高考数学总复习全套讲义

合集下载

高中数学复习讲义

高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。

一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。

我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。

掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。

1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。

我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。

1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。

我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。

1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。

向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。

我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。

1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。

2025年新人教版高考数学一轮复习讲义 第一章 §1.1 集 合

2025年新人教版高考数学一轮复习讲义  第一章 §1.1 集 合

2025年新人教版高考数学一轮复习讲义第一章§1.1 集 合1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.集合与元素(1)集合中元素的三个特性: 、 、 .(2)元素与集合的关系是 或 ,用符号 或 表示.(3)集合的表示法: 、 、 .确定性互异性无序性属于不属于∈∉列举法描述法图示法(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号___ N *(或N +)___ ______ NZQ R2.集合的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中 都是集合B 中的元素,就称集合A 为集合B 的子集,记作 (或B ⊇A ).(2)真子集:如果集合A ⊆B ,但存在元素x ∈B ,且 ,就称集合A 是集合B 的真子集,记作 (或B A ).(3)相等:若A ⊆B ,且 ,则A =B .(4)空集:不含任何元素的集合叫做空集,记为∅.空集是 的子集,是 的真子集.任意一个元素A ⊆B x ∉A A B B ⊆A 任何集合任何非空集合3.集合的基本运算表示运算集合语言图形语言记法并集________________ ______ 交集______________________ 补集____________________{x |x ∈A ,或x ∈B }A ∪B {x |x ∈A ,且x ∈B }A ∩B {x |x ∈U ,且x ∉A }∁U A常用结论1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.2.空集是任何集合的子集,是任何非空集合的真子集.3.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( )(3)若1∈{x 2,x },则x =-1或x =1.( )(4)对任意集合A ,B ,都有(A ∩B )⊆(A ∪B ).( )√×××2.(必修第一册P14T4改编)设集合A={x|3≤x<7},B={x|2<x<10},则(∁R A)∩B等于A.{x|2<x≤3}B.{x|7<x<10}√C.{x|2<x<3或7≤x<10}D.{x|2<x≤3或7<x<10}因为∁R A={x|x<3或x≥7},B={x|2<x<10},所以(∁R A)∩B={x|2<x<3或7≤x<10}.3.(必修第一册P35T9改编)已知集合A={1,3,a2},B={1,a+2},若2A∪B=A,则实数a=________.因为A∪B=A,所以B⊆A,所以a+2∈A.当a+2=3,即a=1时,A={1,3,1},不满足集合中元素的互异性,不符合题意;当a+2=a2时,a=-1(舍去)或a=2,此时A={1,3,4},B={1,4},符合题意.综上,实数a=2.4.(必修第一册P9T5改编)已知集合A={x|0<x<a},B={x|0<x<2},若B⊆A,[2,+∞)则实数a的取值范围为___________.因为B⊆A,所以利用数轴分析法(如图),可知a≥2.返回第二部分探究核心题型例1 (1)(2023·长春模拟)已知集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|x +y =0},则A ∩B 的子集个数为A.1B.2C.3D.4√题型一 集合的含义与表示集合A={(x,y)|x2+y2=4}表示以(0,0)为圆心,2为半径的圆上的所有点,集合B={(x,y)|x+y=0}表示直线x+y=0上的所有点,因为直线x+y=0经过圆心(0,0),所以直线与圆相交,所以A∩B的元素个数为2,则A∩B的子集个数为4.(2)已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为√A.2B.3C.0D.-2因为集合A={0,m,m2-3m+2},且2∈A,则m=2或m2-3m+2=2,解得m∈{0,2,3}.当m=0时,集合A中的元素不满足互异性;当m=2时,m2-3m+2=0,集合A中的元素不满足互异性;当m=3时,A={0,3,2},符合题意.综上所述,m=3.思维升华解决集合含义问题的关键点(1)一是确定构成集合的元素.(2)确定元素的限制条件.(3)根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)(2023·苏州模拟)设集合A={1,2,3},B={4,5},C={x+y |x∈A,y∈B},则C中元素的个数为√A.3B.4C.5D.6因为集合A={1,2,3},B={4,5},C={x+y|x∈A,y∈B},所以C={5,6,7,8}.即C中元素的个数为4.(2)若含有3个实数的集合既可表示成 ,又可表示成{a2,a+b,0},1则a2 024+b2 024=________.此时两集合分别是{a,1,0},{a,a2,0},则a2=1,解得a=1或a=-1.当a=1时,不满足互异性,故舍去;当a=-1时,满足题意.所以a2 024+b2 024=(-1)2 024+02 024=1.例2 (1)(2023·海口质检)已知集合A ={x |x >5},B ={x |1-log 2x <0},则A.A ⊆BB.B ⊆AC.A ∩B =∅D.A ∪B =R因为集合A ={x |x >5},集合B ={x |1-log 2x <0}={x |x >2},所以A ⊆B .√题型二 集合间的基本关系(2)已知集合A={x|x<-1或x≥3},B={x|ax+1≤0},若B⊆A,则实数a的取值范围是√∵B⊆A,∴①若B=∅,即ax+1≤0无解,此时a=0,满足题意.②若B≠∅,即ax+1≤0有解,思维升华(1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练2 (1)已知集合M={x|y = ,x∈R},N={x|x=m2,m∈M},则集合M,N的关系是√A.M NB.N MC.M⊆∁R ND.N⊆∁R M因为M={x|y= ,x∈R}={x|-1≤x≤1},N={x|x=m2,m∈M}={x|0≤x≤1},所以N M.(2)设集合A ={x |-1≤x +1≤6},B ={x |m -1<x <2m +1},当x ∈Z 时,集合A 的非空真子集的个数为________;当B ⊆A 时,实数m 的取值范围是________________________.254{m |m ≤-2或-1≤m ≤2}易得A={x|-2≤x≤5}.若x∈Z,则A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集的个数为28-2=254.①当m-1≥2m+1,即m≤-2时,B=∅,B⊆A;②当m>-2时,B={x|m-1<x<2m+1}≠∅,综上所述,m的取值范围是{m|m≤-2或-1≤m≤2}.题型三 集合的基本运算命题点1 集合的运算例3 (1)(2022·新高考全国Ⅰ)若集合M={x | <4},N={x|3x≥1},则M∩N 等于√所以M={x|0≤x<16};因为N={x|3x≥1},(2)(多选)已知M ,N 均为实数集R 的子集,且N ∩(∁R M )=∅,则下列结论中正确的是A.M ∩(∁R N )=∅B.M ∪(∁R N )=RC.(∁R M )∪(∁R N )=∁R MD.(∁R M )∩(∁R N )=∁R M√√∵N∩(∁R M)=∅,∴N⊆M,如图,若N是M的真子集,则M∩(∁R N)≠∅,故A错误;由N⊆M可得M∪(∁R N)=R,故B正确;由N⊆M可得∁R N⊇∁R M,故C错误,D正确.命题点2 利用集合的运算求参数的值(范围)例4 (1)(多选)已知A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,则m的值可能为√√√由题意知A={x|x2+x-6=0},由x2+x-6=0,解得x=2或x=-3,所以A={2,-3},因为A∪B=A,所以B⊆A,当B=∅时,m=0,满足题意;(2)(2024·本溪模拟)设集合A={x|x<a2},B={x|x>a},若A∩(∁R B)=A,则实数a的取值范围为√A.[0,1]B.[0,1)C.(0,1)D.(-∞,0]∪[1,+∞)因为B={x|x>a},所以∁R B={x|x≤a},又A∩(∁R B)=A,所以A⊆∁R B,又A={x|x<a2},所以a2≤a,解得0≤a≤1,即实数a的取值范围为[0,1].思维升华对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(多选)已知集合A ={x |x 2-2x >0},B ={x |1<x <3},则A.(∁R A )∪B ={x |0≤x <3}B.(∁R A )∩B ={x |1<x <2}C.A ∩B ={x |2<x <3}D.A ∩B 是{x |2<x <5}的真子集√√√由x2-2x>0,得x<0或x>2,所以A={x|x<0或x>2},所以∁R A={x|0≤x≤2},对于A,因为B={x|1<x<3},所以(∁R A)∪B={x|0≤x<3},所以A正确;对于B,因为B={x|1<x<3},所以(∁R A)∩B={x|1<x≤2},所以B错误;对于C,因为A={x|x<0或x>2},B={x|1<x<3},所以A∩B={x|2<x<3},所以C正确;对于D,因为A∩B={x|2<x<3},所以A∩B是{x|2<x<5}的真子集,所(2)已知集合A,B满足A={x|x>1},B={x|x<a-1},若A∩B=∅,则实数a的取值范围为√A.(-∞,1]B.(-∞,2]C.[1,+∞)D.[2,+∞)因为集合A,B满足A={x|x>1},B={x|x<a-1},且A∩B=∅,则a-1≤1,解得a≤2.题型四 集合的新定义问题例5 (多选)群论是代数学的分支学科,在抽象代数中具有重要地位,且群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基本的概念之一,其定义如下:设G是一个非空集合,“·”是G上的一个代数运算,即对所有的a,b∈G,有a·b∈G,如果G的运算还满足:①∀a,b,c∈G,有(a·b)·c=a·(b·c);②∃e∈G,使得∀a∈G,有e·a=a·e=a;③∀a∈G,∃b∈G,使a·b=b·a=e,则称G关于“·”构成一个群.则下列说法正确的有A.G={-1,0,1}关于数的乘法构成群√√对于A,若G={-1,0,1},则对所有的a,b∈G,有a·b∈{1,0,-1}=G,满足乘法结合律,即①成立,满足②的e为1,但当a=0时,不存在b∈G,使得a·b=b·a=e=1,即③不成立,故A 错误;对于C,若G=R,则对所有的a,b∈R,有a+b∈R,满足加法结合律,即①成立,满足②的e为0,思维升华集合新定义问题的“三定”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集或补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素.跟踪训练4 (多选)设A 为非空实数集,若对任意x ,y ∈A ,都有x +y ∈A ,x -y ∈A ,且xy ∈A ,则称A 为封闭集.下列叙述中,正确的为A.集合A ={-2,-1,0,1,2}为封闭集B.集合A ={n |n =2k ,k ∈Z }为封闭集C.封闭集一定是无限集D.若A 为封闭集,则一定有0∈A √√对于A,在集合A={-2,-1,0,1,2}中,-2-2=-4不在集合A中,∴集合A不是封闭集,故A错误;对于B,集合A={n|n=2k,k∈Z},设x,y∈A,则x=2k1,y=2k2,k1,k2∈Z,∴x+y=2(k1+k2)∈A,x-y=2(k1-k2)∈A,xy=4k1k2∈A,∴集合A={n|n=2k,k∈Z}为封闭集,故B正确;对于C,封闭集不一定是无限集,如:{0}为封闭集,故C错误;对于D,若A为封闭集,则取x=y,得x-y=0∈A,故D正确.知识过关一、单项选择题1.(2022·全国乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则√A.2∈MB.3∈MC.4∉MD.5∉M由题意知M={2,4,5}.2.(2023·新高考全国Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N等于A.{-2,-1,0,1}B.{0,1,2}√C.{-2}D.{2}方法一 因为N={x|x2-x-6≥0}=(-∞,-2]∪[3,+∞),而M={-2,-1,0,1,2},所以M∩N={-2}.方法二 因为M={-2,-1,0,1,2},将-2,-1,0,1,2代入不等式x2-x-6≥0,只有-2使不等式成立,所以M∩N={-2}.。

高考数学总复习全套讲义

高考数学总复习全套讲义

高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8或2___.【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .分析:先化简集合A ,由R B C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1){12}A x x =≤≤Q ,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=,{0,2}可得A B ⊆.而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+. (1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围; (3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<,Q P Q P ⋃=,Q P ∴⊆. ①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<. 综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或.综上,3(,5][,)2a ∈-∞-⋃+∞.(3)由{03}P Q x x ⋂=≤<,则0a =.第2课命题及逻辑联结词【考点导读】1.了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2.了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础练习】1.下列语句中:①230x-=;②你是高三的学生吗?③315x->.+=;④536其中,不是命题的有____①②④_____.2.一般地若用p和q分别表示原命题的条件和结论,则它的逆命题可表示为若q则p,否命题可表若则,逆否命题可表示为q p若则;原命题与逆否命题互为逆否命题,否命题与逆命题⌝⌝⌝⌝p q互为逆否命题.【范例解析】例1.写出下列命题的逆命题,否命题,逆否命题并判断真假.(1)平行四边形的对边相等;(2)菱形的对角线互相垂直平分;(3)设,,,+=+.a b c d R∈,若,==,则a c b da b c d分析:先将原命题改为“若p则q”,在写出其它三种命题.解:(1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题; 否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题. (2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题; 否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题. (3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题; 逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题; 否命题:设,,,a b c d R ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题; 逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p 则q ”的形式,找出其条件p 和结论q ,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p 的否定即p ⌝时,要注意对p 中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的命题,并判断真假. (1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相平分;(3)p :方程210x x -+=的两实根的符号相同,q :方程210x x -+=的两实根的绝对值相等. 分析:先写出三种形式命题,根据真值表判断真假. 解:(1)p或q:2是4的约数或2是6的约数,真命题;p且q:2是4的约数且2是6的约数,真命题;非p:2不是4的约数,假命题.(2)p或q:矩形的对角线相等或互相平分,真命题;p且q:矩形的对角线相等且互相平分,真命题;非p:矩形的对角线不相等,假命题.(3)p或q:方程210-+=的两实根的符号相同或绝对值相等,假命题;x xp且q:方程210-+=的两实根的符号相同且绝对值相等,假命题;x x非p:方程210-+=的两实根的符号不同,真命题.x x点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p,q的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题的否定,并判断真假.(1)p:所有末位数字是0或5的整数都能被5整除;(2)p:每一个非负数的平方都是正数;(3)p:存在一个三角形,它的内角和大于180°;(4)p:有的四边形没有外接圆;(5)p:某些梯形的对角线互相平分.分析:全称命题“,()∃∈⌝”,特称命题“,()∃∈”的否定是x M p xx M p x∀∈”的否定是“,()x M p x“,()∀∈⌝” .x M p x解:(1)p⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题;(2)p⌝:存在一个非负数的平方不是正数,真命题;(3)p⌝:任意一个三角形,它的内角和都不大于180°,真命题;(4)p⌝:所有四边形都有外接圆,假命题;(5)p ⌝:任一梯形的对角线都不互相平分,真命题.点评:一些常用正面叙述的词语及它的否定词语列表如下:【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________. 2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____.4.命题“若b a >,则122->b a ”的否命题为________________________. 5.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. (1)设,a b R ∈,若0ab =,则0a =或0b =; (2)设,a b R ∈,若0,0a b >>,则0ab >. 解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题; 否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题; 逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题; (2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题; 否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题; 逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.若b M ∈,则a M ∉若a b ≤,则221ab≤-第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合P Q ⊆,则P 是Q 的充分条件; 若集合P Q ⊇,则P 是Q 的必要条件; 若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力. 【基础练习】1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空. (1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件. (2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件. 3.若x R ∈,则1x >的一个必要不充分条件是0x >. 【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件; (4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件.(2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件. (3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_必要不充分 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.解::{12}q B x R x =∈≤≤,若q ⌝是p ⌝的充分不必要条件,则A B ⊆. 若A =∅,则240a -<,即22a -<<;若A ≠∅,则240,a x ⎧-≥≤≤解得522a -≤≤-. 充分不必要综上所述,522a -≤<.2012高中数学复习讲义第二章函数A【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。

高考数学复习讲义共十一章

高考数学复习讲义共十一章

高考数学复习讲义共十一章SANY GROUP system office room 【SANYUA16H-高考复习数学讲义(共十一章)一、集合与简易逻辑1.集合的元素具有无序性和互异性.2.对集合A B 、,A B =∅时,你是否注意到“极端”情况:A =∅或B =∅;求集合的子集时是否注意到∅是任何集合的子集、∅是任何非空集合的真子集.✍3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n .22-n ,12-n4.“交的补等于补的并,即()U U U C AB C A C B =”;“并的补等于补的交,即()U U U C A B C A C B =”. 5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ✍.8.充要条件二、函 数1. 指数式、对数式,mn a =1mn m na a -=,log a N a N =log (0,1,0)b a a N N b a a N =⇔=>≠>,.01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,log log log c a c b b a=,.log log m n a a n b b m =. 2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合A 中的元素必有像,但第二个集合B 中的元素不一定有原像(A 中元素的像有且仅有下一个,但B 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集B 的子集”.(2)函数图像与x 轴垂线至多一个公共点,但与y 轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.(4)原函数与反函数有两个“交叉关系”:自变量与因变量、定义域与值域.求一个函数的反函数,分三步:逆解、交换、定域(确定原函数的值域,并作为反函数的定义域).注意:①1()()f a b f b a -=⇔=,1[()]f f x x -=,1[()]f f x x -=,但11[()][()]f f x f f x --≠. ② 函数(1)y f x =+的反函数是1()1y f x -=-,而不是1(1)y f x -=+.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.单调函数的反函数和原函数有相同的性;如果奇函数有反函数,那么其反函数一定还是奇函数.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称 .确定函数奇偶性的常用方法有:定义法、图像法等等. 对于偶函数而言有:()()(||)f x f x f x -==.(2)若奇函数定义域中有0,则必有(0)0f =.即0()f x ∈的定义域时,(0)0f =是()f x 为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)函数单调是函数有反函数的一个充分非必要条件.(5)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.(6)函数单调是函数有反函数的充分非必要条件,奇函数可能反函数,但偶函数只有()0({0})f x x =∈有反函数;既奇又偶函数有无穷多个(()0f x =,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。

高考数学知识点总复习pppt课件

高考数学知识点总复习pppt课件

• ak+2+(a+1)2k+1
• =(a+1)2[ak+1+(a+1)2k-1]+ak+2-ak+1(a
+1)2
27
=(a+1)2[ak+1+(a+1)2k-1]-ak+1(a2+a+1)能被 a2+a+1 整除.
即当 n=k+1 时命题也成立. 根据(1)(2)可知,对于任意 n∈N+,an+1+(a+1)2n-1 能被 a2 +a+1 整除.

1 2k+1-1

1 2k+1
=k+1 1+k+1 2+…+21k+2k+1 1-2k+1 1
=k+1 2+k+1 3+…+21k+2k+1 1+k+1 1-2k+1 1

k+11+1+
k+11+2+…
+k+11+k+
1 k+1+k+1
=右边,
13
• 所以当n=k+1时等式也成立.
• 综合(1)(2)知对一切n∈N* ,等式都成立.
• (2)(n归=k纳+1递推)假设当n=k(k∈N*,k≥n0)时 命题成立,推出当__________时命题也成 立.
3
• 只要完成这两个步骤,就可以断定命题对n取 第一个值后面的所有正整数都成立.上述证 明方法叫做数学归纳法.
• 质疑探究:数学归纳法两个步骤有什么关系?
• 提示:数学归纳法证明中的两个步骤体现了 递推思想,第一步是递推的基础,第二步是 递推的依据,两个步骤缺一不可,否则就会 导致错误.
第十一章 复数、算法、推理与 证明
第5节 数学归纳法
1
• 1.了解数学归纳法的原理. • 2.能用数学归纳法证明一些简单的数学命
题.
2
• [要点梳理]
• 数学归纳法
• 一般地,证明一个与正整数n有关的命题,可 按下列步骤进行:

高考数学总复习全套讲义

高考数学总复习全套讲义

第1课古典概型【考点导读】 1.在具体情境中,了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等.(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是事件(必然、随机、不可能)3.下列说法正确的是 .①任一事件的概率总在(0.1)内②不可能事件的概率不一定为0③必然事件的概率一定为1 ④以上均不对4.一枚硬币连掷3次,只有一次出现正面的概率是5. 从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为【范例解析】例1. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的基本事件;(2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?例2. 抛掷两颗骰子,求:(1)点数之和出现7点的概率;(2)出现两个4点的概率.【反馈演练】1.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为,中10环的概率约为.2.一栋楼房有4个单元,甲乙两人被分配住进该楼,则他们同住一单元的概率是 .3. 在第1,3,6,8,16路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第6 路或第16路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于4.把三枚硬币一起抛出,出现2枚正面向上,一枚反面向上的概率是5.有5根细木棒,长度分别为1,3 ,5 ,7 ,9,从中任取三根,能搭成三角形的概率是6. 从1,2,3,…,9这9个数字中任取2个数字,(1)2个数字都是奇数的概率为(2)2个数字之和为偶数的概率为7. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为8. A、B、C、D、E排成一排,A在B的右边(A、B可以不相邻)的概率是9.现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.第2课几何概型【考点导读】1.了解几何概型的基本特点.2.会进行简单的几何概率的计算.【基础练习】1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是2. 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是3. 在1万 km2的海域中有40 km2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是4. 如下图,在一个边长为3 cm的正方形内部画一个边长为2 cm的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是.【范例解析】例1.将长为l的棒随机折成3段,求3段构成三角形的概率.【反馈演练】1. 两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m的概率是2.若x可以在13x+≤的条件下任意取值,则x是负数的概率是 .(2015)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( )(A)103(B)15(C)110(D)12019.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。

江苏高考数学总复习要点——知识篇(全套)课件

江苏高考数学总复习要点——知识篇(全套)课件

03
立体几何
空间几何体的结构与性质
总结词
掌握各种空间几何体的结构特点 与性质,包括多面体、旋转体等 。
详细描述
了解各种空间几何体的定义、性 质和特点,如多面体的面、棱、 顶点等数量关系,旋转体的轴、 圆面、半径等几何特征。
空间几何体的表面积与体积
总结词
掌握空间几何体的表面积和体积的计 算方法。
01
02
03
04
参数方程的基本概念:参数方 程与普通方程的互化。
极坐标系的基本概念:极坐标 与直角坐标的互化。
参数方程在解析几何中的应用 :极径、极角等。
极坐标在解析几何中的应用: 极径、极角等。
05
数列与不等式
数列的概念与性质
总结词:基础概念
详细描述:数列是按照一定顺序排列的一列数。数列的性质包括有界性、单调性 、周期性等,这些性质在解决数列问题时有着重要的应用。
江苏高考数学总复习要点——知识篇 (全套)课件
contents
目录
• 函数与导数 • 三角函数与解三角形 • 立体几何 • 解析几何 • 数列与不等式
01
函数与导数
函数性质
函数的定义域和值域
理解函数的定义域和值域的概念,掌 握如何求函数的定义域和值域的方法 。
函数的单调性
函数的奇偶性
理解函数奇偶性的概念,掌握判断函 数奇偶性的方法。
THANKS
感谢观看
理解函数单调性的概念,掌握判断函 数单调性的方法。
导数的概念与运算
数的基本性质。
导数的运算
掌握导数的四则运算法则 ,以及复合函数的求导法 则。
导数的几何意义
理解导数的几何意义,掌 握利用导数研究函数的切 线方程的方法。

(高中数学)高考复习详细讲义(汇编)

(高中数学)高考复习详细讲义(汇编)

(高中数学)高考复习详细讲义(汇编)第一板块:函数、导数一、 常见的基本初等函数1、b kx x f +=)((一次函数);2、)0()(2≠++=a c bx ax x f (二次函数)3、)0()(23≠+++=a d cx bx ax x f (三次函数);4、)0()(≠=k xkx f (反比例函数);5、)0(||)(≠+=k b kx x f (V 形函数);6、xk x x f +=)((k >0)(对钩函数);7、xkx x f +=)()0(<k ;8、a a x f x ()(=>0且)1≠a (指数函数)9、a x x f a (log )(=>0且)1≠a (对数函数);10、αx x f =)((幂函数); 11、x x f sin )(=(正弦函数);12、x x f cos )(=(余弦函数);13、x x f tan )(=(正切函数)。

二、函数的性质(一)函数的单调性判定方法: 1、定义法:①I x x ∈21,且1x <2x ; ①②⇒③(证明单调性,主要用于抽象函数)②)(1x f <)(2x f 或)(1x f >)(2x f ;②③⇒①(解抽象不等式、超越不等式) ③)(x f 在I ↗或)(x f 在I ↘。

①③⇒②(利用函数单调性求值域)⎩⎨⎧=--=单调递减在负,单调递增在正,I x f I x f x x x f x f k )()()()(2121;⎩⎨⎧=∆-∆+='=→∆单调递减在负,单调递增在正,I x f I x f x x f x x f x f k x )()()()(lim)(02、复合函数单调性遵循同增异减原则。

3、子母同性法(函数在母区间的单调性与子区间的单调性相同)。

4、运算法则法(增+增=增,减+减=减)。

5、移缩依旧法(平移变换与伸缩变换不影响函数的单调性)。

6、奇函数在其对称区间单调性相同,偶函数在其对称区间单调性相反,原函数与反函数的单调性一致)。

高考数学函数复习全套讲义45页

高考数学函数复习全套讲义45页
、解:① 和 ;② (此时 )或 (此时 )。
●★【题12】、集合 满足 =A,则称( )为集合A的一种分拆,并规定:当且仅当 时,( )与( )为集合A的同一种分拆,则集合A={ }的不同分拆种数为多少?
解:当 = 时, =A,此时只有1种分拆;
当 为单元素集时, = 或A,此时 有三种情况,故拆法为6种;
C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件
●7、(2007年北京文科·15题·12分)记关于 的不等式 的解集为 ,不等式 的解集为 .( )若 ,求 ;( )若 ,求正数 的取值范围.
解:( )由 ,得 .
( ) .
由 ,得 ,,又 ,所以 ,即 的取值范围是 .
五、课后提高练习:
二、典例剖析:
★【题1】、(2006年·辽宁·T1·5分)设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为( C ) A 1 B3 C4 D 8
★【题2】、(2006年·辽宁·T5·5分)设⊕是R上的一个运算,A是R上的非空子集,若对任意的a、b∈A,有a⊕b∈A,则称A对运算⊕封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是(C)
★【题7】、已知集合P={x|x2-5x+4≤0},Q={x|x2-(b+2)x+2b≤0}且有PQ,求实数b的取值范围。(答案:{b|1≤b≤4})
★【题8】、若全集I=R,(x),g(x)均为x的二次函数,且P={x|(x)<0},Q={x| g(x)≥0,}则不等式组 的解集可用P、Q表示为___( P∩CRQ)
问:(Ⅰ)用列举法表示上述各集合;(Ⅱ)对集合 , , ,如果使k Z,那么 , , 所表示的集合分别是什么?并说明 与 的关系。

高中数学高考数学专题总复习全套课件

高中数学高考数学专题总复习全套课件
函数的性质
函数的性质包括奇偶性、单调性 、周期性、对称性等。这些性质 描述了函数在不同区间上的变化 规律和特征。
导数的概念与运算
导数的定义
导数是函数在某一点处的切线斜率,表示函数在该点的变化 率。导数是通过极限来定义的,是微积分的基本概念之一。
导数的运算
导数的运算是微积分的基本技能之一,包括求导法则、链式 法则、乘积法则、商的导数等。通过这些法则,可以求出函 数的导数,进而研究函数的单调性、极值等性质。
06
数列的综合应用与不等式
数列的应用题
如求和、求通项、判断数列的单调性等。
数列与不等式的结合
如利用放缩法证明不等式等。
数列中的最值问题
如求最大值、最小值等。
06
立体几何
空间几何体的结构与三视图
总结词
掌握空间几何体的结构特点和三 视图的基本概念。
空间几何体的结构
了解常见的空间几何体,如长方 体、球、圆锥、圆柱等,掌握其 结构特点,如长方体的六个面都
表面积计算
了解常见空间几何体的表面积计算公式,如长方 体、球、圆锥、圆柱等,掌握如何利用公式计算 表面积。
体积计算
了解常见空间几何体的体积计算公式,如长方体 、球、圆锥、圆柱等,掌握如何利用公式计算体 积。
07
计数原理与概率统计
计数原理
分类加法计数原理
在解决计数问题时,如果事件 的发生具有互斥性,则可用分 类加法计数原理来计算事件发
圆锥曲线
总结词
重点与难点
详细描述
圆锥曲线是平面解析几何中的重点与难点,包括椭圆、双曲线和抛物线的定义、 标准方程和几何性质。这些知识点需要深入理解,并能够灵活运用解决相关问题 。
参数方程与极坐标

(完整版)艺考生高考数学总复习讲义

(完整版)艺考生高考数学总复习讲义

2015 艺考生高考数学总复习讲义第一章、集合基本运算一、基础知识:1. 元素与集合的关系:用或表示;2. 集合中元素具有确定性、无序性、互异性•3. 集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2}, 表示非负实数集,点集{( x,y)| y=x2}表示开口向上,以y轴为对称轴的抛物线;4. 集合的表示法:①列举法:用来表示有限集或具有显着规律的无限集,如M={0,1, 2, 3,-};②描述法:一般格式: x A p(x),如:{x|x-3>2},{(x,y)|y=x2+1},…;描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与{y|y= x2+3x+2}是不同的两个集合③字母表示法:常用数集的符号:自然数集N;正整数集N*或N ;整数集Z;有理数集Q实数集R;5 •集合与集合的关系:用,,二表示;A是B的子集记为A B;A是B的真子集记为A B。

常用结论:①任何一个集合是它本身的子集,记为 A A;②空集是任何集合的子集,记为 A ;空集是任何非空集合的真子集;③如果A B,同时B A,那么A = B ;如果A B,B C,那么A C .④ n个元素的子集有2n个;n个元素的真子集有2n—1个;n个元素的非空真子集有2n—2个.6. 交集A n B={x|x€ A 且x € B};并集A U B={x|x € A,或x € B};补集CA= {x| x € U,且x A},集合U表示全集.7. 集合运算中常用结论:注:本章节五个定义1. 子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B 的元素,我们就说集合 A 包含于集合B,或集合B 包含集合A ,记作A B (或 B A ),即若任意x A,有x B,则A B (或A B )。

这时我们也说集合A 是集合 B 的子集(subset )。

上海高考数学复习全套讲义

上海高考数学复习全套讲义

图 图 1-4 3.并集:由两个集合所有元素组成的集合,叫做这两个集合的并集,记作 A B ,读 作 A 并 B,如图 1-3 所示。 4.补集:由所有不属于A的元素组成的集合,叫做A在全集U中的补集,记作 C U A , 读作 A 补,如图 1-4 所示。 德摩根公式 :
CU ( A B) CU A CU B; CU ( A B) CU A CU B .
图 2-4 二 定义域题型 (一) 具体函数:即有明确解析式的函数,定义域的考查有两种形式 直接考查:主要考解不等式。利用:在
f ( x) 中 f ( x) 0 ;在
g ( x) 中, f ( x) 0 ; f ( x)
0
在 log a f ( x) 中, f ( x) 0 ;在 tan f ( x) 中, f ( x) k 在
2
x 是集合中元素的代号,竖线也可以写成冒号或者分号,竖线后面的式子的作用是描述集合 中的元素符合的条件。 2.文字描述:将说明元素性质的一句话写在大括号内。 【例】 {大于 2 小于 5 的整数}; 描述法表示的集合一旦出现, 首先需要分析元素的意义, 也就说要判断元素到底是什么。 (三) 韦恩图法:用图形表示集合定义了两 个集合之间的所有关 系。 1. 子集: 如果属于 A 的所有元素都属于 B, 那么 A 就叫做 B 的子 集 , 记 作 : A B , 如 图 1-1 所 示 。 图 1-1 子集有两种极限情况:(1)当 A 成为空集时,A 仍为 B 的子集; (2)当 A 和 B 相等时,A 仍为 B 的子集。 真子集:如果所有属于 A 的元素都属于 B,而且B中至少有一个元素不属于 A,那么 A 叫做 B 的真子集,记作 A

2
;在 f ( x) 中, f ( x) 0 ;

高考数学复习资料超详细版本

高考数学复习资料超详细版本

高考数学复习资料目录1代数31.1集合 (3)1.2函数与方程 (3)1.3方程与不等式 (4)2数列与级数52.1数列 (5)2.2等差数列 (5)2.3等比数列 (5)3平面解析几何53.1直线方程 (5)3.2圆的方程 (6)3.3椭圆的方程 (6)4立体几何64.1空间几何体 (6)4.2空间向量 (6)5概率与统计75.1概率 (7)5.2统计 (7)6解析几何76.1直线与圆 (7)6.2椭圆 (7)6.3双曲线 (8)7不等式8 8复数88.1复数的定义 (8)8.2复数的运算 (8)8.3复数的模 (8)9线性代数89.1行列式 (8)9.2矩阵 (9)10微积分910.1微分 (9)10.2积分 (9)1代数1.1集合定义:集合是一些确定的、互异的对象的全体。

常见集合的表示方法:•列举法:A={1,2,3}•描述法:B={x|x是大于0的偶数}集合的基本运算:•并集:A∪B={x|x∈A或x∈B}•交集:A∩B={x|x∈A且x∈B}•补集:A c={x|x∉A}UA B1.2函数与方程定义:设A和B是两个非空集合,如果按照某种对应关系f,使对集合A中的任何一个元素x,在集合B中有唯一确定的元素y和它对应,那么称f为从集合A到集合B的一个函数,记作y=f(x),其中x称为自变量,y称为因变量。

常见函数:•一次函数:f(x)=ax+b,a≠0•二次函数:f(x)=ax2+bx+c,a≠0•指数函数:f(x)=a x,a>0,a≠1•对数函数:f(x)=log a x,a>0,a≠1•幂函数:f(x)=x a•三角函数:sin x,cos x,tan x 等函数的性质:•单调性:函数在某区间上是单调递增或单调递减的。

•奇偶性:奇函数f (−x )=−f (x ),偶函数f (−x )=f (x )。

•周期性:存在一个非零常数T ,使得对任意x 有f (x +T )=f (x )。

第1课时 两角和与差的正弦、余弦、正切公式及倍角公式--2025年高考数学复习讲义及练习解析

 第1课时  两角和与差的正弦、余弦、正切公式及倍角公式--2025年高考数学复习讲义及练习解析

第三节三角恒等变换1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=01cos αcos β+sin αsin β.(2)公式C (α+β):cos(α+β)=02cos αcos β-sin αsin β.(3)公式S (α-β):sin(α-β)=03sin αcos β-cos αsin β.(4)公式S (α+β):sin(α+β)=04sin αcos β+cos αsin β.(5)公式T (α-β):tan(α-β)=05tan α-tan β1+tan αtan β.(6)公式T (α+β):tan(α+β)=06tan α+tan β1-tan αtan β.2.二倍角的正弦、余弦、正切公式(1)公式S 2α:sin2α=072sin αcos α.(2)公式C 2α:cos2α=08cos 2α-sin 2α=092cos 2α-1=101-2sin 2α.(3)公式T 2α:tan2α=112tan α1-tan 2α.3.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2.1.两角和与差正切公式的变形:tan α±tan β=tan(α±β)(1∓tan αtan β),tan αtan β=1-tan α+tan βtan(α+β)=tan α-tan βtan(α-β)-1.2.降幂公式:sin αcos α=12sin2α,cos 2α=1+cos2α2,sin 2α=1-cos2α2,tan 2α=1-cos2α1+cos2α.3.升幂公式:1-cos α=2sin 2α2,1+cos α=2cos 2α2,1±sin αsin α2±cos .4.其他常用变形sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α,cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α,tan α2=sin α1+cos α=1-cos αsin α.5.半角公式(1)sin α2=±1-cos α2;(2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.注:此公式不用死记硬背,可由二倍角公式推导而来.1.概念辨析(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.()(2)当α是第一象限角时,sin α2=1-cos α2.()(3)存在实数α,使tan2α=2tan α.()答案(1)√(2)×(3)√2.小题热身(1)(多选)cos α-3sin α化简的结果可以是()A .12cos B .C .12sin D .答案BD解析cos α-3sin α=α-32sin αcos π3-sin α故选BD.(2)(人教A 必修第一册习题5.5T4改编)已知sin α=55,cos α=255,则tan α2=()A .2-5B .2+5C .5-2D .±(5-2)答案C 解析∵sin α=55,cos α=255,∴tan α2=sin α1+cos α=5-2.故选C.(3)(人教B 必修第三册习题8-2B T3改编)已知θsin θ=45,则sin θ2=________,cos θ2=________.答案-255-55解析∵θsin θ=45,∴cos θ=-35,θ2∈sin θ2=-1+352=-255,cos θ2=-1-352=-55.(4)(人教A 必修第一册复习参考题5T13改编)已知α为锐角,且(tan10°-3)sin α=-2cos40°,则α=________.答案80°解析因为(tan10°-3)sin α=-2cos40°,所以sin α=-2cos40°tan10°-3=-2cos40°cos10°sin10°-3cos10°==-2cos40°cos10°-2sin50°=cos10°=sin80°,又α是锐角,所以α=80°.第1课时两角和与差的正弦、余弦、正切公式及倍角公式考点探究——提素养考点一和、差、倍角公式的简单应用例1(1)(2024·海南海口模拟)若tan αtan β=2,则cos(α-β)cos(α+β)的值为()A .-3B .-13C .13D .3答案A解析由题意,得cos(α-β)cos(α+β)=cos αcos β+sin αsin βcos αcos β-sin αsin β=1+tan αtan β1-tan αtan β=1+21-2=-3.故选A.(2)(2024·九省联考)已知θtan2θ=-,则1+sin2θ2cos 2θ+sin2θ=()A .14B .34C .1D .32答案A解析由θtan2θ=-得2tan θ1-tan 2θ=-4(tan θ+1)1-tan θ,则-4(tan θ+1)2=2tan θ,则(2tan θ+1)(tan θ+2)=0,解得tan θ=-2或tan θ=-12,因为θ所以tan θ∈(-1,0),所以tan θ=-12,则1+sin2θ2cos 2θ+sin2θ=sin 2θ+cos 2θ+2sin θcos θ2cos 2θ+2sin θcos θ=tan 2θ+1+2tan θ2+2tan θ=14+1-12+(-1)=14.故选A.【通性通法】直接利用和、差、倍角公式化简求值的策略策略一记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”策略二注意与同角三角函数基本关系、诱导公式的综合应用策略三注意配方法、因式分解、整体代换思想的应用【巩固迁移】1.(2024·安徽亳州模拟)已知sinα=35,α,若sin(α+β)cosβ=4,则tan(α+β)=()A.-167B.-78C.167D.23答案C解析因为sinα=35,α所以cosα=-1-sin2α=-45,tanα=sinαcosα=-34,因为sin(α+β) cosβ=sinαcosβ+cosαsinβcosβ=sinα+cosαtanβ=35-45tanβ=4,所以tanβ=-174,所以tan(α+β)=tanα+tanβ1-tanαtanβ=-34-1741=167.故选C.2.(2023·河北保定模拟)已知锐角θ满足2cos2θ=1+sin2θ,则tanθ=()A.13B.12C.2D.3答案A解析∵2cos2θ=1+sin2θ,∴2(cos2θ-sin2θ)=(sinθ+cosθ)2,即2(cosθ-sinθ)(sinθ+cosθ)=(sinθ+cosθ)2,又θ为锐角,∴sinθ+cosθ>0,∴2(cosθ-sinθ)=sinθ+cosθ,即cosθ=3sinθ,∴tanθ=13.故选A.考点二和、差、倍角公式的逆用与变形用例2(1)(2023·湖北武汉模拟)sin109°cos296°+cos71°sin64°=()A.12B.22C.32D.1答案B解析sin109°cos296°+cos71°sin64°=sin(180°-71°)cos(360°-64°)+cos71°sin64°=sin71°cos64°+cos71°sin64°=sin(71°+64°)=sin135°=22.故选B.(2)(2024·广西梧州模拟)1+tan7π121-tan7π12=()A .-33B .33C .-3D .3答案A解析因为1+tan7π121-tan 7π12=tan π4+tan7π121-tan π4tan7π12=tan 10π12=tan5π6=tan π6=-33.故选A.【通性通法】公式逆用与变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,应注重公式的逆用和变形使用.提醒:(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意可借助常数的拼凑法,将分子、分母转化为相同的代数式,从而达到约分的目的.【巩固迁移】3.(2024·福建永安三中模拟)cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)的值为()A .-12B .12C .-32D .32答案B解析由两角差的余弦公式,得cos(α-35°)·cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=12.故选B.4.(2023·江苏常州二模)已知sin α-3cos α=1,则sin2________.答案12解析已知sin α-3cos α=1,则α-32cos1,所以=12,令β=α-π3,则α=β+π3,即sin β=12,所以22β2cos2β=1-2sin 2β=12.5.tan50°-tan20°-33tan50°tan20°=________.答案33解析tan50°-tan20°-33tan50°tan20°=tan(50°-20°)(1+tan50°tan20°)-33tan50°tan20°=tan30°(1+tan50°tan20°)-33tan50°tan20°=33+33tan50°tan20°-33tan50°tan20°=33.考点三角的变换例3(1)(2024·四川绵阳模拟)已知=23,则α()A .-59B .59C .-13D .13答案A解析απ+2αα2=-1-2sin-=-59.故选A.(2)已知α,βsin(α+β)=-35,=1213,则________.答案-5665解析因为α,β所以3π2<α+β<2π,π2<β-π4<3π4,因为sin(α+β)=-35,1213,所以cos(α+β)=45,513,所以cos α+βcos(α+βsin(α+β=45××1213=-5665.【通性通法】1.三角公式求值中变角的解题思路思路一当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式思路二当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”2.常用的拆角、配角技巧2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=α+β2-α-β2=(α+2β)-(α+β),α=α+β2+α-β2,α-β2=α-β=(α-γ)+(γ-β),15°=45°-30°,π4+α=π2-.【巩固迁移】6.(2023·山东烟台模拟)已知tan(α+β)=12,tan(α-β)=13,则tan(π-2α)=()A .1B .-1C .2D .-2答案B解析∵2α=(α+β)+(α-β),∴tan2α=tan(α+β)+tan(α-β)1-tan(α+β)tan(α-β)=12+131-12×13=1.又tan(π-2α)=-tan2α,∴tan(π-2α)=-1.故选B.7.已知0<x <π4,=513,则cos2x________.答案2413解析cos2x =cos 2x -sin 2x 22(cos x -sin x )=2(cos x +sin x )=由0<x <π4得0<π4-x <π4,∴=1213,所以原式=2×1213=2413.课时作业一、单项选择题1.sin70°sin10°+cos10°cos70°=()A .12B .-12C .32D .-32答案A解析sin70°sin10°+cos10°cos70°=cos(70°-10°)=cos60°=12.故选A.2.在△ABC 中,若cos A =45,cos B =-35,则cos C 的值为()A.725B.1825C.2425D.-2425答案C解析在△ABC中,由cos A=45,得sin A=1-cos2A=35,由cos B=-35,得sin B=1-cos2B=45,∴cos C=cos[π-(A+B)]=-cos(A+B)=-cos A cos B+sin A sin B=-45×+35×45=2425.故选C.3.(2023·广东茂名模拟)tan70°tan10°+1tan70°-tan10°=()A.-33B.33C.-3D.3答案B解析tan70°tan10°+1tan70°-tan10°=1tan70°-tan10°1+tan70°tan10°=1tan60°=33.故选B.4.已知α为第三象限角,且sin2α-2=2cos2α,则sin α()A.-710B.710C.-7210D.7210答案D解析sin2α-2=2cos2α⇒sin2α-2=2(1-2sin2α)⇒sinα=±255,因为α为第三象限角,所以sinα=-255,cosα=-1-sin 2α=-55,所以sin2α=2sinαcosα=45,cos2α=1-2sin2α=-35,所以α=22(sin2α-cos2α)=7210.故选D.5.(2023·保定模拟)已知=223,则sin2θ的值为()A.79B.-79C.29D.-29答案B解析由=223,得sin θcos π4-cos θsin π4=22(sin θ-cos θ)=223,即sin θ-cos θ=43,等式两边同时平方,得1-sin2θ=169,所以sin2θ=-79.6.若sin(2α-β)=16,sin(2α+β)=12,则sin2αcos β=()A .23B .13C .16D .112答案B解析由sin(2α-β)=16,sin(2α+β)=12,得sin2αcos β-cos2αsin β=16①,sin2αcos β+cos2αsin β=12②,由①+②,得2sin2αcos β=23,所以sin2αcos β=13.7.已知α,β=45,=513,则sin(α-β)的值为()A .1665B .3365C .5665D .6365答案A解析由题意可得α+π6∈β-5π6∈-π2,所以=-35,=-1213,所以sin(α-β)=-=-45×513+=1665.8.(2023·重庆南开中学质检)已知α2,则sin αcos α+32cos2α的值为()A .15B .25C .35D .45答案D解析由α且2,得sin αcos α+32cos2α=12sin2α+32cos2α=α=sincostan 1=2×222+1=45,所以sinαcos α+32cos2α的值为45.故选D.二、多项选择题9.(2023·云南昆明模拟)已知α,β,γsin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法正确的是()A .cos(β-α)=12B .cos(β-α)=13C .β-α=-π3D .β-α=π3答案AD解析由题意,知sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sinβsin α+cos βcos α),∴cos(β-α)=12,故A 正确,B 错误;∵α,β,γsin γ=sin β-sin α>0,∴β>α,∴0<β-α<π2,∴β-α=π3故C 错误,D正确.故选AD.10.设θ的终边在第二象限,则1-sin θcos θ2-sin θ2的值可能为()A .1B .-1C .-2D .2答案AB解析∵θ的终边在第二象限,∴2k π+π2<θ<2k π+π,k ∈Z ,∴k π+π4<θ2<k π+π2k ∈Z ,∴1-sin θcos θ2-sin θ2=sin 2θ2+cos 2θ2-2sin θ2cos θ2cos θ2-sin θ2cos θ2-sin θ2|sin θ2-cos θ2|cos θ2-sinθ2,故当2k π+π4<θ2<2k π+π2,k ∈Z 时,sin θ2-cos θ2>0,1-sin θcos θ2-sin θ2=sin θ2-cos θ2cos θ2-sin θ2=-1;当2k π+5π4<θ2<2k π+3π2,k ∈Z 时,sin θ2-cos θ2<0,1-sin θcos θ2-sin θ2=cos θ2-sin θ2cos θ2-sin θ2=1.故选AB.11.(2023·海南海口模拟)已知α∈(π,2π),sin α=tan α2=tan β2,则()A .tan α=3B .cos α=12C .tan β=43D .cos β=17答案BD解析因为sin α=tan αcos α=tan α2,所以cos α=12,又α∈(π,2π),所以sin α=-32,tan α=-3,故A 错误,B 正确;因为tan β2=sin α=-32,所以tan β=2tanβ21-tan 2β2=-43,cos β=cos 2β2-sin 2β2sin 2β2+cos 2β2=1-tan 2β21+tan 2β2=17,故C 错误,D 正确.故选BD.三、填空题12.(1+tan20°)(1+tan21°)(1+tan24°)(1+tan25°)=________.答案4解析(1+tan20°)(1+tan25°)=1+tan20°+tan25°+tan20°tan25°=1+tan(20°+25°)(1-tan20°tan25°)+tan20°tan25°=2,同理可得(1+tan21°)(1+tan24°)=2,所以原式=4.13.(2023·青岛模拟)已知tan2θ=-22,π4<θ<π2,则2cos 2θ2-sin θ-12sin=________.答案-3+22解析由tan2θ=-22,即2tan θ1-tan 2θ=-22,解得tan θ=2或tan θ=-22.因为π4<θ<π2,所以tan θ=2且cos θ≠0,则2cos 2θ2-sin θ-12sin=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=1-21+2=-3+2 2.14.(2023·邢台模拟)已知α,β均为锐角,35,=513,则sin(α+β)=________,cos(2α-β)=________.答案3365204325解析因为=-35,=513,所以α+π3为第二象限角,β-π3为第一象限角,所以=45,=1213,所以sin(α+β)==3365,cos(2α-β)=-cos(2α-β+π)=-cos2=-cos 2sin 2=-1213cos 2513sin 2-12132cos 1-1013sin =204325.15.已知αβtan α=cos2β1-sin2β,则()A .α+β=π2B .α-β=π4C .α+β=π4D .α+2β=π2答案B解析tan α=cos2β1-sin2β=cos 2β-sin 2β(cos β-sin β)2=cos β+sin βcos β-sin β=1+tan β1-tan β=∵αβ∈α=π4+β,即α-β=π4.故选B.16.魏晋南北朝时期,祖冲之利用割圆术以正24576边形,求出圆周率π约等于355113,和真正的值相比,其误差小于八亿分之一,这个记录在一千年后才被打破.若已知π的近似值还可以表示成4sin52°,则1-2cos 27°π16-π2的值为()A .-18B .-8C .8D .18答案A解析将π=4sin52°代入1-2cos 27°π16-π2,可得1-2cos 27°π16-π2=-cos14°4sin52°16-16sin 252°=-cos14°16sin52°cos52°=-cos14°8sin104°=-cos14°8sin(90°+14°)=-cos14°8cos14°=-18.17.(多选)(2023·长沙模拟)若sin α2=33,α∈(0,π),则()A .cos α=13B .sin α=23C .=6+236D .=23-66答案AC解析∵sin α2=33,α∈(0,π),∴α2∈cos α2=1-sin 2α2=63,∴cos α=1-2sin 2α2=1-=13,故A 正确;sin α=2sin α2cos α2=2×33×63=223,故B 错误;sin α2cosπ4+cos α2sin π4=33×22+63×22=6+236,故C 正确;sin α2cos π4-cos α2sin π4=33×22-63×22=6-236,故D 错误.故选AC.18.如图,在平面直角坐标系xOy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α、钝角β的终边与单位圆O 分别交于点A ,B ,x 轴的非负半轴与单位圆O 交于点M ,已知S △OAM =55,点B 的纵坐标是210.(1)求cos(α-β)的值;(2)求2α-β的值.解(1)由题意,知OA =OM =1,因为S △OAM =12OA ·OM sin α=55,所以sin α=255,又α为锐角,所以cos α=55.因为点B 是钝角β的终边与单位圆O 的交点,且点B 的纵坐标是210,所以sin β=210,cos β=-7210,所以cos(α-β)=cos αcos β+sin αsin β=55×+255×210=-1010.(2)因为sin α=255,cos α=55,sin β=210,cos β=-7210,所以sin(α-β)=sin αcos β-cos αsin β=255×-55×210=-31010,又cos(α-β)=-1010,所以sin(2α-β)=sin[α+(α-β)]=sin αcos(α-β)+cos αsin(α-β)=-22,因为α为锐角,sin α=255>22,所以α所以2α又β所以2α-β-π2,所以2α-β=-π4.。

高三数学总复习讲义集合

高三数学总复习讲义集合

高三数学总复习讲义——集合一、知识清单:1.元素与集合的关系:用∈或∉表示;2.集合中元素具有确定性、无序性、互异性.3.集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y |y =x 2},表示非负实数集,点集{(x ,y )|y =x 2}表示开口向上,以y 轴为对称轴的抛物线; 4.集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…}; ②描述法③字母表示法:常用数集的符号:自然数集N ;正整数集*N N +或;整数集Z ;有理数集Q 、实数集R; 5.集合与集合的关系:用⊆,≠⊂,=表示;A 是B 的子集记为A ⊆B ;A 是B 的真子集记为A ≠⊂B 。

①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;空集是任何非空集合的真子集; ③如果B A ⊆,同时A B ⊆,那么A = B ;如果A B ⊆,B C ⊆,A C ⊆那么.④n 个元素的子集有2n 个;n 个元素的真子集有2n -1个;n 个元素的非空真子集有2n -2个.6.交集A∩B={x |x ∈A 且x ∈B};并集A ∪B={x |x ∈A ,或x ∈B};补集C U A={x |x ∈U ,且x ∉A },集合U 表示全集.7.集合运算中常用结论:①;A B A B A ⊆⇔= A B A B B ⊆⇔= ②()()();U U U A B A B = 痧 ()()()U U U A B A B = 痧 ③()()card A B card A =+ ()()card B card A B - 二、课前预习1.下列关系式中正确的是( )(A){}Φ⊆Φ (B){}0∈Φ (C)0{}Φ= (D)0{}⊆Φ2. 3231x y x y +=⎧⎨-=⎩解集为______.3.设{}{}24,21,,9,5,1A a a B a a =--=--,已知{}9A B = ,求实数a 的值.4.设{}220,M x x x x R =++=∈,a =lg(lg10),则{a }与M 的关系是( ) (A){a }=M (B)M Ü{a } (C){a }ÝM (D)M ⊇{a }5.集合A={x |x =3k -2,k ∈Z},B={y |y=3n +1,n ∈Z},S={y |y =6m +1,m ∈Z}之间的关系是( ) (A)S ÜB ÜA (B)S=B ÜA (C)S ÜB=A (D)S ÝB=A6.用适当的符号()∈∉、、=、、茌填空: ①π___Q ; ②{3.14}____Q ;③-R ∪R +_____R; ④{x |x =2k +1, k ∈Z}___{x |x =2k -1, k ∈Z}。

上海高考数学复习全套讲义

上海高考数学复习全套讲义

上海高考数学复习全套讲义上海高考数学复习全套讲义面对即将到来的高考,许多学生都感到焦虑和紧张。

对于数学这门科目,有些人觉得它难如登天,而有些人则觉得它不过是小菜一碟。

无论大家的数学基础如何,只要大家认真阅读本文,按照本文所提供的方法进行复习,相信大家一定能够在高考中取得优异的成绩。

首先,我们需要明确数学高考所考察的内容。

根据历年高考的命题趋势,数学高考主要考察数与代数、空间与几何、概率与统计等方面的知识。

其中,数与代数、空间与几何是数学高考的两大重点,而概率与统计则相对较为简单。

因此,在复习时,我们应该将重点放在数与代数、空间与几何上。

针对数与代数,我们需要掌握初中和高中所学习的所有数学知识,尤其是整数、有理数、一元二次方程等基础知识的运用。

同时,我们还需要掌握一些数学思想和解题方法,如分类讨论、函数思想等。

在复习时,我们可以结合历年高考的数与代数题目进行练习,加深对知识点的理解和掌握。

针对空间与几何,我们需要掌握平面几何、立体几何等基础知识,尤其是三角形、四边形、圆等图形的性质和面积、体积的计算方法。

同时,我们还需要掌握一些几何证明的方法和技巧,如逆证法、反证法等。

在复习时,我们可以结合历年高考的空间与几何题目进行练习,加深对知识点的理解和掌握。

针对概率与统计,我们需要掌握概率论、统计学等基础知识,尤其是随机事件、概率分布、统计图表等知识的理解和运用。

在复习时,我们可以结合历年高考的概率与统计题目进行练习,加深对知识点的理解和掌握。

除了以上所提到的知识点,我们还需要注意一些解题技巧和方法的运用。

例如,在解答选择题时,我们可以利用排除法、特殊值法等技巧来快速得到答案;在解答填空题时,我们可以利用直接法、分析法等技巧来准确求解;在解答大题时,我们可以利用综合法、分类讨论法等技巧来逐步解决问题。

最后,我们需要注意一些复习方法和技巧。

首先,我们需要制定科学的复习计划,合理安排时间,做到有的放矢。

其次,我们需要注重练习和实践,通过做题来加深对知识点的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】 1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用. 2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】 1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}. 2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_______.4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8或2___.【范例解析】 例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .分析:先化简集合A ,由RB C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1){12}A x x =≤≤,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=,可得A B ⊆.而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.【反馈演练】 1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________.2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.3.设集合2{60}Px x x =--<,{23}Q x a x a =≤≤+.(1)若P QP ⋃=,求实数a 的取值范围;{0,2}(2)若P Q⋂=∅,求实数a 的取值范围;(3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<,P Q P ⋃=,Q P ∴⊆.①当Q =∅时,得23a a >+,解得3a >.②当Q≠∅时,得2233a a -<≤+<,解得10a -<<.综上,(1,0)(3,)a ∈-⋃+∞. (2)①当Q=∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或.综上,3(,5][,)2a ∈-∞-⋃+∞. (3)由{03}P Q x x ⋂=≤<,则0a =.第2课 命题及逻辑联结词【考点导读】 1. 了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系. 2. 了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定. 【基础练习】1.下列语句中:①230x -=;②你是高三的学生吗?③315+=;④536x ->.其中,不是命题的有____①②④_____.2.一般地若用p 和q 分别表示原命题的条件和结论,则它的逆命题可表示为若q 则p ,否命题可表示为p q⌝⌝若则,逆否命题可表示为q p ⌝⌝若则;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.【范例解析】 例1. 写出下列命题的逆命题,否命题,逆否命题并判断真假. (1)平行四边形的对边相等;(2) 菱形的对角线互相垂直平分; (3)设,,,a b c dR ∈,若,a b c d ==,则a c b d +=+.分析:先将原命题改为“若p 则q ”,在写出其它三种命题. 解: (1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题; 否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题. (2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题; 否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题. (3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题; 逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题; 否命题:设,,,a b c dR ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题; 逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p 则q ”的形式,找出其条件p 和结论q ,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p 的否定即p ⌝时,要注意对p 中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的命题,并判断真假. (1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相平分; (3)p :方程210x x -+=的两实根的符号相同,q :方程210x x -+=的两实根的绝对值相等.分析:先写出三种形式命题,根据真值表判断真假. 解:(1)p 或q :2是4的约数或2是6的约数,真命题;p 且q :2是4的约数且2是6的约数,真命题; 非p :2不是4的约数,假命题.(2)p 或q :矩形的对角线相等或互相平分,真命题;p 且q :矩形的对角线相等且互相平分,真命题; 非p :矩形的对角线不相等,假命题. (3)p 或q :方程210xx -+=的两实根的符号相同或绝对值相等,假命题; p 且q :方程210x x -+=的两实根的符号相同且绝对值相等,假命题;非p :方程210xx -+=的两实根的符号不同,真命题.点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p ,q 的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题的否定,并判断真假.(1)p :所有末位数字是0或5的整数都能被5整除; (2)p :每一个非负数的平方都是正数;(3)p :存在一个三角形,它的内角和大于180°; (4)p :有的四边形没有外接圆; (5)p :某些梯形的对角线互相平分. 分析:全称命题“,()x M p x ∀∈”的否定是“,()x M p x ∃∈⌝”,特称命题“,()x M p x ∃∈”的否定是“,()x M p x ∀∈⌝” .解: (1)p ⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题;(2)p ⌝:存在一个非负数的平方不是正数,真命题;(3)p ⌝:任意一个三角形,它的内角和都不大于180°,真命题;(4)p ⌝:所有四边形都有外接圆,假命题; (5)p ⌝:任一梯形的对角线都不互相平分,真命题.点评:一些常用正面叙述的词语及它的否定词语列表如下:【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________. 2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____. 4.命题“若b a >,则122->b a ”的否命题为________________________. 5.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. (1)设,a b R ∈,若0ab =,则0a =或0b =;(2)设,a b R ∈,若0,0a b >>,则0ab >.解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题;否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题; 逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题; (2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题; 否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题; 逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.若b M ∈,则a M ∉若a b ≤,则221a b≤-第3 课时 充分条件和必要条件【考点导读】 1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件. 2.从集合的观点理解充要条件,有以下一些结论: 若集合P Q ⊆,则P 是Q 的充分条件; 若集合P Q ⊇,则P 是Q 的必要条件; 若集合PQ =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力. 【基础练习】 1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空. (1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件.(2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件.3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件;(3)αβ=是tan tan αβ=的___________________条件;(4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件.(2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件.(3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】 1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_必要不充分条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件. 3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围. 解::{12}q B x R x =∈≤≤,若q ⌝是p ⌝的充分不必要条件,则A B ⊆.若A =∅,则240a -<,即22a -<<;若A ≠∅,则240,22a a a x ⎧-≥⎪⎨--+≤≤⎪⎩解得522a -≤≤-.综上所述,522a -≤<.充分不必要2012高中数学复习讲义第二章函数A【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。

相关文档
最新文档