圆锥曲线与方程测试题(精.选)

合集下载

圆锥曲线测试题1

圆锥曲线测试题1

高二数学圆锥曲线与方程测试题一.选择题:〔本大题共12小题,每题5分,共60分.〕1.曲线121022=++-k y k x 是焦点在x 轴上的椭圆,那么〔 〕 21,F F 是椭圆1925:22=+y x C 的左、右焦点,点M 是椭圆C 上一点,且321π=∠MF F ,那么21MF F ∆的面积为〔 〕3抛物线的顶点在坐标原点,准线方程是,2=x 那么该抛物线标准方程为〔 〕4.双曲线)0,0(12222>>=-b a by a x 的一条渐近线是x y 3=,那么双曲线离心率是〔 〕5.抛物线241x y =的准线方程是〔 〕6.设21,F F 是双曲线169:22=-y x C 的左、右焦点,点M 在C 上且101=MF ,那么 2MF 〔 〕4.A 16.B 4.C 或16 12.D7.F 是抛物线y x C 4:2=的焦点,过F 的直线交抛物线于B A ,两点,且线段AB 中点纵坐标为3,那么AB 等于〔 〕8设21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,假设椭圆C 上存在一点M 使,120021=∠MF F 那么椭圆C 的离心率的取值范围是〔 〕9.双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线平行直线,102:+=x y l双曲线的一个焦点在直线l 上,那么双曲线的方程为( )1205.22=-y x A 1520.22=-y x B C.2233125100x yD.2233110025x y10.21,F F 是双曲线)0,0(1:2222>>=-b a by a x C 的左、右焦点,双曲线上存在一点P 使,3)(2221ab b PF PF -=-那么该双曲线的离心率为〔 〕 11. F 是抛物线x y C 4:2=的焦点,过F 的直线l 交抛物线于A,B 两点,假设BF AF 3=,那么直线l 的方程为〔 〕12. 椭圆)0(1:2222>>=+b a by a x E 的右焦点为),0,3(F 过F 的直线交E 于A,B 两点,假设AB 的中点坐标为)1,1(-,那么E 的方程为〔 〕 二填空题:(本大题共4小题,每题5分,共20分.) 13.抛物线y 2=38x 的焦点到双曲线x 2-23y =1的渐近线的距离是________;14设双曲线C 经过点()2,2,且与2214y x -=具有一样渐近线,那么C 的方程为________;15双曲线)0,0(1:2222>>=-b a by a x C 的离心率为2,焦点为1F 、2F ,点A在C 上,假设12||2||F A F A =,那么21cos AF F ∠=________.16椭圆)0(1:2222>>=+b a by a x E 的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .假设|AB |=10,|AF |=6,cos ∠ABF =45,那么C 的离心率e =__________.三.解答题〔共6个小题,共70分,要求写出必要的证明或解答过程〕 17(10分)动点M 到定点)0,1(F 的距离与它到定直线1:-=x l 的距离相等.(1)求动点M 的轨迹方程;(2)过点F 斜率2的直线l 交点M 的轨迹于B A ,两点,求AB 的长.18(12分)椭圆)0(1:2222>>=+b a by a x E 的离心率,23=e 且E 过点)1,0(.(1)求椭圆E 的方程;(2)定点A 的坐标为)2,0(,M 是椭圆E 上一点,求AM 的最大值.19(12分)21,F F 是双曲线)0,0(1:2222>>=-b a by a x C 的左、右焦点.(1)求证:双曲线C 上任意一点M 到双曲线两条渐近线的距离之积为常数;(2)过1F 垂直于x 轴的直线交C 于点P ,,212PF PF =且E 过点)0,1(,求双曲线E 的方程.20(12分)设椭圆)0(1:2222>>=+b a by a x E 的左、右焦点分别为2123F F AB =. (1) 求椭圆E 的离心率;(2) 设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.21(12分)如图,点)1,0(-P 是椭圆22122:1x y C a b+=〔0a b >>〕的一个顶点,1C 的长轴是圆222:4C x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A ,B 两点,2l 交椭圆1C 于另一点D . 〔Ⅰ〕求椭圆1C 的方程;〔Ⅱ〕求ABD ∆面积取最大值时直线1l 的方程.22(12分)如图,抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D 〔O 为坐标原点〕.(1)证明:动点D 在定直线上; (2)作C 的任意一条切线l〔不含x 轴〕与直线2y =相交于点1N ,与〔1〕中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.23(12分)抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF∆为正三角形.〔Ⅰ〕求C 的方程;〔Ⅱ〕假设直线1//l l ,且1l 和C 有且只有一个公共点E , 〔ⅰ〕证明直线AE 过定点,并求出定点坐标;〔ⅱ〕ABE ∆的面积是否存在最小值?假设存在,请求出最小值;假设不存在,请说明理由.高二数学圆锥曲线与方程测题试答题卡姓名: ;得分 ;一.选择题〔本大题共12个小题,每题5分,共60分〕二.填空题〔本大题共4个小题,每题5分,共20分〕13 ; 14 ; 15 ; 16 .三.解答题〔本大题6个小题,共70分,要求写出必要的证明、演算或推理过程〕 117(10分) 18(12分) 19(12分) 20(12分) 21(12分) 22〔12分〕高二数学2021-2021 学年度第一学期期中考试〔理科〕参考答案 一选择题:1-5 CABBD 6-10 DBCDA 11-12 AC 二填空题:1613-; 54 13.3 323 三解答题:17〔10分〕〔1〕在ABC 中,因为c b a ,.成等比数列∴ac b =2 ……2分又∵.22bc a c ac =-+∴ bc a c b =-+222 ……3分根据余弦定理得:.0,212cos 222π<<=-+=A bc a c b A 且 所以: 3π=A ……5分〔2〕由〔1〕得 ac b =2 根据正弦定理得:C A B sin sin sin 2= …… 7分所以:23sin sin sin sin sin sin sin 2====A C C A C B B c b …… 10分18(1)设等差数列}{n a 的公差为d .∴3615652{11=+=+d a d a …… 3分 解得: 2,11==d a所以:12-=n a n …… 6分(2) 1222-==n a n nb 得 122)12(-+-=+n n n n b a …… 8分∴数列}{n n b a +的前n 项和为)2222()12531()212()25()23()21(12531253--+++++-++++=+-+++++++=n n n n n T 2)14(3241)41(22)121(n n n n n +-=--+-+= ……12分19 证明:ABC ∆中,AD AB DAB 2,600==∠ 根据余弦定理:AD DAB AB AD AB AD BD 3cos 222=∠⋅-+=∴ 090=∠ADB 即:AD BD ⊥ …… 3分 又∵ABCD PD 平面⊥所以: BD PA ⊥ …… 6分〔2〕因为BC ∥AD∴PCB ∠是异面直线PC AD 与所成的角. …… 8分由BC ∥AD ,BD AD ⊥ 得BD BC ⊥ 又∵ABCD PD 平面⊥ ∴PB BC ⊥ (10)分在AD BD PA PB AD BC PBC Rt 2,22=+==∆中, 所以:异面直线PC AD 与所成的角的余弦值为.55…… 12分20∵2.2605286276257246236,5597531=++++==++++=y t (3)分∴5.6420)2()4(8.2548.152)3.3(0)2.14)(2()4)(2.24(ˆ22222=+++-+-+⨯+⨯+-⨯+--+--=b…… 6分 所以:所求的回归直线方程为:7.2275.6ˆ+=t y…… 8分 (2)当11=t 时,2.2997.227115.6ˆ=+⨯=y…… 11分 所以:2021年该地区的粮食需求量约为299.2万吨。

湖北仙桃中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)

湖北仙桃中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)

一、选择题1.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .22.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A BC D 3.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .0,2⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .11212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭5.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D6.设(,)P x y 8=,则点P 的轨迹方程为( )A .22+1164x y =B .22+1416x y =C .22148x y -=D .22184x y -=7.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).A .12B .622+ C .31+ D .62+8.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34πC .(65)π-D .54π11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 312.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-二、填空题13.已知A 、B 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右顶点,M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,始终满足()()12fk f k =,其中()ln 2x f x ⎛⎫= ⎪⎝⎭,则C 的离心率为______ .14.设F 为抛物线2:3C y x =的焦点,过F 作直线交抛物线C 于A B 、两点,O 为坐标原点,则AOB ∆面积的最小值为__________.15.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________. 17.曲线412x x y y -=上的点到直线y =的距离的最大值是________.18.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.19.在平面直角坐标系xOy 中,若直线2y x =与椭圆()222210x y a b a b+=>>在第一象限内交于点P ,且以OP 为直径的圆恰好经过右焦点F ,则椭圆的离心率是______. 20.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:则2C 的虚轴长为______.三、解答题21.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 22.抛物线Γ的方程为22y px =(0p >), ()1,2A 是Γ上的一点. (1)求p 的值,并求A 点处的切线方程;(2)不过点A 且斜率为1-的直线交抛物线Γ于P 、Q 两点.证明:直线PA 、 QA 的倾斜角互补.23.如图,设圆2212x y +=与抛物线24x y =相交于A ,B 两点,F 为抛物线的焦点.(1)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P ,2P ,3P ,4P ,求1234PP P P +的值;(2)若直线m 与抛物线相交于M ,N 两点,且与圆相切,切点D 在劣弧AB 上,求MF NF +的取值范围.24.在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为12,过点(03,,且BMN ∆是椭圆C 的内接三角形.(1)若点B 为椭圆C 的上顶点,且原点O 为BMN ∆的垂心,求线段MN 的长; (2)若点B 为椭圆C 上的一动点,且原点O 为BMN ∆的重心,求原点O 到直线MN 距离的最小值.25.已知椭圆2222:1(0)x y C a b a b+=>>的短轴为2,椭圆上的点到焦点的最短距离为23.(1)求椭圆的标准方程;(2)已知椭圆的右顶点和上顶点分别为,M N ,斜率为12的直线l 与椭圆C 交于P Q 、两点,求证:直线MP 与NQ 的斜率之和为定值;(3)过右焦点2F 作相互垂直的弦,AB CD ,求||||AB CD +的最小值.26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数;(2)若||AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.2.D解析:D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则∴e=c a .3.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题.4.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据12r a >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C 5.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭, 因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程. 6.B解析:B 【分析】由椭圆的定义可得出点P 的轨迹是以12,F F 为焦点的椭圆,其中28a =,c =,由此可得出椭圆的标准方程. 【详解】由题意可知,点(,)P x y到点1F的距离与到点2(0,F -的距离之和为定值8,并且128F F >=,所以点P 的轨迹是以12,F F 为焦点的椭圆,所以28,4a a ==,因为c =,所以22216124b a c =-=-=, 所以点P 的轨迹方程为22+=1416x y .故选:B. 【点睛】关键点点睛:解决本题的关键在于熟悉、灵活运用椭圆的定义,求出椭圆的焦点的位置,椭圆中的,,a b c .7.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=,又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C的半径最小值为11225O l d -==,圆C面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,3==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.12.A解析:A【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1, 所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设出的坐标利用直线的斜率的乘积结合已知条件推出斜率乘积转化求解双曲线的离心率即可【详解】设由M 是双曲线上异于AB 的动点若直线MAMB 的斜率分别为则又则由得因为所以可得显然不成立;则所以所以故【分析】设出,,M A B 的坐标,利用直线的斜率的乘积,结合已知条件,推出斜率乘积,转化求解双曲线的离心率即可. 【详解】设()()(),,,0,,0M m n A a B a -,由M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,则21222n n n k k m a m a m a ⋅=⋅=+--, 又22221m n a b -=,则2212222n b k k m a a ==⋅-, 由()ln 2x f x ⎛⎫=⎪⎝⎭, 得()()1212ln ,ln 22k k f k f k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,因为()()12fk f k =,所以21ln ln 22k k ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,可得2122k k=显然不成立; 则2211ln ln ln 02222k k k k ⎛⎫⎛⎫⎛⎫+=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以21211224k k k k ⋅⇒==,所以c e a ===.【点睛】方法点睛:求双曲线离心率的值的常用方法:由,a b 或,a c 的值,得e === 列出含有,,a b c 的齐次方程,借助222b c a =-消去b ,然后转化为关于e 的方程求解;14.【解析】抛物线焦点为当直线的斜率不存在时即和轴垂直时面积最小将代入解得故故答案为点睛:本题主要考查了抛物线的简单性质直线与抛物线的位置关系该题最大的难点在于确定当直线在何位置时三角形的面积最大属于中解析:98【解析】抛物线焦点为3,04⎛⎫ ⎪⎝⎭,当直线的斜率不存在时,即和x 轴垂直时,面积最小,将34x =代入23y x =,解得32y =±,故133922428OABS =⨯⨯⨯=,故答案为98. 点睛:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系,该题最大的难点在于确定当直线在何位置时,三角形的面积最大,属于中档题;将AOB ∆面积分为用x 轴将其分开,即可得1212OABOFBOFA SSS OF y y =+=-,故可得当直线的斜率不存在时, 即和x 轴垂直时,12y y -的值最大,即面积最大.15.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.16.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF 和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==. 因为直线l 的斜率是3,则12sin PF F ∠=,12cos PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos PF F F PF F =∠=,21212sin PF F F PF F =∠=,则2125PF PF a -==,故双曲线C的离心率为2c a =.【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.17.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的【分析】 先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y xy x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x =的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:22y x =- 故两平行线22y x =-2y x =之间的距离为0222633d +==. 所以曲线412x x y y -=上的点到直线2y x =26. 26. 【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.18.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形, 即在椭圆中有1221122222PF PF a PF a c PF F F c ⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭.故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.19.【分析】由题意可得轴求得的坐标由在直线上结合离心率公式解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点可得轴令可得不妨设由在直线上可得即为由可得解得(负的舍去)故答案为:【点睛】本题考查椭圆的1. 【分析】由题意可得PF x ⊥轴,求得P 的坐标,由P 在直线2y x =上,结合离心率公式,解方程可得所求值. 【详解】解:以OP 为直径的圆恰好经过右焦点(c,0)F ,可得PF x ⊥轴,令x c =,可得2b y a =±=±,不妨设2(,)b P c a ,由2(,)b P c a 在直线2y x =上,可得22b c a=,即为2222a c b ac -==,由ce a=可得2210e e +-=,解得1e =(负的舍去). 故答案为1. 【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出P 点的坐标.求离心率的做题思路是,根据题意求出,a c 或者列出一个关于,,a b c 的方程,由椭圆或双曲线的,,a b c 的关系,进而求解离心率.20.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a ba b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.三、解答题21.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 .(2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2p =,1y x =+;(2)证明见解析. 【分析】(1)将()1,2A 代入可求得p ,设出切线方程,联立切线与抛物线方程,利用0∆=可求;(2)设直线PQ 方程为y x m =-+,与抛物线方程联立,根据0PA QA k k +=可证明. 【详解】解:(1)将()1,2A 代入22y px =,可得2p =,由题意知,所求切线斜率显然存在,且不为0, 设切线方程为()21y k x -=-,与24y x =联立得()2204k y y k -+-=(0k ≠), 由()120k k ∆=--=得1k =. 所以,所求切线方程为1y x =+.(2)设直线PQ 方程为y x m =-+,代入24y x =得:240y y m +-=.由16160m ∆=+>,得1m >-.又∵直线PQ 不过点A ,∴3m ≠,∴1m >-,且3m ≠. 设()11,P x y ,()22,Q x y ,则124y y +=-,124y y m =-,()()()()22122112121211121222441111PA QA y y y y y y k k x x x x ⎛⎫⎛⎫--+-- ⎪ ⎪--⎝⎭⎝⎭+=+=----()()()121441684201m m x x +-++==-, 所以,直线PA 、PQ 的斜率角互补. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)1234PP P P +=2)2,22⎡⎤⎣⎦. 【分析】(1)由题意可得直线l 的方程为1y x =+,设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则可得()()12342413PP P P x x x x +=+-+⎤⎦,然后分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组,消元后利用根与系数的关系,可得结果; (2)将圆的方程和抛物线方程联立方程组可求出A ,B 两点的坐标,设()00,D x y ,则切线00:12m x x y y +=,直线方程式与抛物线方程式联立方程组,消元后,再由根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,而02y ≤≤而可求出M N y y +的范围,进而可得MF NF +的取值范围. 【详解】解:由题意,()0,1F ,直线l 的方程为1y x =+设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则)1221PP x x -,)3443P P x x =-,∴)()()123424132413PP P P x x x x x x x x +=+--=+-+⎤⎦故分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组:22112y x x y =+⎧⎨+=⎩;214y x x y=+⎧⎨=⎩,分别消去y ,整理得:222110x x +-=;2440x x --= ∴131x x +=-,244x x +=,∴1234PP P P +=(2)由222124x y x y⎧+=⎨=⎩解得:()2A -,()2B ,设()00,D x y ,则220012x y +=;切线00:12m x x y y +=,其中02y ≤≤;设(),M M M x y ,(),N N N x y ,则002124x x y y x y +=⎧⎨=⎩,消去x ,整理得: ()2220004241440y y x y y -++=,∴22000022200004244842448244M N x y y y y y y y y y +-++===+-∵02y ≤≤∴M N y y ⎡⎤+∈⎣⎦∵2M N MF NF y y +=++,∴MF NF +的取值范围为2,22⎡⎤⎣⎦【点睛】关键点点睛:此题考查直线与圆的位置关系,考查直线与抛物线的位置关系,第2问解题的关键是将切线方程与抛物线方程联立方程组002124x x y y x y +=⎧⎨=⎩,进而利用根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,再利用抛物线的定义可求得MF NF +的取值范围,考查数学转化思想和计算能力,属于中档题 24.(12【分析】(1)根据题意,先求出椭圆的方程,由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON 求出线段MN 的长;(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,由斜率存在时根据()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-,由方程联立得出22443m k =+,再由点到直线的距离求出最值. 【详解】解:(1)设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+-=-=,解得:y =7-, B ,M不重合,故y =213249x =,故2MN x ==(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处由2OB =,则1OD =,则O 到直线MN 的距离为1;当MN 斜率存在时,设MN :y kx m =+,()11,M x y ,()22,N x y , 则1212,22x x y y D ++⎛⎫⎪⎝⎭,所以()1212,A x x y y ++,所以()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=- 也即()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得: 22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d,则d ===0k =时,min 32d =; 综上,原点O 到直线MN 距离的最小值为32.【点睛】关键点睛:本题考查椭圆的内接三角形的相关性质的应用,解答本题的关键是设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,根据点,,M N A 均在椭圆上,得出1212346x x y y +=-,由方程联立韦达定理得到22443m k =+,属于中档题.25.(1)2214x y +=;(2)证明见解析;(3)3.【分析】(1)由题知1b =,23a c -=-222a b c =+即可得椭圆的标准方程为2214x y +=; (2)由题意得(2,0),(0,1)M N ,设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,直线l 为12y x m =+,直线与椭圆联立化简得212122,22x x m x x m +=-=-,进而0MP NQ k k =+;(3)当直线AB 斜率不存在时,22||||23b AB CD a a+=+=,当直线AB 斜率存在时,设直线AB 为3y kx k =-,直线CD 为13y x k =-,进而得2245||||54174AB CD k k+=-++,再结合基本不等式即可得答案. 【详解】(1)因为短轴为2,所以22,1b b ==,又因为椭圆上的点到焦点的最短距离为a c -,所以23a c -=-,又因为222a b c =+,解得2,1,a b c ===所以椭圆的标准方程为2214x y +=;(2)由题意得(2,0),(0,1)M N ,设直线l 为12y x m =+,与2214x y +=联立得:222220x mx m ++-=设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则212122,22x x m x x m +=-=- 所以()12121212122111(1)222222MP NQx m x m x x m x x m k k x x x x x ++-+-+-++=+=--22222(1)(2)220222m m x m m m x -+---+==--,所以MP 与NQ 的斜率之和为定值0;(3)当直线AB 斜率不存在时,2225b AB CD a a+=+=当直线AB 斜率存在时,设直线AB为y kx =-,直线CD为1y x k k=-+, 得()2222411240k x x k +-+-=,所以223434221244141,k x x x x k k -+==++,所以()224141AB k k +==+,同理()2241||4k CD k +=+,所以()()2222224141445||||5414417k AB CD k k k kk +++=+=-++++因为22448k k +≥=,所以1635AB CD +≥>,当且仅当1k =±时取等号, 所以AB CD +的最小值为3. 【点睛】本题考查直线与椭圆的位置关系,椭圆中的最值问题,考查运算能力与化归转化思想,是中档题.本题解题的关键在于巧设点的坐标,结合韦达定理,设而不求,达到求解目标,化简运算;同时还要注意再设直线方程时,需要考虑斜率存在与否,做到周密解答.26.(1)||AB =12t;(2)7+ 【分析】(1)设点1(A x ,1)y ,2(B x ,2)y ,联立直线方程和抛物线方程,运用韦达定理和弦长公式,化简计算即可得到所求函数;(2)运用抛物线的定义和(1)的结论,结合12||||2AF BF x x +=++,进而得到AFB △的周长. 【详解】(1)224y x ty x=+⎧⎨=⎩, 整理得()224410x t x t +-+=, 则2212212163216161632044144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪+==-⎨⎪⎪=⎪⎩, AB===,其中12t;(2)由||AB ==4t =-, 经检验,此时16320t ∆=->, 所以1215x x t +=-=, 由抛物线的定义,有1212||||()()52722p pAF BF x x x x p +=+++=++=+=,又||AB =,所以AFB△的周长为7+ 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.。

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。

(北师大版)宁波市高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

(北师大版)宁波市高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.已知定圆222212:(3)1,:(3)49C x y C x y ++=-+=,定点(2,1)M ,动圆C 满足与1C 外切且与2C 内切,则1||CM CC +的最大值为( )A .8+B .8C .16D .163.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( )A .B .[1 , 2]C .[4 8],D .4.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直5.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14D .46.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .37.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( )A .23-B .21-C .21+D .23+8.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ). A .13B .12C .2D .39.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A .21B 2C 3D 3111.已知椭圆22221(0)x y a b a b+=>>的右焦点为F ,过F 点作x 轴的垂线交椭圆于A ,B 两点,若0OA OB ⋅=,则椭圆的离心率等于( )A 15-+B 13-+ C .12D 3- 12.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .6二、填空题13.已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,过1F 的直线与双曲线的左支交于A ,B 两点,若∠260AF B =︒,则2AF B 的内切圆半径为______.14.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.15.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______.16.双曲线()222:103x y C a a -=>的一条渐近线的倾斜角为60,1F 、2F 为左、右焦点,若直线2x =与双曲线C 交于点P ,则12PF F △的周长为____________.17.过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),则以AB 为直径的圆与该抛物线准线的公共点的坐标为____________.18.如图,已知椭圆C 的中心为原点O ,(25,0)F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的标准方程为__________.19.过抛物线2:4C y x =的焦点F 的直线l 交C 于,A B 两点,设,A B 在y 轴上的投影分别为,A B '',若()32AB AA BB ''=+,则直线l 的斜率为______. 20.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C 的左、右焦点.(1)求椭圆C 的方程.(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF FB λ=,且点Q 满足QA QB λ=,求1PQF △面积的最小值. 22.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.23.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 24.已知抛物线E 的顶点为原点O ,焦点F 在x 轴正半轴,点()2,Q m 在抛物线E 上,且3QF =.(1)求抛物线E 的方程;(2)过点()2,0P 且斜率为()0k k >的直线l 与抛物线E 交于A ,B 两点,且线段AB 的中点横坐标为4,求ABO 的面积.25.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,且过点F 的直线l 被抛物线C 所截得的弦长MN 为8. (1)求直线l 的方程;(2)当直线l 的斜率大于零时,求过点,M N 且与抛物线C 的准线相切的圆的方程.26.已知:椭圆221164x y +=,求:(1)以()2,1P -为中点的弦所在直线的方程; (2)斜率为2的平行弦中点的轨迹方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由2c e a ==,得2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.A解析:A将动圆C 的轨迹方程表示出来:221167x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值. 【详解】定圆()221:31C x y ++=, 圆心()13,0C -,半径为1()222349C x y -+=:,圆心()23,0C ,半径为7.动圆C 满足与1C 外切且与2C 内切,设动圆半径为r ,则1212121,786CC r CC r CC CC C C =+=-⇒+=>= 所以动点C 的轨迹是以1C ,2C 为焦点,8为长轴的椭圆,设其方程为22221(0)x y a b a b+=>> 所以4a = ,2229c a b =-= ,则其方程为:221167x y +=由椭圆的定义可得12228CC CC CC a =-=- 所以128CM CC CM CC =+-+当2,,C C M 三点不共线时,有1228882CM CC CM CC MC +-+=+<=+ 当2,,C C M 三点共线时,有1228882CM CC CM CC MC +-+=+≤=+ 综上有182CM CC +≤+(当2,,C C M 三点共线且2CM CC >时取等号) 故选:A【点睛】关键点睛:本题考查了轨迹方程,椭圆的性质,解答本题的关键是利用椭圆性质变换长度关系,即12228CC CC CC a =-=-,将所求问题转化为128CM CC CM CC =+-+,再分2,,C C M三点是否共线讨论,属于中档题.3.C解析:C由题可求得2121222ABF AF F BF F cSSSAB =+=,2222ABF EABEBF EAF S SSSa =++=,即可得出22aAB c=⋅,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222c AB a∴=,22a AB c ∴=⋅, 2242c e a ⎡⎤=∈⎢⎥⎣⎦,,2,22a c ⎡⎤∴∈⎣⎦,则[]224,8ac⋅∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出2aAB c=可求解. 4.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根 所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题. 5.B解析:B 【分析】由曲线的对称性,以及数形结合分析得b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.6.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥,圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.7.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+,则12PF F △与12QF F的面积之比为1212222122222PF F QF F S PF a t S QF a t a -=====+--△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.8.C解析:C 【分析】设点)P m ,将22()0OP OF F P+⋅=坐标化运算,可求出m =,再分别计算12||,||PF PF 的值,即可得答案; 【详解】1a =,2b=,∴c =1(F ,2F ,设点)P m ,∴2222()(1))1504m OPOF F P m m m +⋅=⋅=+-+=, ∴2165m =,5m =±,则(55P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C. 【点睛】利用坐标运算将数量积运算坐标化,再利用两点间距离公式分别求出焦半径是求解的关键.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值.【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=, 所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=, 由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin33MF c c π==,∴(31)2MF ME c a +=+=, ∴23131c e a ===-+. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.11.A解析:A 【分析】由0OA OB ⋅=可得OAB 是等腰直角三角形,结合椭圆的几何性质列出方程,可求解椭圆的离心率. 【详解】椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过F 作x 轴的垂线交椭圆C 于A ,B 两点,由2b xc y a=⇒=±,若0OA OB ⋅=,则OAB 是等腰直角三角形(O 为坐标原点),可得2b c a =,即22a c ac -=,可得210e e +-=且(0,1)e ∈,解得12e =. 故选:A . 【点睛】本题考查椭圆离心率的求解,考查了椭圆的几何性质,同时考查了垂直关系的向量表示,是基本知识的考查.12.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.二、填空题13.【分析】设内切圆的圆心设三边与内切圆的切点连接切点与圆心的线段由内切圆的性质可得再由双曲线定义可知:可得重合再由可得内切圆的半径的值【详解】设内切圆的圆心为设圆与三角形的边分别切于如图所示连接由内切【分析】设内切圆的圆心M ,设2AF B 三边与内切圆的切点,连接切点与圆心M 的线段,由内切圆的性质可得22AF AQ BF BQ -=-,再由双曲线定义可知:21212AF AF BF BF a -=-=,可得Q ,1F 重合,再由260AF B ∠=︒可得内切圆的半径的值. 【详解】设内切圆的圆心为(),M x y ,设圆M 与三角形的边分别切于T ,Q ,S ,如图所示连接MS ,MT ,MQ ,由内切圆的性质可得:22F T F S =,AT AQ =,BS BQ =,所以222AF AQ AF AT F T -=-=,222BF BQ BF BS F S -=-=, 所以22AF AQ BF BQ -=-,由双曲线的定义可知:21212AF AF BF BF a -=-=,所以可得Q ,1F 重合, 所以224TF a ==,所以圆的半径为2243tan 23AF B r MT TF ∠===. 故答案为:433.【点睛】本题主要考查双曲线定义的应用,熟记双曲线的定义即可,属于常考题型.14.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:23⎛- ⎝⎭【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求. 【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-. 由题意设AB 所在直线的倾斜角为θ,由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=.tan 3θ∴=.则AB 所在直线方程为3(1)y x =-.联立23(1)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=.解得:13x =或3x =, 因为点A 在x 轴上方所以(3,23)A ,123,33B ⎛⎫- ⎪ ⎪⎝⎭由2y x =,得1y x'=, 2y x=-得1y x'=-∴313|33x y ='==,131|313x y ='=-=-, 即AM 、BM 所在直线的斜率分别为33、3-. 3:23(3)3AM y x ∴-=-,231:3()33BM y x +=-- 所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.15.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±16.【分析】根据题意求得的值假设点为第一象限内的点求出点的坐标求得以及进而可求得的周长【详解】由于双曲线的一条渐近线的倾斜角为则可得所以双曲线的焦距为设点为第一象限内的点联立解得易知因此的周长为故答案为 解析:12【分析】根据题意求得a 的值,假设点P 为第一象限内的点,求出点P 的坐标,求得1PF 、2PF 以及12F F ,进而可求得12PF F △的周长. 【详解】由于双曲线()222:103x y C a a -=>的一条渐近线的倾斜角为60,则tan 603a== 可得1a =,所以,双曲线C的焦距为124F F ==,设点P 为第一象限内的点,联立22213x y x =⎧⎪⎨-=⎪⎩,0y >,解得23x y =⎧⎨=⎩,易知()12,0F -、()22,0F ,15PF ∴==,23PF ==,因此,12PF F △的周长为121253412PF PF F F ++=++=. 故答案为:12. 【点睛】本题考查双曲线焦点三角形周长的计算,同时也考查了利用双曲线渐近线的倾斜角求参数,考查计算能力,属于中等题.17.【分析】如图先利用辅助线确定公共点位置再联立方程得到其坐标即可【详解】如图所示取AB 中点M 分别过ABM 作准线的垂线垂足依次为CDN 则AC//MN//CDMN 是梯形ABDC 中位线根据抛物线定义得即N 在解析:⎛- ⎝⎭【分析】如图先利用辅助线确定公共点位置,再联立方程得到其坐标即可. 【详解】如图所示,取AB 中点M ,分别过A ,B ,M 作准线的垂线,垂足依次为C ,D ,N , 则AC //MN //CD ,MN 是梯形ABDC 中位线,根据抛物线定义得,2AB AF BF AC BD MN =+=+=,即N 在以AB 为直径的圆上, 即N 即是以AB 为直径的圆与该抛物线准线的公共点,易见直线AB 不平行x 轴,方程可设为1x my =+,设()()1122,,,A x y B x y 联立方程214x my y x=+⎧⎨=⎩得2440y my --=, 则12124,4y y m y y +==-, 又依题意3AF FB =(点A 在x 轴上方),故1120,3y y y >=-,解得122323,y y ==,故3m =易见N 点坐标为121,2y y +⎛⎫- ⎪⎝⎭,即()1,2m -,即公共点的坐标为31,3⎛- ⎝⎭. 故答案为:23⎛- ⎝⎭.【点睛】本题考查了抛物线的定义及直线与抛物线的综合应用,属于中档题.18.【分析】由已知可得而由可求出点的坐标再将点的坐标代入椭圆方程中再结合可求出的值【详解】解:由题意设椭圆的标准方程为因为为椭圆的左焦点所以因为所以设点的坐标为则解得则所以点的坐标为因为为椭圆上一点所以解析:2213616x y +=【分析】由已知可得 25c =||||25OP OF ==,||4PF =,可求出点P 的坐标,再将点P 的坐标代入椭圆方程中,再结合222a b c =+,可求出22a b ,的值.【详解】解:由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为(F -为椭圆C 的左焦点,所以c =,因为||||OP OF =,所以||||OP OF ==,设点P 的坐标为(,)P m n ,则11422OF n ⋅=⨯解得n =m =, 所以点P 的坐标为⎛ ⎝, 因为P 为椭圆C 上一点, 所以223664155a b += 因为22220a b c -==,所以解得2236,16a b ==,所以椭圆的标准方程为2213616x y +=,故答案为:2213616x y +=【点睛】此题考查的是椭圆的简单的几何性质,考查了运算能力,属于中档题.19.【分析】根据抛物线的定义可构造方程求得设直线的倾斜角为根据焦点弦长公式可构造方程求得进而得到的值即为结果【详解】由抛物线的定义可知:设直线的倾斜角为则即直线的斜率为故答案为:【点睛】本题考查抛物线焦解析:【分析】根据抛物线的定义可构造方程求得AB ,设直线l 的倾斜角为α,根据焦点弦长公式可构造方程求得2sin α,进而得到tan α的值即为结果. 【详解】由抛物线的定义可知:()31122AB AF BF AA BB AA BB AA BB ''''''=+=+++=++=+, 4AA BB ''∴+=,6AB ∴=.设直线l 的倾斜角为α,则246sin AB α==,22sin 3α∴=,tan α∴=即直线l 的斜率为故答案为: 【点睛】本题考查抛物线焦点弦相关问题的求解,关键是熟练掌握抛物线的焦点弦长公式:1222sin pAB x x p α=++=. 20.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.三、解答题21.(1)22143x y +=;(2)6.【分析】(1)根据椭圆的离心率为12e =,可得2234b a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程可得221914a b+=,解出22,a b 可得答案. (2)设直线1:1l x my =-,与椭圆方程联立得出韦达定理,由条件求出Q 点坐标,求出1QF 的长度,得出直线2l 的方程为:11x y m=--与直线1x =求出点P 坐标,得出1PF 长度,从而表示三角形面积,得出最值. 【详解】(1)由题意,得222221149141b e a a b ⎧=-=⎪⎪⎨⎪+=⎪⎩,解得:224,3a b ==,所以椭圆的方程为22143x y +=. (2)由(1)可得()11,0F -,若直线1l 的斜率为0,则2l 的方程为:1x =-与直线1x =无交点,不满足条件.设直线1:1l x my =-,若0m =,则1λ=则不满足QA QB λ=,所以0m ≠ 设()()()112200,,,,,A x y B x y Q x y ,由2234121x y x my ⎧+=⎨=-⎩,得:()2234690m y my +--=, 12122269,3434my y y y m m +==-++,因为11AF F B QA QBλλ⎧=⎨=⎩,即()()()()1122101020201,1,,,x y x y x x y y x x y y λλ⎧---=+⎪⎨--=--⎪⎩ 则12y y λ-=,()1020y y y y λ-=- 所以101220y y y y y y λ-=-=-,解得1201223y y y y y m==-+.于是1FQ =. 直线2l 的方程为:11x y m=-- 联立111x y mx ⎧=--⎪⎨⎪=⎩,解得(12)P m -,,所以1PF =. 所以()12113111362PQF m SFQ F P m m m +⎛⎫=⋅==+≥ ⎪ ⎪⎝⎭,当且仅当1m =±时,()1min6PQF S =.【点睛】关键点睛:本题考查求椭圆的方程和椭圆中三角形面积的最值问题,解答本题的关键是根据向量条件得出1201223y y y y y m==-+,进而求出点的坐标,得到1QF 的长度,从而表示出三角形的面积,属于中档题. 22.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.23.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 . (2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.24.(1)24y x =;(2) 【分析】(1)设出抛物线方程,根据抛物线定义可列式求出;(2)设直线l 的方程为2x ty =+,联立直线与抛物线,根据中点横坐标求出t ,再求出底和高即可得出面积. 【详解】解:(1)依题意设抛物线E 的方程为()220y px p =>,则准线方程为2px =-, 由3QF =,依定义得232p+=,解得2p =, ∴抛物线E 的方程为24y x =.(2)设直线l 的方程为2x ty =+,()11,A x y ,()22,B x y ,由224x ty y x=+⎧⎨=⎩消x 得2480y ty --=, 则124y y t +=,128y y =-, ∵线段AB 的中点横坐标为4,∴1242x x +=, 即128x x +=,∴12228ty ty +++=,即()124t y y +=, 可得244t =,∴21t =,12y y -===故ABO 的面积为1211222OP y y -=⨯⨯=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.25.(1)1y x =-或1y x =-+;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【分析】(1)由题意得2,p =(1,0)F ,24y x =,当直线l 的斜率不存在时,不合题意;当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠,与抛物线方程联立,利用韦达定理和抛物线的定义求出弦长,结合已知弦长可求得结果;(2)设所求圆的圆心坐标为00(,)x y ,根据几何方法求出圆的半径,根据直线与圆相切列式解得圆心坐标和半径,可得圆的方程. 【详解】(1)由题意得2,p =(1,0)F ,24y x =当直线l 的斜率不存在时,其方程为1x =,此时248MN p ==≠,不满足,舍去; 当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠ 由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++= 设1122(,),(,)M x y N x y ,则216160k ∆=+>,且212224k x x k ++=由抛物线定义得122222122444||||||(1)(1)22x k k MN MF NF x x x k k++=+=+++=++=+= 即22448k k+=,解得1k =± 因此l 的方程为1y x =-或1y x =-+.(2)由(1)取1,k =直线l 的方程为1y x =-,所以线段MN 的中点坐标为(3,2), 所以MN 的垂直平分线方程为2(3)y x -=--,即5y x =-+ 设所求圆的圆心坐标为00(,)x y ,该圆的圆心到直线l 的距离为d,则d ===因为该圆与准线1x =-相切,所以()()0022000511162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩, 当圆心为(3,2)时,半径为4,当圆心为(11,6)-时,半径为12, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【点睛】关键点点睛:第(1)问,利用韦达定理和抛物线的定义求出抛物线的弦长是关键;第(2)问,根据几何方法求出圆的半径,利用直线与圆相切列式是解题关键.26.(1)240x y --=;(2)18y x x ⎛=-<< ⎝⎭. 【分析】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=,22221164x y +=,相减化简再利用中点坐标公式、斜率计算公式即可得出;(2)设直线方程为:2y x m =+,弦的端点坐标及中点(),M x y ,与椭圆方程联立化为:2217164160x mx m ++-=,由0>,化为:268m <,再利用根与系数的关系、中点坐标公式即可得出. 【详解】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=, 22221164x y +=,相减可得:12121212()()()()0164x x x x y y y y +-+-+=,把1222x x +=,1212y y +=-, 1212y y k x x -=-代入可得: 12k =.∴以()2,1P -为中点的弦所在直线的方程为:()1122y x +=-,化为: 240x y --=. (2)设直线方程为:2y x m =+,弦的端点()11,A x y , ()22,B x y ,中点(),M x y .联立2221164y x m x y =+⎧⎪⎨+=⎪⎩,化为 2217164160x mx m ++-=,()22256684160m m =-->,化为: 268m <,∴1216227m x x x +=-=,化为: 882171717m m m x y m ⎛⎫=-=⨯-+= ⎪⎝⎭,.得x <<,∴181717y x x ⎛⎫=--<< ⎪ ⎪⎝⎭【点睛】 关键点点睛:(1)涉及直线与圆锥曲线相交中点弦问题时,利用点差法; (2)由直线与椭圆的位置关系得出m 的范围.。

(北师大版)天津市高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)

(北师大版)天津市高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)

一、选择题1.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠ 2.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .25 3.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( ) ABC .14D .44.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .525.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A.9B.9C.7112+D.83126.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=7.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .48.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 310.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F 、2F ,过原点的直线与双曲线C 交于A ,B 两点,若260AF B ∠=︒,2ABF 23a ,则双曲线的渐近线方程为( ) A .12y x =±B .2y x =±C .33y x =±D .3y x =±11.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知双曲线C 的两个焦点12,F F 都在x 轴上,对称中心为原点,离心率为3,若点M 在C 上,且12MF MF ⊥,M 到原点的距离为3,则C 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=二、填空题13.点()8,1P 平分双曲线2244x y -=的一条弦,则这条弦所在直线的方程一般式为_________________.14.已知椭圆()222210x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>具有相同的焦点1F ,2F ,且在第一象限交于点P ,设椭圆和双曲线的离心率分别为1e ,2e ,若123F PF π∠=,则2212e e +的最小值为_______.15.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.16.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M a b ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________17.我们知道:用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于__________.18.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.19.若椭圆2222:1(0)y x E a b a b +=>>的上、下焦点分别为1F 、2F ,双曲线222211615x y -=的一条渐近线与椭圆E 在第一象限交于点P ,线段2PF 中点的纵坐标为0,则椭圆E 的离心率为________.20.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.三、解答题21.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,且椭圆C 经过点21,2M ⎛⎫ ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.22.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.23.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 24.已知抛物线2:2(0)C x py p =>的焦点为F ,点()0,3P x 为抛物线C 上一点,且4PF =,过点(),0A a 作抛物线C 的切线AN (斜率不为0),设切点为N .(1)求抛物线C 的标准方程; (2)求证:以FN 为直径的圆过点A .25.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积. 26.已知抛物线y 2=2px (p >0)上的点T (3,t )到焦点F 的距离为4. (1)求t ,p 的值;(2)设抛物线的准线与x 轴的交点为M ,是否存在过点M 的直线l 交抛物线于A ,B 两点(点B 在点A 的右侧),使得直线AF 与直线OB 垂直?若存在,求出△AFB 的面积,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x ym+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x ym +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠.故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.2.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.3.B解析:B 【分析】由曲线的对称性,以及数形结合分析得b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan ak AOMb =∠==,所以b a =所以c e a ===, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.4.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.5.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+;(2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 6.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.7.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b,所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以11180********AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(002A x px ,则002AT px k =,则直线002:x AT x x p =-,代入抛物线方程化简得0202220x px py p +=-, 则0020228x p ppx ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确.故选:D.【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.8.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A BM,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫ ⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭, 所以221||2m MF m +=+,又()()()22212122222811||(1)24m AB y y y y k m ++⎡⎤=+=⎣⎦+-⋅, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为()()222212121212()(1)4AB x x y y k x x x x ⎡⎤=-+-=+-⋅⎣+⎦()1221221(41)y y y y k+-⋅⎡⎤=+⎣⎦ (k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.9.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.10.D解析:D 【分析】结合双曲线的定义、2ABF 的面积、余弦定理列方程,化简求得ba,进而求得双曲线的渐近线方程. 【详解】连接11,AF BF ,根据双曲线的对称性可知四边形12AF BF 是平行四边形, 由于260AF B ∠=︒,所以12120F AF ∠=︒,212ABF AF F SS=,12AF BF =,设12,AF n AF m ==,结合双曲线的定义有2m n a -=,所以()2222222cos1201sin1202m n a c m n mn mn ⎧-=⎪⎪=+-︒⎨⎪⎪︒=⎩,即2222244m n a c m n mn mn a -=⎧⎪=++⎨⎪=⎩,由()22m n a -=得22222224,12m n mn a m n a +-=+=, 所以22416,2c a c a ==,而222c a b =+,所以2224,3ba ab a=+=, 所以双曲线的渐近线方程为3y x =±. 故选:D【点睛】本小题主要考查双曲线的渐近线方程的求法,属于中档题.11.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=,两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.C解析:C 【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 二、填空题13.【分析】设弦的两端点分别为A (x1y1)B (x2y2)由AB 的中点是P (81)知x1+x2=16y1+y2=2利用点差法能求出这条弦所在的直线方程【详解】设弦的两个端点分别为则两式相减得因为线段的中 解析:2150x y --=【分析】设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),由AB 的中点是P (8,1),知x 1+x 2=16,y 1+y 2=2,利用点差法能求出这条弦所在的直线方程. 【详解】设弦的两个端点分别为()11,A x y ,()22,B x y ,则221144x y -=,222244x y -=, 两式相减得()()()()1212121240x x x x y y y y +--+-=,因为线段AB 的中点为()8,1P ,所以1216x x +=,122y y +=,所以()1212121224y y x xx x y y -+==-+, 所以直线AB 的方程为()128y x -=-代入2244x y -=满足0∆>,即直线方程为2150x y --=.故答案为:2150x y --=. 【点睛】本题考查弦的中点问题及直线方程的求法,解题时要认真审题,仔细解答,注意点差法的合理运用.14.【分析】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由已知条件结合双曲线和椭圆的定义推出由此能求出的最小值【详解】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由双曲线的定义由解析:22+ 【分析】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m ,令P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出2222a m c +=,由此能求出2212e e +的最小值.【详解】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m , 令P 在双曲线的右支上,由双曲线的定义12||||2PF PF m -=, 由椭圆定义12||||2PF PF a +=, 可得1PF m a =+,2PF a m =-, 又123F PF π∠=,2221212||?4PF PF PF PF c +-=,可得222()()()()4m a a m m a a m c ++--+-=, 得22234a m c +=,即222234a m c c+=, 可得2212134e e +=, 则222212122212113()()4e e e e e e +=++ 2221221231(13)4e e e e =+++1(424+=当且仅当21e =,上式取得等号,可得2212e e +.故答案为:22+. 【点睛】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用.15.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.16.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解 解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.17.【分析】如图所示过点作垂足为由于是母线的中点圆锥的底面半径和高均为2可得在平面内建立直角坐标系设抛物线的方程为为抛物线的焦点可得代入解出即可【详解】解:如图所示过点作垂足为是母线的中点圆锥的底面半径 解析:2【分析】如图所示,过点E 作EM AB ⊥,垂足为M .由于E 是母线PB 的中点,圆锥的底面半径和高均为2,可得1OM EM ==.2OE =.在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点.可得()2,2C ,代入解出即可.【详解】解:如图所示,过点E 作EM AB ⊥,垂足为M .E 是母线PB 的中点,圆锥的底面半径和高均为2,1OM EM ∴==.2OE ∴=在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点. 因为)2,2C,422∴=,解得2p .2F ⎫⎪⎪⎝⎭.即点F 为OE 的中点, ∴22【点睛】本题考查了圆锥的性质、抛物线的标准方程,考查了转变角度解决问题的能力,考查了推理能力与计算能力,属于中档题.18.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应解析:1 【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果. 【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=,所以122PF PF ⋅=, 则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1. 【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.19.【分析】求出椭圆的焦点坐标利用已知条件求解点坐标再代入双曲线的渐近线方程转化求解椭圆的离心率即得【详解】由题可得点由线段中点的纵坐标为0得点的纵坐标为又点在椭圆上且在第一象限则有解得点的横坐标为由双解析:35【分析】求出椭圆的焦点坐标,利用已知条件,求解P 点坐标,再代入双曲线222211615x y -=的渐近线方程,转化求解椭圆的离心率即得. 【详解】由题可得点2(0,)F c -,由线段2PF 中点的纵坐标为0,得点P 的纵坐标为c ,又点P 在椭圆上且在第一象限,则有22221c x a b +=,解得点P 的横坐标为2b a ,由双曲线222211615x y -=,得渐近线1516y x =与椭圆交于点2(,)P b c a ,则有21516b c a =,整理得2215()160a c ac --=,即215(1)160e e --=,由01e <<,得35e =.故答案为:35e = 【点睛】本题考查椭圆和双曲线的性质,属于中档题.20.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题解析:【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆16=.故答案为:【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.三、解答题21.(1)2212x y +=(2)一定经过定点,定点为(0,3).【分析】(1)根据离心率求出2212b a =,代入21,2M ⎛ ⎝⎭可得22a =,从而可得椭圆方程; (2)设直线AB 的斜率为k ,则直线AC 的斜率为14k,联立直线与椭圆方程求出B 、C 的坐标,求出直线BC 的方程,令0x =,得3y =,由此可得答案. 【详解】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>,由2c e a ==得2c =,所以2222221122b a c a a a =-=-=, 所以222221x y a a +=,因为椭圆C 经过点21,2M ⎛ ⎝⎭, 所以2212121aa⨯+=,得22a =, 所以椭圆C 的方程为2212x y +=.(2)由椭圆的方程得(0,1)A ,设直线AB 的斜率为k ,则直线AC 的斜率为14k,所以直线AB 、AC 的方程分别为:1y kx =+,114y x k=+, 联立22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得22(12)40k x kx ++=, 解得0x =或2412k x k =-+,所以2412B k x k =-+,221212B k y k-=+, 所以222412(,)1212k k B k k --++,同理可得222881(,)1881k k C k k --++, 所以22222281128112841812BCk k k k k k k k k---++==-+++2412k k +, 所以直线BC 的方程为:222212414()12212k k ky x k k k-+-=+++, 令0x =,得3y =,所以直线BC 一定经过一定点(0,3). 【点睛】关键点点睛:求出直线BC 的斜率和方程是解题关键.22.(1) 2; (2) 2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF中,有BF a ==,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以e ==== (2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0.设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b=+⎧⎨+=⎩,得()22224240m y mny n b +++-= 所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t=m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题. 23.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 .(2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.24.(1)24x y =;(2)证明见解析. 【分析】(1)由4PF =,利用焦半径公式可求出p 的值,从而可得抛物线C 的标准方程; (2)设切线AN 的方程为()y k x a =-,0k ≠,联立直线方程与抛物线方程,利用判别式为零可得a k =,求得切点2(2,)N a a ,由0AF AN ⋅=即可判定以FN 为直径的圆过点A .【详解】(1)因为()0,3P x 为抛物线上一点, 所以PF 的长等于P 到抛物线准线2py =-的距离, 即||3422P p pPF y =+=+=,解得2p =, 所以抛物线C 的标准方程为:24x y =.(2)直线斜率不存在时,直线x a =不是抛物线的切线, 所以可设切线AN 的方程为:()y k x a =-, 0k ≠,联立直线与抛物线方程得24()x yy k x a ⎧=⎨=-⎩,消去y 可得2440x kx ka -+=,因为直线与抛物线相切,∴216160ka ka ∆=-=,解得a k =.224402x ax a x a -+=⇒=,所以切点()22,N a a ,(0,1)F ,(,0)A a ,∴(,1)AF a =-,()2,AN a a =,∴220AF AN a a ⋅=-+=.∴90FAN ∠=︒,以FN 为直径的圆过点A . 【点睛】方法点睛:解得与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.25.(1)228120x y x +-+=;(2)5. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 125OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题. 求点的轨迹方程的常用方法之一:直译法——“四步一回头”, 四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ; (2)写出适合条件的点M 的集合(){}|P P M P M =; (3)将()P M “翻译”成代数方程(),0f x y =; (4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程.26.(1)t =±,p =2;(2)存在,△AFB . 【分析】(1)根据抛物线的定义求得方程即可.(2)由(1)易得M (-1,0),F (1,0),假设存在直线l ,设其方程为x =my -1(m ≠0),将其代入24y x =,根据直线AF 与直线OB 垂直,由k AF ·k OB =-1,结合韦达定理求得m ,再分别求得弦长AB 和点F 到直线l 的距离,代入面积公式求解. 【详解】(1)由题意及抛物线的定义得342p+=,则p =2, ∴抛物线的方程为24y x =, 又∵点T 在抛物线上, 故243t =⨯,解得t =±. (2)由(1)易得M (-1,0),F (1,0).设A (x 1,y 1),B (x 2,y 2),假设存在直线l 满足题意,设其方程为x =my -1(m ≠0), 将其代入24y x =得24+4?=?0y my -,121244y y m y y +=⎧⎨=⎩所以由Δ=16m 2-16>0,得m >1或m <-1. 又直线AF 与直线OB 垂直,易知直线AF 与直线OB 的斜率都存在, 所以k AF ·k OB =-1, 即121211y y x x ⋅=--, 所以1221212441(1)(1)(2)2y y x x my my my ===-----, 解得1226,3m y y m==. 又2224+4?=?0y my -,解得m =Δ>0, 所以满足条件的直线l的方程为550x ±=.此时AB ==12y y -,263555m m =-==, 又点F 到直线l的距离d ==, 所以△AFB的面积11||2255S AB d =⋅=⨯=. 【点睛】。

新课标数学选修(1-1)圆锥曲线与方程测试题

新课标数学选修(1-1)圆锥曲线与方程测试题

高中新课标数学选修(1-1)圆锥曲线与方程测试题一、选择题1.椭圆222312x y +=的两焦点之间的距离为( )A. B. C.答案:C2.椭圆2214x y +=的两个焦点为12F F ,,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF 等于( )A. C.72 D.4答案:C3.双曲线22221124x y m m -=+-的焦距是( )A.8 B.4 C. D.与m 有关答案:A4.焦点为(06),且与双曲线2212x y -=有相同的渐近线的双曲线方程是( ) A.2211224x y -= B.2212412y x -= C.2212412x y -= D.2211224y x -=答案:D5.抛物线的焦点在x 轴上,抛物线上的点(3)P m -,到焦点的距离为5,则抛物线的标准方程为( )A.24y x =B.28y x = C.24y x =- D.28y x =-答案:D6.焦点在直线34120x y --=上的抛物线的标准方程为( )A.216y x = 或212x y =-B.216y x =或216x y =C.216y x =或212x y =D.212y x =-或216x y =答案:A7.椭圆22213x y m m+=-的一个焦点为(01),,则m 等于( )A.1 B.2-或1 D.53答案:B8.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF △为等边三角形的椭圆的离心率是( )A.14 B.12 C.答案:D9.以双曲线22312x y -+=的焦点为顶点,顶点为焦点的椭圆的方程是( ) A.2211612x y += B.221164x y += C.2211216x y += D.221416x y +=答案:D10.经过双曲线228y x -=-的右焦点且斜率为2的直线被双曲线截得的线段的长是( )A. B. C. D.答案:B11.一个动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆必过定点( )A.(02),B.(02)-, C.(20), D.(40),答案:C12.已知抛物线24x y =的焦点F 和点(18)A P -,,为抛物线上一点,则PA PF +的最小值是( )A.16B.12 C.9 D.6答案:C三、填空题 13.已知椭圆2214924x y +=上一点P 与椭圆的两个焦点12F F ,连线的夹角为直角,则12PF PF =· .答案:4814.已知双曲线的渐近线方程为34y x =±,则双曲线的离心率为 . 答案:54或5315.圆锥曲线内容体现出解析几何的本质是 .答案:用代数方法研究图形的几何性质16.当以椭圆上一点和椭圆两焦点为顶点的三角形的面积的最大值为1时,椭圆长轴的最小值为 .答案:三、解答题17.若椭圆的对称轴在坐标轴上,两焦点与两短轴的端点恰好是正方形的四个顶点,且焦点1,求椭圆的方程. 答案:解:设椭圆方程22221(0)x y a b a b+=>>,由椭圆的对称性和正方形的对称性可知:正方形被椭圆的对称轴分割成了4个全等的等腰直角三角形,因此b c =(2c 为焦距).由题意得2221a c b c a b c ⎧-⎪=⎨⎪=+⎩,,,解得11a b c ⎧=⎪=⎨⎪=⎩,.∴所求椭圆的方程为2212x y +=或2212y x +=.18.椭圆22221(0)x y a b a b+=>>的离心率为,椭圆与直线280x y ++=相交于点P Q ,,且PQ解:c e a ==,则c =. 由222c a b =-,得224a b =. 由222214280x y b b x y ⎧+=⎪⎨⎪++=⎩,,消去x ,得2228160y y b ++-=.由根与系数关系,得124y y +=-,212162b y y -=. 222222121121212()()5()5[()4]10PQ x x y y y y y y y y =-+-=-=+-=, 即25[162(16)]10b --=,解得29b =,则236a =. 所以椭圆的方程为221369x y +=.19.如图1,椭圆22221(0)x y a b a b+=>>的上顶点为A ,左顶点为B F ,为右焦点,离心率e =过F 作平行于AB 的直线交椭圆于C D ,两点,作平行四边形OCED ,求证:E 在此椭圆上. 解:椭圆焦点(0)F c ,,AB b k a =,直线CD 的方程为()b y x c a=-, 代入椭圆方程22221x y a b+=,得22220x cx b --=.设1122()()C x y D x y ,,,,则12x x c +=,CD 中点G 的坐标为22c bc a ⎛⎫- ⎪⎝⎭,. bc E c a ⎛⎫- ⎪⎝⎭,∴.c e a=∵,a ∴. 将点E 的坐标代入椭圆方程2222222221c b c c a a b a+==满足, ∴点E 在椭圆上.20.已知双曲线与椭圆2212736x y +=有相同的焦点且与椭圆的一个交点的纵坐标为4,求双曲线的方程.解:可以求得椭圆的焦点为12(03)(03)F F -,,,, 故可设双曲线方程为22221(00)y x a b a b-=>>,, 且3c =,则229a b +=.由已知条件知,双曲线与椭圆有一个交点的纵坐标为4,可得两交点的坐标为(A B ,点A 在双曲线上,即2216151a b -=. 解方程组2222916151a b ab ⎧+=⎪⎨-=⎪⎩,,得2245a b ⎧=⎪⎨=⎪⎩,. 所以双曲线方程为22145y x -=.21.抛物线的顶点在原点,它的准线过双曲线22221x y a b-=的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为32⎛ ⎝,.求抛物线与双曲线的方程. 解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为22(0)y px p =>, 将交点32⎛ ⎝,代入得2p =, 故抛物线方程为24y x =,焦点坐标为(10),,这也是双曲线的一个焦点,则1c =.又点32⎛ ⎝也在双曲线上, 因此有229614a b-=. 又221a b +=,因此可以解得221344a b ==,, 因此,双曲线的方程为224413y x -=.22.某隧道横断面由抛物线和矩形的三边组成,尺寸如图2所示,某卡车载一集装箱,箱宽3m ,车与箱共高4m ,此车能否通过此隧道?请说明理由.解:取抛物线顶点为原点,水平向右为x 轴正方向建立直角 坐标系,设抛物线方程为22(0)x py p =->,当3x =时,3y =-,即取抛物线与矩形的结合点(33)-,,代入22x py =-,得96p =,则32p =, 故抛物线方程为23x y =-.已知集装箱的宽为3m ,取32x =, 则21334y x =-=-. 而隧道高为5m ,35m m 4-14m 4m 4=>. 所以卡车可以通过此隧道.。

成都列五中学高中数学选修2-1第三章《圆锥曲线与方程》测试(包含答案解析)

成都列五中学高中数学选修2-1第三章《圆锥曲线与方程》测试(包含答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( )A .3B C D .23.若点)0到双曲线C :22221x y a b-=(0a >,0b >)的离心率为( )A B .2C 2D 4.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D .6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14D .47.设(,)P x y 8=,则点P 的轨迹方程为( )A .22+1164x y =B .22+1416x y =C .22148x y -=D .22184x y -=8.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( )A .2B 1C 1D .2+9.无论θ为何值,方程223cos 1x y θ+⋅=所表示的曲线不可能为( ) A .双曲线B .抛物线C .椭圆D .圆10.已知抛物线22(0)y px p =>的焦点为F ,点P 在抛物线上,点9,02Q p ⎛⎫⎪⎝⎭.若2QF PF =,且PQF △的面积为p =( )A .1B .2C .3D .411.(2018·太原一模)已知抛物线y 2=2px(p>0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足0FA FB FC ++=,则111AB BC CAk k k ++= ( ) A .0 B .1 C .2D .2p12.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率2,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12-D .12二、填空题13.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =,则△AFK 的面积为 .14.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别是1F ,2F ,直线:(l y k x =过点2F ,且与双曲线C 在第一象限交于点P .若(22()0OP OF PF +⋅=(O 为坐标原点),且()121PF a PF +=,则双曲线C 的离心率为__________.15.已知双曲线2219x y m-=(m ∈R , m ≠0)的离心率为2,则m 的值为_________16.如图,直线3y x =-与抛物线24y x =交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为________.17.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F 、2F ,过1F 的直线与C 的左支交于M 、N 两点,若12MF F △是以1MF 为底边的等腰三角形,且1123MF NF =,则双曲线C 的离心率是________. 18.已知直线:10l x y -+=与椭圆221169x y+=交于,A B 两点,若椭圆上存在一点P 使得PAB ∆面积最大,则点P 的坐标为________.19.若椭圆2222:1(0)y x E a b a b +=>>的上、下焦点分别为1F 、2F ,双曲线222211615x y -=的一条渐近线与椭圆E 在第一象限交于点P ,线段2PF 中点的纵坐标为0,则椭圆E 的离心率为________.20.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,若存在过原点的直线交椭圆于,A B两点,且AF BF ⊥,则椭圆的离心率的取值范围是__________三、解答题21.抛物线Γ的方程为22y px =(0p >), ()1,2A 是Γ上的一点. (1)求p 的值,并求A 点处的切线方程;(2)不过点A 且斜率为1-的直线交抛物线Γ于P 、Q 两点.证明:直线PA 、 QA 的倾斜角互补.22.已知抛物线C :()220y px p =>的焦点为F ,倾斜角为45°的直线l 过点F 与抛物线C 交于A ,B 两点,且8AB =. (1)求抛物线C 方程; (2)设点E 为直线2px =与抛物线C 在第一象限的交点,过点E 作C 的斜率分别为1k ,2k 的两条弦EM ,EN ,如果121k k +=-,证明:直线MN 过定点,并求定点坐标.23.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积. 24.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常数25.5(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由. 25.已知抛物线:()()()222:2,2,0,2,00C y x M a N a a =->,过点M 垂直于x 轴的垂线与抛物线C 交于,B C ,点,D E 满足(),01CE CN ND NB λλλ==<<(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点Q ,记BCQ △与DEN 的面积分别为12,S S ,求12S S 的值 26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bcy a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得3e =3 故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.3.A解析:A 【分析】先求得双曲线C 的其中一条渐近线方程0bx ay -=,根据点)30,到双曲线C 的渐近线2223c a =,即可求得双曲线的离心率. 【详解】由题意,双曲线C :22221x y a b-=的其中一条渐近线方程为b y x a =,即0bx ay -=,因为点)0到双曲线C==2232b c =,即222332c a c -=,即223c a =,所以==ce a故选:A. 【点睛】本题考查了双曲线的标准方程及几何性质,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).4.D解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x ym+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x y m+=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠. 故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=,点()2,0F c 到直线1AF 的距离为2a ,22|()|2()n c c a m c n =++∴+,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->, 即2220c a ->,则可得2e >.故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.B解析:B 【分析】由椭圆的定义可得出点P 的轨迹是以12,F F 为焦点的椭圆,其中28a =,c =可得出椭圆的标准方程. 【详解】由题意可知,点(,)P x y到点1F的距离与到点2(0,F -的距离之和为定值8,并且128F F >=,所以点P 的轨迹是以12,F F 为焦点的椭圆,所以28,4a a ==,因为c =22216124b a c =-=-=,所以点P 的轨迹方程为22+=1416x y .故选:B. 【点睛】关键点点睛:解决本题的关键在于熟悉、灵活运用椭圆的定义,求出椭圆的焦点的位置,椭圆中的,,a b c .8.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得t a =,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入t =计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为()121222223123323822231233PF F QF F a a S PF a t S QF a t a --+=====+---+△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.9.B解析:B 【分析】 因为1cos θ1,所以当cos 0θ=时,方程表示直线;当10cos 3θ<<或1cos 13θ<≤时,方程表示椭圆;当1cos 3θ=时,方程表示圆;当1cos 0θ-≤<时,方程表示双曲线. 【详解】 因为1cos θ1,所以当cos 0θ=,即2k πθπ=+,k Z ∈时,方程化为1x =±,表示两条直线;当10cos 3θ<<时,方程化为22113cos y x θ+=表示焦点在y 轴上的椭圆; 当1cos 3θ=时,方程化为221x y +=表示圆;当1cos 13θ<≤时,方程化为22113cos y x θ+=表示焦点在x 轴上的椭圆; 当1cos 0θ-≤<时,方程化为22113cos y x θ-=-表示焦点在x 轴上的双曲线. 故选:B 【点睛】关键点点睛:本题考查方程223cos 1x y θ+⋅=所表示的曲线的判断,解题关键是判断3cos θ的符号以及与1的大小关系的判断,按照五种情况分类讨论即可得解.10.B解析:B 【分析】根据题意得||4QF p =,||2PF p =,进而根据抛物线的定义得P 点的横坐标为32P x p =,设点P 在x 轴上方,故P,再结合三角形PQF △面积即可得答案.【详解】 解:由条件知(,0)2p F ,所以||4QF p =,所以1||||22PF QF p ==, 由抛物线的准线为2p x =-,及抛物线的定义可知,P 点的横坐标为3222p p p -=,不妨设点P 在x 轴上方,则P,所以142PQFSp =⨯=2p =. 故选:B 【点睛】本题解题的关键在于根据抛物线的定义得P 点的横坐标为32P x p =,进而求出P 的纵坐标并结合三角形PQF △面积求解,考查运算求解能力,是中档题.11.A解析:A 【解析】设11(,)A x y ,22(,)B x y ,33(,)C x y . ∵抛物线22(0)y px p =>的焦点为F ∴(,0)2p F ∵0FA FB FC ++=∴112233(,)(,)(,)(0,0)222p p px y x y x y -+-+-= ∴1230y y y ++=∵2221212121211()122AB y y x x y y p k y y y y p--+===--,同理可知3212BC y y k p +=,3112CA y y k p +=. ∴3231123212()11102222AB BC CA y y y y y y y y y k k k p p p p+++++++=++== 故选A.12.C解析:C 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率. 【详解】由题得222222242,4()2,22c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=, 所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-. 故选:C 【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.二、填空题13.【详解】由双曲线得右焦点为即为抛物线的焦点∴解得∴抛物线的方程为其准线方程为过点作准线垂足为点则∴∴∴∴ 解析:32【详解】由双曲线22179x y -=得右焦点为()40,即为抛物线22y px = 的焦点,∴42p = ,解得8p = .∴抛物线的方程为216y x = .其准线方程为()440x K =-∴-,, .过点A 作AM ⊥准线,垂足为点M .则AM AF =.∴2AK AM =.∴45MAK ∠=︒.∴KF AF =.∴221183222AKFSKF ==⨯=. 14.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故 解析:102【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】 如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =, 故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=,解得2a =.故双曲线C的离心率为2c a =.故答案为:2【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.15.27【分析】根据双曲线标准方程知结合离心率为2及常数关系即可求m 的值【详解】根据双曲线标准方程知:∵双曲线的离心率为2∴而∴故答案为:27【点睛】本题考查了双曲线利用双曲线的离心率标准方程中常数的等解析:27 【分析】根据双曲线标准方程知29a =,20b m =>,结合离心率为2及常数关系222c a b =+即可求m 的值 【详解】根据双曲线标准方程,知:29a =,20b m => ∵双曲线的离心率为2∴2ca=,而222c a b =+ ∴27m =故答案为:27 【点睛】本题考查了双曲线,利用双曲线的离心率、标准方程中常数的等量关系222c a b =+求参数值16.【分析】设点将直线的方程与抛物线的方程联立求得点的坐标进而可得出的坐标由此可计算得出梯形的面积【详解】设点并设点在第一象限由图象可知联立消去得解得或所以点因此梯形的面积为故答案为:【点睛】本题考查抛 解析:48【分析】设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线的方程联立,求得点A 、B 的坐标,进而可得出P 、Q 的坐标,由此可计算得出梯形APQB 的面积. 【详解】设点()11,A x y 、()22,B x y ,并设点A 在第一象限,由图象可知12x x >,联立234y x y x =-⎧⎨=⎩消去y ,得21090x x -+=,解得19x =,21x =,1196x y =⎧∴⎨=⎩或2212x y =⎧⎨=-⎩, 所以点()9,6A 、()1,2B -、()1,6P -、()1,2Q --,10AP ∴=,2BQ =,8PQ =,因此,梯形APQB 的面积为()()10284822AP BQ PQ S +⋅+⨯===.故答案为:48. 【点睛】本题考查抛物线中梯形面积的计算,解题的关键就是求出直线与抛物线的交点坐标,考查计算能力,属于中等题.17.【详解】取的中点P 连接由题可知且所以又则在中在中得又所以故答案为:【点睛】本题考查双曲线离心率的求解涉及双曲线定义的应用考查计算能力属于中等题 解析:75【详解】取1F M 的中点P ,连接2PF ,由题可知212=MF F F ,且1132MF NF =, 所以22MF c =,MP c a =-,1F P c a =-. 又1132MF NF =,则()13NF c a =-,23NF c a =-. 在2Rt NPF △中,22222NP PF NF +=,在2Rt MPF △中,22222MP PF MF +=,得()()()()2222342c a c a c c a ---=--⎡⎤⎣⎦,2251270c ac a -+=,()()750a c a c --=.又1e >,所以75e =. 故答案为:75.【点睛】本题考查双曲线离心率的求解,涉及双曲线定义的应用,考查计算能力,属于中等题.18.【分析】先设与直线平行的直线求出直线与圆锥曲线相切时的直线方程再求两平行线的最大距离即可根据面积公式求出面积最大值【详解】解:由题意可得弦长为定值要使面积最大则只要点到直线的距离最大当平行于直线的直解析:169,55⎛⎫- ⎪⎝⎭【分析】先设与直线:10l x y -+=平行的直线:0l x y m '-+=,求出直线与圆锥曲线相切时的直线方程,再求两平行线的最大距离,即可根据面积公式求出PAB ∆面积最大值. 【详解】解:由题意可得弦长AB 为定值,要使PAB ∆面积最大, 则只要点P 到直线:10l x y -+=的距离最大, 当平行于直线l 的直线与椭圆相切时, 对应的切点到直线l 的距离最大或最小. 设直线:0l x y m '-+=直线与椭圆联立得22:01169l x y m x y -+='⎧⎪⎨+=⎪⎩, 化简得222532161440x mx m ++-=,则()22(32)425161440m m ∆=-⨯-=,解得5m =±.当5m =时,直线l '与直线l的距离为d == 当5m =-时,直线l '与直线l的距离为d ==∴当5m =-时, 2251602560x x -+=,解得165x =, 代入直线:50l x y '--=,解得95y =- 即点P 的为坐标169,55⎛⎫-⎪⎝⎭.故答案为: 169,55⎛⎫- ⎪⎝⎭ 【点睛】本题主要考查直线与圆锥曲线的位置关系,考查了直线与椭圆交点坐标,是中档型的综合题.19.【分析】求出椭圆的焦点坐标利用已知条件求解点坐标再代入双曲线的渐近线方程转化求解椭圆的离心率即得【详解】由题可得点由线段中点的纵坐标为0得点的纵坐标为又点在椭圆上且在第一象限则有解得点的横坐标为由双解析:35【分析】求出椭圆的焦点坐标,利用已知条件,求解P 点坐标,再代入双曲线222211615x y -=的渐近线方程,转化求解椭圆的离心率即得. 【详解】由题可得点2(0,)F c -,由线段2PF 中点的纵坐标为0,得点P 的纵坐标为c ,又点P 在椭圆上且在第一象限,则有22221c x a b +=,解得点P 的横坐标为2b a ,由双曲线222211615x y -=,得渐近线1516y x =与椭圆交于点2(,)P b c a ,则有21516b c a =,整理得2215()160a c ac --=,即215(1)160e e --=,由01e <<,得35e =.故答案为:35e = 【点睛】本题考查椭圆和双曲线的性质,属于中档题.20.【分析】根据可知为直角三角形再根据直角三角形斜边上的中线等于斜边的一半可知即求椭圆上存在一点满足再列式求解即可【详解】由题为直角三角形故故原题转化为椭圆上存在一点满足又椭圆上的点到原点距离的最小值为解析: 【分析】根据AF BF ⊥可知ABF 为直角三角形,再根据直角三角形斜边上的中线等于斜边的一半可知即求椭圆上存在一点A 满足OA c =再列式求解即可. 【详解】由题, ABF 为直角三角形,故OA c =.故原题转化为椭圆上存在一点A 满足OA c =.又椭圆上的点到原点距离的最小值为短半轴长b ,故b c ≤.故222222212c b c a c c a ≤⇒-≤⇒≥.故离心率e ∈.故答案为:[2【点睛】本题主要考查了离心率范围的求解,需要根据题意确定基本量之间的关系,进而列式求解离心率满足的不等式即可.属于中档题.三、解答题21.(1)2p =,1y x =+;(2)证明见解析. 【分析】(1)将()1,2A 代入可求得p ,设出切线方程,联立切线与抛物线方程,利用0∆=可求;(2)设直线PQ 方程为y x m =-+,与抛物线方程联立,根据0PA QA k k +=可证明. 【详解】解:(1)将()1,2A 代入22y px =,可得2p =, 由题意知,所求切线斜率显然存在,且不为0, 设切线方程为()21y k x -=-,与24y x =联立得()2204k y y k -+-=(0k ≠), 由()120k k ∆=--=得1k =. 所以,所求切线方程为1y x =+.(2)设直线PQ 方程为y x m =-+,代入24y x =得:240y y m +-=. 由16160m ∆=+>,得1m >-.又∵直线PQ 不过点A ,∴3m ≠,∴1m >-,且3m ≠. 设()11,P x y ,()22,Q x y ,则124y y +=-,124y y m =-,()()()()22122112121211121222441111PA QAy y y y y y k k x x x x ⎛⎫⎛⎫--+-- ⎪ ⎪--⎝⎭⎝⎭+=+=----()()()121441684201m m x x +-++==-, 所以,直线PA 、PQ 的斜率角互补. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)24y x =;(2)证明见解析,定点(5,6)-. 【分析】(1)直线方程为2py x =-,代入抛物线,利用焦点弦公式即可求出p ,得出方程; (2)当MN 斜率不存在时,可得MN 方程为5x =,当MN 斜率存在时,设为y kx b =+,和抛物线联立,利用121k k +=-可得56b k =--,即可得出定点.【详解】(1)由题意知:(,0)2p F ,则直线l 的方程为2py x =-,代入抛物线方程得 22304p x px -+=,设(,),(,)A A B B A x y B x y ,根据抛物线定义||2A p AF x =+,||2B pBF x =+,||||||48A B AB AF BF x x p p ∴=+=++==,2P =∴, ∴24y x =;(2)抛物线方程为24y x =,直线2px =,即1x =,解得(1,2)E . ①当MN 斜率不存在时,设方程为x t =,则((,M t N t -,1222111k k t t -+=+=---解得5t =,∴方程为5x =; ②当MN 斜率存在时,设:(0)MN y kx b k =+≠,24y kx by x=+⎧⎨=⎩, 即222(24)0k x kb x b +-+=,1222122042kb x x k b x x k ⎧⎪∆>⎪-⎪+=⎨⎪⎪=⎪⎩111111222111y kx b b k k k x x x -+-+-===+---,2221b k k k x +-=+-, 12121222(2)1(1)(1)x x k k k b k x x +-+=++-⋅=---,化简得:56b k =--,此时:(5)6MN y k x =--,过定点(5,6)-. 综上,直线MN 过定点(5,6)-. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)228120x y x +-+=;(2)5. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 12OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题. 求点的轨迹方程的常用方法之一:直译法——“四步一回头”, 四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ; (2)写出适合条件的点M 的集合(){}|P P M P M =; (3)将()P M “翻译”成代数方程(),0f x y =; (4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程.24.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线. 【分析】(1)设(,)M x y5=化简可得结果; (2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y=,化简得2215x y += 故动点M 的轨迹方程为2215x y +=. (2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =- 由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-= 设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y -又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+--化简得12122(2)()40x x t x x t -+++= 将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t = 故存在定点5(,0)2Q ,使得,,P B Q 三点共线.【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键. 25.(1)证明见解析;(2)2.【分析】(1)由已知先求出,B C ,设(),D x y ,结合题干得ND NB λ=,NE NC λ=,结合向量关系求得,D E 点坐标,利用点斜式得DE l 方程,联立DE l 与抛物线即可求证;(2)结合三角形面积公式得112BCQ S S BC h ==⋅△,212DEN D E S S NG y y ==⋅-△,由(1)的结论可得h ,由直线DE l 方程可求得直线DE 与x 轴交点坐标G ,从而得到NG ,12,S S 作比即可求解.【详解】()1易知()()222,2,2,2B a a C a a -,设(),D x y ,由ND NB λ=,可得()()222,4,2x a y a a λ+=,故有()()242,2D a a λλ-,同理()()224,(1)2E a a λλ--, 于是直线DE 的方程是()()()2124242y a x a a λλλ-=---, 即()224288)2(x ay a λλλ=-+--①与抛物线方程联立,得到()()22210y a λ--=,此方程有两个相等的根:221()y a λ=-代入①,得()22221x aλ=-, 故直线DE 与抛物线有且仅有一个公共点()()()22221,221Q a a λλ-- ()()()2321112421622BCQ Q S S BC h a a x a λλ==⋅=⋅-=-△ 设直线DE 与x 轴交于()()22282,0G aa λλ--, 于是()()223221182822DEN D E S S NG y y a a a λλλλ==⋅-=⋅-=-⋅△ 故有122S S = 【点睛】方法点睛:本题考查由直线与抛物线的位置关系求证公共点问题,抛物线中三角形的面积问题,考查了数学运算的核心素养,常用以下方法:(1)涉及交点问题常采用直线与曲线联立方程求解法,有且仅有一个公共点可直接求解,若是关于()x y 的一元二次方程,即证0∆=;(2)对于三角形面积问题,较为规则的可直接用公式法求解,对于三角形不规则的,常采用切割法,如本题中的DEN S △.26.(1)2212x y +=;(2)存在;1)y x =-. 【分析】(1)由余弦定理可得12d d +=.(2)设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=,先假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,与椭圆方程联立,韦达定理代入求出k 的值,再检验斜率不存在的情况.【详解】(1)当0θ≠时,在ABM 中,由余弦定理得:22121242cos2d d d d θ=+-. 又212cos 1d d θ=,整理得,12d d +=所以点M 的轨迹E 是以(1,0)A -和(1,0)B为焦点,长轴长为个端点)又当点M 为该椭圆的长轴的两个端点时,0θ=,也满足212cos 1d d θ=.所以点M 的轨迹E 的方程是2212x y +=. (2)假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-, 由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222124220k x k x k +-+-= 设P ,Q 两点的坐标依次为()11,x y ,()22,x y , 由韦达定理得,2122412k x x k +=+,21222212k x x k-=+. 由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=.又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦,整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++. 代入整理得:22222222222410121212k k k k k k k ⎛⎫--+-+= ⎪+++⎝⎭,即k = 当直线l 的斜率不存在时,直线l 的方程为1x =,此时P ⎛⎝⎭、1,Q ⎛ ⎝⎭,经验证0OP OQ ⋅≠不满足题意.综上所述,所求直线l存在,其方程为1)y x =-.【点睛】关键点睛:本题考查求轨迹方程和根据条件求直线方程,解答本题的关键是由以线段PQ 为直径的圆过原点,得0OP OQ ⋅=,即12120x x y y +=,转化为方程联立韦达定理代入求解,将条件转化为向量的数量积为0,进而转化为利用韦达定理求解的方法,属于中档题.。

圆锥曲线与方程综合测试题

圆锥曲线与方程综合测试题

圆锥曲线与方程1、已知0≠mn ,则方程122=+ny mx 与02=+ny mx 在同一坐标系下的图形可能是( A )2、如图直线l:022=+-y x 过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率( D ) A 51 B 52 C 55 D 552 3、已知ABC ∆的顶点B ,C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长为(C ) A 32 B6 C 34 D 124、双曲线19422=-y x 的渐近线方程是( A ) A x y 23+-= B x y 32+-= C x y 49+-= D x y 94+-= 5、焦点为(-2,0)的抛物线的标准方程为( D ) A x y 42= B x y 82= C x y 42-= D x y 82-=6、已知椭圆的焦点是P F F ,,21是椭圆上的一个动点,如果延长P F 1到Q 使得2PF PQ =那么动点Q 的轨迹是( A )A 圆B 椭圆C 双曲线的一支D 抛物线7、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是( A ) A 34 B 57 C 58 D3 8、已知椭圆4222=+y x ,则直线032=-+y x 被椭圆截得的弦长为( C ) A 23 B 32 C 330 2339、椭圆1822=+m y x 的焦点与双曲线1322=-y x 的焦点相同,则m 的值为( D ) A 12 B 10 C 6 D 410、若R k ∈,则k>3是方程13322=+--k y k x 表示双曲线的( A ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件11、抛物线()0242 a ax y =上有一点M ,它的横坐标为3,它到焦点的距离是5,则抛物线的方程为( A )A x y 82=B x y 122=C x y 162=D x y 202=12、一动圆的圆心在抛物线y x 42=上,过点(0,1)且恒与直线L 相切,则直线L 的方程为(C )Ax=1 B 161=x Cy=-1 D 161-=y 13、已知抛物线22x y =上两点()()2211,,y x B y x A 关于直线y=x+m 对称,且2121-=x x ,那么m 的值为14、过椭圆14522=+y x 的右焦点做一条斜率为2的直线与椭圆交于A,B 两点,O 是坐标原点,则OAB ∆的面积为15、已知抛物线过点()2,3-,则抛物线的标准方程为16、M 是椭圆14922=+y x 上任意一点,21F F 是椭圆的左右焦点,则21MF MF 的最大值是17、椭圆C :()012222 b a by a x =+的两个焦点为2,1F F ,点P 在椭圆C 上,且1PF 垂直21F F ,3143421==PF PF (1)求椭圆C 的方程 (2)若直线L 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A,B 两点,且A,B 关于点M 对称,求直线L 的方程18、如图所示A ,B ,C 是三个观察哨,A 在B 的正东,两地相距6km ,C 在B 的北偏西∙30,两地相距4km 。

(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)

(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)

一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.设1F ,2F 是双曲线C :22111y x -=的两个焦点,O 为坐标原点,点M 在C 上且OM =12MF F △的面积是( )A .10B .11C .12D .133.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D4.已知F 是双曲线2222:1(0)x y E a b a b-=>>的左焦点,过点F 的直线与双曲线E 的左支和两条渐近线依次交于,,A B C 三点,若||||||FA AB BC ==,则双曲线E 的离心率为( )A BC .2D 5.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( )A .2B 1C .1D 26.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =7.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B C .2 D8.已知椭圆222:14x y C b+=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC D 9.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B .2C D10.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,3k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( )A .(B .C .[D .12.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .6二、填空题13.过双曲线22221(0,0)x y a b a b-=>>的右顶点且斜率为3的直线,与双曲线的左右两支分别相交,则此双曲线的离心率的取值范围是___________.(用区间表示)14.已知双曲线()22210y x a a -=>的离心率e =12,F F 分别是它的下焦点和上焦点,若Р为该双曲线上支上的一个动点,则1PF 与P 到一条渐近线的距离之和的最小值为_________.15.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,焦距为2c ,若直线)y x c =-与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.16.已知圆22:68210C x y x y ++++=,点A 是圆C 上任一点,抛物线28y x =的准线为l ,设抛物线上任意一点Р到直线l 的距离为m ,则m PA +的最小值为_______ 17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.已知椭圆C :22221(0)x y a b a b+=>>的右焦点(c,0)F ,点P 在椭圆C 上,线段PF与圆22239c b x y ⎛⎫-+= ⎪⎝⎭相切于点Q ,且2PQ QF =,则椭圆C 的离心率为_______.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,若点P 在C 上,点E 在l 上,且PEF 是边长为4的正三角形. (1)求C 的方程;(2)过F 作直线m ,交抛物线C 于A ,B 两点,若直线AB 中点的纵坐标为1-,求直线m 的方程.23.已知点(-在椭圆2222:1(0)x y E a b a b +=>>上,E 的离心率为2. (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围.24.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.25.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.26.在平面直角坐标系xOy 中,设动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等,记P 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点F 的直线交曲线Γ于点A 、B (其中点A 在第一象限),交直线l 于点C ,且点F 是AC 的中点,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.B解析:B 【分析】由12F F M △是以M 为直角直角三角形得到2212||||48MF MF +=,再利用双曲线的定义得到12||||2MF MF -=,联立即可得到12||||MFMF ,代入12F F M S =△121||||2MF MF 中计算即可. 【详解】由22111y x -=可知1,23a c ==不妨设12(23,0),(23,0)F F -, 因为121232OM F F ==,所以点M 在以12F F 为直径的圆上,即12F F M △是以M 为直角顶点的直角三角形,故2221212||||||MF MF F F +=,即2212||||48MF MF +=,又12||||22MF MF a -==,所以2124||||MF MF =-=2212||||2MF MF +-12||||482MF MF =-12||||MF MF ,解得12||||22MF MF =, 所以12F F M S =△121||||112MF MF = 故选:B 【点晴】关键点点睛:根据OM =12MF F △为直角三角形是解题的关键,再结合双曲线的定义及勾股定理,即可计算焦点三角形面积,是一道中档题.3.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.B解析:B 【分析】可设出直线AB ,与两渐近线方程联立,解出,B C y y ,利用两者的关系式求出直线的斜率.进而表示出A 的坐标,代入双曲线方程,得到,,a b c 的关系式,从而求得离心率. 【详解】||||||FA AB BC ==,故有1123A B C y y y == 故32B C y y =设过点F 的直线方程为:()y k x c =+联立()y k x c b y x a ⎧=+⎪⎨=-⎪⎩,解之得C C kc x bk a b kc a y b k a -⎧=⎪+⎪⎪⎨⎪=⎪⎪+⎩ 同理联立()y k x c by x a ⎧=+⎪⎨=⎪⎩解之得B B kc x bk a b kc a y b k a ⎧=⎪-⎪⎪⎨⎪=⎪⎪-⎩由32B C y y =有23b bkc kca ab b k k a a =+-,故3232b b k k a a +=- 解之得5bk a=-直线为:()5by x c a=-+ 则1212A B bc y y a -==,又()5A A b y x c a =-+ 故712A cx =-又A 在双曲线上可得:2222491144144c c a a -= 得2213c a =故ca =故选:B 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+, 又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C ,所以||CI =01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.6.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--, 1222221222sin cos1sin 22sin 321cos tan112sin 22PF F b b b S PF PF b θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,3tan23θ∴=, 0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF a PF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,2b a ∴=, 因此,双曲线C 的渐近线方程为2by x x a=±=±,即20x y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 7.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴233c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.8.B【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.9.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y .4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,0433m c x n y =-⎧⎨=-⎩.以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=ca x c,于是()2222220233-=-=b ac y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以2e ==. 故选:B.本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.10.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=,又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点, 所以210k -≠,且2248(1)0k k ∆=+->,1k <,解得1k <<,所以实数k 的取值范围为, 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果二、填空题13.【分析】根据题意构建渐近线的斜率与3的不等关系再利用求得离心率范围即可【详解】过右焦点与渐近线平行的直线与双曲线有一个交点且一条渐近线的斜率为若斜率为的直线与双曲线的左右两支分别相交则则离心率故答案解析:)+∞【分析】根据题意构建渐近线的斜率与3的不等关系,再利用e =求得离心率范围即可. 【详解】过右焦点与渐近线平行的直线与双曲线有一个交点,且一条渐近线的斜率为b a, 若斜率为3的直线与双曲线的左右两支分别相交,则3ba>,则离心率c e a ===>.故答案为:)+∞.【点睛】求双曲线离心率常见方法:(1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和双曲线的几何关系构建关于a ,b ,c 的方程和不等式,利用222b c a =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.14.【分析】根据离心率先求出双曲线的方程得出渐近线方程根据双曲线的定义可得:所以设点到一条渐进线的距离为则从而得出答案【详解】双曲线的离心率所以解得所以双曲线由的双曲线的渐进线方程为由为该双曲线上支上的 解析:5【分析】根据离心率先求出双曲线的方程,得出渐近线方程,根据双曲线的定义可得:1224PF PF a -==,所以124PF PF =+,设点Р到一条渐进线的距离为d ,则124PF d PF d +=++,从而得出答案.【详解】双曲线()22210y x a a -=>的离心率52e =所以221514e a =+=,解得2a =,所以()()120,5,0,5F F - 双曲线2214y x -=,由2204y x -=,的双曲线的渐进线方程为2y x =±由Р为该双曲线上支上的一个动点,根据双曲线的定义可得:1224PF PF a -== 所以124PF PF =+,设点Р到渐进线2y x =的距离为d则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,垂足为M ,如图.所以225112F M ==+所以122445PF d PF d F M +=++≥+=同理1PF 与P 到渐近线2y x =-的距离之和的最小值为5 故答案为:5【点睛】关键点睛:本题考查利用双曲线的定义解决距离之和的最值问题,解答本题的关键是根据双曲线的定义可得:1224PF PF a -==,所以124PFPF =+,设点Р到渐进线2y x =的距离为d ,则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,属于中档题.15.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系 31【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF,再利用椭圆的定义及离心率的计算公式即可得出. 【详解】设直线3()y x c =--的倾斜角为α,则tan 3α=-,0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则22211,213MF MF ==-=由椭圆定义得122||||31a MF MF =+=+∴椭圆的离心率231231c e a ===-+. 故答案为:31-. 【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.16.【分析】由抛物线的定义可知结合圆的性质当且仅当三点共线时等号成立取得最值【详解】由圆可得圆心设的焦点为则抛物线上任意一点Р到直线l 的距离为过点作于点则由抛物线的定义可知所以当且仅当三点共线时等号成立 解析:412-【分析】由抛物线的定义可知m PF =,m PA PF PA +=+结合圆的性质,当且仅当,,P F C 三点共线时等号成立取得最值. 【详解】由圆22:68210C x y x y ++++=可得圆心()3,4C --,2r,设28y x =的焦点为F ,则()2,0F ,:2l x =-,抛物线上任意一点Р到直线l 的距离为m ,过点P 作PH l ⊥于点H ,则PH m =, 由抛物线的定义可知PH PF =,所以2m PA PH PA PF PA FC r FC +=+=+≥-=-22==,当且仅当,,P F C 三点共线时等号成立,所以m PA +2,2. 【点睛】关键点点睛:本题解题的关键点是利用抛物线的定义转化为抛物线上一点到焦点的距离与到圆上一点的距离之和的最小值,利用三点共线即可求解.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率c e a ==≥=⎫∈⎪⎪⎣⎭e .故答案为:⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.【分析】根据数形结合分析可得并根据勾股定理可得计算离心率【详解】如图首先画出函数图象又且且根据椭圆的定义可知由勾股定理可知即整理为即故答案为:【点睛】方法点睛:本题考查椭圆离心率的取值范围求椭圆离心解析:53【分析】根据数形结合分析,可得'PF PF⊥,并根据勾股定理,可得()()22222244b a bc a b+-==-,计算离心率.【详解】如图,首先画出函数图象,1233EF OF OE c c c=-=-=,2131'23cEFEF c c∴==+,又2PQ QF=,'//PF QE∴,且1'3QEPF=,且'PF PF⊥,3bQE=,'PF b∴=,根据椭圆的定义可知2PF a b=-,由勾股定理可知22212'PF PF F F+=,即()()22222244b a bc a b+-==-整理为222224444b a b ab a b++-=-,即23ba=,2251c ba a∴=-=.故答案为:53【点睛】方法点睛:本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据,,a b c直接求,2.根据条件建立关于,a c的齐次方程求解,3.根据几何关系找到,,a b c的等量关系求解.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =, 所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)24y x =;(2)220x y +-=. 【分析】(1)设l 与x 轴交于点D ,根据PEF 是边长为4的正三角形.得到PE l ⊥,60PEF EFD ∠=∠=︒,然后由||cos60p DF EF ==求解.(2)设()11,A x y ,()22,B x y ,根据点A ,B 在抛物线上,由21122244y x y x ⎧=⎨=⎩,根据线段AB 中点的纵坐标为1-,利用“点差法”求解. 【详解】(1)因为PEF 是边长为4的正三角形. 则||||PE PF =,所以PE l ⊥,设l 与x 轴交于点D ,则60PEF EFD ∠=∠=︒,||4EF =, 所以||cos602p DF EF === 所以抛物线的方程为24y x =.(2)由(1)得抛物线C 的方程为24y x =,焦点(1,0)F ,设A ,B 两点的坐标分别为()11,A x y ,()22,B x y ,由21122244y x y x ⎧=⎨=⎩,得()121212124y y x x x x y y -=≠-+, 因为线段AB 中点的纵坐标为1-,所以直线m 的斜率21442(1)2AB k y y ==-+-⨯=, 所以直线m 的方程为02(1)y x -=--, 即220x y +-=. 【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.23.(1)22:14x E y +=;(2)32,,222⎛⎛⎫--⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OCOB ⋅>,运算即可得解. 【详解】 (1)点⎛- ⎝⎭在椭圆22221(0)x y a b ab+=>>上,∴221314ab +=,又椭圆的离心率为2,∴2c e a ==,由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得k >k <, 且1221614kx x k+=-+,1221214x x k ⋅=+, 由COB ∠为锐角,∴2121212122122()414OC OB x x y y k x x k x x k⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴22k -<<-或22k <<,∴直线l的斜率的范围是32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.24.(1)24y x =;(2)220x y +-=. 【分析】(1)抛物线的定义可得342p ⎛⎫--= ⎪⎝⎭,即可求出p 得值,进而可得抛物线E 的方程; (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,利用点差法可求直线l 的斜率,再求出点()1,0F ,利用点斜式即可求出直线l 的方程. 【详解】(1)由抛物线()2:20E y px p =>可得准线方程为:2p x =-, 由抛物线的定义可得:342p ⎛⎫--= ⎪⎝⎭,解得:2p =, 所以抛物线E 的方程为24y x =,(2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,两式相减可得()2212124y y x x -=-, 所以()()()1212124y y y y x x -+=-,因为线段AB 中点的纵坐标为1-,所以122y y +=-, 所以直线l 的斜率1212124422y y k x x y y -====--+-, 因为()1,0F ,所以直线l 的方程为:()21y x =--,即220x y +-=. 【点睛】思路点睛:对于中点弦问题,多采用设而不求的方法,利用整体代入的思想求出直线的斜率,再结合直线所过的点即可得直线的方程. 25.(1)24y x =;(2)证明见解析. 【分析】(1)设直线l 的方程为2x my p =+,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,由题意可得出222122144y y x x p==,求出p 的值,进而可得出抛物线C 的方程; (2)设点()33,M x y 、()44,N x y ,可得出213y y p =-,224y y p =-,利用直线的斜率公式以及韦达定理可得出lMNk k 为定值.【详解】(1)若直线l 与x 轴重合,则该直线与抛物线C 有且只有一个交点,不合乎题意. 设直线l 的方程为2x my p =+,代入22y px =得22240y pmy p --=,则()22440p m ∆=+>,且2124y y p =-,则22212122444y y x x p p⋅===, 0p >,解得1p =.∴抛物线C 的方程为24y x =;(2)证明:()33,M x y 、()44,N x y ,同(1)可知,直线AM 不可能与x 轴重合,设直线AM 的方程为2p x ty =+, 联立222p x ty y px⎧=+⎪⎨⎪=⎩,消去x 得2220y tpy p --=,由韦达定理可得213y y p =-,同理可得224y y p =-, 又直线l 的斜率12122212121222l y y y y pk y y x x y y p --===--+, 直线MN 的斜率3434342MN y y pk x x y y -==-+,()2221222341212212121212144l MN p y y p p k y y y y y y p p k y y y y y y y y p -+--++--∴======+++-, 故直线l 与直线MN 斜率之比为定值14.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 26.(1)24y x =;(2)16||3AB =. 【分析】(1)根据抛物线定义可得答案;(2)由点F 是AC 的中点可得A 点的坐标,设出直线AB 方程与抛物线方程联立,利用韦达定理再得B 点坐标,再由两点间的距离公式可得答案. 【详解】(1)因为动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等, 由抛物线定义可得曲线Γ为抛物线,设其方程为22(0)y px p =>,则12p=, 所以2p =,曲线Γ的方程为24y x =.(2)设过点F 的直线方程为1x my =+,设1122(,),(,)A x y B x y ,且120,0y y ><,0(1,)C y -,由214x my y x=+⎧⎨=⎩整理得,2440y my --=,所以124y y =-, 因为点F 是AC 的中点,所以1112x -=,解得13x =,所以211412y x ==,得1y =(3,A ,又因为124y y =-,所以2y =,代入抛物线方程得213x =,所以1,3B ⎛ ⎝⎭,所以163AB ===. 【点睛】本题考查了抛物线方程、直线与抛物线的位置关系及弦长,关键点是由点F 是AC 的中点可得A 点的坐标,利用韦达定理再得B 点坐标,考查了学生的基础知识、基本技能.。

(18)“圆锥曲线与方程”单元测试

(18)“圆锥曲线与方程”单元测试

“圆锥曲线与方程”单元测试(第一卷)一、选择题:(每小题5分,计50分)1、(2008海南、宁夏文)双曲线1102x y -=的焦距为( )D.2.(2004全国卷Ⅰ文、理)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23B .3C .27D .43.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率4.(2006四川文、理)直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.5.(2007福建理)以双曲线116922=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )A . B.C . D.6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x7.(2005湖北文、理)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .163 B .83 C .316 D .388. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3 (C)49.(2002北京文)已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±=10.(2003春招北京文、理)在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是_________________________12.(2008江西文)已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程为y x =,若顶点到渐近线的距离为1,则双曲线方程为 .13.(2007上海文)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .14.(2008天津理)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .“圆锥曲线与方程”单元测试(第二卷)11._______________, 12.________________, 13.________________, 14.________________.三、解答题:(15—18题各13分,19、20题各14分)15.(2006北京文)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l的方程..16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的 交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.17.(2007安徽文)设F是抛物线G:x2=4y的焦点.(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:(Ⅱ)设A、B为抛物线G上异于原点的两点,且满足0FA,延长AF、BF分别交抛物线G于点·FBC,D,求四边形ABCD面积的最小值.18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?19. (2002广东、河南、江苏)A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(2007福建理)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且=。

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(4)

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(4)

一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121D .13或1202.设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左.右支交于点P Q 、,若2,60PQ QF PQF =∠=︒,则该双曲线的离心率为( )A .1BC .2D .4+3.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .234.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞5.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .256.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).ABC .31+D .62+7.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A .910+B .926+C .712612+ D .832612+ 8.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9169.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .610.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,1212.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( )A .3B .23C .433D .2二、填空题13.已知双曲线()222210,0x y a b a b-=>>与圆222x y b +=在第二、四象限分别相交于两点A 、C ,点F 是该双曲线的右焦点,且2AF CF =,则该双曲线的离心率为______. 14.已知抛物线2:4E x y =,过点(2,1)P -作E 的两条切线,切点分别为,A B ,则AB =________.15.已知椭圆22221(0)x y a b a b+=>>与直线11:2l y x =,21:2l y x =-,过椭圆上一点P作12,l l 的平行线,分别交12,l l 于,M N 两点,若||MN 为定值,则ab=__________. 16.点(,)P x y 是曲线22:143x y C +=上一个动点,则23x y +的取值范围为______.17.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.18.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;③2C 在此正方形区域内(含边界).其中,正确结论的序号是________.19.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:x0 4 26则2C 的虚轴长为______.20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.点M 是椭圆223:11616x y C +=上一点,点A 是椭圆C 的左顶点,MO 的延长线交椭圆C于点B ,AMB 是以M 为直角顶点的三角形.若存在不同于点A ,B 的点C ,D ,使得0MC MD OA MC MD ⎛⎫⎪⋅+= ⎪⎝⎭,试探究直线AB 与CD 的位置关系,并说明理由. 22.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的长轴长为准线的距离为8.(1)求椭圆的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于不同于N 的A ,B 两点,直线NA,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.23.已知椭圆()2222:10x y M a b a b +=>>的一个顶点坐标为()2,0-线y x m =-+交椭圆于不同的两点A 、B . (1)求椭圆M 的方程;(2)设点()2,2C -,是否存在实数m ,使得ABC 的面积为1?若存在,求出实数m 的值;若不存在,说明理由.24.点A 是抛物线21:2(0)C y px p =>与双曲线2222:1(0)y C xb b-=>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p . (1)求双曲线2C 的方程;(2)若直线:1l y kx =-与双曲线的右支交于两点,求k 的取值范围. 25.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其中一个顶点是抛物线2x =-的焦点. (1)求椭圆C 的标准方程;(2)若过点(2,1)P 的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标.26.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由3e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.A解析:A 【解析】∵|PQ |=2|QF |,∠PQF =60°,∴∠PFQ =90°, 设双曲线的左焦点为F 1,连接F 1P ,F 1Q ,由对称性可知,F 1PFQ 为矩形,且|F 1F |=2|QF|,1QF =, 不妨设()1220F F m m =>,则1,QF QF m ==,故121212F F c e a QF QF ====-. 本题选择A 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则4MF ==,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.4.D解析:D 【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22bc a<,即可由此求出离心率.【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2by a=±,∴以AB 为直径的圆的半径为2b AF a=,双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->,两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞. 故选:D. 【点睛】本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a <.5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=, 又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.7.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M AAM x x =-=-=,BM ==所以ABM 的周长为:2511944AB AM BM ++=++=+ 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 8.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.9.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1125225O l d -=⨯=,圆C 面积的最小值为225455ππ⎛⎫= ⎪ ⎪⎝⎭.故本题的正确选项为A. 考点:抛物线定义. 11.C解析:C 【分析】先依题意判断椭圆焦点与圆心重合,再利用椭圆定义以及圆的性质得到最大值和最小值即可. 【详解】如图,由椭圆及圆的方程可知两圆圆心分别为()()4,0,4,0A B -,恰好是椭圆的两个焦点,由椭圆定义知210PA PB a +==,连接PA ,PB 分别与圆相交于M ,N 两点,此时PM PN +最小,最小值为28PA PB R +-=;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时PM PN +最大,最大值为212PA PB R ++=.故选:C . 【点睛】本题考查了椭圆的定义,考查了圆外的点到圆上的点的距离最值问题,属于中档题.12.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=, 则22444c a -=,所以3a =23故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..二、填空题13.【分析】画出图形结合双曲线的性质判断四边形的形状结合双曲线的定义求出三角形的边长通过勾股定理转化求解双曲线的离心率即可【详解】解:双曲线的右焦点为左焦点为根据对称性可知是平行四边形所以又点在双曲线上 解析:22 【分析】画出图形,结合双曲线的性质判断四边形的形状,结合双曲线的定义求出三角形的边长,通过勾股定理转化求解双曲线的离心率即可. 【详解】解:双曲线的右焦点为F ,左焦点为E ,根据对称性可知AFCE 是平行四边形,所以 ||2||2||AF CF AE ==,又点A 在双曲线上,所以||||2AF AE a -=,因为||2||AF CF =,所以||||2||||2AF AE CF CF a -=-=,所以||2CF a =,在三角形OFC 中,||2FC a =,||OC b =,||OF c =,||4AF a =, 可得222162cos a b c bc AOF =+-∠, 22242cos a b c bc COF =+-∠,可得22222202242a b c c a =+=-, 即:22112a c =,所以双曲线的离心率为:22e =. 故答案为:222.【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,属于中档题.14.8【分析】设切线方程为即代入利用判别式为0求出两条切线的斜率进一步求出两个切点坐标利用两点间的距离公式可求得结果【详解】切线的斜率显然存在设切线方程为即联立消去得所以即则或设切线的斜率分别为则将代入解析:8 【分析】设切线方程为1(2)y k x +=-,即21y kx k =--,代入24x y =,利用判别式为0,求出两条切线的斜率,进一步求出两个切点坐标,利用两点间的距离公式可求得结果. 【详解】切线的斜率显然存在,设切线方程为1(2)y k x +=-,即21y kx k =--,联立2214y kx k x y=--⎧⎨=⎩消去y 得24840x kx k -++=,所以2(4)4(84)0k k ∆=--+=,即2210--=k k,则1k =1k = 设切线,PA PB 的斜率分别为12,k k ,1122(,),(,)A x y B x y ,则11k =21k =,将11k =24840x kx k -++=得24(18(140x x -++=,即2(20x -+=,得2x =-12x =-2211(244x y -===3-(2A --,同理可得(2B ++,所以||AB =8=.故答案为:8. 【点睛】本题考查了直线与抛物线相切的位置关系,考查了运算求解能力,属于中档题.15.4【解析】当点时过椭圆上点作的平行线分别为联立可得同理可得所以当点时过椭圆上点作的平行线分别为联立可得同理可得所以所以为定值则所以点睛:本题考查了直线与椭圆的位置关系此类问题的解答中主要特例法的应用解析:4 【解析】当点(0,)P b 时,过椭圆上点P 作12,l l 的平行线分别为11,22y x b y x b =+=-+, 联立1212y x b y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)2b M b ,同理可得(,)2b N b -,所以2MN b =,当点(,0)P a 时,过椭圆上点P 作12,l l 的平行线分别为11,2222a a y x y x =-=-+, 联立12212a y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)24a a M ,同理可得(,)24a a N -,所以2a MN =,所以MN 为定值,则22ab =,所以4a b=. 点睛:本题考查了直线与椭圆的位置关系,此类问题的解答中主要特例法的应用,是解答选择题的一种方法,本题的解答中取点P 分别为长轴和短轴的端点,联立方程组,求得MN ,得出,a b 的关系式是解答关键,平时应注意特殊值等方法在选择题解答中的应用. 16.【分析】可设则其中可得的取值范围【详解】由点是曲线上一个动点可设则其中又则故答案为:【点睛】本题考查了椭圆参数方程的应用辅助角公式三角函数的值域属于中档题 解析:[5,5]-【分析】可设2cos ,x y θθ==,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,可得2x 的取值范围. 【详解】由点(,)P x y 是曲线22:143x yC +=上一个动点,可设2cos ,x y θθ==,[0,2)θπ∈,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=, 又5sin()θα+[5,5]∈-,则2x [5,5]∈-. 故答案为:[5,5]-. 【点睛】本题考查了椭圆参数方程的应用,辅助角公式,三角函数的值域,属于中档题.17.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.18.①②【分析】将代入也成立得①正确;利用不等式可得故②正确;联立得四个交点满足条件的最小正方形是以为中点边长为2的正方形故③不正确【详解】对于①将代入得成立故曲线关于直线对称故①正确;对于②因为所以所解析:①② 【分析】将(,)y x 代入22322:()4C x y x y +=也成立得①1≤,故②正确;联立22322()4y xx y x y=±⎧⎨+=⎩得四个交点,满足条件的最小正方形是以,,,A B C D 为中点,边长为2的正方形,故③不正确. 【详解】对于①,将(,)y x 代入22322:()4C x y x y +=得22322()4y x y x +=成立,故曲线C 关于直线y x =对称,故①正确;对于②,因为22322222()()44x y x y x y ++=≤,所以221x y +≤1≤, 所以曲线C 上任意一点到原点的距离都不超过1,故②正确;对于③,联立22322()4y x x y x y=±⎧⎨+=⎩得2212x y ==,从而可得四个交点A ,(B ,(C ,D ,依题意满足条件的最小正方形是各边以,,,A B C D 为中点,边长为2的正方形,故不存在C 在此正方形区域内(含边界),故③不正确. 故答案为:①② 【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.19.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了1【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=, ∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.//AB CD ,理由见解析. 【分析】利用AM MO ⊥得M 是以OA 为直径的圆与椭圆的交点,解方程组求得M 点坐标.可求得AB k ,由数量积为0得CMD ∠的角平分线垂直于OA ,从而0MC MD k k +=,设直线:CD y kx m =+,()11,C x y ,()22,D x y ,直线方程代入椭圆方程后应用韦达定理得1212,x x x x +,代入0MC MD k k +=可求得参数关系以13k =-或22m k =+(过点M ,舍),由此可得两直线的位置关系. 【详解】解:由题意(4,0)A -,因为AMB 是以M 为直角顶点的三角形,所以以AO 为直径的圆()2224x y ++=与椭圆223:11616x y C +=交于点M ,联立2222(2)4311616x y x y ⎧++=⎪⎨+=⎪⎩,解得:22x y =-⎧⎨=⎩或22x y =-⎧⎨=-⎩或40x y =-⎧⎨=⎩(舍),不妨设()2,2M -,则(2,2)B -,2012(4)3AB k --==---.由0MC MD OA MC MD ⎛⎫⎪⋅+= ⎪⎝⎭可得:CMD ∠的角平分线垂直于OA , 所以0MC MD k k +=,易知直线CD 斜率存在, 设直线:CD y kx m =+,()11,C x y ,()22,D x y ,联立22311616y kx m x y =+⎧⎪⎨+=⎪⎩,得:()2221363160k x kmx m +++-=,即122613km x x k -+=+,212231613m x x k-=+, 所以121222022MC MD y y k k x x --+=+=++, 即()12122(22)480kx x k m x x m ++-++-=, 代入韦达定理可得:()()()4318311k m k k +=++, 所以13k =-或22m k =+(过点M ,舍) 因为13AB k =-,所以//AB CD . 【点睛】关键点点睛:本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,即设交点坐标为1122(,),(,)x y x y ,设直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +(需要根据方便性,可能得1212,y y y y +),由题意中条件得出0MC MD k k +=,代入1212,x x x x +后可求得参数关系或参数值.从而判断出结论.22.(1)22184x y +=;(2)证明见解析.【分析】(1)根据长轴长、两准线的距离以及222a b c =+可得到椭圆的方程;(2)首先要对直线进行分类讨论,当斜率存在时,将直线与椭圆联立,设出,A B 两点的坐标,12k k +用12,x x 表示,再结合韦达定理就能得到证明. 【详解】(1)设椭圆的半焦距为c .因为椭圆的长轴长为8,所以2228a a c==,所以2a c ==,2b .所以椭圆的方程为22184x y +=.(2)证明①当直线l 的斜率不存在时,可得A 1,2⎛- ⎝⎭,B 1,2⎛-- ⎝⎭, 得k 1+k 2=4.②当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由221,842(1),x y y k x ⎧+=⎪⎨⎪+=+⎩得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. ∆=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-24(2)12k k k -+,x 1x 2=222812k kk -+. 从而k 1+k 2=112y x -+222y x -=1212122(4)()kx x k x x x x +-+=2k -(k -4)·24(2)28k k k k--=4.综上,k 1+k 2为定值. 【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.23.(1)2214x y +=;(2)存在,且=m 【分析】(1)由已知条件求出a 的值,结合离心率可求得c 的值,再由a 、b 、c 的关系可求得b的值,由此可求得椭圆M 的方程;(2)设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆M 的方程联立,列出韦达定理,利用弦长公式求出AB ,求出点C 到直线AB 的距离d ,利用三角形的面积公式可得出关于实数m 的等式,解出m 的值,并验证是否满足0∆>,由此可得出结论. 【详解】(1)由于椭圆()2222:10x y M a b a b+=>>的一个顶点坐标为()2,0-,则2a =,又因为该椭圆的离心率为c a =c =1b ∴=, 因此,椭圆M 的方程为2214x y +=;(2)设点()11,A x y 、()22,B x y ,联立2214y x m x y =-+⎧⎪⎨+=⎪⎩,消去y 并整理得2258440x mx m -+-=, ()()2226445441650m m m ∆=-⨯⨯-=->,解得m << 由韦达定理可得1285m x x +=,212445m x x -=, 由弦长公式可得12AB x x =-===, 点C 到直线AB的距离为d =, 所以,ABC的面积为11122ABC S AB d =⋅===△,整理可得42420250m m -+=,即()22250m -=,可得252m =,满足0∆>. 因此,存在2=±m ,使得ABC 的面积为1. 【点睛】 方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.24.(1)2214y x -=;(2)( 【分析】(1)取双曲线的一条渐近线:y bx =,与抛物线方程联立即可得到交点A 的坐标,再利用点A 到抛物线的准线的距离为p ,即可得到p ,b 满足的关系式,进而可得答案. (2)根据直线:1l y kx =-与双曲线的右支交于两点,利用韦达定理、判别式列不等式组求解即可.【详解】(1)取双曲线的一条渐近线y bx =,联立22y px y bx ⎧=⎨=⎩解得222p x b py b ⎧=⎪⎪⎨⎪=⎪⎩,故222(,)p p A b b . 点A 到抛物线的准线的距离为p , ∴222p p p b+=,可得24b = 双曲线222:14y C x -=; (2)联立22114y kx y x =-⎧⎪⎨-=⎪⎩可得()224250k x kx -+-= 因为直线:1l y kx =-与双曲线的右支交于两点, 所以()22222045{0442040k kk k k ->-->-∆=+->,解得2k <<所以,k的取值范围(.【点睛】求双曲线标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出双曲线的标准方程.解决直线与双曲线的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程或不等式,解决相关问题.25.(1)22143x y +=;(2)122y x =-+,3(1,)2M . 【分析】(1)由抛物线2x =-的焦点为(0,得b =12c a =,从而可求出a ,得椭圆方程;(2)分类讨论,斜率不存在的直线及斜率存在的切线,斜率存在的切线用0∆=可求解.【详解】(1)由抛物线2x =-的焦点为(0,,它是椭圆的一个顶点,则b = 又12c e a ==,所以22214a b a -=,解得2a =.∴椭圆方程为22143x y +=; (2)过(2,1)P 斜率不存在的直线为2x =,是椭圆的切线,此时切点为(2,0)M .此时不满足M 在第一象限.过(2,1)P 斜率存在的切线方程设为1(2)y k x -=-,由221431(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得222(34)8(12)161680k x k k k k ++-+--=,∴222264(12)4(34)(16168)96(21)0k k k k k k ∆=--+--=-+=,12k =-, 此时121x x ==,1232y y ==,即3(1,)2M . 直线方程为11(2)2y x -=--,即122y x =-+. 切线方程为122y x =-+,切点3(1,)2M . 【点睛】关键点睛:本题考查求椭圆的切线,解答本题的关键是分切线的斜率存在和不存在进行讨论,过(2,1)P 斜率存在的切线方程设为1(2)y k x -=-,由方程联立,其0∆=求解,属于中档题.26.(1)14-;(2)17. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案.【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y , 因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=,因为21122x x +=⨯=,211212y y +=⨯=,所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -, 则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭, 当87x 时,PD7=. 因为圆D17=. 所以PD的最小值为11777-=. 【点睛】 解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.。

(必考题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)

(必考题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)

一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.已知斜率为(0)k k >的直线l 与抛物线2:4C y x =交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM ∆的面积等于3,则k =( )A .14B .13C .12D .33.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF FB =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52C D .536.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .2y x =±D .2y x =±7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F ,,点M 在双曲线C 的渐近线上,若212211221cos 12cos ,3MF F MF F FMF MF F ∠+=∠∠=∠,则双曲线C 的离心率为( )A .BC .D .28.已知点P 是抛物线22y x =上的一个动点,则点P 到点32,32D ⎛⎫⎪⎝⎭的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .729.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25410.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条11.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2a x c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( ) A .12B .22C .34D .4512.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为___________.15.过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,且点A 为线段PB 的中点,则直线l 的斜率为___________.16.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线与圆()22234x y +-=相交于A ,B 两点,且2AB =,则双曲线C 的离心率为___________.17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.19.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.20.已知抛物线y 2=4x 的焦点为F ,过点F 的直线AB 交抛物线于A ,B 两点,交准线于点C ,若|BC |=2|BF |,则|AB |=_____.三、解答题21.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,当直线AB 的斜率为0时,||||7AB CD +=.(Ⅰ)求椭圆的方程;(Ⅱ)求||||AB CD +的取值范围.22.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为222 (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.23.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.24.在平面直角坐标系中,已知抛物线22y px =的准线方程为12x =-.(1)求p 的值;(2)直线:(0)l y x t t =+≠交抛物线于A ,B 两点,O 为坐标原点,且OA OB ⊥,求线段AB 的长度.25.已知椭圆()2222:10x y C a b a b +=>>3,22⎛ ⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB l 的方程.26.已知椭圆2222:1(0)x y C a b a b +=>>(2,1),,A P Q --在椭圆C 上,且,P Q 异于点A .(1)求椭圆C 的方程;(2)若||||,||||OP OQ AP AQ ==,求直线PQ 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值. 【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.B解析:B 【分析】先求出F ,设出A 、B 、M ,用“点差法”找出121202y y k x x y -==-,利用OFM ∆的面积等于3计算出0y ,求出斜率k . 【详解】由抛物线2:4C y x =知:焦点()1,0F 设()()()112200,,,,,,A x y B x y M x y因为M 是线段AB 的中点,所以0121222x x x y y y =+⎧⎨=+⎩将2114y x =和2224y x =两式相减可得:()2212124y y x x -=-,即121202y y k x x y -==- ∵000k y >∴> ∴00113,62OFM S y y ∆=⨯⨯=∴=, 022163k y ∴===. 故选:B 【点睛】“中点弦”问题通常用“点差法”处理.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=. 设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==,121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N kk ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN =23(12p k k +=,∵AB =,∴22232(1)(12p k p k k k++=, 整理得23k =,∵0k >,∴k =∴倾斜角为60︒. 故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.5.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:2b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.7.D解析:D 【分析】根据角的关系计算出12216030MF F MF F ∠=︒∠=︒,,从而求出渐近线方程为y =,得到ba=. 【详解】因为21221cos 12cos MF F MF F ∠+=∠,故1221cos cos2MF F MF F ∠=∠,即12212MF F MF F ∠=∠,而12213FMF MF F ∠=∠,故12216030MF F MF F ∠=︒∠=︒,,则三角形1MFO 为等边三角形,故双曲线C 的渐近线方程为y =,则2e ==,故选D .【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.8.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -= 所以点P 到点332D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +> 所以点P 到点332D ⎛⎝的距离与点P 到y 轴的距离之和的最小值为: 221111335||||||||||2022222PD PP PD PF DF ⎛⎫⎛⎫+=+-≥-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.9.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍) 当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.10.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.11.B解析:B 【分析】设直线2a x c=交x 轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x 轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点,所以20a ->,即2a >,此时圆半径为44212r a a =-=->. 因此当2r >时,圆无法触及抛物线的顶点O . 故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;【详解】解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN垂直准线于M ,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p p x x k ++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】先利用点求抛物线方程利用相切关系求切线再分别联立直线和抛物线求出点即求出直线方程【详解】在抛物线上故即抛物线方程为设过点与圆相切的直线的方程为:即则圆心到切线的距离解得如图直线直线联立得故由 解析:3640x y ++=【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线,AB AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离2202211k kd k -+-==+,解得3k =±,如图,直线):232AB y x -=-,直线):232AC y x -=--.联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x ++-=,故1683A B x x -=,由2A x =得843B x -=,故236B y -=, 联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x -++=,故1683A C x x +=,由2A x =得843C x +=,故236C y --=, 故236236433B C y y -+=+=-,又由,B C 在抛物线上可知, 直线BC 的斜率为22221114222B C B C BC B C B C B C y y y y k x x y y y y --=====--+--,故直线BC 的方程为2361843323y x ⎛--=-- ⎝⎭,即3640x y ++=. 故答案为:3640x y ++=15.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象 解析:223【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m. 【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y , 联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m . 由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得4m =,因此,直线l 的斜率为13k m ===.. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.16.2【分析】由双曲线圆的方程确定渐近线方程为圆心为半径为根据圆的相交弦与半径弦心距之间的几何关系有结合双曲线参数间的关系即可求其离心率【详解】由题意知:双曲线的渐近线为而圆心为半径为∴圆心到渐近线的距解析:2 【分析】由双曲线、圆的方程确定渐近线方程为by x a=±,圆心为,半径为2r ,根据圆的相交弦与半径、弦心距之间的几何关系有222||4AB r d -=,结合双曲线参数间的关系即可求其离心率. 【详解】由题意知:双曲线的渐近线为by x a=±,而圆心为,半径为2r ,∴圆心到渐近线的距离d ==,而2AB =,∴221r d -=,故222123a ab =+,又222,1c a b c e a +==>, ∴2e =. 故答案为:2. 【点睛】关键点点睛:根据双曲线、圆的标准方程确定渐近线方程、圆心、半径长,结合圆中相交弦的几何性质及双曲线参数关系,列出关于,a c 的齐次方程求离心率.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率2c e a ==≥=,所以⎫∈⎪⎪⎣⎭e .故答案为:,12⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=.由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.19.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化解析: 【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出b a =,b c=即可求出结果. 【详解】由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b bBAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么b =,极有b a =,b c =5=-.故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO∠=∠+∠;(2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c的比值问题.(3)根据离心率求出,,a b c的比值,代入可求.20.【分析】分别过作准线的垂线利用抛物线的定义将到焦点的距离转化到准线的距离利用已知和相似三角形的相似比建立关系式求解可算得弦长【详解】设可知如图作垂直于准线分别于则又解得故答案为:【点睛】1本题体现了解析:16 3【分析】分别过,A B作准线的垂线,利用抛物线的定义将,A B到焦点的距离转化到准线的距离,利用已知和相似三角形的相似比,建立关系式,求解,AF BF可算得弦长.【详解】设242y x px ==,可知2p =如图,作AM ,BN 垂直于准线分别于,M N ,则BN BF =, 又2BC BN =,23CB CF=,23BN p ∴= 43BN =,83BC =,4CF ∴= 2CF AM CA=,244CF AM CA AM ∴==+,解得4AM = 4AF ∴=416433AB AF BF ∴=+=+= 故答案为:163【点睛】1.本题体现了数形结合,解析几何问题,一定要注意对几何图形的研究,以便简化计算2. 抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.三、解答题21.(Ⅰ)22143x y +=;(Ⅱ)48,77⎡⎤⎢⎥⎣⎦;【分析】(Ⅰ)通过当直线AB 的斜率为0时可知||2AB a =,22||b CD a =,结合12c e a ==,计算即得结论;(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线AB 、CD 的方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得||||AB CD +的表达式,利用换元法及二次函数的性质计算即得结论. 【详解】解:(Ⅰ)当直线AB 的斜率为0时,直线CD 垂直于x 轴,||2AB a ∴=,22||b CD a =,即22||||27b AB CD a a+=+=,12c e a ==,且222a b c =+,解得:2,a b =, 所以椭圆方程为22143x y +=;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意可知,||||7AB CD +=;②当两条弦斜率均存在且不为0时,设1(A x ,1)y ,2(B x ,2)y , 设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--,将直线AB 的方程代入椭圆方程中,并整理得:2222(34)84120k x k x k +-+-=,∴221212228412,3434k k x x x x k k -+==++,∴212212(1)|||34k AB x x k +=-=+,同理,2222112(1)12(1)||4343k k CD k k++==++, ∴2222222212(1)12(1)84(1)||||3434(34)(34)k k k AB CD k k k k ++++=+=++++,令21t k =+,则1t >,∴2222848484||||1149(41)(31)121()24t t AB CD t t t t t +===-++---+,1t >,∴101t<<,∴211494912()244t <--+,∴241111494912()24t <--+, ∴24884711497()24t <--+,∴48||||77AB CD +<, 综合①②可知,||||AB CD +的取值范围为:48,77⎡⎤⎢⎥⎣⎦. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11xy m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可.【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m-=+, ∴AB==)2212m m +=+,同理)22221111122m m CD m m ⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果. 23.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QRx =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A k k ⎛⎫⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭ 直线:p l y k =,点0,R p k ⎛⎫⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQp PR x k p QR x k ===. ()2因为222,p p A kk ⎛⎫ ⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离. 24.(1)1p =;(2). 【分析】(1)由已知准线方程可得答案;(2)联立直线与抛物线方程,利用韦达定理表示OA OB ⊥可得t ,然后利用弦长公式可得答案. 【详解】 (1)由已知得122p -=-,所以1p =; (2)设()11,A x y ,()22,B x y ,联立22y x =与y x t =+得2220y y t -+=,480t ∆=->,即12t <时有122y y +=,122y y t =, 因为OA OB ⊥,所以()21212121204y y OA OB x x y y y y ⋅=+=+=,可得124y y =-,因为122y y t =,所以2t =-, 则122y y +=,124y y =-, 所以||AB =====【点睛】本题考查了抛物线方程、直线与抛物线的位置关系,关键点是利用韦达定理计算弦长,意在考查学生对这些知识的理解能力掌握水平及其应用能力.25.(1)22132x y +=;(2)22y x =±+或2y =+.【分析】(1)由离心率公式、将点3,22⎛ ⎝⎭代入椭圆方程得出椭圆C 的方程;(2)联立椭圆和直线l 的方程,由判别式得出k 的范围,再由韦达定理结合三角形面积公式得出22317S k ==+,求出k 的值得出直线l 的方程.【详解】解:(1,所以2222133b a ⎛⎫=-= ⎪ ⎪⎝⎭.①又因为椭圆经过点3,22⎛ ⎝⎭,所以有2291142a b +=.②联立①②可得,23a =,22b =,所以椭圆C 的方程为22132x y+=.(2)由题意可知,直线l 的斜率k 存在,设直线l 的方程为2y kx =+.由222,132y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得,()22231260+++=k x kx .因为直线l 与椭圆C 交于不同的两点A ,B 所以()()()22212242324320k kk∆=-+=->,即2320k ->,所以223k >. 设()11,A x y ,()22,B x y ,则1221223k x x k -+=+,122623x x k =+. 由题意得,OAB 的面积1212S OM x x =⨯⨯-12x x =-=,即S == 因为OAB 的面积为17=()2232k =+.化简得,42491660k k -+=,即()()2243220k k --=,解得234k =或222k =,均满足0∆>,所以k =或k = 所以直线l的方程为2y x =+或2y =+. 【点睛】关键点睛:在第二问中,关键是由韦达定理建立12,x x 的关系,结合三角形面积公式求出斜率,得出直线l 的方程.26.(1)22182x y +=;(2)20x y +=.【分析】(1)由离心率,点的坐标代入椭圆方程及222a b c =+列方程组解得,,a b c 得椭圆方程; (2)已知条件说明直线AO 为线段PQ 的垂直平分线,直线OA 方程为12y x =,这样可设直线PQ 方程为2y x m =-+,代入椭圆方程,应用韦达定理得12x x +,12,x x 即为,P Q 的横坐标,求出中点横坐标1202x x x +=,由直线PA 得中点纵坐标0y ,中点坐标代入直线AO 方程可得参数m ,即直线PQ 方程. 【详解】(1)依题意,22222411a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩,,解得2282a b ⎧=⎨=⎩,,.故椭圆C 的方程为22182x y +=;(2)∵||||,||||OP OQ AP AQ ==,∴直线AO 为线段PQ 的垂直平分线,则直线OA 的方程为12y x =,设直线PQ 的方程为2y x m =-+, 由221822x y y x m ⎧+=⎪⎨⎪=-+⎩,得:221716480x mx m -+-=, ()22(16)417480m m =-⨯->,解得m <()()1122,,,P x y Q x y ,由韦达定理得121617mx x +=,设PQ 的中点为()00,H x y , 所以120008,221717x x m m x y x m +===-+=;所以8,1717m m H ⎛⎫⎪⎝⎭.又8,1717m m H ⎛⎫⎪⎝⎭在直线OA 上,代入得1817217m m =⋅,解得0m =, 综上所述,直线PQ 的方程为20x y +=. 【点睛】关键点点睛:本题考查由离心率和一点坐标求椭圆方程,考查直线与椭圆相交问题.在直线与椭圆相交问题时,解题关键是由平面几何知识由条件||||,||||OP OQ AP AQ ==得直线AO 为线段PQ 的垂直平分线,这样用设而不求思想可求得直线PQ 方程.即求出AO 方程,由垂直设出直线PQ 方程,代入椭圆方程应用韦达定理求得PQ 中点坐标,再代入直线AO 方程可得参数值.。

上海大同中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(有答案解析)

上海大同中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(有答案解析)

一、选择题1.设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦分别是1F ,2F ,过1F 的直线交双曲线C 的左支于M ,N 两点若212=MF F F ,且112MF NF =,则双曲线C 的离心率是( ) A .2B .32C .54D .532.双曲线222:19x y C b-=的左、右焦点分别为1F 、2,F P 在双曲线C 上,且12PF F ∆是等腰三角形,其周长为22,则双曲线C 的离心率为( )A .89B .83C .149D .1433.已知过抛物线()220y px p =>的焦点F 的直线交抛物线于A ,B 两点,线段AB 的延长线交抛物线的准线于点M .若2BM =,3AF =,则AB =( ) A .4B .5C .6D .74.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .25.(),0F c 是椭圆22221x y a b+=(0a b >>)的右焦点,过原点作一条倾斜角为60︒的直线交椭圆于P 、Q 两点,若2PQ c =,则椭圆的离心率为( )A .12B 1C D 6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .1112⎫⎪⎣⎭ D .11,112⎛⎫⎪⎝⎭7.已知1F 、2F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 作垂直于x 轴的直线交双曲线于A 、B 两点,若260AF B ∠<,则双曲线的离心率的范围是( )A. B.)+∞C.⎛ ⎝ D.8.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( ) A.2B1 C1D.2+9.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=10.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥( )A.⎛ ⎝⎦B.2]C.1⎤⎥⎝⎦D.1]11.以下关于圆锥曲线的命题中是真命题为( )A .设,AB 是两定点,k 为非零常数,若||||PA PB k -=,则动点P 的轨迹为双曲线的一支;B .过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;C .方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;D .双曲线221925x y -=与椭圆22135y x +=有相同的焦点.12.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D二、填空题13.已知双曲线()222210,0x y a b a b-=>>与圆222x y b +=在第二、四象限分别相交于两点A 、C ,点F 是该双曲线的右焦点,且2AF CF =,则该双曲线的离心率为______. 14.双曲线M 的焦点是12,F F ,若双曲线M 上存在点P ,使12PF F ∆是有一个内角为23π的等腰三角形,则M 的离心率是______;15.椭圆2214924x y +=上一点P 与椭圆的两个焦点12,F F 的连线相互垂直,则12PF F △的面积为______.16.已知直线1y x =-+与椭圆22221(0)x y a b a b+=>>相交于,A B 两点,且线段AB 的中点M 在直线20x y -=上,则椭圆的离心率为_______.17.已知双曲线C :()222210,0x y a b a b-=>>的右焦点2F 到渐近线的距离为4,且在双曲线C 上到2F 的距离为2的点有且仅有1个,则这个点到双曲线C 的左焦点1F 的距离为______.18.已知直线:10l x y -+=与椭圆221169x y+=交于,A B 两点,若椭圆上存在一点P 使得PAB ∆面积最大,则点P 的坐标为________.19.若椭圆2222:1(0)y x E a b a b +=>>的上、下焦点分别为1F 、2F ,双曲线222211615x y -=的一条渐近线与椭圆E 在第一象限交于点P ,线段2PF 中点的纵坐标为0,则椭圆E 的离心率为________.20.设点P 是抛物线24y x =上的一个动点,F 为抛物线的焦点,若点B 的坐标为()4,2,则PB PF +的最小值为________.三、解答题21.已知双曲线22:145x y C 的左、右顶点分别为A ,B ,过右焦点F 的直线l 与双曲线C 的右支交于P ,Q 两点(点P 在x 轴上方). (1)若3PF FQ =,求直线l 的方程; (2)设直线,AP BQ 的斜率分别为12,k k ,证明:12k k 为定值. 22.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8(1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.23.如图,已知抛物线22(0)y px p =>上一点(4,)(0)M a a >到抛物线焦点F 的距离为5.(1)求抛物线的方程及实数a 的值;(2)过点M 作抛物线的两条弦MA ,MB ,若MA ,MB 的斜率分别为1k ,2k ,且123k k +=,求证:直线AB 过定点,并求出这个定点的坐标.24.已知双曲线C 过点()4,3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.25.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由. 26.求下列曲线的标准方程.(1)求焦点在x 轴上,焦距为2,过点31,2P ⎛⎫⎪⎝⎭的椭圆的标准方程;(2)求与双曲线2212x y -=有公共焦点,且过点的双曲线标准方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意画出图形,结合图形建立关于c 、a 的关系式,再求离心率ce a=的值. 【详解】 解:如图所示,取1F M 的中点P ,则2122MF FF c ==,MP c a =-,1F P c a =-;又112NF MF =,则()14NF c a =-,242NF c a =-; 在2Rt NPF △中,22222NP PF NF +=, 在2Rt MPF △中,22222MP PF MF +=,得()()()()22224252c a c a c c a ---=--⎡⎤⎣⎦, 化简得223850c ac a -+=, 即()()350c a c a --=, 解得c a =或35c a =; 又1e >, ∴离心率53c e a ==. 故选:D .【点睛】本题考查求双曲线的离心率,解题关键是建立,a c 的等量关系,结合等腰三角形的性质与双曲线的定义可得.2.C解析:C 【分析】由题意画出图形,分类由三角形周长列式求得b ,进一步求得c ,则双曲线的离心率可求. 【详解】如图,由22219x y b-=,得229c b =+,29c b =+.设1||PF m =,2||PF n =, 由题意,6m n -=, 若2229n c b ==+26629m n b =+=++则2266922m n c b ++=++,解得b ∈∅; 若2229m c b ==+26296n m b =-=+.则2269622m n c b ++=+=,解得21159b =.∴222115196999c a b =+=+=,143c =. 1414339c e a ∴===.【点睛】本题考查了双曲线的简单性质,考查了运算求解能力和推理论证能力,属于中档题.3.A解析:A 【分析】设A 、B 在准线上的射影分别为为C 、N ,通过三角形相似,求|BF |,再求出||AB 即可. 【详解】解:设A 、B 在准线上的射影分别为为C 、N ,过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点, 线段AB 的延长线交抛物线的准线l 于点M ,准线与x 轴的交点为H , ||2BM =,||3AF =,∴由BNM AMC ∽,可得||23||5BF BF =+, ||1BF ∴=,||||||4AB AF FB ∴=+=,故选:A .【点睛】本题考查抛物线的定义及其应用,抛物线的几何性质,转化化归的思想方法,属于中档题.4.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2222c a b =+. 【详解】由题意,渐近线方程为by x a=±,∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =, ∴222242224c a b a a=+=+≥当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】设椭圆的左焦点为1F ,连接1,PF PF ,由题 可得1PF PF ⊥且POF 是等边三角形,表示出1,PF PF ,利用勾股定理建立关系即可求出. 【详解】如图所示,设椭圆的左焦点为1F ,连接1,PFPF , 2PQ c =,则PO c =,则1PF PF ⊥,又60POF ∠=,则POF 是等边三角形,即PF c =,12PF PF a +=,12PF a c ∴=-,又22211PF PFF F +=,即()()22222a c c c -+=,整理可得22220c ac a +-=,即2220e e +-=,解得31e =-. 故选:B.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据r >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C7.A解析:A 【分析】求出||AB ,根据212||2tan 2||AB AF B F F ∠=tan 30<可得2330e --<,再结合1e >可解得结果. 【详解】因为1(,0)F c -,由22221x c x y a b =-⎧⎪⎨-=⎪⎩解得2b y a =±,所以22||b AB a =,因为260AF B ∠<,所以212||2tan 2||AB AF B F F ∠=tan 30<,所以2323b ac <,所以22323c a ac -<,所以21323e e -<,即232330e e --<, 解得333e -<<,又1e >,所以13e <<. 故选:A 【点睛】关键点点睛:求离心率的取值范围的关键是得到,,a b c 的不等式,根据212||2tan 2||AB AF B F F ∠=tan 30<可得所要的不等式.8.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为1212222122222PF F QF F S PF a t S QF a t a -=====+--△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.9.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.10.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围,进而求得()222422c a c <≤-,再求离心率的范围即可【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由113QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()222113e e e-<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题11.C解析:C 【分析】①根据双曲线定义可得出判断;②不妨在单位圆x 2+y 2=1中,用代入法求得P 的轨迹方程可得判断;③求出方程22520x x -+=根,利用椭圆与双曲线的离心率的范围可得出判断; ④求出双曲线和椭圆的焦点坐标可得答案;【详解】①设A 、B 为两个定点,k 为非零常数,当||||||PA PB k AB -==时,则动点P 的轨迹是以A 为端点的一条射线线,因此不正确; ②∵()12OP OA OB =+,∴P 为弦AB 的中点,不妨在单位圆x 2+y 2=1中,定点A (1,0),动点11(,)B x y ,设P (x ,y ),用代入法求得P 的轨迹方程是212x ⎛⎫- ⎪⎝⎭+y 2=14,∴点P 的轨迹为圆,错误;③解方程22520x x -+=可得两根12,2.因此12可以作为椭圆的离心率,2可以作为双曲线的离心率,因此方程的两根可分别作为椭圆和双曲线的离心率,正确;④由双曲线221925x y -=可得c ,其焦点(,同理可得椭圆22135y x +=焦点为(0,,因此没有相同的焦点,错误; 综上可知:其中真命题的序号为 ③. 故选:C . 【点睛】本题综合考查了圆锥曲线的定义、标准方程及其性质,考查了推理能力,属于中档题.12.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =. 5ce a∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.二、填空题13.【分析】画出图形结合双曲线的性质判断四边形的形状结合双曲线的定义求出三角形的边长通过勾股定理转化求解双曲线的离心率即可【详解】解:双曲线的右焦点为左焦点为根据对称性可知是平行四边形所以又点在双曲线上 解析:222【分析】画出图形,结合双曲线的性质判断四边形的形状,结合双曲线的定义求出三角形的边长,通过勾股定理转化求解双曲线的离心率即可. 【详解】解:双曲线的右焦点为F ,左焦点为E ,根据对称性可知AFCE 是平行四边形,所以 ||2||2||AF CF AE ==,又点A 在双曲线上,所以||||2AF AE a -=,因为||2||AF CF =,所以||||2||||2AF AE CF CF a -=-=,所以||2CF a =,在三角形OFC 中,||2FC a =,||OC b =,||OF c =,||4AF a =, 可得222162cos a b c bc AOF =+-∠, 22242cos a b c bc COF =+-∠,可得22222202242a b c c a =+=-, 即:22112a c =,所以双曲线的离心率为:22e =. 故答案为:222.【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,属于中档题.14.【分析】根据双曲线的对称性可知等腰三角形的腰应该为与或与不妨设等腰三角形的腰为与故可得到的值再根据等腰三角形的内角为求出的值利用双曲线的定义可得双曲线的离心率【详解】解:根据双曲线的对称性可知等腰三 31+ 【分析】根据双曲线的对称性可知,等腰三角形的腰应该为2PF 与12F F 或1PF 与12F F ,不妨设等腰三角形的腰为2PF 与12F F ,故可得到2PF 的值,再根据等腰三角形的内角为23π,求出1PF 的值,利用双曲线的定义可得双曲线的离心率.【详解】解:根据双曲线的对称性可知,等腰三角形的两个腰应为2PF 与12F F 或1PF 与12F F , 不妨设等腰三角形的腰为2PF 与12F F ,且点P 在第一象限, 故22PF c =, 等腰12PF F ∆有一内角为23π, 即2123PF F π∠=, 由余弦定理可得,()()cos2212PF 2c 2c 22c 2c 23c 3π=+-•••=, 由双曲线的定义可得,||12PF PF 23c 2c 2a -=-=,即(31)c a =,解得:e = 【点睛】本题考查了双曲线的定义、性质等知识,解题的关键是要能准确判断出等腰三角形的腰所在的位置.15.24【分析】设由结合椭圆定义可求得从而易得三角形面积【详解】椭圆中设由则又∴∴故答案为:24【点睛】本题考查椭圆的焦点三角形面积问题考查椭圆的定义属于基础题解析:24 【分析】设12,PF m PF n ==,由12PFPF ⊥结合椭圆定义可求得mn ,从而易得三角形面积. 【详解】椭圆2214924x y +=中7a =,b =5c =,设12,PF m PF n ==,由12PFPF ⊥,则()2222100m n c +==,又214m n a +==, 2224100214m n c m n a ⎧+==⎨+==⎩,∴2222()()141004822m n m n mn +-+-===, ∴121242PF F S mn ==△. 故答案为:24. 【点睛】本题考查椭圆的焦点三角形面积问题,考查椭圆的定义,属于基础题.16.【分析】设联立直线与椭圆的方程利用韦达定理求得线段的中点M 的坐标根据点M 在直线上求解【详解】设由得由韦达定理得所以线段的中点M 又M 在直线上所以即所以解得故答案为:【点睛】本题主要考查直线与椭圆的位置解析:2【分析】设()()1122,,,A x y B x y ,联立直线与椭圆的方程,利用韦达定理求得线段AB 的中点M 的坐标,根据点M 在直线20x y -=上求解. 【详解】设()()1122,,,A x y B x y ,由222211y x x y ab =-+⎧⎪⎨+=⎪⎩得()222222220a b x a x a a b +-+-=,由韦达定理得22221221222222,,10a b x x y y a b a ba b∆,所以线段AB 的中点M222222,a b a ba b ,又M 在直线20x y -=上, 所以22222220a b a b a b ,即2222222a b a c ==-, 所以222a c =,解得e =【点睛】本题主要考查直线与椭圆的位置关系,离心率的求法以及弦中点问题,还考查了运算求解的能力,属于中档题.17.8【分析】双曲线:的右焦点到渐近线的距离为4可得的值由条件以为圆心2为半径的圆与双曲线仅有1个交点由双曲线和该圆都是关于轴对称的所以这个点只能是双曲线的右顶点即根据可求得答案【详解】由题意可得双曲线解析:8 【分析】双曲线C :()222210,0x y a b a b-=>>的右焦点2F 到渐近线的距离为4,可得b 的值,由条件以2F 为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于x 轴对称的,所以这个点只能是双曲线的右顶点.即2c a -=,根据2222++16c a b a ==可求得答案. 【详解】由题意可得双曲线的一条渐近线方程为by x a=, 由焦点2F 到渐近线的距离为44=,即4b =.双曲线C 上到2F 的距离为2的点有且仅有1个,即以2F 为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于x 轴对称的,所以这个点只能是双曲线的右顶点. 所以2c a -=,又2222++16c a b a ==即2216c a -=,即()()16c a c a -+=,所以8c a +=. 所以双曲线的右顶点到左焦点1F 的距离为8c a +=. 所以这个点到双曲线C 的左焦点1F 的距离为8. 故答案为:8 【点睛】本题考查双曲线的性质,属于中档题.18.【分析】先设与直线平行的直线求出直线与圆锥曲线相切时的直线方程再求两平行线的最大距离即可根据面积公式求出面积最大值【详解】解:由题意可得弦长为定值要使面积最大则只要点到直线的距离最大当平行于直线的直解析:169,55⎛⎫- ⎪⎝⎭【分析】先设与直线:10l x y -+=平行的直线:0l x y m '-+=,求出直线与圆锥曲线相切时的直线方程,再求两平行线的最大距离,即可根据面积公式求出PAB ∆面积最大值. 【详解】解:由题意可得弦长AB 为定值,要使PAB ∆面积最大, 则只要点P 到直线:10l x y -+=的距离最大, 当平行于直线l 的直线与椭圆相切时, 对应的切点到直线l 的距离最大或最小. 设直线:0l x y m '-+=直线与椭圆联立得22:01169l x y m x y -+='⎧⎪⎨+=⎪⎩, 化简得222532161440x mx m ++-=,则()22(32)425161440m m ∆=-⨯-=,解得5m =±.当5m =时,直线l '与直线l的距离为d == 当5m =-时,直线l '与直线l的距离为d ==∴当5m =-时, 2251602560x x -+=,解得165x =, 代入直线:50l x y '--=,解得95y =- 即点P 的为坐标169,55⎛⎫-⎪⎝⎭.故答案为: 169,55⎛⎫- ⎪⎝⎭ 【点睛】本题主要考查直线与圆锥曲线的位置关系,考查了直线与椭圆交点坐标,是中档型的综合题.19.【分析】求出椭圆的焦点坐标利用已知条件求解点坐标再代入双曲线的渐近线方程转化求解椭圆的离心率即得【详解】由题可得点由线段中点的纵坐标为0得点的纵坐标为又点在椭圆上且在第一象限则有解得点的横坐标为由双解析:35【分析】求出椭圆的焦点坐标,利用已知条件,求解P 点坐标,再代入双曲线222211615x y -=的渐近线方程,转化求解椭圆的离心率即得. 【详解】由题可得点2(0,)F c -,由线段2PF 中点的纵坐标为0,得点P 的纵坐标为c ,又点P 在椭圆上且在第一象限,则有22221c x a b +=,解得点P 的横坐标为2b a ,由双曲线222211615x y -=,得渐近线1516y x =与椭圆交于点2(,)P b c a ,则有21516b c a =,整理得2215()160a c ac --=,即215(1)160e e --=,由01e <<,得35e =.故答案为:35e = 【点睛】本题考查椭圆和双曲线的性质,属于中档题.20.【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求的最小值进而可推断出当三点共线时最小则答案可得【详解】设点在准线上的射影为则根据抛物线的定义可知所以要求取得最小值即求取得最小当三 解析:5【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,进而把问题转化为求PB PD +的最小值,进而可推断出当D 、P 、B 三点共线时PB PD +最小,则答案可得. 【详解】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,所以,要求PB PF +取得最小值,即求PB PD +取得最小, 当D 、P 、B 三点共线时PB PD +最小为()415--=. 故答案为:5. 【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D 、P 、B 三点共线时PB PD +最小是解题的关键,考查数形结合思想的应用,属于中等题. 三、解答题21.(1)22620x y --=;(2)证明见解析. 【分析】(1)设直线PQ 方程为3x my =+,()11,P x y ,()22,Q x y ,根据条件得出05m <<,分别求出P Q ,的纵坐标,由条件可得12PF yFQ y =可得答案. (2)由()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---,所以154APPBk k k == ,所以1225544PB PB PQ k k k k k k =⋅⋅=,要证12k k 为定值,只需证54PB BQ k k ⋅为定值,由()()121212122211BP BQ y y y y k k x x my my ⋅=⋅=--++,可得答案. 【详解】解:(1)设直线PQ 方程为3x my =+,()11,P x y ,()22,Q x y222235(3)4205420x my my y x y =+⎧⇒+-=⎨-=⎩()225430250m y my ⇒-++=由过右焦点F 的直线l 与双曲线C 的右支交于P ,Q 两点,则()()22222540300542505430425540m m m m m m ⎧-≠⎪-⎪>⎪-⎪⎨⎪<-⎪⎪∆=-⨯⨯->⎪⎩,205m ⇒<<由点P 在x 轴上方,则()()2212223020130201,254254m m m m y y m m --+-++==-- ()()222230201321123342230201321PF m m m m m FQ m m m m --+++==-⇒=⇒==--++--+ ∴直线l 方程为23226204x y x y =+⇒--=(2)由方程可得()()2,0,2,0A B -,设()11,P x y ,()22,Q x y 则()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---, 所以154AP PBk k k ==,所以1225544PB PB PQ k k k k k k =⋅⋅= 要证12k k 为定值,只需证54PB BQ k k ⋅为定值由(1)可知1223054my y m -+-=,1222554y y m =- ()()121212122211BP BQ y y y y k k x x my my ⋅=⋅=--++()2222121222252554542530115454m m mm y y m y y m m m m --==-+++⋅+⋅+--22225252530544m m m ==--+-∴125414255k k ⎛⎫=⋅-=- ⎪⎝⎭为定值. 【点睛】关键点睛:本题考查直线与双曲线的位置关系求直线方程和考查定值问题,解答本题的关键是先得出()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---,所以154AP PB k k k == ,所以1225544PB PB PQ k k k k k k =⋅⋅=,要证12k k 为定值,只需证54PB BQ k k ⋅为定值,属于中档题. 22.(1)2214x y +=;(2)存在圆心在原点的圆2245x y +=满足条件.【分析】(1)先利用椭圆定义得到48a =,结合离心率求得参数a ,c ,再解得b ,即得到方程;(2)先假设圆存在,设方程)(22201x y r r +=<<,讨论直线PQ 斜率存在时与椭圆有两个交点满足题意,结合直线PQ 是圆的切线,解得半径,再验证斜率不存在该圆也满足题意,即得结果. 【详解】解:(1)结合椭圆的定义可知,1AF B △的周长为4a,故48a c a =⎧⎪⎨=⎪⎩,解得2a c =⎧⎪⎨=⎪⎩ ∴2221b a c =-=,故椭圆C 的方程为2214x y +=;(2)假设满足条件的圆存在,其方程为)(22201x y r r +=<<,当直线PQ 的斜率存在时,设其方程为y kx t =+,由2214y kx t x y =+⎧⎪⎨+=⎪⎩,消去y 整理得)(222148440k x ktx t +++-=. 设)(11,P x y ,)(22,Q x y , 则())()(2228414440kt kt∆=-+->,即2214<+t k ,122814kt x x k +=-+,21224414t x x k-=+.① ∵OP OQ ⊥,∴12120x x y y +=.又11y kx t =+,22y kx t =+.∴)()(12120x x kx t kx t +++=,即)()(22121210k x x kt x x t ++++=.②将①代入②得)()(2222222144801414k t k t t kk +--+=++,即)(2224115t k k =+<+. ∵直线PQ 与圆222x y r +=相切,∴圆心()0,0到直线y kx t =+的距离d 等于半径r ,即)(0,15r d ====, ∴存在圆2245x y +=满足条件. 当直线PQ 的斜率不存在时,圆2245x y +=也满足条件. 综上所述,存在圆心在原点的圆2245x y +=使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥. 【点睛】 思路点睛:圆锥曲线中求与直线相关的问题,通常需要联立方程,得到二次方程后利用韦达定理、结合题中条件(比如斜率关系,向量关系,距离关系,面积等)直接计算,即可求出结果,运算量较大.23.(1)24y x =;4a =;(2)证明见解析;定点48,33⎛⎫- ⎪⎝⎭. 【分析】(1)由抛物线的定义可得求出2p =,再代入4x =可求出a ; (2)将()11,A x y ,()22,B x y 代入抛物线可得1212124y y k x x y y -==-+,由123k k +=可得()121281633y y y y =-+-,即可得出定点. 【详解】(1)由题意,452pMF =+=,故2p =,24y x =; 令4x =,可得4y =±,故4a =.(2)设()11,A x y ,()22,B x y ,设直线AB 斜率为k ,联立方程21122244y x y x ⎧=⎨=⎩,两式相减得22121244y y x x -=-,即1212124y y k x x y y -==-+, 故直线AB 方程为()21111244y y y k x x x y y ⎛⎫-=-=- ⎪+⎝⎭,即1212124y y y x y y y y =-++;1144MA k k y ==+,2244MB k k y ==+, ∴121244344MA MB k k k k y y +=+=+=++,即()121281633y y y y =-+-; 因此,直线AB 为12121212444833y y y x x y y y y y y ⎛⎫=-=++ ⎪+++⎝⎭经过定点48,33⎛⎫- ⎪⎝⎭. 【点睛】本题考查抛物线中直线过定点问题,解题的关键是得出直线斜率124k y y =+,由123k k +=得出()121281633y y y y =-+-. 24.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠,设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.25.(1)2212x y +=;(2)存在;1)y x =-.【分析】(1)由余弦定理可得12d d +=.(2)设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=,先假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,与椭圆方程联立,韦达定理代入求出k 的值,再检验斜率不存在的情况.【详解】(1)当0θ≠时,在ABM 中,由余弦定理得:22121242cos2d d d d θ=+-.又212cos1d d θ=,整理得,12d d +=所以点M 的轨迹E 是以(1,0)A -和(1,0)B 为焦点,长轴长为个端点)又当点M 为该椭圆的长轴的两个端点时,0θ=,也满足212cos1d d θ=.所以点M 的轨迹E 的方程是2212x y +=.(2)假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222124220k x k x k +-+-= 设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,由韦达定理得,2122412k x x k +=+,21222212k x x k-=+. 由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=.又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦, 整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++.代入整理得:22222222222410121212k k k k k k k ⎛⎫--+-+= ⎪+++⎝⎭,即k = 当直线l 的斜率不存在时,直线l 的方程为1x =,此时P ⎛ ⎝⎭、1,Q ⎛ ⎝⎭,经验证0OP OQ ⋅≠不满足题意.综上所述,所求直线l存在,其方程为1)y x =-. 【点睛】关键点睛:本题考查求轨迹方程和根据条件求直线方程,解答本题的关键是由以线段PQ 为直径的圆过原点,得0OP OQ ⋅=,即12120x x y y +=,转化为方程联立韦达定理代入求解,将条件转化为向量的数量积为0,进而转化为利用韦达定理求解的方法,属于中档题.26.(1)22143x y +=;(2)2212y x -=. 【分析】(1)由题意知1c =,根据椭圆的定义求出2a =,根据222b a c =-得到23b =,从而可得椭圆的标准方程;(2)根据2212x y -=求出焦点坐标,设所求双曲线的标准方程为22221(,0)x y m n m n -=>,代入点并利用223m n +=可求得1m =,n =而可得结果. 【详解】(1)由题意知1c =,焦点1(1,0)F -,2(1,0)F ,根据椭圆定义可得12||||2PF PF a +=2a =,所以24a =,2a =,所以222413b a c =-=-=,故椭圆C 的方程为22143x y +=.(2)由2212x y -=得222,1a b ==,所以222213c a b =+=+=,所以c =所以双曲线2212x y -=双曲线的焦点为(,设双曲线的方程为22221(,0)x y m n m n-=>,可得223m n +=,将点代入双曲线方程可得,22221m n -=,解得1m =,n =即有所求双曲线的方程为:2212y x -=.【点睛】关键点点睛:第一问利用椭圆的定义求出a 是解题关键;第二问根据两个双曲线的半焦距相等求解是解题关键.。

(北师大版)武汉市高中数学选修2-1第三章《圆锥曲线与方程》检测卷(含答案解析)

(北师大版)武汉市高中数学选修2-1第三章《圆锥曲线与方程》检测卷(含答案解析)

一、选择题1.已知离心率2e =2222:1(0,0)x y C a b a b -=>>的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O A 、两点.若AOF ∆的面积为1,则实数a 的值为( )A .1BC .2D .42.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )AB .2C.2D .13.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .254.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =5.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( ) A.B .2CD6.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为( ) A .14B .12C .2D .47.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,AOBp =( )A .1B .32C .2D .38.已知抛物线22(0)y px p =>的焦点为F ,点P 在抛物线上,点9,02Q p ⎛⎫⎪⎝⎭.若2QF PF =,且PQF △的面积为83,则p =( )A .1B .2C .3D .49.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A .3B .23C .233D .43310.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .411.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||3||QF PF ≥( )A .610,2⎛⎤- ⎥⎝⎦B .(0,62]-C .2,312⎛⎤- ⎥⎝⎦D .(0,31]-12.已知双曲线()222210,0x y a b a b-=>>的一条渐近线经过点()2,6,则该双曲线的离心率为( )A .2B .2C .3D .3二、填空题13.已知A 、B 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右顶点,M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,始终满足()()12fk f k =,其中()ln 2x f x ⎛⎫= ⎪⎝⎭,则C 的离心率为______ .14.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______. 15.曲线C 是平面内与两个定点()11,0F -和()21,0F 的距离的积等于常数()21aa >的点的轨.给出下列四个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则122PF PF a +<;④若点P 在曲线C 上,则12FPF △的面积212S a ≤.其中,所有正确的序号是______. 16.我们知道:用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于__________.17.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.18.在平面直角坐标系xOy 中,若直线2y x =与椭圆()222210x ya b a b+=>>在第一象限内交于点P ,且以OP 为直径的圆恰好经过右焦点F ,则椭圆的离心率是______.19.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 在双曲线上,且不与顶点重合,过2F 作12F PF ∠的平分线的垂线,垂足为A ,若||2OA b =,则该双曲线的渐近线方程为_____________.20.已知为()0,1A -,当B 在曲线221y x =+上运动时,线段AB 的中点M 的轨迹方程是___________________.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C 的左、右焦点.(1)求椭圆C 的方程.(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF FB λ=,且点Q 满足QA QB λ=,求1PQF △面积的最小值. 22.已知A ,B 分别为椭圆()222:11x C y a a +=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=.(1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.23.如图,设圆2212x y +=与抛物线24x y =相交于A ,B 两点,F 为抛物线的焦点.(1)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P ,2P ,3P ,4P ,求1234PP P P +的值;(2)若直线m 与抛物线相交于M ,N 两点,且与圆相切,切点D 在劣弧AB 上,求MF NF +的取值范围.24.在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为12,过点(03,,且BMN ∆是椭圆C 的内接三角形.(1)若点B 为椭圆C 的上顶点,且原点O 为BMN ∆的垂心,求线段MN 的长; (2)若点B 为椭圆C 上的一动点,且原点O 为BMN ∆的重心,求原点O 到直线MN 距离的最小值.25.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积. 26.已知双曲线C 过点(3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】双曲线2222:1x y C a b-=的右焦点为F ,O 为坐标原点,以OF 为直径圆与双曲线C 的一条渐近线相交于O ,A 两点,所以FA OA ⊥,则FA b =,OA a =,AOF ∆的面积为1,可得1 12ab =,双曲线的离心率e =222225 4c a b a a +==, 即12b a =,解得1b =,2a =,故选C. 点睛:本题考查直线与圆锥曲线的位置关系的应用,双曲线的简单性质,考查了计算能力;利用双曲线的离心率求出渐近线方程,利用三角形中直径所对的圆周角为直角,可求得直角三角形AOF ∆的面积1 12ab =,结合离心率以及恒等式222c a b =+即可得到关于,,a b c 方程组求出a 即可;2.A解析:A 【分析】将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=,设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x , 由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+,结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x ,则223121k k⎛⎫+⋅=⎪⎝⎭,由0k >,可解得k = 故选:A. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.3.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.4.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.5.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭,因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a ===,3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.解析:B 【分析】设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆的方程联立,列出韦达定理,计算出12k k 的值,利用基本不等式可求得21221k k +的最小值. 【详解】设点()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=, 由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-,所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-, 而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m m m m -+==---+++,因此,222112211162k k k k +=+≥==, 当且仅当18k =±时,等号成立, 因此,21221k k +的最小值为12. 故选:B. 【点睛】关键点点睛:解本题的关键在于求得214AQ k k =-,进而利用韦达定理法求得1AQ k k ⋅为定值,再结合基本不等式求得最值.解析:C 【分析】求出双曲线的渐近线方程与抛物线22(0)y px p =>的准线方程,进而求出A ,B 两点的坐标,再由双曲线的离心率为2,AOB p 的值. 【详解】解:双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线方程是b y x a=±,又抛物线22(0)y px p =>的准线方程是2px =-, 故A ,B 两点的纵坐标分别是2pb y a=±,又由双曲线的离心率为2,所以2c a =2=,则b a =A ,B 两点的纵坐标分别是2=±y ,又AOB=,得2p =, 故选:C . 【点睛】本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A ,B 两点的坐标,考查离心率公式和三角形的面积公式.8.B解析:B 【分析】根据题意得||4QF p =,||2PF p =,进而根据抛物线的定义得P 点的横坐标为32P x p =,设点P 在x 轴上方,故P ,再结合三角形PQF △面积即可得答案.【详解】 解:由条件知(,0)2p F ,所以||4QF p =,所以1||||22PF QF p ==, 由抛物线的准线为2p x =-,及抛物线的定义可知,P 点的横坐标为3222p p p -=,不妨设点P 在x 轴上方,则P ,所以142PQFSp =⨯=2p =. 故选:B 【点睛】本题解题的关键在于根据抛物线的定义得P 点的横坐标为32P x p =,进而求出P 的纵坐标并结合三角形PQF △面积求解,考查运算求解能力,是中档题.9.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以||k =,又||1OF =,所以OPQ △的面积S =1211||||18||22OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.10.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以1118021802180AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(002A x px ,则002AT px k =,则直线002:x AT x x p =-,代入抛物线方程化简得0202220x px py p +=-, 则0020228x p ppx ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确. 故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.11.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围, 进而求得()2224232c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e -<≤-,所以,2142e <≤-1e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题12.A解析:A 【分析】求出双曲线的渐近线方程,将点代入即可得ba=得离心率. 【详解】双曲线()222210,0x y a b a b-=>>的一条渐近线为b y x a =过第一象限,所以点在渐近线b y x a =b a =,所以ba=所以2c e a ==. 故选:A 【点睛】本题主要考查了求双曲线的离心率,属于中档题.二、填空题13.【分析】设出的坐标利用直线的斜率的乘积结合已知条件推出斜率乘积转化求解双曲线的离心率即可【详解】设由M 是双曲线上异于AB 的动点若直线MAMB 的斜率分别为则又则由得因为所以可得显然不成立;则所以所以故【分析】设出,,M A B 的坐标,利用直线的斜率的乘积,结合已知条件,推出斜率乘积,转化求解双曲线的离心率即可. 【详解】设()()(),,,0,,0M m n A a B a -,由M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,则21222n n n k k m a m a m a ⋅=⋅=+--, 又22221m n a b -=,则2212222n b k k m a a==⋅-, 由()ln 2x f x ⎛⎫= ⎪⎝⎭,得()()1212ln ,ln 22k k fk f k ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 因为()()12fk f k =,所以21ln ln 22k k ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 可得2122k k=显然不成立; 则2211ln ln ln 02222k k k k ⎛⎫⎛⎫⎛⎫+=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以21211224k k k k ⋅⇒==,所以c e a ===【点睛】方法点睛:求双曲线离心率的值的常用方法:由,a b 或,a c 的值,得e === 列出含有,,a b c 的齐次方程,借助222b c a =-消去b ,然后转化为关于e 的方程求解;14.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±15.②④【分析】由题意曲线是平面内与两个定点和的距离的积等于常数利用直接法设动点坐标为及可得到动点的轨迹方程然后由方程特点即可加以判断【详解】解:对于①由题意设动点坐标为则利用题意及两点间的距离公式的得解析:②④ 【分析】由题意曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >,利用直接法,设动点坐标为(,)x y ,及可得到动点的轨迹方程,然后由方程特点即可加以判断. 【详解】解:对于①,由题意设动点坐标为(,)x y ,则利用题意及两点间的距离公式的得:22224[(1)][(1)]x y x y a ++-+=,将原点代入验证,此方程不过原点,所以①错; 对于②,把方程中的x 被x -代换,y 被y - 代换,方程不变,故此曲线关于原点对称,故②正确;对于③,221y x =--,224211y x a ∴+=--,P ∴到原点的距离不,当P 在y 轴时取等号,此时12PF PF a ==,122PF PF a +=故③错误;对于④,由题意知点P 在曲线C 上,则△12F PF 的面积12122F PF Sy y =⨯⨯=,由①知221y x =--或221y x =--t ,则2424t a x -=,24442211(2)4444t a a a y t t -∴=--+=--+,1222212F PF S y a ∴=,故④正确.故答案为:②④. 【点睛】本题考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性及利用解析式选择换元法求出值域.16.【分析】如图所示过点作垂足为由于是母线的中点圆锥的底面半径和高均为2可得在平面内建立直角坐标系设抛物线的方程为为抛物线的焦点可得代入解出即可【详解】解:如图所示过点作垂足为是母线的中点圆锥的底面半径【分析】如图所示,过点E 作EM AB ⊥,垂足为M .由于E 是母线PB 的中点,圆锥的底面半径和高均为2,可得1OM EM ==.OE =.在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点.可得)2C ,代入解出即可.【详解】解:如图所示,过点E 作EM AB ⊥,垂足为M .E 是母线PB 的中点,圆锥的底面半径和高均为2,1OM EM ∴==.2OE ∴=.在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点. 因为()2,2C,422p ∴=,解得2p =.2,02F ⎛⎫⎪ ⎪⎝⎭.即点F 为OE 的中点,∴该抛物线的焦点到其准线的距离为2,故答案为:2.【点睛】本题考查了圆锥的性质、抛物线的标准方程,考查了转变角度解决问题的能力,考查了推理能力与计算能力,属于中档题.17.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.18.【分析】由题意可得轴求得的坐标由在直线上结合离心率公式解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点可得轴令可得不妨设由在直线上可得即为由可得解得(负的舍去)故答案为:【点睛】本题考查椭圆的1. 【分析】由题意可得PF x ⊥轴,求得P 的坐标,由P 在直线2y x =上,结合离心率公式,解方程可得所求值. 【详解】解:以OP 为直径的圆恰好经过右焦点(c,0)F ,可得PF x ⊥轴,令x c =,可得2b y a =±=±,不妨设2(,)b P c a ,由2(,)b P c a 在直线2y x =上,可得22b c a=,即为2222a c b ac -==,由ce a=可得2210e e +-=,解得1e =(负的舍去).故答案为1. 【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出P 点的坐标.求离心率的做题思路是,根据题意求出,a c 或者列出一个关于,,a b c 的方程,由椭圆或双曲线的,,a b c 的关系,进而求解离心率.19.【分析】延长交于点连接由角平分线及垂直可知由双曲线的定义可知结合三角形的中位线性质可求出即进而可求渐近线的方程【详解】解:延长交于点连接由知由双曲线的定义知由可知则所以故答案为:【点睛】本题考查了双解析:12y x =±. 【分析】延长2F A 交1PF 于点Q ,连接OA ,由角平分线及垂直可知,2PF PQ =,由双曲线的定义可知12FQ a =,结合三角形的中位线性质,可求出1224FQ a OA b ===,即2a b =,进而可求渐近线的方程.【详解】解:延长2F A 交1PF 于点Q ,连接OA .由2,QPA F PA PA PA ∠=∠=知2PF PQ =. 由双曲线的定义知,12112PF PF PF PQ QF a -=-==,由122,FO F O QA F A ==,可知1242FQ OA b a === 则2a b =,所以12b y x x a =±=±. 故答案为: 12y x =±.【点睛】本题考查了双曲线的渐近线求解.难点在于构造辅助线,推出,a b 的关系.20.【分析】设出的坐标求出的坐标动点在抛物线上运动点满足抛物线方程代入求解即可得到的轨迹方程【详解】解:设的坐标由题意点与点所连线段的中点可知动点在抛物线上运动所以所以所以点与点所连线段的中的轨迹方程是 解析:24y x =【分析】设出M 的坐标,求出P 的坐标,动点P 在抛物线221y x =+上运动,点P 满足抛物线方程,代入求解,即可得到M 的轨迹方程. 【详解】解:设M 的坐标(,)x y ,由题意点B 与点(0,1)A -所连线段的中点M ,可知(2,21)B x y +,动点B 在抛物线221y x =+上运动,所以2212(2)1y x +=+,所以24y x =. 所以点B 与点(0,1)A -所连线段的中M 的轨迹方程是:24y x =. 故答案为:24y x =. 【点睛】本题考查点的轨迹方程的求法,相关点法,是常见的求轨迹方程的方法,注意中点坐标的应用,属于中档题.三、解答题21.(1)22143x y +=;(2)6.【分析】(1)根据椭圆的离心率为12e =,可得2234b a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程可得221914a b+=,解出22,a b 可得答案. (2)设直线1:1l x my =-,与椭圆方程联立得出韦达定理,由条件求出Q 点坐标,求出1QF 的长度,得出直线2l 的方程为:11x y m=--与直线1x =求出点P 坐标,得出1PF 长度,从而表示三角形面积,得出最值. 【详解】(1)由题意,得222221149141b e a a b ⎧=-=⎪⎪⎨⎪+=⎪⎩,解得:224,3a b ==,所以椭圆的方程为22143x y +=. (2)由(1)可得()11,0F -,若直线1l 的斜率为0,则2l 的方程为:1x =-与直线1x =无交点,不满足条件.设直线1:1l x my =-,若0m =,则1λ=则不满足QA QB λ=,所以0m ≠ 设()()()112200,,,,,A x y B x y Q x y ,由2234121x y x my ⎧+=⎨=-⎩,得:()2234690m y my +--=, 12122269,3434my y y y m m +==-++,因为11AF F B QA QBλλ⎧=⎨=⎩,即()()()()1122101020201,1,,,x y x y x x y y x x y y λλ⎧---=+⎪⎨--=--⎪⎩则12y y λ-=,()1020y y y y λ-=- 所以101220y y y y y y λ-=-=-,解得1201223y y y y y m==-+.于是1FQ =. 直线2l 的方程为:11x y m=-- 联立111x y mx ⎧=--⎪⎨⎪=⎩,解得(12)P m -,,所以1PF =. 所以()12113111362PQF m SFQ F P m m m +⎛⎫=⋅==+≥ ⎪ ⎪⎝⎭, 当且仅当1m =±时,()1min6PQF S =.【点睛】关键点睛:本题考查求椭圆的方程和椭圆中三角形面积的最值问题,解答本题的关键是根据向量条件得出1201223y y y y y m==-+,进而求出点的坐标,得到1QF 的长度,从而表示出三角形的面积,属于中档题.22.(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【分析】(1)根据向量数量积坐标运算公式求解即可得结果;(2)设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点. 【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫ ⎪⎝⎭. 【点睛】求定点问题常见的方法有两种:(1)从特殊入手,求出定点,再证明这个点与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定点.23.(1)1234PP P P +=2)2,22⎡⎤⎣⎦. 【分析】(1)由题意可得直线l 的方程为1y x =+,设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则可得()()12342413PP P P x x x x +=+-+⎤⎦,然后分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组,消元后利用根与系数的关系,可得结果; (2)将圆的方程和抛物线方程联立方程组可求出A ,B 两点的坐标,设()00,D x y ,则切线00:12m x x y y +=,直线方程式与抛物线方程式联立方程组,消元后,再由根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,而02y ≤≤而可求出M N y y +的范围,进而可得MF NF +的取值范围. 【详解】解:由题意,()0,1F ,直线l 的方程为1y x =+设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则)1221PP x x =-,)3443P P x x =-,∴)()()123424132413PP P P x x x x x x x x +=+--=+-+⎤⎦故分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组:22112y x x y =+⎧⎨+=⎩;214y x x y=+⎧⎨=⎩,分别消去y ,整理得:222110x x +-=;2440x x --= ∴131x x +=-,244x x +=,∴1234PP P P +=(2)由222124x y x y⎧+=⎨=⎩解得:()2A -,()2B ,设()00,D x y ,则220012x y +=;切线00:12m x x y y +=,其中02y ≤≤;设(),M M M x y ,(),N N N x y ,则002124x x y y x y+=⎧⎨=⎩,消去x ,整理得: ()2220004241440y y x y y -++=,∴22000022200004244842448244M N x y y y y y y y y y +-++===+-∵02y ≤≤∴20M N y y ⎡⎤+∈⎣⎦∵2M N MF NF y y +=++,∴MF NF +的取值范围为2,22⎡⎤⎣⎦【点睛】关键点点睛:此题考查直线与圆的位置关系,考查直线与抛物线的位置关系,第2问解题的关键是将切线方程与抛物线方程联立方程组002124x x y y x y +=⎧⎨=⎩,进而利用根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,再利用抛物线的定义可求得MF NF +的取值范围,考查数学转化思想和计算能力,属于中档题 24.(12【分析】(1)根据题意,先求出椭圆的方程,由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON 求出线段MN 的长;(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,由斜率存在时根据()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-,由方程联立得出22443m k =+,再由点到直线的距离求出最值. 【详解】解:(1)设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+=-=,解得:y =, B ,M不重合,故y =213249x =,故2MN x ==(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处 由2OB =,则1OD =,则O 到直线MN 的距离为1;当MN 斜率存在时,设MN :y kx m =+,()11,M x y ,()22,N x y , 则1212,22x x y y D ++⎛⎫⎪⎝⎭,所以()1212,A x x y y ++, 所以()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-也即()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得:22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d ,则2222431144441m k d k k k +===-+++0k =时,min 32d =; 综上,原点O 到直线MN 距离的最小值为32.【点睛】关键点睛:本题考查椭圆的内接三角形的相关性质的应用,解答本题的关键是设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,根据点,,M N A 均在椭圆上,得出1212346x x y y +=-,由方程联立韦达定理得到22443m k =+,属于中档题.25.(1)228120x y x +-+=;(2319. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得22222(3)x y x y +=-+ ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则||2||2||||OM OM AM AM =⇒=,22222(3)x y x y +=-+ ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l 5,所以2EF == l所以12OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题. 求点的轨迹方程的常用方法之一:直译法——“四步一回头”, 四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ; (2)写出适合条件的点M 的集合(){}|P P M P M =; (3)将()P M “翻译”成代数方程(),0f x y =; (4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程.26.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C 过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠, 设()11,M x y ,()22,N x y ,∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.。

上海同济初级中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

上海同济初级中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.已知抛物线E :()220y px p =>的焦点为F ,准线为l ,经过点F 的直线交E 于A ,B 两点,过点A ,B 分别作l 的垂线,垂足分别为C ,D 两点,直线AB 交l 于G点,若3AF FB =,下述四个结论: ①CFDF②直线AB 的倾斜角为π4或3π4 ③F 是AG 的中点④AFC △为等边三角形 其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠4.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .25.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .256.已知三角形ABC 的三个顶点都在椭圆:22143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .3-C .1813-D .32-7.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C.D.8.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( ) A.y x = B.y = C.y x = D.y =9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 CD10.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .1611.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D12.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-二、填空题13.已知椭圆2214x y P +=,是椭圆的上顶点,过点P 作直线l ,交椭圆于另一点A ,设点A 关于原点的对称点为B ,则PAB S的最大值为________.14.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且2AK AF =,则△AFK 的面积为 .15.双曲线221(0)x y mn m n-=≠的离心率为2,有一个焦点与抛物线24y x =的焦点重合,则m n ⋅的值为___________16.椭圆2214924x y +=上一点P 与椭圆的两个焦点12,F F 的连线相互垂直,则12PF F △的面积为______.17.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.18.某桥的桥洞呈抛物线形(如图),桥下水面宽16米,当水面上涨2米后达到警戒水位,水面宽变为12米,此时桥洞顶部距水面高度约为___________米(精确到0.1米)19.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F 、2F ,过1F 的直线与C 的左支交于M 、N 两点,若12MF F △是以1MF 为底边的等腰三角形,且1123MF NF =,则双曲线C 的离心率是________. 20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.已知抛物线E 的顶点为原点O ,焦点F 在x 轴正半轴,点()2,Q m 在抛物线E 上,且3QF =.(1)求抛物线E 的方程;(2)过点()2,0P 且斜率为()0k k >的直线l 与抛物线E 交于A ,B 两点,且线段AB 的中点横坐标为4,求ABO 的面积.22.设椭圆()222210x y a b a b+=>>的左焦点为F 2b =,其中A 为左顶点,O 为坐标原点.(1)求椭圆离心率e 的值;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线相切,圆心C 在直线1x =上,且//OC AP ,求椭圆方程.23.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,焦距为2.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 的上顶点,过点P 作两条相互垂直的直线1l ,2l 分别与椭圆相交于M 、N 两点,若4tan 3∠=PNM ,求直线1l 的方程. 附:多项式因式分解公式()()32238642322-+-=--+t t t t t t .24.已知F 是抛物线()2:20C y px p =>的焦点,()1,M t 是抛物线上一点,且32MF. (1)求抛物线C 的方程;(2)已知斜率存在的直线l 与抛物线C 交于A ,B 两点,若直线AF ,BF 的倾斜角互补,则直线l 是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.25.已知椭圆的焦点在x 轴上,一个顶点为()0,1,离心率e =,过椭圆的右焦点F 的直线l 与坐标轴不垂直,且交椭圆于A ,B 两点 (1)求椭圆的标准方程 (2)当直线l 的斜率为12时,求弦长AB 的值. 26.已知抛物线C :2y x =,过点1,0A 的直线交抛物线C 于()11,P x y ,()22,Q x y 两点,O 为坐标原点. (1)证明:OP OQ ⊥;(2)点()3,0B -,设直线PB ,QB 分别与抛物线C 交于另一点M ,N ,过点O 向直线MN 作垂线,垂足为D .是否存在定点E ,使得DE 为定值?若存在,求出点E 的坐标及DE ;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.D解析:D 【分析】由题意画出图形,由平面几何知识可得①正确;设出AB 的方程,与抛物线方程联立,可得A ,B 横坐标的积,结合已知向量等式求解A 的坐标,再求出AF 所在直线斜率,可得AB 的倾斜角,判断②错误,再结合选项可知D 正确.【详解】解:如图,由抛物线定义可知,AC AF =,BD BF =, 则AFC ACF CFO ∠=∠=∠,BFD BDF DFO ∠=∠=∠, 则2AFC BFD CFO DFO CFD π∠+∠=∠+∠=∠=,CF DF ∴⊥,故①正确;设AB 所在直线方程为()2p y k x =-, 联立2()22p y k x y px⎧=-⎪⎨⎪=⎩,得22222(2)04k p k x k p p x -++=.设1(A x ,1)y ,2(B x ,2)y ,则2124p x x =,又3AF FB =,∴123()22p px x +=+,即123x x p =+, 联立2121243p x x x x p⎧=⎪⎨⎪=+⎩ ,解得12px =-(舍)或132x p =,则13y p =,即3(,3)2A p p ,则333122FA Pk p p ==-,可得直线AB 的倾斜角为3π,④正确 由对称性,若A 在x 轴下方,则直线AB 的倾斜角为23π,故②错误. 由3(,3)2A p p ,(,0)2p F ,G 点的横坐标为2p -,可得F 是AG 的中点,故③正确;故选:D . 【点睛】本题考查抛物线的简单性质,考查数形结合的解题思想方法,考查运算求解能力,是中档题.3.D解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x ym+=上或椭圆内,【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x ym +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠. 故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.4.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论.因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.A解析:A 【分析】设()11,A x y ,()22,B x y ,()33,C x y ,()11,D s t ,()22,E s t ,()33,M s t ,利用A ,B在椭圆上,代入椭圆方程,两式相减得:111413t k s =-,同理可得:222413t k s =-,333413t k s =-,再利用已知条件即可得出结果. 【详解】设()11,A x y ,()22,B x y ,()33,C x y ,()11,D s t ,()22,E s t ,()33,M s t , 因为A ,B 在椭圆上,所以2211143x y +=,2222143x y +=, 两式相减得:121211121213344y y x x sk x x y y t -+==-⨯=-⨯-+, 即111413t k s =-, 同理可得222413t k s =-,333413t k s =-, 所以31212312311143t t tk k k s s s ⎛⎫++=-++ ⎪⎝⎭因为直线OD 、OE 、OM 的斜率之和为1, 所以12311144133k k k ++=-⨯=-, 故选:A. 【点睛】关键点睛:本题主要考查椭圆的简单性质的应用.利用平方差法转化求解斜率是解决本题的关键.7.A解析:A 【分析】设122F F c =,求出1AF,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则223b c a a =-=, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形,四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.8.C解析:C 【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b ,得渐近线方程. 【详解】由题意已知椭圆的焦点坐标为(6,0)±,即为双曲线的焦点坐标,双曲线中6c =, 渐近线方程为by x a=±,其中一条为0bx ay -=, 于是有226616b ba b ==+,1b =,∴5a =, ∴渐近线方程为55y x =±. 故选:C . 【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆.9.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H ,因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b a a c ,222422c aa a c ,223c a =,==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.10.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=c ∴= 故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.11.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =. 5ce a∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12,所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.二、填空题13.2【分析】由题意设直线的方程代入椭圆中求出点的坐标进而由题意得点的坐标再整理成用到均值不等式形式求出面积的最大值【详解】由题意可知直线的斜率一定存在因此设直线的方程为代入椭圆方程整理得所以所以所以由解析:2 【分析】由题意设直线PA 的方程代入椭圆中,求出点A 的坐标,进而由题意得点B 的坐标,PABS1||||2A B OP x x =-,再整理成用到均值不等式形式,求出面积的最大值. 【详解】由题意可知直线的斜率一定存在,因此设直线l 的方程为1y kx =+, 代入椭圆方程整理得22(14)80k x kx ++=, 所以2814kx k -=+,所以221414k y k -=+所以A 28(14k k -+,2214)14k k -+,由题意得B 28(14k k +,2241)14k k-+, 所以三角形PAB 的面积21116||||||2214A B k S OP x x k =-=+因为0k ≠, 所以118||821244PABSk k==+.故答案为:2. 【点睛】关键点睛:一是要构建三角形面积的方案,采用了割补思想,二是在求最值时转化为基本不等式问题,这些都是解决本问题的关键.14.【详解】由双曲线得右焦点为即为抛物线的焦点∴解得∴抛物线的方程为其准线方程为过点作准线垂足为点则∴∴∴∴ 解析:32【详解】由双曲线22179x y -=得右焦点为()40,即为抛物线22y px = 的焦点,∴42p = ,解得8p = .∴抛物线的方程为216y x = .其准线方程为()440x K =-∴-,, .过点A 作AM ⊥准线,垂足为点M .则AM AF =.∴AK =.∴45MAK ∠=︒.∴KF AF =.∴221183222AKFSKF ==⨯=. 15.【分析】由题即可求得对的正负分类即可表示出再利用双曲线离心率为2列方程即可求得问题得解【详解】由题可得:抛物线的焦点坐标为所以双曲线中方程表示双曲线所以同号当同正时则解得:则此时当同负时则解得:则此 解析:316【分析】由题即可求得1c =,对,m n 的正负分类,即可表示出22,a b ,再利用双曲线离心率为2列方程,即可求得,m n ,问题得解. 【详解】由题可得:抛物线24y x =的焦点坐标为()1,0, 所以双曲线中1c =方程()2210x y mn m n -=≠表示双曲线所以,m n 同号.当,m n 同正时,54a b =-,则2c ea ===,解得:14m = 则222314n b c a m ==-=-=,此时1334416m n ⋅=⨯=. 当,m n 同负时,22,a n b m =-=-,则2c ea ===,解得:14n =- 则222314m b c a n -==-=+=,此时1334416m n ⎛⎫⎛⎫⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭ 综上所述:316m n ⋅= 【点睛】本题主要考查了抛物线的简单性质,还考查了双曲线的简单性质及分类思想,考查双曲线标准方程的,,a b c 的识别,考查计算能力,属于中档题.16.24【分析】设由结合椭圆定义可求得从而易得三角形面积【详解】椭圆中设由则又∴∴故答案为:24【点睛】本题考查椭圆的焦点三角形面积问题考查椭圆的定义属于基础题解析:24 【分析】设12,PF m PF n ==,由12PFPF ⊥结合椭圆定义可求得mn ,从而易得三角形面积. 【详解】椭圆2214924x y +=中7a =,b =5c =,设12,PF m PF n ==,由12PFPF ⊥,则()2222100m n c +==,又214m n a +==, 2224100214m n c m n a ⎧+==⎨+==⎩,∴2222()()141004822m n m n mn +-+-===, ∴121242PF F S mn ==△. 故答案为:24. 【点睛】本题考查椭圆的焦点三角形面积问题,考查椭圆的定义,属于基础题.17.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形,即在椭圆中有1221122222PF PF aPF a c PF F F c⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭. 故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.18.【分析】首先根据题意建立直角坐标系并设出抛物线方程根据抛物线上的点确定方程再通过求出点的坐标即可得到答案【详解】如图建立空间直角坐标系:设抛物线为由题知:抛物线过所以解得即抛物线方程为当时所以桥洞顶 解析:2.6【分析】首先根据题意建立直角坐标系并设出抛物线方程,根据抛物线上的点确定方程,再通过求出点的坐标,即可得到答案. 【详解】如图建立空间直角坐标系:设抛物线为2y ax c =+,由题知:抛物线过(6,2)D ,(8,0)B .所以362640a c a c +=⎧⎨+=⎩,解得114327a b ⎧=-⎪⎪⎨⎪=⎪⎩. 即抛物线方程为2132147y x =-+. 当0x =时,327y =. 所以桥洞顶部距水面高度约为32182 2.677-=≈米. 故答案为:2.6 【点睛】本题主要考查抛物线的应用,同时考查了待定系数法求方程,属于中档题.19.【详解】取的中点P 连接由题可知且所以又则在中在中得又所以故答案为:【点睛】本题考查双曲线离心率的求解涉及双曲线定义的应用考查计算能力属于中等题 解析:75【详解】取1F M 的中点P ,连接2PF ,由题可知212=MF F F ,且1132MF NF =, 所以22MF c =,MP c a =-,1F P c a =-. 又1132MF NF =,则()13NF c a =-,23NF c a =-. 在2Rt NPF △中,22222NP PF NF +=,在2Rt MPF △中,22222MP PF MF +=,得()()()()2222342c a c a c c a ---=--⎡⎤⎣⎦,2251270c ac a -+=,()()750a c a c --=.又1e >,所以75e =. 故答案为:75.【点睛】本题考查双曲线离心率的求解,涉及双曲线定义的应用,考查计算能力,属于中等题.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了 51【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=,∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.(1)24y x =;(2) 【分析】(1)设出抛物线方程,根据抛物线定义可列式求出;(2)设直线l 的方程为2x ty =+,联立直线与抛物线,根据中点横坐标求出t ,再求出底和高即可得出面积. 【详解】解:(1)依题意设抛物线E 的方程为()220y px p =>,则准线方程为2px =-, 由3QF =,依定义得232p+=,解得2p =, ∴抛物线E 的方程为24y x =.(2)设直线l 的方程为2x ty =+,()11,A x y ,()22,B x y ,由224x ty y x=+⎧⎨=⎩消x 得2480y ty --=, 则124y y t +=,128y y =-, ∵线段AB 的中点横坐标为4,∴1242x x +=, 即128x x +=,∴12228ty ty +++=,即()124t y y +=, 可得244t =,∴21t =,12y y -===故ABO的面积为1211222OP y y -=⨯⨯=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)12;(2)22413y x +=.【分析】(1)由已知等式结合222a b c =+可得离心率ca; (2)由(1)可得椭圆方程为2222143x y c c+=,写出直线l 方程,与椭圆方程联立可求得交点P 坐标,由//OC AP ,求得C 点坐标,这样由圆与x 轴相切得半径,再由圆与直线l 相切,可求得c ,从而得椭圆方程. 【详解】(1)设椭圆的半焦距为c由2222b a b c ⎧=⎪⎨=+⎪⎩得12c e a == (2)由(1)知2,a c b ==故椭圆方程为2222143x y c c+=,由题意(),0F c -,则直线l 的方程为()34y x c =+ 点P 的坐标满足()222214334x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简得到2276130x cx c +-=解得1=x c 或2137cx =-(舍)代入到l 的方程解得132y c =,所以3,2P c c ⎛⎫ ⎪⎝⎭由圆心C 在直线1x =上,可设()1,C t因为(),2,0OC AP A c -∥,故3212ct c c=+,可得12t=因为圆C 与x 轴相切,所以圆的半径长为12R =又由圆C 与l 相切,圆心到直线的距离12d =,可得12c =所以,1,a b ==椭圆的方程为22413y x +=.【点睛】关键点点睛:本题考查求椭圆的离心率,求椭圆方程,只要知道关于,,a b c 的齐次等式即可求得离心率,用参数c 写出椭圆方程和直线方程,求出交点P 的坐标,从而可得圆心坐标,利用直线与圆相切是解题关键.23.(1)2212x y +=;(2)21y x =-+或21y x =+.【分析】(1)结合焦距和离心率求得a ,c ,再计算b ,即得方程;(2)先判断直线斜率存在且不为零,先设斜率写直线方程,联立直线与椭圆求得弦长PM ,根据垂直设另一条直线,同理可求PN ,直角三角形利用比例关系求得斜率,即得结果. 【详解】解:(1)设椭圆的焦距为2c ,由题意得22c =,可得1c =,,可得c a =,代入1c =,可得a =故1b ==,所以椭圆C 的标准方程为2212x y +=;(2)依题意知直线1l ,2l 斜率存在且不为零,由点P 的坐标为()0,1,设直线PM 的方程为1y kx =+,联立方程22121x y y kx ⎧+=⎪⎨⎪=+⎩,解得01x y =⎧⎨=⎩或2224211221k x k ky k ⎧=-⎪⎪+⎨-⎪=⎪+⎩,可得点M 的坐标为222412,2121k k k k ⎛⎫-- ⎪++⎝⎭, 同理可知,直线PN 的方程为11y x k =-+,解得点N 的坐标为22242,22k k k k ⎛⎫- ⎪++⎝⎭,224121k PM k k =++,22221441122k k PN k k k +=+=++. 由43PMPN =()2222241242121341k k k k k k k +++==++, 由函数()()22221k k f k k +=+为偶函数,故只需要解方程()()22240213k k k k +=>+即可, 方程()()22240213k k k k +=>+可化为3238640k k k -+-=,因式分解为()()223220k k k --+=,而方程23220k k -+=中,判别式44320∆=-⨯⨯<,方程无解,故三次方程的解为2k =,故方程()2224213k k k +=+的解为2k =-或2k =,故直线1l 的方程为21y x =-+或21y x =+.【点睛】 思路点睛:直线与椭圆位置关系中的弦长问题,通常让直线与椭圆方程组方程组,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以2121AB k x =+-或12AB y y =-,解决相关问题.24.(1)22y x =;(2)过定点,定点为1,02⎛⎫- ⎪⎝⎭. 【分析】(1)根据抛物线的定义可知3122p MF =+=,求出p 后可得抛物线方程. (2) 设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,由条件可得0AF BF k k +=,化简即得()()1212121202kx x m x x y y ++-+=,联立直线与抛物线方程,利用韦达定理代入可得2k m =,从而得出答案. 【详解】(1)根据抛物线的定义,31122p MF p =+=⇒=, 抛物线的方程为22y x =,(2)设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y , 直线l 与抛物线的方程联立得()22222202y kx m k x km x m y x=+⎧⇒+-+=⎨=⎩, 12222km x x k -+=,2122m x x k=,则122y y k +=,122m y y k =, 又0AF BF k k +=,即121201122y y x x --+=--, ()122112102x y x y y y +-+=,()()1212121202kx x m x x y y ++-+=, 即22222120m km k m k k k-⋅+⋅-=,整理得:2k m =, 所以直线的方程为()21y m x =+, 即直线经过定点1,02⎛⎫- ⎪⎝⎭. 【点睛】关键点睛:本题考查求抛物线的方程和直线与抛物线的位置关系,考查直线过定点问题,解答本题的关键是由0AF BF k k +=,得到()()1212121202kx x m x x y y ++-+=,然后由方程联立韦达定理代入,属于中档题.25.(1)2215x y +=(2【分析】(1)根据顶点坐标得到1b =,根据离心率c e a ==,结合222a b c =+得到25a =,则可得椭圆的标准方程;(2)联立直线与椭圆,利用弦长公式可求得结果. 【详解】(1)依题意设椭圆的标准方程为22221x y a b+=(0)a b >>,则1b =,c a =,所以22221a b c ⎫=+=+⎪⎪⎝⎭,解得25a =, 所以椭圆的标准方程为2215x y +=.(2)由(1)知(2,0)F ,则直线:l 1(2)2y x =-, 联立221(2)215y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y 并整理得22009x x -=,设1122(,),(,)A x y B x y , 则12209x x +=,120x x =,所以||AB ==20299==. 【点睛】结论点睛:斜率为k 的直线l 与圆锥曲线交于11(,)A x y 、22(,)B x y两点,则弦长||AB =26.(1)证明见解析;(2)存在,满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【分析】(1)设直线:1PQ x my =+,联立方程组得到121y y =-,结合0OP OQ ⋅=,即可求解;(2)设过定点(),0a 的直线x ty a =+,联立方程组,根据根与系数的关系,得到34y y a =-与t 无关,得出对于抛物线2y x =上的两点的直线RS 过定点(),0a ,进而得到9M N y y =-,再结合Rt ODG ,即可求解.【详解】(1)设直线PQ :1x my =+,联立方程组21x my y x=+⎧⎨=⎩,整理得210y my --=,所以121y y =-,又由22121212120OP OQ x x y y y y y y ⋅=+=+=,所以OP OQ ⊥.(2)设过定点(),0a 的直线x ty a =+与抛物线有两个不同交点()33,x y ,()44,x y , 联立方程组2x ty a y x=+⎧⎨=⎩,整理得20y ty a --=,可得34y y a =-与t 无关, 即对于抛物线2y x =上的两点R ,S ,直线RS 过定点(),0a R ⇔,S 的纵坐标之积为a -,由此可得13M y y =,23N y y =,从而1299M N y y y y ==-, 于是可得直线MN 过点()9,0,记为G ,则OD DG ⊥, 取OG 中点为E ,则Rt ODG 中1922ED OG ==, 故存在满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【点睛】解答圆锥曲线的定点、定值问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.。

成都四川师范大学附属中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(含答案解析)

成都四川师范大学附属中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(含答案解析)

一、选择题1.已知离心率为2的双曲线22221(0,0)x y a b a b-=>>,过右焦点且垂直于x 轴的直线与双曲线交于A 、B 两点,设A 、B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且124d d +=,则双曲线的方程为( ) A .223144x y -=B .224134x y -=C .221124x y -=D .221412x y -=2.已知过抛物线()220y px p =>的焦点F 的直线交抛物线于A ,B 两点,线段AB 的延长线交抛物线的准线于点M .若2BM =,3AF =,则AB =( ) A .4B .5C .6D .73.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )A B .2C D .14.已知定圆222212:(3)1,:(3)49C x y C x y ++=-+=,定点(2,1)M ,动圆C 满足与1C 外切且与2C 内切,则1||CM CC +的最大值为( )A .8+B .8C .16D .165.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12F PF ∠的角平分线的垂线,垂足为H ,则OH =( ) A .1B .2C .3D .46.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,M 为E 上一点.若126MF F π∠=,21212F F F M F F +=,则E 的离心率为( )A B C 1 D 17.已知抛物线22y px =(0p >)的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,则点A 到y 轴的距离为( ) A .5B .4C .3D .28.设P 为椭圆22:1169x y C +=上的点,12,F F 分别是椭圆C 的左,右焦点,125PF PF ⋅=,则12PF F △的面积为( )A .3B .4C .5D .69.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C .D .10.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( )A .9B .9C .7112+D .831211.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A .45π B .34π C .(6π-D .54π 12.设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,12二、填空题13.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.14.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 且斜率为ab的直线l 与双曲线的右支交于点P ,与其中一条渐近线交于点M ,且有13PM MF =,则双曲线的渐近线方程为________.16.曲线412x x y y -=上的点到直线y 的距离的最大值是________.17.某桥的桥洞呈抛物线形(如图),桥下水面宽16米,当水面上涨2米后达到警戒水位,水面宽变为12米,此时桥洞顶部距水面高度约为___________米(精确到0.1米)18.已知抛物线24x y =的焦点为F ,准线为l ,过点(0,2)P 的直线依次交抛物线和准线l 于点,,A B C ,且满足2AP PB =,则BCF 与ACF 的面积的比值为________.19.在平面直角坐标系xOy 中,若直线2y x =与椭圆()222210x y a b a b+=>>在第一象限内交于点P ,且以OP 为直径的圆恰好经过右焦点F ,则椭圆的离心率是______. 20.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.三、解答题21.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.22.已知抛物线26y x =焦点为F ,一条直线过焦点与抛物线相交于A ,B 两点,直线的倾斜角为60.(1)求线段AB 的长度.(2)过点()3,0Q 的直线l 与抛物线C 交于M ,N 两点,点P 为直线3x =-上的任意一点,设直线PM ,PQ ,PN 的斜率分别为1k ,2k ,3k ,且满足132k k k μ+=,μ能否为定值?若为定值,求出μ的值;若不为定值,请说明理由.23.如图,A 为椭圆2212x y +=的下顶点,过点A 的直线l 交抛物线22(0)x py p =>于,B C 两点,C 是AB 的中点.(1) 求证:点C 的纵坐标是定值;(2)过点C 作与直线l 倾斜角互补的直线l '交椭圆于,M N 两点.问:p 为何值时,BMN △的面积最大?并求面积的最大值.24.已知椭圆C :()222210x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C 的方程;(2)过点()1,0Q 的直线l 与椭圆C 相交于,A B 两点.点()4,3P ,记直线PA ,PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程.25.如图,过抛物线24y x =的焦点F 任作直线l ,与抛物线交于A ,B 两点,AB 与x 轴不垂直,且点A 位于x 轴上方.AB 的垂直平分线与x 轴交于D 点.(1)若2,AF FB =求AB 所在的直线方程; (2)求证:||||AB DF 为定值.26.已知抛物线:()()()222:2,2,0,2,00C y x M a N a a =->,过点M 垂直于x 轴的垂线与抛物线C 交于,B C ,点,D E 满足(),01CE CN ND NB λλλ==<<(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点Q ,记BCQ △与DEN 的面积分别为12,S S ,求12S S 的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先将A 、B 到双曲线的同一条渐近线的距离之和转化成焦点到渐近线的距离,得到b 值,再根据离心率,即求出a ,得到双曲线方程. 【详解】设右焦点0F c (,),依题意F 是AB 的中点,渐近线为0bx ay ±=, F 22bc bcb ca b ==+ , 因为A 、B 到双曲线的同一条渐近线的距离分别为1d 和2d ,F 是AB 的中点,所以122d d b +=,所以24b =,故2b =,得224c a -= ,又因为离心率2c e a ==,得243a =, 故双曲线的方程为223144x y -=.故选:A. 【点睛】本题考查了双曲线的方程,属于中档题.2.A解析:A 【分析】设A 、B 在准线上的射影分别为为C 、N ,通过三角形相似,求|BF |,再求出||AB 即可. 【详解】解:设A 、B 在准线上的射影分别为为C 、N ,过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点, 线段AB 的延长线交抛物线的准线l 于点M ,准线与x 轴的交点为H , ||2BM =,||3AF =,∴由BNM AMC ∽,可得||23||5BF BF =+, ||1BF ∴=,||||||4AB AF FB ∴=+=,故选:A .【点睛】本题考查抛物线的定义及其应用,抛物线的几何性质,转化化归的思想方法,属于中档题.3.A解析:A 【分析】将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=,设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x , 由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+,结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x ,则223121k k⎛⎫+⋅=⎪⎝⎭,由0k >,可解得k = 故选:A. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.4.A解析:A 【分析】将动圆C 的轨迹方程表示出来:221167x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值. 【详解】定圆()221:31C x y ++=, 圆心()13,0C -,半径为1()222349C x y -+=:,圆心()23,0C ,半径为7.动圆C 满足与1C 外切且与2C 内切,设动圆半径为r ,则1212121,786CC r CC r CC CC C C =+=-⇒+=>= 所以动点C 的轨迹是以1C ,2C 为焦点,8为长轴的椭圆,设其方程为22221(0)x y a b a b+=>> 所以4a = ,2229c a b =-= ,则其方程为:221167x y +=由椭圆的定义可得12228CC CC CC a =-=- 所以128CM CC CM CC =+-+当2,,C C M 三点不共线时,有122888CM CC CM CC MC +-+=+<=当2,,C C M 三点共线时,有122888CM CC CM CC MC +-+=+≤=+综上有18CM CC +≤2,,C C M 三点共线且2CM CC >时取等号)故选:A【点睛】关键点睛:本题考查了轨迹方程,椭圆的性质,解答本题的关键是利用椭圆性质变换长度关系,即12228CC CC CC a =-=-,将所求问题转化为128CM CC CM CC =+-+,再分2,,C C M三点是否共线讨论,属于中档题.5.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键.6.B解析:B 【分析】先取线段1F M 中点P ,连接2PF ,得到2c P F =,结合正弦定理证明12F PF ∠是直角,求出12,F M MF ,再根据定义122FM MF a +=得到,a c 之间关系,即求得离心率. 【详解】如图椭圆中,取线段1F M 中点P ,连接2PF ,则21222F F F M F P+=,因为21212F F F M F F +=,所以21222F F F P c ==,则2c P F =,12F F P 中,1212122sin sin F F M P F F F P F F =∠∠,即122sin sin6c P F F c π=∠,解得12in 1s P F F =∠,又()120,F PF π∠∈,12F PF ∠=2π,故13F P c =,2PF 是线段1F M 的中垂线,故121223,2FM c MF F F c ===,结合椭圆定义122FM MF a +=, 故2322c c a +=,即)31c a =,故离心率31231c e a ===+. 故选:B. 【点睛】求椭圆离心率(或取值范围)的常见方法: (1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和椭圆的几何关系构建关于a ,b ,c 的方程和不等式,利用222b a c =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.7.C解析:C 【分析】可设出直线方程与抛物线方程联立,得出12x x ,再由焦半径公式表示出3AF FB =,得到1232x x =+,结合这两个关系式可求解13x = 【详解】已知焦点F 到准线的距离为2,得2p =, 可得24y x =设()()1122,,,A x y B x y ,:1AB x my =+ 与抛物线方程24y x =联立可得:2440y my --=124y y ∴=-,()21212116y y x x ∴==①又3AF FB =,()12131x x ∴+=+,1232x x ∴=+② 根据①②解得13x = 点A 到y 轴的距离为3 故选:C 【点睛】抛物线中焦半径公式如下:抛物线()220y px p =>的焦点为F ,()11,A x y 为抛物线上的一点,则12pAF x =+,解题时可灵活运用,减少计算难度.8.D解析:D 【分析】先根据椭圆的方程求得c ,进而求得12F F ,设出12,PF m PF n ==,利用余弦定理可求得mn 的值,最后利用三角形面积公式求解. 【详解】由椭圆方程有4,3a b ==,则c .设12,PF m PF n ==,由椭圆的定义有:28m n a +==.设12F PF θ∠=, 由125PF PF ⋅=,得cos 5mn θ=,由余弦定理得: 222cos 28m n mn θ+-= 解得:513,cos 13mn θ==,12sin 13θ∴=. 所以12PF F △的面积为1112sin 1362213S mn θ==⨯⨯=.故选:D 【点睛】本题考查椭圆的标准方程、椭圆的定义的应用,椭圆中求三角形的面积问题,是中档题.9.A解析:A 【分析】设122F F c =,求出1AF,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则223b c a a =-=, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形,四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.10.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 11.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为114252255O l d -=⨯=,圆C 面积的最小值为225455ππ⎛⎫= ⎪ ⎪⎝⎭.故本题的正确选项为A. 考点:抛物线定义. 12.C解析:C 【分析】先依题意判断椭圆焦点与圆心重合,再利用椭圆定义以及圆的性质得到最大值和最小值即可. 【详解】如图,由椭圆及圆的方程可知两圆圆心分别为()()4,0,4,0A B -,恰好是椭圆的两个焦点,由椭圆定义知210PA PB a +==,连接PA ,PB 分别与圆相交于M ,N 两点,此时PM PN +最小,最小值为28PA PB R +-=;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时PM PN +最大,最大值为212PA PB R ++=.故选:C . 【点睛】本题考查了椭圆的定义,考查了圆外的点到圆上的点的距离最值问题,属于中档题.二、填空题13.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.14.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为:【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以e =【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.15.【分析】根据题意求出点M 的坐标再根据求出点P 的坐标将点P 的坐标代入双曲线方程即可求出进而求出双曲线的渐近线方程【详解】设双曲线的左焦点为所以直线l 的方程为:由直线l 与其中一条渐近线交于点M 且有可知解解析:43y x =±【分析】根据题意求出点M 的坐标,再根据13PM MF =求出点P 的坐标,将点P 的坐标代入双曲线方程即可求出ba,进而求出双曲线的渐近线方程. 【详解】设双曲线的左焦点为(),0c -,所以直线l 的方程为:()ay x c b=+, 由直线l 与其中一条渐近线交于点M ,且有1PM=3MF ,可知()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩,解方程可得2a x c ab y c ⎧=-⎪⎪⎨⎪=⎪⎩,即2,a ab M c c ⎛⎫-⎪⎝⎭, 过点M 、P 分别作x 轴垂线,垂足为A 、B 因为13PM MF =,所以1114AF BF =,14AM BP =,不妨设04,ab P x c ⎛⎫ ⎪⎝⎭,则204c x a c c +-=,解得2043a x c c=-, 所以2443,a ab P c c c ⎛⎫- ⎪⎝⎭,将点2443,a ab P c c c ⎛⎫- ⎪⎝⎭代入()222210,0x y a b a b -=>>, 即()2222244310,0a ab c c c a b a b⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=>>, 整理可得22925c a =,即()222925a b a +=,解得22169b a =,43b a ∴=,所以双曲线的渐近线方程为43y x =±.故答案为:43y x =± 【点睛】本题考查了双曲线的简单几何性质,此题要求有较高的计算能力,属于中档题.16.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的解析:3【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y xy x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x 的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:222y x -故两平行线222y x =-2y x =之间的距离为0222633d +==. 所以曲线412x x y y -=上的点到直线2y x =的距离的最大值是263.故答案为:263.【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.17.【分析】首先根据题意建立直角坐标系并设出抛物线方程根据抛物线上的点确定方程再通过求出点的坐标即可得到答案【详解】如图建立空间直角坐标系:设抛物线为由题知:抛物线过所以解得即抛物线方程为当时所以桥洞顶 解析:2.6【分析】首先根据题意建立直角坐标系并设出抛物线方程,根据抛物线上的点确定方程,再通过求出点的坐标,即可得到答案. 【详解】如图建立空间直角坐标系:设抛物线为2y ax c =+,由题知:抛物线过(6,2)D ,(8,0)B .所以362640a c a c +=⎧⎨+=⎩,解得114327a b ⎧=-⎪⎪⎨⎪=⎪⎩. 即抛物线方程为2132147y x =-+. 当0x =时,327y =. 所以桥洞顶部距水面高度约为32182 2.677-=≈米. 故答案为:2.6 【点睛】本题主要考查抛物线的应用,同时考查了待定系数法求方程,属于中档题.18.【分析】设出的坐标及过点的直线的方程联立抛物线方程与过点的直线的方程利用根与系数的关系及得到的坐标通过三角形面积公式将与的面积之比转化为边长之比进而通过三角形相似解决问题即可【详解】解:设不妨设由题解析:25【分析】设出,A B 的坐标及过点P 的直线的方程,联立抛物线方程与过点P 的直线的方程,利用根与系数的关系及2AP PB =得到,A B 的坐标,通过三角形面积公式,将BCF 与ACF 的面积之比转化为边长之比,进而通过三角形相似解决问题即可. 【详解】解:设()()1122,,,A x y B x y ,不妨设12x x <,由题意得直线AB 的斜率存在,设过点(0,2)P 的直线方程为2y kx =+.联立方程得22,4,y kx x y =+⎧⎨=⎩整理得2480x kx --=,则128x x =-.由2AP PB =得,122x x =-,∴124,2,x x =-⎧⎨=⎩∴124,1.y y =⎧⎨=⎩过点,A B 向准线l 作垂线,垂足分别为,M N ,则211sin 122115sin 2BCF ACFCB CF BCF SCB BN y SCA AM y CA CF BCF ⋅⋅∠+=====+⋅⋅∠. 故答案为:25【点睛】本题主要考查抛物线的定义、几何性质,三角形面积的计算等,考查考生的运算求解能力、化归与转化能力.试题通过考查直线与拋物线的位置关系、平面向量、三角形的面积,体现了数学运算、直观想象等核心素养.19.【分析】由题意可得轴求得的坐标由在直线上结合离心率公式解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点可得轴令可得不妨设由在直线上可得即为由可得解得(负的舍去)故答案为:【点睛】本题考查椭圆的1. 【分析】由题意可得PF x ⊥轴,求得P 的坐标,由P 在直线2y x =上,结合离心率公式,解方程可得所求值. 【详解】解:以OP 为直径的圆恰好经过右焦点(c,0)F ,可得PF x ⊥轴,令x c =,可得2b y a =±=±,不妨设2(,)b Pc a ,由2(,)b P c a 在直线2y x =上,可得22b c a=, 即为2222a c b ac -==,由ce a=可得2210e e +-=,解得1e =(负的舍去). 故答案为1. 【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出P 点的坐标.求离心率的做题思路是,根据题意求出,a c 或者列出一个关于,,a b c 的方程,由椭圆或双曲线的,,a b c 的关系,进而求解离心率.20.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的解析:4+61【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.三、解答题21.(1)26y x =;(2)证明见解析,9(,0)2. 【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可;(2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可. 【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x = 所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k +同理,将k 换成1k -得236(,3)2k N k +-,当222363622k k k ++≠,即1k ≠±时 2222333636122MNkkk k k k k k +-==++-- 所以直线MN 的方程为22363()12k k y k x k -++=--即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意. 22.(1)8;(2)是,定值为2. 【分析】(1)联立直线与抛物线得出韦达定理,即可求出弦长;(2)设出直线方程,联立直线与抛物线方程,利用韦达定理表示出13k k +,即可得出定值. 【详解】 (1)可得3,02F ⎛⎫⎪⎝⎭,直线的倾斜角为60则直线方程为32y x ⎫=-⎪⎭, 设()()1122,,,A x y B x y ,联立直线与抛物线2326y x y x ⎧⎫=-⎪⎪⎭⎨⎪=⎩可得242090x x -+=, 则121295,4x x x x +==, 123538AB x x =++=+=;(2)可知直线l 的斜率不为0,则设直线l 的方程为3x my =+,m R ∈, 设()3,P t -,()11,M x y ,()22,N x y , 把3x my =+代入26y x =得26180y my --= ∴126y y m +=,1218y y =-, ∴12121312123366y t y t y t y tk k x x my my ----+=+=+++++ ()()()()()()1221126666y t my y t my my my -++-+=++()()()1212212122612636my y tm y y t m y y m y y +-+-=+++()()()221866121866363m tm m t t m m m ⨯-+-⋅-==-⨯-+⋅+,26tk =-,132k k k μ+=,36t t μ⎛⎫∴-=⨯- ⎪⎝⎭,P 为3x =-上的任意一点,t ∴不恒为0,2μ∴=,即μ为定值2.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)证明见解析;(2)当914p =时,面积最大值为4. 【分析】(1)由题意可得:()0,1A -,不妨设2,2t B t p ⎛⎫ ⎪⎝⎭,则222 ,4t t p C p ⎛⎫- ⎪⎝⎭,代入抛物线方程,整理得24t p =,计算可得点C 的纵坐标值为12,从而得证; (2)由题意可得:BMNAMN S S=,求得直线l 的斜率,可求得直线l '的斜率和方程,不妨记3m t=-,则:2l y mx '=+,代入椭圆方程并整理得()2221860m x mx +++=, 设()11,M x y ,()22,N x y ,求得MN 的值和点A 到直线l '的距离d =据三角形的面积公式和基本不等式可求BMN △的面积的最大值,即可求解. 【详解】(1)易知()0,1A -,不妨设2,2t B t p ⎛⎫ ⎪⎝⎭,则222 ,4t t p C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得222224t t p p p -⎛⎫= ⎪⎝⎭,得24t p =,∴42142C p p y p -==, 故点C 的纵坐标为定值. (2)∵点C 是AB 的中点,BMNAMN SS=,设直线l 的斜率为k ,则11322k t t -==, 所以直线l '的斜率为3k t'=-, ∴直线l '的方程为1322t y x t ⎛⎫-=-- ⎪⎝⎭,即32y x t=-+, 不妨记3m t=-,则:2l y mx '=+, 代入椭圆方程并整理得()2221860m x mx +++=,设()11,M x y ,()22,N x y ,则12122286,2121m x x x x m m +=-=++ 222122231||221,21m MN m x x m m -=+-=⋅+⋅+ 点A 到直线l '的距离231d m =+,所以2222232232421423231332AMNm Sm m N d m M -⋅=≤+-+-=⋅==当且仅当2242323m m -=-时取等号,解得272m =,所以229187t m ==,从而29414t p ==故当914p =时,BMN △的面积最大. 【点睛】关键点点睛:设出2,2t B t p ⎛⎫ ⎪⎝⎭结合()0,1A -,可得222 ,4t t p C p ⎛⎫- ⎪⎝⎭利用点C 在抛物线上可求出24t p =,利用其计算224t pp-的值;第二问关键是根据倾斜角互补可得直线l '与直线l的斜率互为相反数,直线l '的方程为32y x t=-+,利用弦长公式和点到直线距离公式,三角形面积公式将BMN △的面积表示出来,最关键的是利用基本不等式求最值,这是难点也是易考点.24.(1)22142x y +=;(2)10x y --=.【分析】(1)已知条件得2b c ==,再求得a ,可得椭圆标准方程;(2)当直线l 的斜率为0时,12k k 的值,当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,代入椭圆方程整理后应用韦达定理得1212,y y y y +,计算12k k ,化为m 的函数,然后换元,设41t m =+,求出12k k 的最大值,及m 的值得直线方程. 【详解】(1)由已知得2b c ==.又2224a b c =+=,所以椭圆的方程为22142x y +=.(2)①当直线l 的斜率为0时,则12k k ⋅=33342424⨯=-+; ②当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,将1x my =+代入22142x y+=,整理得22(2)230m y my ++-=.则12222m y y m -+=+,12232y y m -=+. 又111x my =+,221x my =+, 所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y my my --=-- 12122121293()93()y y y y m y y m y y -++=-++=2232546m m m ++=+23414812m m +=++. 令41t m =+,则122324225t k k t t ⋅=+-+32254()2t t=++-1≤所以当且仅当5t =,即1m =时,取等号. 由①②得,直线l 的方程为10x y --=.【点睛】关键点点睛:本题考查求椭圆标准方程,考查椭圆中的最值问题.解题方法是设而不求的思想方法,即设交点坐标11(,)A x y ,22(,)B x y ,设直线l 的方程为1x my =+,直线方程代入椭圆方程整理后应用韦达定理得1212,y y y y +,然后代入12k k ,化为m 的函数,用换元法求得最值.25.(1)0y --=;(2)证明见解析. 【分析】(1)由于直线l 斜率不为0,(1,0)F ,所以设直线:1l x ty =+,设()()1122,,,A x y B x y ,由题意可得120,0y y ><,然后直线方程和抛物线方程联立,消去x ,再利用韦达定理结合2,AF FB =可求出t 的值,从而可得AB 所在的直线方程;(2)设AB 中点为(),N N N x y ,则由(1)可得2122,212N N y y y t x t +===+,从而可得AB 中垂线()2:221l y t t x t -=---',求出点()223,0D t +,进而可求出DF 的长,再利用两点间的距离公式可求出AB 的长,从而可求得||||AB DF 的值 【详解】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+, 设()()1122,,,A x y B x y ,因为A 点在x 轴上方,所以120,0y y ><由214x ty y x =+⎧⎨=⎩,得2440y ty --= 12124,4y y t y y ∴+==-()()11221221,21,2AF FB x y x y y y =⇒-=-∴-=由1211224824y y t y ty y y t ⎧+==⎧⎪⇒⎨⎨-==-⎪⎩⎩代入124y y =-因10y >,所以0t >,解得t =所以AB所在直线方程为0y --= (2)设AB 中点为(),N N N x y()22122,2121,22N N y y y t x t N t t +∴===+∴+ 所以AB 中垂线()()22:22123,0l y t t x t D t -=---+'∴22||23122DF t t ∴=+-=+(||AB ====244t =+22||442||22AB t DF t +∴==+(定值) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查韦达定理的应用,解题的关键是利用设而不求的方法,设出直线方程和交点坐标,然后将直线方程和抛物线的方程联立,消元,再利用韦达定理,然后结已知条件求解即可,考查计算能力,属于中档题 26.(1)证明见解析;(2)2. 【分析】(1)由已知先求出,B C ,设(),D x y ,结合题干得ND NB λ=,NE NC λ=,结合向量关系求得,D E 点坐标,利用点斜式得DE l 方程,联立DE l 与抛物线即可求证; (2)结合三角形面积公式得112BCQ S S BC h ==⋅△,212DEN D E S S NG y y ==⋅-△,由(1)的结论可得h ,由直线DE l 方程可求得直线DE 与x 轴交点坐标G ,从而得到NG ,12,S S 作比即可求解. 【详解】()1易知()()222,2,2,2B a a C a a -,设(),D x y ,由ND NB λ=,可得()()222,4,2x a y a a λ+=,故有()()242,2D a a λλ-,同理()()224,(1)2E a a λλ--,于是直线DE 的方程是()()()2124242y a x a aλλλ-=---, 即()224288)2(x ay a λλλ=-+--①与抛物线方程联立, 得到()()22210y a λ--=,此方程有两个相等的根:221()y a λ=-代入①,得()22221x a λ=-,故直线DE 与抛物线有且仅有一个公共点()()()22221,221Q aa λλ--()()()2321112421622BCQ Q S S BC h a a x a λλ==⋅=⋅-=-△ 设直线DE 与x 轴交于()()22282,0G a a λλ--,于是()()223221182822DEN D E S S NG y y a a a λλλλ==⋅-=⋅-=-⋅△ 故有122S S = 【点睛】方法点睛:本题考查由直线与抛物线的位置关系求证公共点问题,抛物线中三角形的面积问题,考查了数学运算的核心素养,常用以下方法:(1)涉及交点问题常采用直线与曲线联立方程求解法,有且仅有一个公共点可直接求解,若是关于()x y 的一元二次方程,即证0∆=;(2)对于三角形面积问题,较为规则的可直接用公式法求解,对于三角形不规则的,常采用切割法,如本题中的DEN S △.。

圆锥曲线综合测试

圆锥曲线综合测试

圆锥曲线与方程综合测验题 一、选择题(每题4分,共44分) 12,则a 等于( ) A .2 B. D.1 2.已知F 1、F 2的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于( ) A .11 B .10 C .9 D .8 3. ) A .x y ±= B .x y 4±= D .x y 2±= 4.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m 的值是( ) (A )4 (B (C (D )4- 5.抛物线y =2x 2的准线方程是( ) A.x 6.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 ) (A (B )6 (C )12 (D 7与抛物线y x 82=有一个公共焦点F ,双曲线上过点F 且垂直 ( ) A.2 8.设P 是椭一点,12,F F 是椭圆的两个焦点,120,PF PF ⋅=12F PF ∆则面积是 ( ) A.5 B.10 C.8 D.9 9( )A.y=±2x B .y C.y.y10.对于曲线C∶,给出下面四个命题:(1)曲线C不可能表示椭圆;(2)若曲线C表示焦点在x轴上的椭圆,则1<k<(3)若曲线C表示双曲线,则k<1或k>4;(4)当1<k<4时曲线C表示椭圆,其中正确的是()A .(2)(3) B. (1)(3) C. (2)(4) D.(3)(4)11.如图,1F,2F是双曲线1C:与椭圆2C的公共焦点,点A是1C,2C的公共点.若|F1F2|=|F1A|,则2C的离心率是().A二、填空题(每题4分,共16分)12._________.13.若点A的坐标为(3,2),F为抛物线22y x=的焦点,点P是抛物线上的一动点,P的坐标是。

14.抛物线28y x=的焦点到准线的距离是.15.一个顶点是()0,2,且离心率为________________。

长沙市明德中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

长沙市明德中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121D .13或1202.已知曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则实数a 的取值范围是( )A .(][),10,1-∞-B .(]1,1-C .[)1,1-D .[]()1,01,-+∞3.已知定圆222212:(3)1,:(3)49C x y C x y ++=-+=,定点(2,1)M ,动圆C 满足与1C 外切且与2C 内切,则1||CM CC +的最大值为( )A .8+B .8C .16D .164.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( )A .B .[1 , 2]C .[4 8],D .5.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直6.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =7.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥,则离心率的取值范围为( ) A.10,2⎛⎤ ⎥⎝⎦B.2] C.1⎤⎥⎝⎦D.1] 8.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C.(6π-D .54π 9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 CD10.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( ) A.B. CD11.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12BC .13D二、填空题13.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______. 14.曲线412x x y y -=上的点到直线2y x =的距离的最大值是________.15.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.16.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.17.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;③2C 在此正方形区域内(含边界).其中,正确结论的序号是________.18.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆221259x y +=的焦点重合,左准线方程为1x =-,设1F 、2F 分别为双曲线C 的左、右两个焦点,P 为右支上任意一点,则212PF PF 的最小值为_____________.19.已知直线:10l x y -+=与椭圆221169x y+=交于,A B 两点,若椭圆上存在一点P 使得PAB ∆面积最大,则点P 的坐标为________.20.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.三、解答题21.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.22.过抛物线()220y px p =>的焦点F 的直线交抛物线于M 、N 两点,且M 、N 两点的纵坐标之积为4-. (1)求抛物线的方程;(2〉求OM ON ⋅的值(其中О为坐标原点); (3)求OMNS的最小值.23.已知抛物线2:2(0)C x py p =>的焦点为F ,点()0,3P x 为抛物线C 上一点,且4PF =,过点(),0A a 作抛物线C 的切线AN (斜率不为0),设切点为N .(1)求抛物线C 的标准方程; (2)求证:以FN 为直径的圆过点A .24.如图,已知抛物线22(0)y px p =>上一点(4,)(0)M a a >到抛物线焦点F 的距离为5.(1)求抛物线的方程及实数a 的值;(2)过点M 作抛物线的两条弦MA ,MB ,若MA ,MB 的斜率分别为1k ,2k ,且123k k +=,求证:直线AB 过定点,并求出这个定点的坐标.25.在平面直角坐标系中,(10,2C -,圆(222:212C x y +=,动圆P 过1C 且与圆2C 相切.(1)求动点P 的轨迹C 的标准方程;(2)若直线l 过点()0,1,且与曲线C 交于A 、B ,已知AB 的中点在直线14x =-上,求直线l 的方程.26.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.C解析:C 【分析】利用绝对值的几何意义,由3y x =+,可得0y ≥时,3yx ,0y <时,3y x =--,则可得曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),再无其它交点,把3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,分类讨论,可得结论 【详解】解:由3y x =+,可得0y ≥时,3yx,0y <时,3y x =--,所以曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),为了使曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则将3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,当1a =-时,3y =满足题意,因为曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点, 所以>0∆,且3是方程的根, 所以9(1)01a a-<+,即11a -<<时,方程两根异号,满足题意, 综上,a 的取值范围为[)1,1-, 故选:C 【点睛】此题考查曲线的交点问题,考查分析问题的能力,考查分类思想,属于中档题3.A解析:A 【分析】将动圆C 的轨迹方程表示出来:221167x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值. 【详解】定圆()221:31C x y ++=, 圆心()13,0C -,半径为1()222349C x y -+=:,圆心()23,0C ,半径为7.动圆C 满足与1C 外切且与2C 内切,设动圆半径为r ,则1212121,786CC r CC r CC CC C C =+=-⇒+=>= 所以动点C 的轨迹是以1C ,2C 为焦点,8为长轴的椭圆,设其方程为22221(0)x y a b a b +=>> 所以4a = ,2229c a b =-= ,则其方程为:221167x y +=由椭圆的定义可得12228CC CC CC a =-=- 所以128CM CC CM CC =+-+当2,,C C M 三点不共线时,有1228882CM CC CM CC MC +-+=+<=+ 当2,,C C M 三点共线时,有1228882CM CC CM CC MC +-+=+≤=+ 综上有182CM CC +≤+(当2,,C C M 三点共线且2CM CC >时取等号) 故选:A【点睛】关键点睛:本题考查了轨迹方程,椭圆的性质,解答本题的关键是利用椭圆性质变换长度关系,即12228CC CC CC a =-=-,将所求问题转化为128CM CC CM CC =+-+,再分2,,C C M三点是否共线讨论,属于中档题.4.C解析:C 【分析】 由题可求得2121222ABF AF F BF F cSSS=+=,2222ABF EABEBF EAF S SSSa =++=,即可得出2aAB c=,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222c AB a∴=,22a AB c ∴=⋅, 2242c e a ⎡⎤=∈⎢⎥⎣⎦,,2,22a c ⎡⎤∴∈⎣⎦,则[]224,8ac⋅∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出2aAB c=可求解. 5.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y p p ⎧+⎪+⎛⎫⎪=⨯⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根 所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题. 6.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x =故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.7.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由113QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令3m v n ⎫=∈⎪⎪⎣⎭,所以,12,3t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率,即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-, 然后利用换元法得出()22223113e e e -<≤-,进而求解 属于中档题8.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为114252255O l d -=⨯=,圆C 面积的最小值为225455ππ⎛⎫= ⎪ ⎪⎝⎭.故本题的正确选项为A. 考点:抛物线定义. 9.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫⎪⎝⎭, 将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b a a c ,222422c aa a c ,223c a =,==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.10.B解析:B 【分析】令2MA MC =,则12MA MC=,所以12MAMC==,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n,则12MAMC==,整理得:22222421333m n m n x y x y ++-+++=, 比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -, 当点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小,最小为210.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.11.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-,同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1, 所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a+-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=, ∴24tan tan 21()b b b a a BOA BOF b a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即e =.【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.14.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y x y x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x 的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:222y x -故两平行线222y x =-2y x =之间的距离为022263d +==所以曲线412x x y y -=上的点到直线2y x =的距离的最大值是263.故答案为:263.【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.15.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应解析:1 【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果. 【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=,所以122PF PF ⋅=, 则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1. 【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.16.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-,所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y +=【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.17.①②【分析】将代入也成立得①正确;利用不等式可得故②正确;联立得四个交点满足条件的最小正方形是以为中点边长为2的正方形故③不正确【详解】对于①将代入得成立故曲线关于直线对称故①正确;对于②因为所以所解析:①② 【分析】将(,)y x 代入22322:()4C x y x y +=也成立得①1≤,故②正确;联立22322()4y xx y x y=±⎧⎨+=⎩得四个交点,满足条件的最小正方形是以,,,A B C D 为中点,边长为2的正方形,故③不正确. 【详解】对于①,将(,)y x 代入22322:()4C x y x y +=得22322()4y x y x +=成立,故曲线C 关于直线y x =对称,故①正确;对于②,因为22322222()()44x y x y x y ++=≤,所以221x y +≤1≤, 所以曲线C 上任意一点到原点的距离都不超过1,故②正确;对于③,联立22322()4y x x y x y =±⎧⎨+=⎩得2212x y ==,从而可得四个交点A ,(B ,(22C --,(22D -, 依题意满足条件的最小正方形是各边以,,,A B C D 为中点,边长为2的正方形,故不存在C 在此正方形区域内(含边界),故③不正确. 故答案为:①② 【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.18.【分析】由焦点重合可知由左准线方程可知从而可求设根据双曲线的定义可知则结合基本不等式可求其最值【详解】解:由焦点重合可知;由左准线方程可知又由双曲线的定义可知从而可求出因为为右支上任意一点所以设则则解析:【分析】由焦点重合可知2216a b +=,由左准线方程可知21a c-=-,从而可求2,4a b c ===,设2PF t =,根据双曲线的定义可知,14PF t =+,则212168PF t PF t=++,结合基本不等式可求其最值. 【详解】解:由焦点重合可知,2225916a b +=-=;由左准线方程可知,21a c-=-,又由双曲线的定义可知,222c a b =+,从而可求出2,4a b c ===. 因为P 为右支上任意一点,所以1224PF PF a -==.设2,2PFt t c a =≥-=, 则14PF t =+,则()22124168816t PF t PF t t +==++≥+= 当且仅当16t t =,即4t =时等号成立.即21216PF PF ≥. 故答案为:16. 【点睛】本题考查了双曲线的定义,考查了双曲线的准线方程,考查了椭圆的焦点求解,考查了基本不等式.本题的关键是由双曲线的定义,将所求的式子用一个变量来表示.利用基本不等式求最值时,一定要注意,一正二定三相等缺一不可.19.【分析】先设与直线平行的直线求出直线与圆锥曲线相切时的直线方程再求两平行线的最大距离即可根据面积公式求出面积最大值【详解】解:由题意可得弦长为定值要使面积最大则只要点到直线的距离最大当平行于直线的直解析:169,55⎛⎫- ⎪⎝⎭【分析】先设与直线:10l x y -+=平行的直线:0l x y m '-+=,求出直线与圆锥曲线相切时的直线方程,再求两平行线的最大距离,即可根据面积公式求出PAB ∆面积最大值. 【详解】解:由题意可得弦长AB 为定值,要使PAB ∆面积最大, 则只要点P 到直线:10l x y -+=的距离最大, 当平行于直线l 的直线与椭圆相切时, 对应的切点到直线l 的距离最大或最小.设直线:0l x y m '-+=直线与椭圆联立得22:01169l x y m x y -+='⎧⎪⎨+=⎪⎩, 化简得222532161440x mx m ++-=,则()22(32)425161440m m ∆=-⨯-=,解得5m =±.当5m =时,直线l '与直线l的距离为d == 当5m =-时,直线l '与直线l的距离为d ==∴当5m =-时, 2251602560x x -+=,解得165x =, 代入直线:50l x y '--=,解得95y =- 即点P 的为坐标169,55⎛⎫- ⎪⎝⎭. 故答案为: 169,55⎛⎫- ⎪⎝⎭ 【点睛】本题主要考查直线与圆锥曲线的位置关系,考查了直线与椭圆交点坐标,是中档型的综合题.20.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的解析:【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.三、解答题21.(1) 32; (2) 2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF 中,有22BF b c a =+=,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以222213114c b e a a ==-=-= (2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0.设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b=+⎧⎨+=⎩,得()22224240m y mny n b +++-= 所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t=m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题.22.(1)24y x =;(2)3-;(3)2. 【分析】(1)设()()1122,,,M x y N x y ,抛物线()220y px p =>的焦点F ,02p ⎛⎫⎪⎝⎭,设直线MN 的方程为2px my =+,然后与抛物线方程联立,由韦达定理可得答案. (2)由1212OM ON x x y y ⋅=+可得答案. (3)由2112111222OMNOFNOFMSSSOF y OF y y y =+=⨯+⨯=-可得答案. 【详解】(1)设()()1122,,,M x y N x y ,抛物线()220y px p =>的焦点F ,02p ⎛⎫⎪⎝⎭设直线MN 的方程为2p x my =+由222p x my y px⎧=+⎪⎨⎪=⎩ ,得2220y mpy p --=所以122y y mp +=,2124y y p =-=-,所以2p =所以抛物线的方程为:24y x =(2) 由(1)124y y =-,221212144y y x x =⨯=1212143OM ON x x y y ⋅=+=-=-(3)由(1)有124y y m +=,124y y =- 因为2112111222OMNOFNOFMSSSOF y OF y y y =+=⨯+⨯=- ()2212121141616222y y y y m =+-=+≥ (当0m =时取得等号)【点睛】关键点睛:本题考查抛物线过焦点的弦的性质,考查与抛物线有关的三角形面积的最值问题,解答本题的关键是由2112111222OMNOFNOFMSSSOF y OF y y y =+=⨯+⨯=-,再转化为韦达定理124y y m +=,124y y =-的关系,从而求出最值,属于中档题.23.(1)24x y =;(2)证明见解析. 【分析】(1)由4PF =,利用焦半径公式可求出p 的值,从而可得抛物线C 的标准方程; (2)设切线AN 的方程为()y k x a =-,0k ≠,联立直线方程与抛物线方程,利用判别式为零可得a k =,求得切点2(2,)N a a ,由0AF AN ⋅=即可判定以FN 为直径的圆过点A .【详解】(1)因为()0,3P x 为抛物线上一点,所以PF 的长等于P 到抛物线准线2py =-的距离, 即||3422P p pPF y =+=+=,解得2p =, 所以抛物线C 的标准方程为:24x y =.(2)直线斜率不存在时,直线x a =不是抛物线的切线, 所以可设切线AN 的方程为:()y k x a =-, 0k ≠,联立直线与抛物线方程得24()x yy k x a ⎧=⎨=-⎩,消去y 可得2440x kx ka -+=,因为直线与抛物线相切,∴216160ka ka ∆=-=,解得a k =.224402x ax a x a -+=⇒=,所以切点()22,N a a ,(0,1)F ,(,0)A a ,∴(,1)AF a =-,()2,AN a a =,∴220AF AN a a ⋅=-+=.∴90FAN ∠=︒,以FN 为直径的圆过点A . 【点睛】方法点睛:解得与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.24.(1)24y x =;4a =;(2)证明见解析;定点48,33⎛⎫- ⎪⎝⎭. 【分析】(1)由抛物线的定义可得求出2p =,再代入4x =可求出a ; (2)将()11,A x y ,()22,B x y 代入抛物线可得1212124y y k x x y y -==-+,由123k k +=可得()121281633y y y y =-+-,即可得出定点. 【详解】(1)由题意,452pMF =+=,故2p =,24y x =;令4x =,可得4y =±,故4a =. (2)设()11,A x y ,()22,B x y ,设直线AB 斜率为k ,联立方程21122244y x y x ⎧=⎨=⎩,两式相减得22121244y y x x -=-,即1212124y y k x x y y -==-+,故直线AB 方程为()21111244y y y k x x x y y ⎛⎫-=-=- ⎪+⎝⎭,即1212124y y y x y y y y =-++;1144MA k k y ==+,2244MB k k y ==+, ∴121244344MA MB k k k k y y +=+=+=++,即()121281633y y y y =-+-; 因此,直线AB 为12121212444833y y y x x y y y y y y ⎛⎫=-=++ ⎪+++⎝⎭经过定点48,33⎛⎫- ⎪⎝⎭. 【点睛】本题考查抛物线中直线过定点问题,解题的关键是得出直线斜率124k y y =+,由123k k +=得出()121281633y y y y =-+-. 25.(1)2213y x +=;(2)1y x =+或31yx .【分析】(1)由题意可知,圆P 内切于圆2C ,根据椭圆的定义可知,P 点的轨迹是以1C 、2C 为焦点的椭圆,计算出a 、b 的值,结合焦点的位置可求得轨迹C 的标准方程; (2)由题意可知,直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与曲线C 的方程联立,列出韦达定理,根据12124x x +=-可得出关于k 的方程,求出k 的值,即可求得直线l 的方程. 【详解】(1)设动圆P 的半径为r ,由于1C 在圆2C 内,所以,圆P 内切于圆2C , 由题意知:1PC r =,223PC r =-所以121232PC PC C C +=>=, 所以P 点的轨迹是以1C 、2C 为焦点的椭圆.其长轴长223a =222c =221b a c =-=,所以曲线C 的标准方程为:2213y x +=;(2)若直线l 的斜率不存在,则A 、B 关于x 轴对称,不合题意;若直线l 的斜率存在,设其方程为1y kx =+,设点()11,A x y 、()22,B x y ,将1y kx =+代入2213y x +=得:()223220k x kx ++-=,()()2224831220k k k ∆=++=+>,所以12223kx x k+=-+,所以1221=234x x k k +=--+ 所以2430k k -+=,解得1k =或3k =, 所以,直线l 的方程为:1y x =+或31y x .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.26.(1)228120x y x +-+=;(2. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 12OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题. 求点的轨迹方程的常用方法之一:直译法——“四步一回头”, 四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ; (2)写出适合条件的点M 的集合(){}|P P M P M =; (3)将()P M “翻译”成代数方程(),0f x y =; (4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线与方程测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆2255x ky +=的一个焦点是(0,-2), 则k 的值为( )A . 1B . -1C .D .2.双曲线8222=-y x 的实轴长是( ) A .2 B . 22 C . 4 D .423.抛物线28y x =的焦点到准线的距离为( )A . 1B . 2C . 4D . 84.与椭圆+y 2=1共焦点且过点P(2,1)的双曲线方程是( )A .-y 2=1 B .-y 2=1 C .-=1 D .x2-=15.已知点P 是抛物线x y 22=上的动点,点P 在y 轴上的射影是M ,点A的坐标是⎪⎭⎫⎝⎛4,27A ,则PMPA +的最小值是( )A .27B . 4C . 29D . 56.已知双曲线2219x y m-=的一个焦点在圆22450x y x +--=上,则双曲线的渐近线方程为( ) A .34y x =±B .43y x =±C.3y x =±D.4y x =± 7.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,,PA l A⊥为垂足.如果直线AF的斜率为||PF =( ) A.B .8C.D .168.双曲线14222=-y a x 的左、右焦点分别为21F F 、,P 是双曲线上一点,1PF 的中点在y 轴上,线段2PF 的长为34,则该双曲线的离心率为( )A .23B .213C .313D .313 9.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A .02=-y xB .042=-+y xC .01232=-+y xD .082=-+y x10.P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,若∠F 12=30°,则△F 12的面积等于( ) A .3316B .)32(4-C .)32(16+D . 1611.(理科)点P(4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )A . (x -2)2+(y +1)2=4B .(x +2)2+(y -1)2=1C . (x +4)2+(y -2)2=4D .(x -2)2+(y +1)2=1 11.(文科)设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段12.过双曲线)0,0(12222>>=-b a b y a x 上任意一点P ,引与实轴平行的直线,交两渐近线于M 、N 两点,则⋅的值为( )A . 2aB .2bC .ab 2 D .22b a +第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分)13.已知双曲线-=1的离心率为2,焦点与椭圆+=1的焦点相同,那么双曲线的焦点坐标为;渐近线方程为.14.(理科)直线3与曲线1492=-xx y 的公共点的个数是 .14.(文科)直线2y x =-与抛物线28y x =相交于B A ,两点,则AB15(理科)点(3,0)M -,点(3,0)N ,动点P 满足10PM PN =-,则点P 的轨迹方程是15.(文科)点M 到点F(4,0)的距离比它到直线6=0的距离小2,则点M 的轨迹方程为16.方程22141x y k k +=--表示的曲线为C ,给出下列四个命题:(1)曲线C 不可能是圆;(2)若14k <<,则曲线C 为椭圆; (3)若曲线C 为双曲线,则1k <或4k >;(4)若曲线C 表示焦点在x 轴上的椭圆,则51.2k <<其中正确的命题是 (填上正确命题的序号) .牙克石市第一中学月考测试题二、填空题(每题5分,共20分)13、 14、15、 16、三解答题(17题10分18、19、20、21、22题12分共70分)17.已知双曲线的渐近线方程为xy21±=,两顶点之间的距离为4,求此双曲线的标准方程。

18.中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F 12,且13221=F F ,心率之比为3:7。

求这两条曲线的方程。

19.已知抛物线顶点在原点,焦点在x 轴上,(4,m )到焦点的距离为6. (1此抛物线方程与直线2-=kx y 相交于不同的两点A 、B 标为2,求k 的值.20.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1) 求椭圆C 的标准方程(2) 若直线L :与椭圆C 相交于两点(不是左右顶点),且以为直径的圆过椭圆C 的右顶点。

求证:直线L 过定点,并求出该定点的坐标。

21.已知中心在坐标原点、焦点在x 轴上椭圆的离心率33=e ,以原点为圆心,椭圆的短半轴长为半径的圆与直线2+=x y 相切. ⑴求该椭圆的标准方程;⑵设椭圆的左,右焦点分别是1F 和2F ,直线21F l 过且与x 轴垂直,动直线y l 与2轴垂直,12l l 交于点P ,求线段1PF 的垂直平分线与2l 的交点M的轨迹方程,并指明曲线类型.22.已知抛物线、椭圆和双曲线都经过点(1,2)M,它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程.(2)已知动直线过点(,)P30,交抛物线于,A B两点,是否存在垂直于x轴的直线l¢被以AP为直径的圆截得的弦长为定值?若存在,求出l¢的方程;若不存在,说明理由.13【答案】(±4,0) x±y=014【理答案】3 文答案1615【理答案】2212516x y+=文答案y2 =16x16【答案】(3)(4)三、解答题17. 2222y114416x xy-=-=或18解:设椭圆的方程为1212212=+byax,双曲线得方程为1222222=-byax,半焦距c=13由已知得:a1-a2=47:3:21=a c a c ,解得:a 1=7,a 2=3 所以:b 12=36,b 22=4,所以两条曲线的方程分别为:1364922=+y x ,14922=-y x 19.1.不妨设抛物线方程为y²=2则A 到焦点的距离等于它到准线的距离,而准线方程为2 则42=6 4 y²=8x2.联立直线与抛物线的方程,可得 (2)²=8x k²x²+4-48x k²x²-(48)4=0 若设A(x11)B(x22) 则x12为方程的解, 则x12[-(48)]²=(48)²而中点的横坐标应为(x12)/2=(24)²=2则k²2=0, (1)(2)=0 12而当1时,原方程的△=0,不符题意,舍去 所以220.1)椭圆C 上的点到焦点距离的最大值为3,最小值为1,则3+1=2a ,2,3-1=2c ,1,b²=4-1=3,椭圆C 的标准方程:x²/4²/3=1; (2)与椭圆C 相交于两点,解得:x128(3+4k²),x1x2=(4m²-12)/(3+4k²),(x12)=48(4k²²+3),y12=6(3+4k²),y1y2=(3m²-12k²)/(3+4k²),(y12)=48k²(4k²²+3)/(3+4k²),²=48[4(k²)²+7k²²²k²+3]/(3+4k²),中点到椭圆C 的右顶点距离为的一半,则[4(3+4k²)+2]²+9m²/(3+4k²)²=12[4(k²)²+7k²²²k²+3]/(3+4k²),4k²-167m²=0,(27m)(2)=0,27或2k ,直线L :(2/7)或(2),定点为(-2/7,0)或(-2,0),∵点(-2,0)为椭圆C 的左顶点,∴点(-2,0)舍去,直线L 过定点(-2/7,0)。

21【答案】⑴依题意设所求椭圆方程为33)0(12222又它的离心率为>>=+b a b y a x得:22223233b a a b a =⇒=- ① 又以原点为圆心,椭圆的短半轴长为半径的圆与直线2+=x y 相切. 即原点到直线2+=x y 的距离为b ,所以,2=b 代入①中得3=a所以,所求椭圆方程为12322=+y x.⑵由2,3==b a 得1F 、2F 点的坐标分别为)0,1(-,)0,1(,设M 点的坐标为),(y x ,由题意:P 点坐标为),1(y ,因为线段1PF 的垂直平分线与2l 的交点为M , 所以x y x y x MP MF 4|1|)1(||||2221-=⇒-=++⇒=故线段1PF 的垂直平分线与2l 的交点M 的轨迹方程是x y 42-=,该轨迹是以1F 为焦点的抛物线.22.解:(1)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =,所以抛物线方程为24yx =,则抛物线的焦点坐标为.由题意知椭圆、双曲线的焦点为F F ()()121,0,1,0,-所以.对于椭圆,a MF MF 1222=+=+,所以a 1=+,a (2213=+=+2222b a c =-=+221.对于双曲线,1222a MF MF ¢=-=,所以1a ¢=,23a ¢=-所以2222b ca ⅱ?=-=221.(2)设AP 的中点为C ,l ¢的方程为x a =,以AP 为直径的圆交l ¢于,D E 两点,DE 的中点为.H 令()11,,A x y 则113,22xy 骣+÷ç÷ç÷ç÷ç桫C ,所以DC AP 12==,x CH a x a ()11312322+=-=-+,所以()DHDC CH x y x a a x a a [()()22222221111113]2323.44轾=-=-+--+=--+犏臌当2a =时,2462DH=-+=为定值,所以2DE DH ==时l ¢的方程为2x =.最新文件 仅供参考 已改成word 文本 。

相关文档
最新文档