乙要到O城市的西方30km处的B地(设定向东为正方
向).
B地
-40 -30
-20 -10
O城市
0
10
A地
20
30
请观察这两个数,它们有什么异同点?
40
符号不同
+
_ 30
30
数字相同
相反数的定义
如果两个数只有符号不同,那么称其中一个数为另一
个数的相反数,也称这两个数互为相反数.
特别地,0的相反数是0.
(2)-2____
3;
5 < 2
(3)12____
3;
>
(4)-2017____-2018.
11.下列比较大小错误的是( D )
A.-2>-5
2
3
B.-3>-4
22
C.-3>- 7 D.-π>-3.14
12.下列四个数中,在-4 到 0 之间的数是( A )
A.-1 B.1
C.-6
D.3
13.若|-a|=|-2|,则( C )
(2)如果点D与点H表示的数互为相反数,那么点C表示的数是什么?
专题2.3绝对值-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大版】
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题2.3绝对值姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•霍林郭勒市模拟)﹣2020的绝对值的相反数为()A.﹣2020B.2020C.12020D.−12020【分析】根据绝对值和相反数的概念求解可得.【解答】解:因为﹣2020的绝对值为2020,所以﹣2020的绝对值的相反数为﹣2020,故选:A.2.(2019春•普陀区期中)如果|3a|=﹣3a,则a一定是()A.非正数B.负数C.非负数D.正数【分析】直接利用绝对值的性质分别分析得出答案.【解答】解:∵|3a|=﹣3a,∴﹣3a≥0,∴a≤0,即a一定是非正数.故选:A.3.(2020•安丘市一模)|−23|的相反数是()A.−32B.12C.−23D.23【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【解答】解:|−23|=23的相反数是:−23.故选:C.4.(2018秋•惠民县校级月考)|x﹣3|+|y﹣2|=0 成立的条件是() A.x=3B.y=2C.x=3且y=2D.x、y为任意数【分析】根据非负数的性质列方程求解即可.【解答】解:由题意得,x﹣3=0且y﹣2=0,解得x=3,y=2.故选:C.5.(2020•滨州)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.【解答】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.6.(2020•岱岳区二模)下列各组数中,相等的是()A.﹣9和−19B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|【分析】根据相反数的定义,绝对值的性质对各选项分别进行计算,然后利用排除法求解.【解答】解:A、﹣9≠−19,故本选项不符合题意;B、﹣|﹣9|=﹣9,﹣(﹣9)=9,﹣9≠9,故本选项不符合题意;C、|﹣9|=9,故本选项符合题意;D、|﹣9|=9,9≠﹣9,故本选项不符合题意.故选:C.7.(2019秋•新蔡县期中)如果x为有理数,式子2019﹣|x﹣2|存在最大值,这个最大值是() A.2016B.2017C.2019D.2021【分析】直接利用绝对值的性质得出|x﹣2|的最小值为0.进而得出答案.【解答】解:∵x为有理数,式子2019﹣|x﹣2|存在最大值,∴|x﹣2|=0时,2019﹣|x﹣2|最大为2019,故选:C.8.(2019秋•越秀区期末)满足等式|x|+5|y|=10的整数(x,y)对共有()A.5对B.6对C.8对D.10对【分析】先用含绝对值x的代数式表示绝对值y,根据等式的整数解确定x的取值范围和x的值,再确定等式整数解的对数.【解答】解:等式|x|+5|y|=10可变形为:|y|=10−|x|5=2−|x| 5∵|y|≥0,即2−|x|5≥0∴﹣10≤x≤10.∵x、y都是整数,所以x=﹣10、﹣5、0、5、10.当x=﹣10时,y=0;当x=﹣5时,y=±1;当x=0时,y=±2;当x=5时,y=±1;当x=10时,y=0.所以满足条件的整数有8对.故选:C.9.(2019秋•越秀区期末)在0,−23,−32,0.05这四个数中,最大的数是()A.0B.−23C.−32D.0.05【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵0.05>0>−23>−32,∴最大的数是0.05.故选:D.10.(2019秋•资阳区校级期中)有理数的比较,正确的是( ) A .﹣1000>0.0001 B .45<34C .﹣(﹣2)=﹣|﹣2|D .−23<−12【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:∵﹣1000<0.0001, ∴选项A 不符合题意;∵45>34,∴选项B 不符合题意;∵﹣(﹣2)>﹣|﹣2|, ∴选项C 不符合题意;∵−23<−12, ∴选项D 符合题意. 故选:D .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2019秋•怀柔区期末)若|x |=3,则x = ±3 . 【分析】根据绝对值的性质解答即可. 【解答】解:∵|x |=3, ∴x =±3. 故答案为:±3.12.(2020•湘西州)−13的绝对值是13.【分析】根据绝对值的意义,求出结果即可.【解答】解:根据负数的绝对值等于它的相反数可得,|−13|=13, 故答案为:13.13.(2019秋•内乡县期末)化简:﹣|−35|=−35.【分析】根据绝对值的性质化简即可求解.【解答】解:﹣|−35|=−35.故答案为:−3 5.14.(2019秋•新昌县期末)已知|a|=2020,则a=±2020.【分析】直接利用绝对值的性质得出答案.【解答】解:∵|a|=2020,∴a=±2020.故答案为:±2020.15.(2019•包头二模)若|3x﹣2|与|y﹣1|互为相反数,则3xy=2.【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可求出值.【解答】解:∵|3x﹣2|+|y﹣1|=0,∴3x﹣2=0,y﹣1=0,∴x=23,y=1,所以3xy=3×23×1,故答案为:2.16.(2019秋•钟楼区期中)用“>”或“<”或“=”填空:(1)﹣|﹣2|<﹣(﹣3);(2)−45<−34.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:(1)﹣|﹣2|=﹣2,﹣(﹣3)=3,∴﹣|﹣2|<﹣(﹣3);(2)∵|−45|>|−34|,∴−45<−34.故答案为:(1)<;(2)<.17.(2019春•黄浦区期中)比较大小:﹣|﹣4.25| < ﹣(﹣414)(填“>”、“<”或“=”).【分析】根据有理数大小比较的方法即可得到结论. 【解答】解:∵﹣|﹣4.25|=﹣4.25,﹣(﹣414)=4.25,∴﹣|﹣4.25|<﹣(﹣414),故答案为:<.18.(2019秋•海淀区校级期中)比较大小:−23< −47;−(−13) > −|−13|. 【分析】根据有理数大小比较方法解答即可. 【解答】解:∵|−23|>|−47|, ∴−23<−47;∵−(−13)=13,−|−13|=−13, ∴−(−13)>−|−13|. 故答案为:<;>三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.分别写出下列各数的绝对值.−135,﹣(+6.3),+(﹣32),12,312.【分析】由于一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,所以根据绝对值的性质即可解答. 【解答】解:|−135|=135, |﹣(+6.3)|=|﹣6.3|=6.3, |+(﹣32)|=|﹣32|=32, |12|=12,|312|=312.20.(2019秋•沙雅县期中)把下列各数填在相应的括号里: ﹣8,0.275,227,0,﹣1.04,﹣(﹣3),−13,|﹣2|正数集合{ 0.275,227,﹣(﹣3),|﹣2| …}负整数集合{ ﹣8 …}分数集合{ 0.275,227,﹣1.04,−13 …}负数集合{ ﹣8,﹣1.04,−13 …}.【分析】根据正、负数以及分数的定义,在给定有理数中分别挑出正数、负整数、分数以及负数,此题得解.【解答】解:在﹣8,0.275,227,0,﹣1.04,﹣(﹣3),−13,|﹣2|中,正数有:0.275,227,﹣(﹣3),|﹣2|;负整数有:﹣8;分数有:0.275,227,﹣1.04,−13;负数有:﹣8,﹣1.04,−13. 故答案为:0.275,227,﹣(﹣3),|﹣2|;﹣8;0.275,227,﹣1.04,−13;﹣8,﹣1.04,−13.21.(2016秋•高密市校级月考)把下列各数填在相应的集合里 +7,−35,﹣10,0,0.674,﹣4,334,﹣9.08,400%,﹣|﹣12| 负分数集{ −35,﹣9.08 } 正整数集{ +7,400% }整数集 { +7,﹣10,0,﹣4,﹣400%,﹣|﹣12| } 自然数集{ +7,0,400% } 负整数集{ ﹣10,﹣4,﹣|﹣12| } 非负数集{ +7,0,0.674,334,400% }.【分析】按照有理数的分类进行判断:有理数包括:整数和分数;整数包括:正整数、0和负整数;分数包括:正分数和负分数.【解答】解:负分数集合:{−35,﹣9.08 } 正整数集合:{+7,400%}整数集合:{+7,﹣10,0,﹣4,400%,﹣|﹣12|} 自然数集合:{+7,400%,0 } 负整数集合:{﹣10,﹣4,﹣|﹣12|} 非负数集合:{+7,0,0.674,334,400%}.故答案为:−35,﹣9.08;+7,400%;+7,﹣10,0,﹣4,400%,﹣|﹣12|;+7,0,400%;﹣10,﹣4,﹣|﹣12|;+7,0,0.674,334,400%.22.(1)已知a 是非零有理数,试求a|a|的值; (2)已知a ,b 是非零有理数,试求a|a|+b|b|的值;(3)已知a ,b ,c 是非零有理数,请直接写出a|a|+b |b|+c |c|的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,即可解答. 【解答】解:(1)当a 为正数时,a |a|=1;当a 为负数时,a |a|=−1 (2)当a ,b 同为正数时,a|a|+b |b|=2;当a ,b 同为负数时,a|a|+b |b|=−2;当a ,b 异号时,a|a|+b |b|=0(3)±1,±3.23.(2019秋•淅川县期中)画一条数轴,把数﹣|﹣3|,4,﹣1.5,﹣5,212表示在数轴上,(1)将这五个数按从小到大的顺序排列:(2)把这五个数分成两类,其中一类含三个数,另一类含两个数,并写出每类数的特征 【分析】(1)直接将各数在数轴上表示,进而比较大小即可; (2)直接利用正数和负数进行分类即可. 【解答】解:(1)如图所示:则﹣5<﹣3<﹣1.5<212<4;(2)212,4正数,﹣5,﹣3,﹣1.5负数.24.(2019秋•海州区校级期中)先在数轴上画出表示﹣3、|﹣1|、﹣5、0、﹣(﹣4.5)、212各数的点,再用“<”把这些数连接起来.【分析】先在数轴上表示出各数,再从左到右用“<”把这些数连接起来即可. 【解答】解:在数轴上表示如图所示,排列为﹣5<﹣3<0<|﹣1|<212<−(﹣4.5).。
北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题
北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题一、选择题1.-2的绝对值为( )A .-12 B.12 C .-2 D .22.计算|-3|的结果是( )A .3 B.13C .-3D .±33.如图,数轴上有A ,B ,C ,D 四个点,其中表示的数的绝对值等于2的点是( )A .点AB .点BC .点CD .点D 4.-12的绝对值的相反数是( )A.12 B .-12C .2D .-2 5.下列判断:①负数没有绝对值;②绝对值最小的有理数是0;③任何数的绝对值都是非负数;④互为相反数的两个数的绝对值相等,其中正确的有( ) A .1个 B .2个 C .3个 D .4个 6.任何一个有理数的绝对值一定( ) A .大于0 B .小于0 C .小于或等于0 D .大于或等于0 7.在有理数中,绝对值等于它本身的数有( )A .一个B .两个C .三个D .无数个 8.比较大小:-2________-3.14( )A .>B .=C .<D .无法判断 9.在-3,-1,0,1这四个数中,最小的数是( )A .-3B .-1C .0D .1 10.如果a 与1互为相反数,那么|a|=( )A .2B .-2C .1D .-1 11.下列各式中正确的是( )A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .-|-89|>-91012.下列说法正确的是( )A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|,则a 与b 相等D .若一个数小于它的绝对值,则这个数为负数 13.a ,b 两数在数轴上的对应点的位置如图,下列各式正确的是( )A .b >aB .-a <bC .|a|>|b|D .b <-a <a <-b14.如图,数轴上的单位长度为1,有三个点A ,B ,C.若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .-2B .0C .1D .415.已知a ,b 是不为0的有理数,且|a|=-a ,|b|=b ,|a|>|b|,那么用数轴上的点来表示a ,b 时,正确的是( )A B C D二、填空题16.-5的绝对值是_____;-|-2.5|=_____;绝对值是6的数是_____. 17.计算:|4|+|0|-|-4|=_____.18.(1)①正数:|+5|=_____,|12|=12;②负数:|-7|=_____,|-15|=_____;③零:|0|=_____;(2)根据(1)中的规律发现:当a 是正数时,|a|>0;当a 是负数时,|a|>0;当a 为任意有理数时,|a|一定是一个非负数.19.用“>”或“<”填空:(1)-7_____-6.5;(2)-3_____-4. 20.若|a|=12,则a =_____.21.绝对值小于6的整数有11个,它们分别是_____;绝对值大于3且小于6的整数是_____ 22.若有理数m ,n 满足|m -2|+|2 019-n|=0,则m +n =_____.23.有理数a ,b 在数轴上的位置如图所示,且|a|=2,|b|=3,则a =_____,b =_____.24.如图,四个有理数在数轴上的对应点分别是M ,N ,P ,Q.若点M ,Q 表示的有理数互为相反数,则图中表示绝对值最小的数的点是_____.三、解答题25.求下列各数的绝对值: (1)+813;(2)-7.2; (3)0; (4)-813.26.张师傅要从6个圆形机器零件中选取2个最接近标准的零件拿去试用.经过检验,比规定直径长的记为正数,比规定直径短的记为负数,记录如下(单位:毫米):+0.3,-0.1,-0.2,-0.3,+0.4,+0.3.你认为张师傅会拿走哪两个零件?请你用绝对值的知识加以解释.27.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离.例1:已知|x|=2,求x 的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x 的值为-2或2. 例2:已知|x -1|=2,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x 的值为3或-1. 仿照材料中的解法,求下列各式中x 的值. (1)|x|=3; (2)|x -(-2)|=4. 参考答案北师大版七年级数学上册第二章 2.3.2绝对值 同步测试题一、选择题1.-2的绝对值为(D)A .-12 B.12C .-2D .22.计算|-3|的结果是(A)A .3 B.13C .-3D .±33.如图,数轴上有A ,B ,C ,D 四个点,其中表示的数的绝对值等于2的点是(A)A .点AB .点BC .点CD .点D 4.-12的绝对值的相反数是(B)A.12 B .-12C .2D .-2 5.下列判断:①负数没有绝对值;②绝对值最小的有理数是0;③任何数的绝对值都是非负数;④互为相反数的两个数的绝对值相等,其中正确的有(C) A .1个 B .2个 C .3个 D .4个 6.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .小于或等于0 D .大于或等于0 7.在有理数中,绝对值等于它本身的数有(D)A .一个B .两个C .三个D .无数个 8.比较大小:-2________-3.14(A)A .>B .=C .<D .无法判断 9.在-3,-1,0,1这四个数中,最小的数是(A)A .-3B .-1C .0D .1 10.如果a 与1互为相反数,那么|a|=(C)A .2B .-2C .1D .-1 11.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .-|-89|>-91012.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|,则a 与b 相等D .若一个数小于它的绝对值,则这个数为负数13.a ,b 两数在数轴上的对应点的位置如图,下列各式正确的是(D)A .b >aB .-a <bC .|a|>|b|D .b <-a <a <-b14.如图,数轴上的单位长度为1,有三个点A ,B ,C.若点A ,B 表示的数互为相反数,则图中点C 对应的数是(C)A .-2B .0C .1D .415.已知a ,b 是不为0的有理数,且|a|=-a ,|b|=b ,|a|>|b|,那么用数轴上的点来表示a ,b 时,正确的是(C)A B C D16.-5的绝对值是5;-|-2.5|=-2.5;绝对值是6的数是±6. 17.计算:|4|+|0|-|-4|=0.18.(1)①正数:|+5|=5,|12|=12;②负数:|-7|=7,|-15|=15;③零:|0|=0; (2)根据(1)中的规律发现:当a 是正数时,|a|>0;当a 是负数时,|a|>0;当a 为任意有理数时,|a|一定是一个非负数.19.用“>”或“<”填空:(1)-7<-6.5;(2)-3>-4. 20.若|a|=12,则a =±12.21.绝对值小于6的整数有11个,它们分别是±5,±4,±3,±2,±1,0;绝对值大于3且小于6的整数是±5,±4.22.若有理数m ,n 满足|m -2|+|2 019-n|=0,则m +n =2_021.23.有理数a ,b 在数轴上的位置如图所示,且|a|=2,|b|=3,则a =±2,b =3.24.如图,四个有理数在数轴上的对应点分别是M ,N ,P ,Q.若点M ,Q 表示的有理数互为相反数,则图中表示绝对值最小的数的点是N .三、解答题25.求下列各数的绝对值: (1)+813;解:|+813|=813.解:|-7.2|=7.2. (3)0; 解:|0|=0. (4)-813.解:|-813|=813.26.张师傅要从6个圆形机器零件中选取2个最接近标准的零件拿去试用.经过检验,比规定直径长的记为正数,比规定直径短的记为负数,记录如下(单位:毫米):+0.3,-0.1,-0.2,-0.3,+0.4,+0.3.你认为张师傅会拿走哪两个零件?请你用绝对值的知识加以解释.解:利用数据的绝对值的大小来判断零件的质量,绝对值越小说明越接近规定标准. 因为|+0.4|>|+0.3|=|-0.3|>|-0.2|>|-0.1|, 所以张师傅会拿走记录为-0.1和-0.2的两个零件.27.阅读下列材料:我们知道|x|的几何意义是数轴上数x 的对应点与原点之间的距离,即|x|=|x -0|,也可以说,|x|表示数轴上数x 与数0对应点之间的距离,这个结论可以推广为|x 1-x 2|表示数轴上数x 1与数x 2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为-2或2,所以x的值为-2或2.例2:已知|x-1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3或-1,所以x的值为3或-1. 仿照材料中的解法,求下列各式中x的值.(1)|x|=3;(2)|x-(-2)|=4.解:(1)在数轴上与原点距离为3的点表示的数为-3或3,所以x的值为3或-3.(2)在数轴上与-2对应的点的距离为4的点表示的数为2或-6,所以x的值为2或-6.。
北师大版(2024)七年级上册《2.3_有理数的乘除运算1》2024年同步练习卷+答案解析
北师大版(2024)七年级上册《2.3有理数的乘除运算1》2024年同步练习卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.用简便方法计算:,其结果是()A.2B.1C.0D.2.下列算式中,积为负数的是()A. B.C.D.3.下列选项错误的是()A. B.C.D.4.下面计算的过程正确的是()A. B.C.D.5.下列各式中,m 和n 互为倒数的是()A.B.C.D.6.一个数的相反数的倒数是,则这个数为()A. B.C.D.7.式子中用的运算律是()A.乘法交换律及乘法结合律B.乘法交换律及乘法对加法的分配律C.乘法结合律及乘法对加法的分配律D.乘法对加法的分配律及加法结合律8.的倒数是()A.B.C. D.9.下列计算正确的是()A.原式B.原式C.原式D.原式10.运用了()A.加法交换律B.乘法结合律C.乘法分配律D.乘法交换律和结合律11.如图所示,数轴上点A,B,C分别表示有理数a,b,c,若a,b,c三个数的乘积为正数,这三个数的和与其中一个数相等,则下列正确的是()A. B. C. D.12.如果两个有理数的积是正数,那么这两个有理数()A.同号,且均为负数B.异号C.同号,且均为正数D.同号二、填空题:本题共6小题,每小题3分,共18分。
13.写出下列各数的倒数.的倒数是______;的倒数是______;的倒数是______;的倒数是______;的倒数是______.14.两数相乘,同号______异号______,并把______相乘;任何数与0相乘都得______.15.填空题.______;______;______;______;______;______.16.若a、b互为倒数,则______.17.一个有理数的倒数等于它本身,则这个数只能是______判断对错18.已知有理数,我们把为a的差倒数,如:2的差倒数是,的差倒数是如果,是的差倒数,是的差倒数,是的差倒数……依此类推,那么…的值是______三、计算题:本大题共1小题,共6分。
七年级上册(北师大版)数学课时练习:2-3绝对值
2.3绝对值一.填空题(共9小题)1.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.2.﹣的绝对值是;1的相反数是.3.|x+1|+|x﹣2|+|x﹣3|的值为.4.已知|2a+4|+|3﹣b|=0,则a+b=.5.若|a4|=﹣|a4|,则a是.6.已知|x﹣2|+|y+2|=0,则x+y=.7.请写出一个比﹣π大的负整数:.8.如图,用“>”或“<”号填空:ab.9.四个数w、x、y、z满足x﹣2001=y+2002=z﹣2003=w+2004,那么其中最小的数是,最大的数是.二.选择题(共12小题)10.代数式|x﹣1|+|x+2|+|x﹣3|的最小值为()A.2 B.3 C.5 D.611.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数12.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和113.已知x为一切实数.则求出|x+1|+|x﹣2|+|x﹣4|+|x+2|+|x﹣6|最小值是()A.13 B.15 C.16 D.1114.若|x+2|+|y﹣3|=0,则x﹣y的值为()A.5 B.﹣5 C.1或﹣1 D.以上都不对15.已知|x﹣2006|+|y+2007|=0,则()A.x<y B.x>y C.x<﹣y<0 D.x>﹣y>016.若a、b为实数,且|a+1|+|b﹣1|=0,则(ab)2014的值为()A.0 B.1 C.﹣1 D.±117.若|x﹣5|与|y+7|互为相反数,则3x﹣y的值是()A.22 B.8 C.﹣8 D.﹣2218.在如图的数线上,O为原点,数线上的点P、Q、R、S所表示的数分别为a、b、c、d、请问下列哪一个大小关系是不正确的()A.|a|<|d|B.|b|=|c|C.|a|>|b|D.|O|<|b|19.如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p120.已知x=1234567×1234564,y=1234566×1234565,则x、y的大小关系是()A.x<y B.x>y C.x=y D.无法确定21.已知a=42,b=58,c=(﹣10)4,则a,b,c三个数的大小关系是()A.b>c>a B.b>a>c C.c>a>b D.a>b>c三.解答题(共9小题)22.求下列各数的绝对值:﹣5,4.5,﹣0.5,+1,0,π﹣3.23.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.24.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.25.若|x﹣2|+|y+3|+|z﹣5|=0,计算:(1)x,y,z的值.(2)求|x|+|y|+|z|的值.26.(1)已知|x﹣5|=3,求x的值;(2)已知n=4,且|x﹣5|+|y﹣2n|=0,求x﹣y+8的值.27.已知|a+1|与|b﹣2|互为相反数,求a﹣b的值.28.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为;②|x﹣a|+|x﹣b|+|x+1|的最小值为;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为.29.有理数:,﹣1,5,0,3.5,﹣2(1)将上面各数在下图的数轴上表示出来,并把这些数用“<”连接.(2)请将以上各数填到相应的横线上;正有理数:;负有理数:.30.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.参考答案一.填空题1.0.04.2.;﹣13..4.1.5.0.6.0.7.﹣3.(答案不唯一)8.<.9.w、z.二.选择题10.C.11.C.12.C.13.A.14.B.15.B.16.B.17.A.18.A.19.D.20.A.21.A.三.解答题22.解:各数的绝对值分别为5,4.5,0.5,1,0,π﹣3.23.解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.24.解:∵|a﹣1|=9,|b+2|=6,∴a=﹣8或10,b=﹣8或4,∵a+b<0,∴a=﹣8,b=﹣8或4,当a=﹣8,b=﹣8时,a﹣b=﹣8﹣(﹣8)=0,当a=﹣8,b=4时,a﹣b=﹣8﹣4=﹣12.综上所述,a﹣b的值为0或﹣12.25.解:(1)由题意,得,解得.即x=2,y=﹣3,z=5;(2)当x=2,y=﹣3,z=5时,|x|+|y|+|z|=|2|+|﹣3|+|5|=2+3+5=10.26.解:(1)由题意可得方程:x﹣5=3或x﹣5=﹣3,解方程:x﹣5=3得x=8,解方程x﹣5=﹣3得x=2故x的值为8或2;(2)因为|x﹣5|≥0,且|y﹣2n|≥0,所以得x﹣5=0且y﹣2n=0,解得:x=5,y=2n=8,所以x﹣y+8=5﹣8+8=5.27.解:∵|a+1|与|b﹣2|互为相反数,∴|a+1|+|b﹣2|=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,a﹣b=﹣1﹣2=﹣3.28.解:(1)根据数轴上的点得:b>a>c;(2)由题意得:b﹣a<1;(3)|c﹣b|﹣|c﹣a+1|+|a﹣1|=b﹣c﹣(a﹣c﹣1)+a﹣1=b﹣c﹣a+c+1+a﹣1=b;(4)①当x在a和b之间时,|x﹣a|+|x﹣b|有最小值,∴|x﹣a|+|x﹣b|的最小值为:x﹣a+b﹣x=b﹣a;②当x=a时,|x﹣a|+|x﹣b|+|x+1|=0+b﹣x+x﹣(﹣1)=b+1为最小值;③当x=a时,|x﹣a|+|x﹣b|+|x﹣c|=0+b﹣a+a﹣c=b﹣c为最小值.故答案为:<;b﹣a;b+1;b﹣c.29.解:(1)如图所示:把这些数用“<”连接为:﹣2<﹣1<0<<3.5<5.(2)正有理数:,5,3.5;负有理数:﹣1,﹣2.故答案为:,5,3.5;﹣1,﹣2.30.解:∵b<﹣1<c<0<1<a,|a|=|b|,∴(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=﹣b+1+a﹣1=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=0+(a﹣c)+b﹣(b﹣c)=0+a﹣c+b﹣b+c=a.故答案为:<,=,>,<;a﹣b.。
2010-2023历年北师大版初中数学七年级上2.3绝对值练习卷(带解析)
2010-2023历年北师大版初中数学七年级上2第1卷一.参考题库(共20题)1.=_______;2._______;3.下列各式中,正确的是A.->0B.>C.>D.<04.比较大小(要有解答过程):5.比较大小(要有解答过程):6.绝对值小于4的整数有_______.7.=_______;8.在-0.1,这四个数中,最小的一个数是()A.-0.1B.C.D.9.=_______.10.+=_______;11.计算:+ ;12.若a=-3则-=( )A.-3B.3C.-3或3D.以上都不对13.用“>”连接,,-,0,正确的是()A.>->0B.>0>-C.-<< 0D.0< -<14.绝对值最小的数是_______,绝对值最小的整数是_______.15.已知=2,=2,=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c的值。
16.某制衣厂本周计划每日生产100套西服,由于工人实行轮休,每日上班人数不一定相等,实行每日生产量与计划量相比情况如下表(增加的套数为正数,减少的套数为负数):星期一二三四五增减+7-3+4-2-5请问产量最少的是星期几?生产量是多少?17.下列各组数中,互为相反数的是A.B.C.D.18.计算:.19.=_______;20.绝对值等于的数是_______,他们互为_______.第1卷参考答案一.参考题库1.参考答案:2试题分析:先算绝对值,再算除法,即可得到结果.=考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.2.参考答案:试题分析:根据绝对值的定义即可得到结果..考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.3.参考答案:C试题分析:根据绝对值的定义即可得到结果.A.,B. ,D. ,故错误;C. >,本选项正确.考点:本题考查的是绝对值,有理数的大小比较点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.4.参考答案:试题分析:根据有理数的大小比较法则即可判断.考点:本题考查的是有理数的大小比较点评:解答本题的关键是熟练掌握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.5.参考答案:试题分析:根据有理数的大小比较法则即可判断.考点:本题考查的是有理数的大小比较点评:解答本题的关键是熟练掌握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.6.参考答案:0,±1,±2,±3试题分析:根据绝对值的定义即可得到结果.绝对值小于4的整数有0,±1,±2,±3.考点:本题考查的是绝对值,有理数的大小比较点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.7.参考答案:-3试题分析:根据绝对值的定义即可得到结果.考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.8.参考答案:B试题分析:根据有理数的大小比较法则即可得到结果.,∴最小的一个数是,故选B.考点:本题考查的是有理数的大小比较点评:有解答本题的关键是熟练掌握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.9.参考答案:1试题分析:先算绝对值,再算减法,即可得到结果.=考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.10.参考答案:10试题分析:先算绝对值,再算加法,即可得到结果.+=考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.11.参考答案:12 试题分析:先算绝对值,再算加减,即可得到结果.+考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.12.参考答案:A试题分析:根据绝对值的定义即可得到结果.若a=-3则-=-3,故选A.考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.13.参考答案:B试题分析:根据绝对值的定义即可得到结果.,,,故选B.考点:本题考查的是绝对值,有理数的大小比较点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.14.参考答案:0,0试题分析:根据绝对值的定义即可得到结果.绝对值最小的数是0,绝对值最小的整数是0.考点:本题考查的是绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.15.参考答案:3试题分析:根据有理数a,b,c在数轴上的位置即可得到a,b,c 的值,从而得到结果.由数轴可得a=2,b=-2,c=3,则a+b+c=3.考点:本题考查的是数轴的知识,绝对值点评:解答本题的关键是熟练掌握正数和0的绝对值是本身,负数的绝对值是它的相反数.16.参考答案:星期五生产的西服产量最小,生产量为95套。
北师大版七年级数学上册全册章节同步练习题
2 数轴 4 有理数的加法 6 有理数加减混合运算 8 有理数的除法 10 科学记数法 12 用计算器进行运算
第三章 整式及其加减
1 字母表示数 3 整式 5 探索与表达规律
2 代数式 4 整式的加减 单元测验
第四章 基本平面图形
1 线段 射线 直线 3角 5 多边形和圆的初步认识
2 比较线段的长短 4 角的比较 单元测验
_______________________________________ .
提高题:
把下列各数分类,并填在表示相应 集合的大括号里:
2,
3,
0.8,
12,
0, 2.1, 7 3 ,
17%,
.
0. 4
7
5
(1)正数集合:{
}
(2)负数集合:{
}
(3)正分数 集合:{
}
(4)负分数集合:{
}
A
B
C
D
2.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面 图形,想一想, 这个平面图形是( )
无盖
M
M
(A)
(B)
M M
(C)
(D)
3.正方体各面所标数字从 1 到 6,从三个方向看一正方体,如图所示,则 1,2,3 对面分别是数字
。
2
4
2
3 1
1 3
5 3
4.下 面是一个正方体的展开图,请将数字 折叠成 正方体后相对两面之和相等。
个面,它的侧面积是 。 条棱,所有棱的长度是 。
提高题: 一只小蚂蚁从如图所示的正方体的顶点 A 沿着棱
请你数一数,小蚂蚁有 种爬行路线。
爬向有蜜糖的点 B,它只能经过三条棱,
_ 2020—2021学年七年级数学上册 2.2--2.3 数轴、相反数、绝对值 同步练习
2.2数轴、相反数、绝对值同步练习一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.下列数轴表示正确的是()A.B.C.D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣34.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣25.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣16.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣58.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.616.﹣3的相反数是()A.3B.C.﹣3D.﹣17.的相反数是()A.﹣2017B.2017C.D.18.若m是﹣6的相反数,则m的值是.19.﹣8的相反数是.如果﹣a=2,则a=.20.已知m﹣2的相反数是5,那么m3的值等于.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣22.|﹣2|等于()A.2B.﹣2C.D.0 23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3 24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3 26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a 27.当x<1时,化简:|x﹣1|=.28.若|x﹣2|=2,则x﹣1=.29.如果|x﹣3|=5,那么x=.30.如果b与5互为相反数,则|b+2|=.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.32.已知a是2的相反数,计算|a﹣2|的值.33.已知|a﹣1|=2,求﹣3+|1+a|值.2.2数轴、相反数、绝对值同步练习参考答案与试题解析一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.2.下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.4.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【解答】解:点P表示的数是﹣2+4=2.故选:C.5.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.6.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【解答】解:AB=4﹣(﹣6)=10.故选:D.7.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣5【解答】解:∵点O是线段AB的中点,∴AO=BO,∵AB=20,∴AO=BO=AB=10,根据距离公式|0﹣a|=10,∴a=﹣10,故选:C.8.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是﹣2.【解答】解:设点C表示的数为x,则AC=x﹣(﹣10)=x+10,BC=4﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+10﹣(4﹣x)=2.解得:x=﹣2.故答案为:﹣2.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是6.【解答】解:表示数﹣5和表示数﹣11的两点之间的距离是:|(﹣5)﹣(﹣11)|=6,故答案为:6.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是2,﹣6.【解答】解:数轴上点A表示的数为﹣2,距离点A4个单位长度的点有两个,它们分别是﹣2+4=2,﹣2﹣4=﹣6,故答案为:2,﹣6.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为1或9.【解答】解:∵点A表示﹣3,AC=4,∴C表示的数是﹣3+4=1或﹣3﹣4=﹣7,即x=1或x=﹣7,∵A,B所表示的数分别是﹣3、+7,点M是AB的中点,∴M表示的数是(﹣3+7)÷2=2,∴CM=|1﹣2|=1或CM=|﹣7﹣2|=9,故答案为:1或9.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:﹣20;点B表示的数是:100.(2)A,B两点间的距离是120个单位,线段AB中点表示的数是40.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.【解答】解:(1)∵点A在原点左侧且距原点20个单位,∴点A表示的数是﹣20,∵点B在原点右侧且距原点100个单位,∴点B表示的数是100,故答案为:﹣20;100.(2)∵点A表示的数是﹣20,点B表示的数是100,∴A、B两点间的距离为100﹣(﹣20)=120,线段AB中点表示的数是100﹣120÷2=40,故答案为:120;40.(3)设两只蚂蚁经过x秒相遇,4x+6x=120,解得:x=12,﹣20+4x=28,∴点C表示的数是28.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.【解答】解:(1)点B向右移动5个单位长度后,点B表示的数为1;三个点所表示的数中最小的数是是点A,为﹣1.(2)点D到A,C两点的距离相等;故点D为AC的中点.D表示的数为:0.5.(3)当点E在A、B时,EA=2EB,从图上可以看出点E为﹣3,∴点E表示的数为﹣3;当点E在点B的左侧时,根据题意可知点B是AE的中点,∴点E表示的数是﹣7.综上:点E表示的数为﹣3或﹣7.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.6【解答】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.16.﹣3的相反数是()A.3B.C.﹣3D.﹣【解答】解:∵互为相反数的两个数相加等于0,∴﹣3的相反数是3.故选:A.17.的相反数是()A.﹣2017B.2017C.D.【解答】解:﹣的相反数为,故选:D.18.若m是﹣6的相反数,则m的值是6.【解答】解:∵m是﹣6的相反数,∴m=6.故答案为:6.19.﹣8的相反数是8.如果﹣a=2,则a=﹣2.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.20.已知m﹣2的相反数是5,那么m3的值等于﹣27.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,∴m3=(﹣3)3=﹣27.故答案为:﹣27.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣【解答】解:﹣9的绝对值是9,故选:A.22.|﹣2|等于()A.2B.﹣2C.D.0【解答】解:|﹣2|等于2,故选:A.23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3【解答】解:∵2<a<3,∴a﹣3<0,2﹣a<0,∴原式=3﹣a+a﹣2=1.故选:B.24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.【解答】解:|﹣|=,的相反数是﹣.故选:B.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a【解答】解:任何数的绝对值都是非负数,所以|a|≥0.故选:A.27.当x<1时,化简:|x﹣1|=1﹣x.【解答】解:∵x<1,∴x﹣1<0,∴原式=﹣(x﹣1)=1﹣x.28.若|x﹣2|=2,则x﹣1=3或﹣1.【解答】解:∵|x﹣2|=2,∴x﹣2=+2,或x﹣2=﹣2,∴x=4或x=0,当x=4时,x﹣1=4﹣1=3,当x=0时,x﹣1=0﹣1=﹣1.故答案为:3或﹣1.29.如果|x﹣3|=5,那么x=8或﹣2.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.30.如果b与5互为相反数,则|b+2|=3.【解答】解:∵b与5互为相反数,∴b=﹣5,∴|b+2|=|﹣5+2|=|﹣3|=3.故答案为:3.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.32.已知a是2的相反数,计算|a﹣2|的值.【解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.33.已知|a﹣1|=2,求﹣3+|1+a|值.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3。
七年级新北师大版数学同步练习全套
目录(A面)第一章丰富的图形世界 .......................... A3-A10 1.1 生活中的立体图形................................... A3-A4 1.2 展开与折叠......................................... A5-A6 1.3 截一个几何体....................................... A7-A8 1.4 从三个方向看物体的形状 ............................ A9-A10第二章有理数及其运算 ......................... A11-A29 2.1 有理数........................................... A11-A12 2.2 数轴............................................. A13-A14 2.3 绝对值........................................... A15-A16 2.4 有理数的加法......................................... A17 2.5 有理数的减法..................................... A18-A19 2.6 有理数的加减混合运算............................. A20-A22 2.7 有理数的乘法..................................... A23-A24 2.8 有理数的除法........................ A2错误!未定义书签。
2.9 有理数的乘方......................................... A26 2.10 科学记数法.......................................... A27 2.11 有理数的混合运算............... A2错误!未定义书签。
2.1--2.3有理数、数轴和绝对值 综合练习 北师大版七年级数学上册
有理数、数轴和绝对值一.正数和负数1.如果上升2米记作+2米,那么下降5米记作()米.A.+2B.﹣2C.+5D.﹣52.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦3.若盈余2万元记作+2万元,则﹣2万元表示()A.盈余2万元B.亏损2万元C.亏损﹣2万元D.不盈余也不亏损4.2020年第一季度,受新冠肺炎疫情影响,云南省外贸进出口总值466.5亿元,较上年同期下降6.3%.2021年第一季度,云南省外贸进出口总值达742.1亿元,同比增长59.7%.若下降6.3%,记作﹣6.3%,则增长59.7%应记作()A.+59.7%B.﹣59.7%C.+6.3%D.﹣6.3%5.规定向右移动3个单位记作+3,那么向左移动2个单位记作()A.+2B.﹣2C.+D.﹣二.有理数6.下列四个选项,其中的数不是分数的选项是()A.B.C.D.80%7.在数﹣,﹣1,,﹣,0中,负分数有()A.1个B.2个C.3个D.4个8.在15,﹣0.23,0,5,﹣0.65,2,﹣,316%这几个数中,非负数的个数是()A.4个B.5个C.6个D.7个9.已知有理数a,b,c在数轴上的对应点的位置如图所示,则下列关系中,正确的是()A.ab>bc B.ac>ab C.ab<bc D.c+b>a+b10.已知有理数a,b在数轴上的位置如图所示,下列结论正确的是()A.﹣2﹣a>0B.﹣2﹣b>0C.a+b>0D.a﹣b>011.如图,有理数a、b在数轴上对应的点如图所示,则a﹣b的结果是()A.﹣2B.﹣1C.0D.112.如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.4B.3C.2D.113.如图,数轴上点A对应的数是,将点A沿数轴向左移动3个单位至点B,则点B对应的数是()A.﹣B.﹣2C.3D.14.数轴上表示数5的点和原点的距离是()A.B.5C.﹣5D.﹣15.下列数轴表示正确的是()A.B.C.D.16.下列关于数轴的图示,画法不正确的有()A.4个B.3个C.2个D.1个17.若x的相反数是3,则x的值是()A.﹣3B.﹣C.3D.±3 18.﹣(﹣2021)的相反数是()A.﹣2021B.2021C.D.19.2022的相反数是.五.绝对值20.|﹣2021|等于()A.﹣2021B.﹣C.2021D.21.的绝对值是()A.3B.C.D.22.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.六.非负数的性质:绝对值23.若|a+2|+|b﹣7|=0,则a+b的值为()A.﹣1B.1C.5D.﹣5 24.已知|x﹣1|+|y+2|=0,则(2x+y)(2x﹣y)=.25.当|2x+y|+1取最小值时,代数式4x+2y+3的值是.七.有理数大小比较】26.下列各数的相反数中,最大的是()A.2B.1C.﹣1D.﹣2 27.下列各数中,比﹣3小的数是()A.0B.﹣2C.|﹣3|D.﹣428.下列各数中,绝对值最小的数是()A.B.﹣1C.﹣2D.129.有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④。
北师大版七年级数学上册 同步练习 全套含答案详解
北师大版七年级数学上册同步练习目录2017年秋北师大七年级上《1.1生活中的立体图形》同步练习含答案2017年秋北师大七年级上《1.2展开与折叠》同步练习含答案解析2017年秋北师大七年级上《1.4从三个方向看物体的形状》同步练习含答案解析2017年秋北师大七年级上《2.1有理数》同步练习含答案解析2017年秋北师大七年级上《2.2数轴》同步练习含答案解析2017年秋北师大七年级上《2.3绝对值》同步练习含答案解析2017年秋北师大七年级上《2.4有理数的加法》同步练习含答案解析2017年秋北师大七年级上《2.5有理数的减法》同步练习含答案解析2017年秋北师大七年级上《2.6有理数的加减混合运算》同步练习含答案解析2017年秋北师大七年级上《2.7有理数的乘法》同步练习含答案解析2017年秋北师大七年级上《2.8有理数的除法》同步练习含答案解析2017年秋北师大七年级上《2.9有理数的乘方》同步练习含答案解析2017年秋北师大七年级上《2.10科学记数法》同步练习含答案解析2017年秋北师大七年级上《2.11有理数的混合运算》同步练习含答案解析2017年秋北师大七年级上《3.1字母表示数》同步练习含答案解析2017年秋北师大七年级上《3.2代数式》同步练习含答案解析2017年秋北师大七年级上《3.3整式》同步练习含答案解析2017年秋北师大七年级上《3.4整式的加减》同步练习含答案解析2017年秋北师大七年级上《3.5探索与表达规律》同步练习含答案解析2017年秋北师大七年级上《4.1线段、射线、直线》同步练习含答案解析2017年秋北师大七年级上《4.2比较线段的长短》同步练习含答案解析2017年秋北师大七年级上《4.3角》同步练习含答案解析2017年秋北师大七年级上《4.4角的比较》同步练习含答案解析2017年秋北师大七年级上《4.5多边形和圆的初步认识》同步练习含答案解析2017年秋北师大七年级上《5.1认识一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.2求解一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.3应用一元一次方程——水箱变高了》同步练习含答案解析2017年秋北师大七年级上《5.4应用一元一次方程——打折销售》同步练习含答案解析2017年秋北师大七年级上《5.5应用一元一次方程——希望工程义演》同步练习含答案解析2017年秋北师大七年级上《5.6应用一元一次方程——能追上小明吗》同步练习含答案解析1生活中的立体图基础巩固1.(题型二)如图1-1-1,属于棱柱的有( )图1-1-1A.2个 B.3个 C.4个 D.5个2.(知识点3)雨滴从空中落下、流星从空中划过,这些现象都给我们以_____的形象;汽车的雨刷摆动、将教室前的投影幕展开,这些现象给我们以_____的形象;硬币在桌面上快速旋转、向玻璃杯中注水水面的上升,这些现象给我们以______的形象.3.(题型一)将下列物体的名称与相应的几何体用线连接起来.螺丝帽塔尖字典足球蜡烛魔方长方体正方体圆锥球圆柱棱柱4.(题型三)如图1-1-2的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.图1-1-2能力提升5.(题型四)观察下列多面体,把下表补充完整,并回答问题.(1)根据上表中的规律推断,十四棱柱共有___个面,共有___个顶点,共有____条棱.(2)若某个棱柱由30个面构成,则这个棱柱为____棱柱.(3)若一个棱柱的底面多边形的边数为n,则它有____个侧面,共有___个面,共有____个顶点,共有_____条棱.(4)观察表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.答案1.B解析:正方体、长方体、三棱柱是棱柱,共3个.故选B.2.点动成线线动成面面动成体解析:观察现象,我们可以从中发现它们运动的形象.3.解:4.解:如图D1-1-1.图D1-1-1能力提升5. 解:填表如下:(1)16 28 42.(2)二十八.(3)n n+2 2n3n.(4)a+c-b=2.2展开与折叠基础巩固1.(知识点1)下列选项能折叠成正方体的是()2.(知识点1)将图1-2-1的表面带有图案的正方体沿某些棱展开后,得到的图形是()图1-2-13.(题型四)图1-2-2是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体包装盒的容积是(包装材料厚度不计)()图1-2-2A.40×40×70 B.70×70×80C.80×80×80 D.40×70×804.(题型三)若过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图1-2-3的几何体,则其表面展开图正确的为()图1-2-35.(题型一)若要使图1-2-4中的平面展开图折叠成正方体后,相对面上两个数之和为6,则x=___,y=____.图1-2-4能力提升6.(题型二)已知下列各图形都由5个大小相同的正方形组成,则其中沿正方形的边不能折成无盖小方盒的是()7.(题型四)如图1-2-5,李明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,王华看来看去总觉得所拼图形似乎存在问题.图1-2-5(1)请你帮李明分析一下拼图是否存在问题.若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2 cm,长方形的长为3 cm,宽为2 cm,请直接写出修正后所折叠而成的长方体的容积为_____ cm3.答案基础巩固1.D解析:根据正方体表面展开图的特点可知选D.2.C解析:此题只要想象出其空间立体图形与平面展开图的对应关系,就容易得出三个表面带有图案的图形的位置特征.故选C.3.D解析:先根据所给的图形折成长方体,再根据长方体的容积公式即可得出长方体包装盒的容积为40×70×80.故选D.4.B解析:选项A,C,D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点相符合.故选B.5. 53 解析:这是一个正方体的表面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,则1+x=6,3+y=6,解得x=5,y=3.能力提升6.B解析:因为选项A,D各添加一个小正方形后,均符合“一四一”型;选项C添加一个小正方形后符合“一三二”型或“二二二”型,而选项B无论怎样添加,都不符合正方体表面展开图的特征.故选B.7.解:(1)拼图存在问题,如图D1-2-1.图D1-2-1(2)12.折叠而成的长方体的容积为3×2×2=12(cm3).4 从三个方向看物体的形状基础巩固1.(题型一)图1-4-1是由6个相同的小正方体搭成的几何体,那么从上面看这个几何体得到的图形是()图1-4-12.(知识点1)如图1-4-2(1)是放置的一个水管三叉接头,若从正面看这个接头时,看到的图形如图1-4-2(2),则从上面看这个接头时,看到的图形是()图1-4-23.(题型二)由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图1-4-3,则组成这个几何体的小正方体的个数是()图1-4-3A.3 B.4 C.5 D.64.(知识点1)从正面、上面、左面看一个球时,看到的图形都是______.如果一个几何体从正面、上面、左面看时,看到的图形都是圆,那么这个几何体可能是______.5.(题型一)图1-4-4是一个工件的示意图,请你画出从正面、左面、上面看这个工件时所得到的图形.能力提升6.(题型三)把一个圆锥和一个正方体放在水平桌面上,当分别从正面和左面看这两个几何体时,看到的图形如图1-4-5,请问,当你从上面看这两个几何体时,看到的图形是什么?把你看到的图形画出来.图1-4-57.(题型四)某学校设计了如图1-4-6的一个雕塑,取名“阶梯”,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方体的棱长为0.5 m,请你帮助工人师傅算一下,需喷刷油漆的总面积是多少?图1-4-6答案基础巩固1.A解析:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形,第三层左边有1个正方形.故选A.2.A解析:根据接头的实物图和从正面看到的图形可知,从上面看这个接头时,得到的图形为一个圆和一个长方形相接在一起,且圆在左边,长方形在右边.故选A.3.C 解析:综合三个方向看到的图形,我们可以得出,这个几何体的底层有3+1=4(个)小正方体,第二层有1个小正方体,因此搭成这个几何体所用的小正方体的个数是4+1=5.故选C.4.圆球5.解:从正面、左面、上面看这个工件时所得到的图形如图D1-4-1.图D1-4-1能力提升6.解:从上面看这两个几何体时所看到的图形如图D1-4-2.图D1-4-27.解:从三个方向看物体得到的形状图如图D1-4-3,则从正面与从左面看到的形状图的面积都是0.5×0.5×6=1.5(m2),从上面看到的形状图的面积是0.5×0.5×5=1.25(m2).图D1-4-3因为暴露的面是从前、后、左、右、上看到的面,从左面看到的形状图和从右面看到的形状图的面积是一样的,从前面看到的形状图和从后面看到的形状图的面积是一样的,所以需喷刷油漆的总面积为1.5×4+1.25=7.25(m2).第二章有理数及其运算1 有理数基础巩固1.(题型一)[广东广州中考]中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元2.(题型二)下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3.(知识点3)在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A.1 B.2 C.3 D.44.(题型一)下列选项,具有相反意义的量是()A.增加20个与减少30个B.6个老师和7个学生C.走了100米和跑了100米D.向东行30米和向北行30米5.(题型一)吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6.(题型二)在有理数中,是整数而不是正数的是,是负数而不是分数的是______ .7.(知识点2)某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8.(题型二)把有理数-3,2 017,0,37,-237填入它所属的集合内(如图2-1-1).图2-1-1能力提升9.(题型一)一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10.(题型三)将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2 018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?-1 4→-5 8→-9 A→B↓↑↓↑↓↑↓2→-3 6 -7 10 …C→D7222 答案 基础巩固1.C 解析:若收入为正,则支出为负,所以-80元表示支出80元.故选C.2.C 解析:负整数和负分数统称为负有理数,故A 正确,不符合题意;整数分为正整数、负整数和0,故B 正确,不符合题意;正有理数、负有理数和0组成全体有理数,故C 错误,符合题意;3.14是小数,也是分数,故D 正确,不符合题意.故选C.3.C 解析:有理数有-3.5,,0,共3个.虽然是分数形式,但π是一个无限不循环小数,不是有理数,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)虽然有规律,但是不存在循环节,故也是无限不循环小数,不是有理数.所以有理数一共有3个.故选C. 4.A 解析:增加20个与减少30个是具有相反意义的量.故选A. 5.+919 解析:若低于海平面记作负数,则高于海平面应记作正数,所以高于海平面919 m 记作+919 m.6.负整数和0负整数7.既不是正数也不是负数的数(答案不唯一) 8.如图D2-1-1.图D2-1-1能力提升9.解:(1)守门员回到了守门的位置.守门员的运动情况为:前进5 m ,后退3 m ,前进10 m ,后退8 m ,后退6 m ,前进12 m ,后退10 m ,共前进了27 m ,后退了27 m.因为前进的总路程与后退的总路程相等,所以守门员回到了守门的位置.(2)几次运动后,守门员的位置相对于最初的位置分别为:前5 m ,前2 m ,前12 m ,前4 m ,后2 m ,前10 m ,0 m ,所以守门员离开守门的位置最远是12 m. 10.解:(1)在A 处的数是正数. (2)负数排在B 和D 的位置.(3)第2 018个数是正数,排在对应于C 的位置.第二章有理数及其运算2 数轴基础巩固1.(题型一)在数轴上表示-2,0,6.3,15的点中,在原点右边的点有()A. 0个B. 1个C. 2个D. 3个2.(题型三)在数轴上表示-3和2 017的点之间的距离是()A.2 017 B.2 014C.2 020 D.-2 0203.(题型二)写出两个比-4.2大的负整数:_____.4.(题型四)如图2-2-1,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是;数轴上到原点的距离等于2的点所表示的数是______.图2-2-15.(1)(题型一)把数-4.4, 5,-1.5,3,2.2,0.5,4.1,-3在数轴上表示出来;(2)(题型一)指出如图2-2-2的数轴上A,B,C,D,O各点分别表示什么数.图2-2-2(3)(题型二)用“>”连接下列各数:32,-5,0,3.6,-3,-12,-112.能力提升6.(题型五)李林准备利用星期天休息时间到老板、经理、处长和科长的家登门拜访,王敏告诉他:“老板的家在工厂的正东方向,距离工厂8 000 m;经理的家在老板家的正西方向,距离老板家1 000 m;处长的家在经理家的正东方向,距离经理家5 000 m;科长的家在处长家的正东方向,距离处长家3 000 m.”(1)利用数轴确定四家的位置.(2)从工厂出发,走哪条路线才能使往返路程最短?7.(题型六)点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;从第一次移动后的位置开始,第二次先向左移动3个单位长度,再向右移动4个单位长度;从第二次移动后的位置开始,第三次先向左移动5个单位长度,再向右移动6个单位长度;……依此规律,解答下列各题.(1)第一次移动后这个点在数轴上表示的数为____;(2)第二次移动后这个点在数轴上表示的数为____;(3)第五次移动后这个点在数轴上表示的数为____;(4)第n次移动后这个点在数轴上表示的数为____;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.答案基础巩固1.C解析:在原点右边的点所对应的数是6.3,15,共2个.故选C.2.C解析:从数轴上可以看出,表示-3的点到原点的距离为3个单位长度,表示2 017的点到原点的距离为2 017个单位长度,且两点分布在原点两侧,所以距离为2 020.故选C.3.-4,-3(答案不唯一)4. 2 - 2和25.解:(1)各数在数轴上的位置如图D2-2-1.图D2-2-1(2)点A表示的数为-2.5,点B表示的数为-0.5,点O表示的数为0,点C表示的数为2,点D表示的数为2.5.(3)将各数用数轴上的点表示,如图D2-2-2.图D2-2-2根据“在数轴上右边的点表示的数总比左边的点表示的数大”可得3.6>32>0>-12>-112>-3>-5.能力提升6.解:(1)规定一个单位长度代表1 000 m,向东为正方向,如图D2-2-3.图D2-2-3(2)李林从工厂出发,按照路线:经理家老板家处长家科长家,然后返回工厂,这样往返路程最短.(答案不唯一)7.解:(1)3.(2)4.(3)7.(4)n+2.(5)由(4)可知,m+2=56,解得m=54.第二章有理数及其运算3 绝对值基础巩固1.(题型一)|-2|的相反数是()A.-2 B.2 C.- 3 D.32.(知识点2)若|x|=-x,则x一定是()A.负数B.负数或零C.零D.正数3.(题型三)将有理数-|0.67|,-(-0.68),23,|-0.67|,0.67·,0.66用“<”连接起来为 .4.(题型三)把-3.5,|-2|,-1.5,|0|,|-3.5|在数轴上表示出来,并按从小到大的顺序排列出来.5.(题型一)化简下列各式,并解答问题:①-(-2);②+(-1/8);③-\[-(-4)\];④-\[-(+3.5)\];⑤-{-\[-(-5)\]};⑥-{-\[-(+5)\]}.问:(1)当+5前面有2 018个负号时,化简后结果是多少?(2)当-5前面有2 019个负号时,化简后的结果是多少?你能总结出什么规律?能力提升6.(题型四)出租车司机李伟一天下午的营运全是在南北走向的光明大街上进行的,假定向南为正,向北为负,他这天下午的行车记录(单位:km)如下:+15,-3,+14,-11,+10,+4,-26.(1)李伟在送第几位乘客时行驶的路程最远?最远有多远?(2)若该出租车的耗油量为0.1 L/km,则这天下午该出租车共耗油多少升?7.(题型五)认真阅读下面的材料,解答有关问题:材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5-3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5,-3在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,如果点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离可以表示为|a-b|.(1)如果点A,B,C在数轴上分别表示有理数x,-2,1,那么点A到点B的距离与点A到点C的距离之和可表示为什么?(用含绝对值的式子表示)(2)利用数轴探究:①找出满足|x-3|+|x+1|=6的x的所有值;②设|x-3|+|x+1|=p,当x取不小于-1且不大于3的数时,p的值是不变的,而且是p的最小值,这个最小值是;当x在范围内取值时,|x|+|x-2|取得最小值,最小值是.答案基础巩固1.A解析:|-2|=2,所以|-2|的相反数是-2.故选A.2.B解析:根据绝对值的定义,可知x一定是负数或零.故选B.3. -|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68)解析:因为-|0.67|=-0.67,|-0.67|=0.67,-(-0.68)=0.68,23=0.6•,所以-|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68).4.解:将各数在数轴上表示如图D2-3-1.图D2-3-1按从小到大的顺序排列出来为:-3.5<-1.5<|0|<|-2|<|-3.5|.5.解:①-(-2)=2;②+-81=-81; ③-[-(-4)]=-4;④-[-(+3.5)]=3.5; ⑤-{-[-(-5)]}=5;⑥-{-[-(+5)]}=-5.(1)当+5前面有2 018个负号时,化简后的结果是+5. (2)当-5前面有2 019个负号时,化简后的结果是+5.总结规律:一个数的前面有奇数个负号,化简后的结果等于它的相反数,有偶数个负号,化简后的结果等于它本身. 能力提升6.解:(1)小李在送最后一名乘客时行驶的路程最远,是 26 km. (2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ). 即这天下午该出租车共耗油8.3 L.7.解:(1)点A 到点B 的距离与点A 到点C 的距离之和可表示为|x +2|+|x -1|. (2)①满足|x -3|+|x +1|=6的x 的所有值是-2,4.② 4不小于0且不大于22.第二章 有理数及其运算4 有理数的加法基础巩固1.(题型一)有理数-5与20的和与它们的绝对值之和分别为( ) A.15,15 B.25,15 C.25,25 D.15,252.(题型二)李老师的存储卡中有5 500元,取出1 800元,又存入1 500元,又取出2 200元,这时存储卡中的钱为( ) A.11 000元 B.0元 C.3 000元 D.2 500元3.(题型一)若m ,n 分别表示一个有理数,且m ,n 互为相反数,则|m +(-2)+n |= .4.(考点一)计算下列各题:(1) 354215+-+-++-+-9+7777()(4)()(); (2) 15115++-+0.125+-82(4.5)(). 5.(题型二)某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M 地出发到收工时所走路程依次为(单位:km ):+10,-4,+2,-5,-2,+8,+5. (1)该检修小组收工时在M 地什么方向,距M 地多远?(2)若该汽车在行驶过程中,每千米耗油0.09升,则该汽车从M 地出发到收工时共耗油多少升? 能力提升6.(题型三)如果两个数互为相反数,那么这两个数的和为0.例如,若x 和y 互为相反数,则必有x +y =0.(1)已知|a |+a =0,求a 的取值范围.(2)已知|a -1|+(a -1)=0,求a 的取值范围. 7.(考点一)阅读下面解题过程: 计算: 解:原式== =0+ = 上面的计算,是先把带分数拆分为整数部分和小数部分后再计算,可使运算简便,这种简便运算的方法叫作拆项法.请你仿照上面的方法计算:521-2018+-+4035+-1632()(2017)().5231-5+9)17(3)6342-++-(52(5)()(9)()6331(17)(3)().42⎡⎤⎡⎤-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤+++-+-⎢⎥⎣⎦[](5)(9)(3)175213(-+-+-+6324-+-+-+⎡⎤+⎢⎥⎣⎦)()()1-14()1-1.4答案 基础巩固1.D 解析:(-5)+20=15,|-5|+|20|=5+20=25.故选D.2.C 解析:根据题意,得5 500+(-1 800)+1 500+(-2 200)=3 000(元),故此时存储卡还有3 000元.故选C.3. 2 解析:因为m ,n 互为相反数,所以m +n =0,则|m +(-2)+n |= |(m +n )+(-2)|=|0+(-2)|=2.4.解:(1)15+(-73)+(-4)+75+(-74)+(-9)+72 =(75+72)+[(-73)+(-74)] + [15+(-4)+(-9)]=1+(-1)+2 =2.(2)10+815+(-4.5)+0.125+(-21) =10+815+(-4.5)+81+(-0.5)=10+(815+81)+[(-4.5)+(-0.5)]=10+2+(-5) =7.5.解:(1)(+10)+(-4)+(+2)+(-5)+(-2)+(+8)+(+5) =10-4+2-5-2+8+5 =14.答:该检修小组收工时在M 地的南边,距M 地14 km.(2)|+10|+|-4|+|+2|+|-5|+|-2|+|+8|+|+5|=36(km ),36×0.09=3.24(L ). 答:汽车从M 地出发到收工时共耗油3.24 L. 能力提升6.解:(1)因为|a |≥0,|a |+a =0,所以a ≤0.(2)因为|a -1|≥0,|a -1|+(a -1)=0,所以a -1≤0.解得a ≤1.7.解:原式=[(-2 018)+(-65)]+[(- 2 017)+(-32)]+4 035+[(-1)+(-21)] =[(-2 018)+(-2 017)+4 035+(-1)]+[(-65)+(-32)+(-21)]=(-1)+(-2)=-3.第二章有理数及其运算5 有理数的减法基础巩固1.(题型一)有理数a,b在数轴上的对应点的位置如图2-5-1,则()A.a+b<0 B.a+b>0 C.a-b=0 D.a-b<图2-5-12.(题型一)李明的练习册上有这样一道题:计算|(-3)+▉|,其中“▉”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“▉”表示的数应该是 .3.(考点一)计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232-3--2--1-+1.75 343()()()().4.(题型二)已知某种植物成活的主要条件是该地四季的温差不得超过20 ℃.若不考虑其他因素,在下表的四个地区中,哪个地区适合大面积的栽培这种植物?请说明理由.地区夏季最高温/℃冬季最低温/℃A地区41 -5 B地区38 20 C地区27 -17 D地区-2 -42能力提升5.(题型一)若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a-b-(-c)的值.6.(题型一)已知M,N都为数轴上的点,当M,N分别表示下列各数时:①+3和+6;②-3和+6;③3和-6;④-3和-6.(1)请你分别求点M,N之间的距离.(2)根据(1)的求解过程,你能从中得出求数轴上任意两点间的距离的规律吗?试试看.答案 基础巩固1.B 解析:由数轴,得a >0,b <0,且|a |>|b |,所以a +b >0,a -b >0.故选B.2.-3或9 解析:因为|(-3)+▉|=6,所以(-3)+▉=6或(-3)+▉=-6. 当(-3)+▉=6时,▉=6-(-3)=6+(+3)=9;当(-3)+▉=-6时,▉=-6-(-3)=(-6)+(+3)=-3. 3.解:(1)-2-(+10)=-2+(-10)=-12. (2)0-(-3.6)=0+3.6=3.6.(3)(-30)-(-6)-(+6)-(-15)=(-30)+(+6)+(-6)+(+15)=-30+0+15=-15.(4)(-332)-(-243)-(-132)-(+1.75) =-332+243+132+(-143)=(-332+132)+ [(+243)+(-143)]=-2+1 =-1.4.解:B 地区.理由如下:A 地区的四季温差是41-(-5)=46(℃);B 地区的四季温差是38-20=18(℃);C 地区的四季温差是27-(-17)=44(℃);D 地区的四季温差是-2-(-42)=40(℃). 因为B 地区的四季温差不超过20 ℃,所以B 地区适合大面积的栽培这种植物. 能力提升5.解:因为|a |=3,所以a =3或a =-3. 因为|b |=10,所以b =10或b =-10. 因为|c |=5,所以c =5或c =-5. 又因为a ,b 异号,b ,c 同号,所以a=-3,b=10,c=5或a=3,b=-10,c=-5.当a=-3,b=10,c=5时,a-b-(-c)=-3-10-(-5)=-8 ;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)- 5=8.所以a-b-(-c)的值为8或-8.6.解:把-6,-3,+3,+6分别用数轴上的点表示出来,如图D2-5-1.图D2-5-1(1)①点M,N之间的距离为|6|-|3|=6-3=3.②点M,N之间的距离为|6|+|-3|=6+3=9.③点M,N之间的距离为|-6|+|3|=6+3=9.④点M,N之间的距离为|-6|-|-3|=6-3=3.(2)能.在(1)中,①可以写成|6|-|3|=|6-3|=3;②可以写成|6|+|-3|=|6-(-3)|=9;③可以写成|-6|+|3|=|-6-3|=9;④可以写成|-6|-|-3|=|-6-(-3)|=3,所以点M,N之间的距离为这两个点所表示的数的差的绝对值.故求数轴上任意两点间的距离可以转化为求这两点在数轴上所表示的数的差的绝对值.第二章 有理数及其运算 6有理数的加减混合运算基础巩固1.(题型一)不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的和的形式是( ) A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-22.(题型二)某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为( )A .-0.8元B .12.8元C .9.2元D .7.2元 3.(题型三)已知|a +2|+|b -1|=0,则(a +b )-(b -a )-a =______. 4.(题型一)计算:(1) (-23)-(-38)-(+12)+(+7);(2)16-(+2.8)+(-65)+1.8; (3)-0.5-(-341)+2.75-(+521);(4)|+3118|-|-1127|-|+1119|+|-59|.5.(题型二)为了宣传节约用水的意义,李丽记录了金地庄园小区6月份1~6日每天的用水量,并根据记录结果制成折线统计图,如图2-6-1.请你求出该小区6天的平均用水量是多少吨.图2-6-1能力提升6.(题型一)数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,a ☆b =a -b +1,请你根据新运算,计算[2☆(-3)]☆(-2)的值.7.(题型四)(1)有1,2,3,…,11,12共12个数,请在每两个数之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2 015,2 016共2 016个数字,请在每两个数之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.若能,请说明添加的方法;若不能,请说明理由.答案1.C 解析:原式=6+(-3)+(+7)+(-2)=6-3+7-2.故选C.2.C 解析:由题意可得,该股票这天的收盘价为10-1.8+1=9.2(元).故选C.3. -2 解析:因为|a +2|+|b -1|=0,所以a +2=0,b -1=0,即a =-2,b =1,则原式=a +b -b +a -a =a =-2.4.解:(1)原式=-23+38-12+7=(-23-12)+(38+7) =-35+45 =10. (2)原式=61-2.8-65+1.8=(61-65)+(-2.8+1.8)=-32 -1=-132. (3)原式=-0.5+3.25+2.75-5.5=(-0.5-5.5)+(3.25+2.75)=-6+6=0. (4)原式=3118-1027-1119+59=3118-1119-(—1027-59)=2-109=1101.5.解:若选3日的用水量为标准,则这6天的用水量分别为-2吨,+2吨,0吨,+5吨,-4吨,-1吨.所以这6天的平均用水量为[(-2)+(+2)+0+(+5)+(-4)+(-1)]÷6+32=(-2+2+0+5-4-1)÷6+32=32(吨). 答:该小区6天的平均用水量是32吨. 能力提升6.解:根据新运算法则,得[2☆(-3)]☆(-2)=[2-(-3)+1]☆(-2)=6☆(-2)=6-(-2)+1=6+2+1=9. 7.解:(1)答案不唯一,如1+12-2-11+3+10-4-9+5+8-6-7=0.(2)答案不唯一,如1+2 016-2-2 015+3+2 014-4-2 013+…+1 007+1 010-1 008-1 009=0. (3)不能.理由如下: 因为(1)与(2)是偶数个数,它们的第一个数与最后一个数的和,第二个数与倒数第二个数的和,……中间位置两个数的和都分别相等,在适当的位置添加“+”或“-”其和可以为0,而1,2,3,…,2 016,2 017共2 017个数,中间的数2 009是无法抵消的,所以根据(1)(2)的规律,不能在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.第二章 有理数及其运算7有理数的乘法基础巩固1.(知识点1)从-4,5,-3,2中任取两个数相乘,所得积最大的是( ) A.-20 B.12C.10D.-82.(知识点1、题型一)下列计算正确的是( )A .(-5)×(-4)×(-2)×(-2)=5×4×2×2=80B .(-12)×(31-41-1)=-4+3+1=0C .(-9)×5×(-4)×0=9×5×4=180D .(-2)×5-2×(-1)-(-2)×2=(-2)×(5+1-2)=-8 3.(知识点2)如果□×(-52)=1,那么“□”内应填的数是( ) A.25B.52C.-52D.-254.(题型二)绝对值小于4的所有整数的积是____.5.(题型二)有理数a ,b ,c ,d 在数轴上对应的点的位置如图2-7-1,则abc ____0,abcd ____0.(填“>”或“<”)图2-7-16.(题型二)若|a |=5,b =-2,且ab >0,则a +b =_____.7.(题型一)用简便方法计算:(1)(-231-321+12524)×(-76); (2)(-5)×(-372)+(-7)×(-372)+(-12)×372.8.(题型二)在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积. 能力提升9.(题型三)某数学小组的10位同学站成一列玩报数游戏,规则:从前面第一位同学开始,每位同学依次报自己序号的倒数的2倍加1,第1位同学报(12+1),第2位同学报(22+1),第3位同学报(23+1),……这样得到的10个数的积为______.10.(题型一)阅读下面材料:(1+21)×(1-31)=23×32=1, (1+21)×(1+41)×(1-31)×(1-51)=23×45×32×54 =23×32×45×54=1×1=1.根据以上信息,求出下式的结果.(1+21)×(1+41)×(1+61)×…×(1+201)×(1-31)×(1-51)×(1-71)×(1-91)×…×(1-211).答案 基础巩固1.B 解析:(-4)×5=-20,(-4)×(-3)=12,(-4)×2=-8,5×(-3)=-15,5×2=10,-3×2=-6.故选B.2.A 解析:A.(-5)×(-4)×(-2)×(-2)=5×4×2×2=80,故正确;B.(-12)×(31-41-1)=-4+3+12=11,故错误;C.(-9)×5×(-4)×0=0,故错误;D.-2×5-2×(-1)-(-2)×2=-2×(5-1-2)=-4,故错误.故选A.3.D 解析:互为倒数的两个数的积为1,反之,如果两个数的积为1,那么这两个数互为倒数.所以“□”内应填的数为-25.故选D. 4. 0 解析:绝对值小于4的整数有3,2,1,0,-1,-2,-3,因为因数中有一个数为0,所以它们的积为0.5.>> 解析: 观察数轴可知,a <0,b <0,c >0,d >0,故abc >0,abcd >0.6. -7 解析:因为|a |=5,所以a =5或a =-5.又因为ab >0,b =-2,所以a =-5,所以a +b =(-5)+(-2)=-7.7.解:(1)原式=(-37-27+2549)×(-76) =(-37)×(-76)+(-27)×(-76)+2549×(-76)=2+3-2542=3258.(2)原式=5×372+7×372-12×372=372×(5+7-12)=372×0=0.8.解:由题意知,a =3或a =-3,b =5或b =-5.当点A 与点B 位于原点的同侧时,a ,b 的符号相同,则ab =3×5=15或ab =(-3)×(-5)=15; 当点A 与点B 位于原点的异侧时,a ,b 的符号相反,则ab =3×(-5)=-15或ab =(-3)×5=-15.综上所述,a 与b 的乘积为15或-15.。
北师大版数学七年级上第二章3绝对值同步练习题(无答案)
初中数学北师大版第二章3绝对值练习题(无答案)一、选择题1.|−13|,−2,0,π中,最小的数是()A. |−13| B. −2 C. 0 D. π2.绝对值小于4的负整数是().A. −3,−2,−1B. −3,−2,−1,0C. −4,−3,−2,−1D. ±3,±2,±1,03.如果x为有理数,式子2019−|x−2|存在最大值,这个最大值是()A. 2016B. 2017C. 2019D. 20214.下列说法中,错误的是()A. +5的绝对值等于5B. 绝对值等于5的数是5C. −5的绝对值是5D. +5、−5的绝对值相等5.在−25,0,25,2.5这四个数中,绝对值最大的数是().A. −25B. 0C. 25D. 2.56.下列说法正确的是()A. −a的绝对值是aB. 若|x|=−x,则x是负数C. a的绝对值是aD. 若m=−n,则|m|=|n|7.a,b,c三个数对应的点在数轴上的位置如图所示,则这三个数中绝对值最大的是()A. aB. bC. cD. 无法确定8.−|−3|的值为()A. 3B. −3C. 13D. −131/ 39.计算−(−1)+|−1|,其结果为()A. −2B. 2C. 0D. −110.若|x−6|=|x|+6,则x的取值范围是()A. x>6B. x<6C. x≤0D. x≥011.下列各数中,最大的数是()A. |−3|B. −2C. 0D. 112.对于任意有理数a,下列式子的值不可能是0的是()A. |a+1|B. |−1|+aC. |a|+1D. −|a|13.2020的绝对值可表示为().A. −2020B. |2020|C. √2020D. 12020二、填空题14.一个数a在数轴上所对应的点在原点的左侧,且|a|=4.5,则a=________.15.一个数在数轴上所对应的点向左移动2018个单位长度后,得到它的相反数对应的点,则这个数是________.16.绝对值小于3的负整数是________.17.绝对值等于它本身的数是________,相反数等于它本身的数是________,绝对值最小的负整数是________,绝对值最小的有理数是________.三、解答题18.【阅读】|5−2|表示5与2的差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5−(−2)|,表示5与−2的差的绝对值,也可理解为5与−2两数在数轴上所对应的两点之间的距离.【探索】(1)若|x−2|=5,则x=__________.(2)利用数轴,找出所有符合条件的整数x,使x所表示的点到2和−1所对应的点的距离之和为3.(3)由以上探索猜想,对于任意有理数x,|x−2|+|x+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.19.如果|a|=4,|b|=3,且a>b,求a,b的值.3/ 3。
2.3 绝对值 同步练习 2024-2025学年苏科版七年级数学上册
绝对值练习一、字母的相反数1. 填空:(1)m 的相反数是________ ;−m 的相反数是________.(2)−m + 1 的相反数是________.(3)m + n 的相反数是________.(4)a − b − c + d 的相反数是________________.(5)当 m = ________ 时,3m + 1 与 2m − 6 互为相反数?二、绝对值概念辨析1. 判断下列说法是否正确:(1)|a| = a.(2)|a| > −a.(3)若 |a| = b,则 a = b.(4)若 |a| > b,则 |a| > |b|.(5)若 |a| < b,则 |a| < |b|.(6)若 |a| = |b|,则a = ±b.三、根据绝对值求原数1. 若 |x| = 2,则 x = ________.2. 绝对值小于 4 的整数有几个?3. 绝对值小于 4 并大于 1 的整数有几个?4. 已知 |a| = 4,|b| = 5,且 b < a,试求 a、b 的值.5. 已知 |−x| = 5,则 x =________.6. 已知 |x − 1| = 5,求 x 的值.四、根据绝对值求取值范围1.求取值范围(1)已知 |x| = x,求 x 的取值范围.(2)已知 |x| = −x,求 x 的取值范围.(3)已知 |x − 1| = x − 1,求 x 的取值范围.(4)已知 |x − 1| = 1 − x,求 x 的取值范围.五、绝对值的非负性1. |x − 1| + 2 取最小值时,求 x 的值和式子的最小值.2. − |−x + 5| + 2 取最大值时,求 x 的值和式子的最大值.3. 已知 |a − 1| + |b + 2| = 0,求 a 和 b 的值.4. 已知 23 |x − 6| + 45 |y − 7| + |z + 1| = 0,求 x,y,z.5. 若 |x − 1| 和 |2y − 4| 互为相反数,求 x,y.六、化简含绝对值的式子1.求 |a|;(2)求 |a − 9|;(3)求 |a + 1| =?2.数 a 在数轴上的位置如图所示,则 |a − 2| = a − 2 .参考答案:一、字母的相反数1. (1)−m m(2)m−1(3)−m − n(4)−a + b + c − d(5)1二、绝对值概念辨析1.(1)不正确(2)不正确(3)不正确(4)不正确(5)正确(6)正确三、根据绝对值求原数1. ±22. 7个3. 4 个4. a = 4, b = −5 或 a = −4, b = −55. ±56. 6 或−4四、根据绝对值求取值范围1. (1)x ≥ 0(2)x ≤ 0(3)x ≥ 1(4)x ≥ 1五、绝对值的非负性1.x = 1 ;22. x = 5 ;22.3. a = 1, b = −23.4. x = 6, y = 7, z = −14.5. x = 1, y = 2六、化简含绝对值的式子。
2.3绝对值同步练习2023-2024学年北师大版数学七年级上册(含答案)
2.3绝对值同步练习2023-2024学年北师大版数学七年级上册(含答案)2023-2024学年北师大版数学七年级上册第二章有理数及其运算绝对值同步练习一.选择题(共12小题)1.﹣11的绝对值为()A.1 B.11 C.﹣D.2.若|a|=2,则a=()A.﹣2 B.C.2 D.±23.下列各数中互为相反数的是()A.|﹣|和﹣B.|﹣|和﹣C.|﹣|和D.|﹣|和4.将符号语言“|a|=a(a≥0)”转化为文字表达,正确的是()A.一个数的绝对值等于它本身B.负数的绝对值等于它的相反数C.非负数的绝对值等于它本身D.0的绝对值等于05.若|a+2|=﹣a﹣2,则|a﹣1|﹣|2﹣a|=()A.3 B.﹣3 C.1 D.﹣16.若|﹣x|=2023,则x等于()A.﹣2023 B.2023 C.±2023 D.0或20237.若|5﹣x|=x﹣5,则x的取值范围为()A.x>5 B.x≥5 C.x<5 D.x≤58.已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10 B.﹣2 C.﹣2或﹣10 D.29.已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c10.若ab≠0,那么+的取值不可能是()A.﹣2 B.0 C.1 D.211.|x+8|+|x+1|+|x﹣3|+|x﹣5|的最小值等于()A.10 B.11 C.17 D.2112.求的最小值()A.12 B.6 C.D.3二.填空题(共8小题)13.化简:|﹣2022|=.14.若|m﹣2|=2﹣m,则m的取值范围是.15.绝对值小于或等于1的整数有.16.若有理数a,b满足ab≠0,则的值为.17.若|x﹣1|+(y﹣3)2=0,则y﹣x=.18.若有理数x,y满足|x+1|+|y+2|+|x﹣3|+|y﹣4|=10,则x+2y的最大值为.19.实数a,b满足|a+1|+|2﹣a|=8﹣|b+3|﹣|b+8|,则a+b的最小值为.20.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为.三.解答题(共7小题)21.若|x|=3,|y|=5,且|x+y|=﹣x﹣y,求x﹣y的值.22.已知﹣2的相反数是x,﹣5的绝对值是y,z是最小的正整数,求x+y+z的相反数.23.已知a、b、c的大致位置如图所示:化简|a+c|+|b﹣c|﹣|a﹣b|+2b.24.阅读下列材料并解决有关问题,我们知道|x|=,当x>0时,=1,当x<0时,=﹣1.且当x>0,y<0时,xy<0.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当a<0,b>0时,=.(2)已知a,b是有理数,当ab≠0时,=.(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.25.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=;(2)若|x﹣2|=5,则x=;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.27.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.第二章有理数及其运算绝对值同步练习2022-2023学年北师大版数学七年级上册(答案)一.选择题(共12小题)1.﹣11的绝对值为()A.1 B.11 C.﹣D.【答案】B2.若|a|=2,则a=()A.﹣2 B.C.2 D.±2【答案】D3.下列各数中互为相反数的是()A.|﹣|和﹣B.|﹣|和﹣C.|﹣|和D.|﹣|和【答案】A4.将符号语言“|a|=a(a≥0)”转化为文字表达,正确的是()A.一个数的绝对值等于它本身B.负数的绝对值等于它的相反数C.非负数的绝对值等于它本身D.0的绝对值等于0【答案】C5.若|a+2|=﹣a﹣2,则|a﹣1|﹣|2﹣a|=()A.3 B.﹣3 C.1 D.﹣16.若|﹣x|=2023,则x等于()A.﹣2023 B.2023 C.±2023 D.0或2023【答案】C7.若|5﹣x|=x﹣5,则x的取值范围为()A.x>5 B.x≥5 C.x<5 D.x≤5【答案】B8.已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10 B.﹣2 C.﹣2或﹣10 D.2【答案】C9.已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c【答案】A10.若ab≠0,那么+的取值不可能是()A.﹣2 B.0 C.1 D.2【答案】C11.|x+8|+|x+1|+|x﹣3|+|x﹣5|的最小值等于()A.10 B.11 C.17 D.21【答案】C12.求的最小值()A.12 B.6 C.D.3二.填空题(共8小题)13.化简:|﹣2022|=2022.【答案】2022.14.若|m﹣2|=2﹣m,则m的取值范围是m≤2.【答案】m≤2.15.绝对值小于或等于1的整数有0,1,﹣1.【答案】0,1,﹣1.16.若有理数a,b满足ab≠0,则的值为0或2或﹣2.【答案】0或2或﹣2.17.若|x﹣1|+(y﹣3)2=0,则y﹣x=2.【答案】2.18.若有理数x,y满足|x+1|+|y+2|+|x﹣3|+|y﹣4|=10,则x+2y的最大值为11.【答案】11.19.实数a,b满足|a+1|+|2﹣a|=8﹣|b+3|﹣|b+8|,则a+b的最小值为﹣9.【答案】﹣9.20.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为﹣3.【答案】﹣3.三.解答题(共7小题)21.若|x|=3,|y|=5,且|x+y|=﹣x﹣y,求x﹣y的值.【答案】8或222.已知﹣2的相反数是x,﹣5的绝对值是y,z是最小的正整数,求x+y+z的相反数.【答案】.23.已知a、b、c的大致位置如图所示:化简|a+c|+|b﹣c|﹣|a﹣b|+2b.【答案】2b+2c.24.阅读下列材料并解决有关问题,我们知道|x|=,当x>0时,=1,当x<0时,=﹣1.且当x>0,y<0时,xy<0.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当a<0,b>0时,=0.(2)已知a,b是有理数,当ab≠0时,=﹣2或0或2.(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.【答案】(1)0;(2)﹣2或0或2;(3)﹣1.25.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=6;(2)若|x﹣2|=5,则x=7或﹣3;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.【答案】(3)x=-2或-1或0或1.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是1;表示﹣2和1两点之间的距离是3;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=1或﹣3;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是12,最小距离是2.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=8.(5)当a=1时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是9.27.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【答案】解:(1)当x<-2时,|x+2|+|x-4|=-x-2+4-x=-2x+2;当-2≤x<4时,|x+2|+|x-4|=x+2+4-x=6;当x≥4时,|x+2|+|x-4|=x+2+x-4=2x-2;(2)当x<-1时,原式=3x+5<2,当-1≤x≤1时,原式=-5x-3,-8≤-5x-3≤2,当x>1时,原式=-3x-5<-8,则|x-1|-4|x+1|的最大值为2.。
北师大版数学七年级上册《2.3 绝对值》 同步练习
2.3 绝对值一.选择题1.设x是有理数,那么下列各式中一定表示正数的是()A.2015x B.x+2015C.|2015x|D.|x|+20152.|a|=﹣a,则a一定是()A.负数B.正数C.零或负数D.非负数3.2019相反数的绝对值是()A.9102B.﹣2019C.D.20194.如果|x|=|﹣5|,那么x等于()A.5B.﹣5C.+5或﹣5D.以上都不对5.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若|a|=a,则a是一个正数;⑤离原点左边越远的数就越小;正确的有多少个()A.0B.3C.2D.46.|﹣2|的相反数是()A.﹣B.﹣2C.D.27.比﹣4小的数是()A.﹣2B.﹣1C.﹣6D.68.绝对值大于1而小于5的所有整数的和是()A.0B.1C.﹣1D.﹣29.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a 10.比﹣7.1大,而比1小的整数的个数是()A.6B.7C.8D.911.以下选项中比|﹣|小的数是()A.1B.2C.D.12.在﹣5,﹣,﹣3.5,﹣0.01,﹣2,﹣212各数中,最大的数是()A.﹣212B.﹣C.﹣0.01D.﹣513.有理数a、b在数轴上表示的点如图,则a、﹣a、b、﹣b大小关系是()A.﹣b>a>﹣a>b B.a>﹣a>b>﹣b C.b>a>﹣b>﹣a D.﹣b<a<﹣a<b 14.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q二.填空题15.若|x﹣6|+|y+5|=0,则x+y=.16.已知|a|=2,|b|=3,且在数轴上表示有理数b的点在a的左边,则a﹣b的值为.17.甲数的绝对值是乙数绝对值的2倍,在数轴上甲、乙两数在原点的同侧,并且对应两点的距离等于10,这两个数为.18.数a、b在数轴上的位置如图所示,化简a﹣|b﹣a|=.三.解答题19.化简:|2x﹣3|+|3x﹣5|﹣|5x+1|20.若用点A、B、C分别表示有理数a、b、c如图:(1)比较a、b、c的大小.(2)化简2c+|a+b|+|c﹣b|﹣|c﹣a|.参考答案一.选择题1.解:当x为负数时,2015x为负数,A错误;当x<﹣2015时,x+2015<0,B错误;当x=0时,|2015x|=0,C错误;∵|x|≥0,∴|x|+2015>0,D正确,故选:D.2.解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:C.3.解:2019相反数是﹣2019,﹣2019的绝对值是2019,故选:D.4.解:∵|x|=|﹣5|,∴|x|=5,∴x=±5,故选:C.5.解:①0的绝对值是0,故①错误;②当a≤0时,﹣a是非负数,故②错误;③绝对值是非负数,所以没有绝对值为﹣3的数,故③正确;④|a|=a,则a≥0,故④错误;⑤离原点左边越远的数绝对值越大,而绝对值大的负数反而小,故⑤正确;所以正确的结论是③和⑤.故选:C.6.解:∵|﹣2|=2,2的相反数是﹣2.∴|﹣2|的相反数是﹣2.故选:B.7.解:∵﹣6<﹣4<﹣2<﹣1<6,∴比﹣4小的数是﹣6.8.解:绝对值大于1且小于5的所有整数有:﹣4,﹣3,﹣2,2,3,4.则﹣4﹣3﹣2+2+3+4=0.故选:A.9.解集:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.10.解:比﹣7.1大,而比1小的整数的个数有﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,共8个,故选:C.11.解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选:D.12.解:∵|﹣212|>|﹣5|>|﹣3.5|>|﹣2|>|﹣|>|﹣0.01|,∴﹣0.01>>﹣2>﹣3.5>﹣5>﹣212,故选:C.13.解:∵从数轴可知:a<0<b,且|a|<|b|,∴﹣b<0,﹣b<a,﹣a>0,﹣a<b,∴﹣b<a<﹣a<b.故选:D.14.解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,二.填空题(共4小题)15.解:∵|x﹣6|+|y+5|=0,∴x﹣6=0,y+5=0,解得,x=6,y=﹣5,则x+y=1,故答案为:1.16.解:∵|a|=2,|b|=3,∴a=±2,b=±3;又∵在数轴上表示有理数b的点在a的左边,∴①当a=2时,b=﹣3,∴a﹣b=2﹣(﹣3)=5;②当a=﹣2时,b=﹣3,∴a﹣b=﹣2﹣(﹣3)=1;综合①②知,a﹣b的值为1或5;故答案为1或5.17.解:①当同在原点的右侧,设乙为x,则甲为2x,由题意可得2x﹣x=10,解得:x=10,所以甲数为20,乙数为10;②若同在原点的左侧,设乙为x,则甲为2x,x﹣2x=10,解得:x=﹣10,所以甲数为﹣20,乙数为﹣10.18.解:∵a>0,b<0,∴a﹣|b﹣a|=a+b﹣a=b.故答案为b.三.解答题(共2小题)19.解:①当x<﹣时,原式=3﹣2x+5﹣3x+5x+1=9.②当﹣≤x<时,原式=3﹣2x+5﹣3x﹣5x﹣1=﹣10x+7.③当≤x<时,原式=2x﹣3+5﹣3x﹣5x﹣1=﹣6x+1.④当x≥时,原式=2x﹣3+3x﹣5﹣5x﹣1=﹣920.解:(1)由数轴可知a<c<b.(2)由数轴可知b>0,a<c<0,且a+b<0,c﹣b<0,c﹣a>0,所以原式=2c﹣a﹣b﹣c+b﹣c+a=0.。
七年级数学上册第二章有理数及其运算2-3绝对值新版北师大版
A.-4 B.-2 C.0 D.4
随堂练习
3.下列各对数中互为相反数的是( A )
A.-(-5)与-|-5| B.|-3|与|+3| C.-(-1)与|-1| D.|m|与|-m|
随堂练习
4.(1)4到原点的距离是4,则|4|=__4____; (2)-3到原点的距离是3,则|-3|=___3____; (3)0到原点的距离是0,则|0|=___0______.
课程讲授
4 利用绝对值比较有理数的大小
练一练:下列说法正确的是( D )
A.绝对值相等的两个数一定相等 B.绝对值较大的数也大 C.绝对值较小的数也小 D.两个负数,绝对值大的反而小
随堂练习
1.如图,点A表示的数的绝对值是( A )
A.3 B.-3 C. 1
3
D. 1
3
随堂练习
2.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,
|a|≥0
任何一个有理数的绝对值都是非负数
课程讲授
3 绝对值的性质
归纳:a表示一个有理数,则有
a (a 0) | a | a (a 0)
0 (a 0)
即|a|≥0
课程讲授
3 绝对值的性质
练一练:下列说法正确的有( B )
①绝对值等于它本身的数是0和1;
②一个有理数的绝对值必是正数;
③任何有理数的绝对值都不是负数;
第二章 有理数及其运算
2.3 绝对值
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.相反数的概念 2.绝对值的意义及计算 3.绝对值的性质
4.利用绝对值比较有理数的大小
新知导入
看一看:观察下图中图形的位置,试着描述它们之间的 距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 绝对值
1.5的相反数是( )
A .-5
B .5
C .-15 D.15
2.计算⎪⎪⎪⎪
⎪⎪-13的结果为( ) A.13 B .-13
C .3
D .-3 3.有关相反数的说法正确的是( )
A .-14
和0.25不互为相反数 B .-3是相反数 C .任何一个数都有相反数 D .正数与负数互为相反数
4.比较大小:0________-2;-5________-4;4________0.
5.下列各组数中,互为相反数的是( )
A .2与-3
B .-3与-13
C .2018与201.8
D .-0.2和15
6.若a 的相反数是-3,则a 的值为( )
A .1
B .2
C .3
D .4
7.相反数等于本身的数为( )
A .正数
B .负数
C .0
D .非负数
8.如图1所示,表示互为相反数的两个数的点是( )
图1
A .A 和C
B .A 和D
C .B 和C
D .B 和D
9.绝对值等于9的数是( )
A .9
B .-9
C .9或-9 D.19
10.如果|a |=-a ,下列成立的是( )
A .-a 一定是非负数
B .-a 一定是负数
C .|a |一定是正数
D .|a |不能是0
11.下列说法:①一个数的绝对值一定是正数;②-a 一定是一个负数;③没有绝对值为-3的数;④若|a |=a ,则a 是一个正数;⑤-2018的绝对值是2018.其中正确的有________.(填序号)
12.若绝对值相等的两个数在数轴上的对应点的距离为6,则这两个数为( )
A .+6和-6
B .-3和+3
C .-3和+6
D .-6和+3
13.化简:(1)-|-5|=________; (2)+|-5|=________;
(3)-|0|=________; (4)|-5|×⎪⎪⎪⎪
⎪⎪65=________. 14.若|x |=|-2|,则x =________.
15.⑦若|x -1|+|y -2|=0,求x 和y 的值.
16.在-2,-5,5,0这四个数中,最小的数是( )
A .-2
B .-5
C .5
D .0
17.比较大小:(1)-17________-16
;(2)-(-18)________-|-20|. 18.在数轴上表示下列各数:-(-4),-|-3.5|,+(-12),0,+(+2.5),112
.并用“<”把这些数连接起来.
图2
19.某工厂生产一批螺帽,螺帽的内径要求为 1.5 cm ,超过规定内径数记为正数,不足规定内径数记为负数,检查结果如下:①+0.03 cm ,②-0.018 cm ,③-0.025 cm ,④-0.015 cm.上述四个螺帽质量最好的是( )
A .①
B .②
C .③
D .④
20.阅读下列材料:
我们知道|x |的几何意义:在数轴上,数x 对应的点与原点的距离,即|x |=|x -0|.也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离.这个结论可以推广为|x 1-x 2|表示在数轴上数x 1与数x 2对应的点之间的距离.
已知|x -1|=2,求x 的值.
解:在数轴上,与1对应的点的距离为2的点表示的数为3和-1,即x 的值为3或-1.
依照阅读材料的解法,求式子中x 的值:|x +2|=4.
1.A
2.A
3.C
4.> < >
5.D
6.C .
7.C 8.A
9.C 10.A
11.③⑤
12.B 13.(1)-5 (2)5 (3)0 (4)6
14.2或-2 15.x =1,y =2
16.B
17.(1)> (2)>
18.解:在数轴上表示如图所示:
-|-3.5|<+(-12)<0<112
<+(+2.5)<-(-4). 19.D
20.解:在数轴上,与-2对应的点的距离为4的点表示的数为2和-6,即x 的值为2或-6.。