人教版高三数学必修五教案

合集下载

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。

通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。

第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。

通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。

第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。

通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。

第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。

通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。

第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。

通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。

【最新】高中数学人教版必修5全套教案

【最新】高中数学人教版必修5全套教案
在MAC中,由正弦定理得
31
AC sin
MAC
3
35 3
MC =sin
AMC=
2
62
=35
从而有MB= MC-BC=15
答:汽车还需要行驶15千米才能到达
M汽车站。
作业:《习案》作业三
1.2解三角形应用举例第二课时
一、教学目标
1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解
(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解
四、课后作业
课本第22页第1、2、3题
思考题:某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿公路
向M站行驶。公路的走向是M站的北偏东40。开始时,汽车到A车前进20千米后,到A的距离缩短了10千米。问汽车还需行驶多远,
题目条
件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角
算出AC的对角,应用正弦定理算出
AB边。
AB
AC
解:根据正弦定理,得
sin ACB
=
sin
ACB
55sin 75
55sin75
AB =
sin A B C=
sin
ABC=
sin(180 51 75 )
精确到1cm)。
解:根据正弦定理,
sin Bbsin A
28sin400
0.8999.
0
0
B 64
0
0
a
20
因为0
<B<180
,所以
,或B 116.

人教版高三数学必修五教案

人教版高三数学必修五教案

人教版高三数学必修五教案【篇一】教学目标把握等差数列与等比数列的性质,并能敏捷应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学重难点把握等差数列与等比数列的性质,并能敏捷应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学过程【示范举例】例1:数列是首项为23,公差为整数,且前6项为正,从第7项开头为负的等差数列(1)求此数列的公差d;(2)设前n项和为Sn,求Sn的值;(3)当Sn为正数时,求n的值.【篇二】一、教学内容分析本小节是一般高中课程标准试验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域表达二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划学问解决一些简洁的实际问题(如资源利用,人力调配,生产安排等)。

突出表达了优化思想,与数形结合的思想。

本小节是利用数学学问解决实际问题的典例,它表达了数学源于生活而用于生活的特性。

二、学生学习状况分析本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的根底之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解.但从数学学问上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的学问接触尚少,从数学方法上看,学生对于图解法还缺少熟悉,对数形结合的思想方法的把握还需时日,而这些都将成为学生学习中的难点。

三、设计思想以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观看、思索、猜测探究的兴趣。

注意引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从详细到一般”的抽象思维过程,从“特别到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的力量;培育学生的分析问题、解决问题的力量。

四、教学目标1、学问与技能:了解二元一次不等式(组)的概念,把握用平面区域刻画二元一次不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应解;2、过程与方法:从实际问题中抽象出简洁的线性规划问题,提高学生的数学建模力量;在探究的过程中让学生体验到数学活动中布满着探究与制造,培育学生的数据分析力量、化归力量、探究力量、合情推理力量;3、情态与价值:在应用图解法解题的过程中,培育学生的化归力量与运用数形结合思想的力量;体会线性规划的根本思想,培育学生的数学应用意识;体验数学来源于生活而效劳于生活的特性.五、教学重点和难点重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简洁的二元线性规划问题;难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过程探究,简洁的二元线性规划问题的图解法的探究.六、教学根本流程第一课时,利用生动的情景激起学生求知的欲望,从中抽象出数学问题,引出二元一次不等式(组)的根本概念,并为线性规划问题的引出埋下伏笔.通过学生的自主探究,分类争论,大胆猜测,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的争论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的详细解答步骤(直线定界,特别点定域);最终通过练习加以稳固。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程Ⅰ.课题导入如图1.1-1,固定∆ABC的边CB及∠B,使边AC绕着顶点C转动。

A思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角∠C的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? CB Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A=,则sin sin abAB=,C 同理可得sin sin cbCB=, ba 从而sin sin abAB=sin cC=A cB(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

人教版高中数学必修五教案[整书][全套]

人教版高中数学必修五教案[整书][全套]

1.1.1正弦定理•教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作.情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.•教学重点正弦定理的探索和证明及其基本应用.•教学难点已知两边和其中一边的对角解三角形时判断解的个数.•教学过程I•课题导入固定△ABC的边C8及使边AC绕着顶点C转动.思考:ZC的大小与它的对边A3的长度之间有怎样的数量关系?显然,边AB的长度随着其对角Z C的大小的增大而增大.能否用一个等式把这种关系精确地表示出来?II.讲授新课探索研究在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如图,在RtAABC中,设BC=aAC=b,AB=c,根据锐角三角函数中正弦函数的定义,—=sinA,—=sinB,c cb又si"=l=3,则-^-=——=-^—=cb从而在直角三角形A况中,思=和=金AbC a B思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图,当AABC是锐角三角形时,设边A8上的高是CD,根据任意角三角函数的定义,有CD=asinB=bsir\A,贝I°bsin』sin5bc同理可得----=------,sine sin月b从而asin/sinB sin。

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题.(证法二):过点A作J1AC,由向量的加法可得朋=AC+CB贝!]/•*=/..(如+仿):.j,AB=J-AC+j-CB|j||ab|cos(900-A)=0+|j||cb|cos(90°-C)csmA=asinC,艮)一八sin A sine同理,过点C作口C,可得、黑-sin。

高中数学必修五教案优秀5篇

高中数学必修五教案优秀5篇

高中数学必修五教案优秀5篇高中数学学习方法篇一一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。

刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。

让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。

实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

高中人教版必修五数学教案

高中人教版必修五数学教案

高中人教版必修五数学教案教材:高中人教版必修五数学教学内容:解直角三角形教学目标:1. 理解直角三角形的概念和性质。

2. 熟练掌握解直角三角形的相关公式和方法。

3. 能够应用直角三角形的理论解决实际问题。

教学重点:1. 直角三角形及其性质。

2. 解直角三角形的方法和技巧。

教学难点:1. 解直角三角形过程中的推理和逻辑思维。

2. 利用直角三角形的性质解决复杂问题。

教学过程:第一步:导入通过实例引入直角三角形的概念,引发学生对直角三角形的兴趣,并了解直角三角形的定义与性质。

第二步:讲解1. 引导学生回顾直角三角形的定义及性质。

2. 解释如何利用直角三角形的性质解题,例如利用三角函数、勾股定理等方法。

3. 演示解直角三角形的具体步骤,重点讲解解题过程中的关键和技巧。

第三步:实例演练1. 给学生提供一些简单的直角三角形解题实例,让学生尝试独立解答。

2. 分析学生答案,引导学生讨论解题过程中的思路和方法。

第四步:拓展应用让学生尝试解决一些复杂的实际问题,如通过直角三角形求解建筑物高度、角度测量等问题,提高学生的应用能力。

第五步:总结归纳1. 总结本节课的重点内容,强化学生对直角三角形的理解。

2. 引导学生对解直角三角形的方法和技巧进行总结和归纳。

第六步:作业布置布置相关的课后作业,让学生巩固所学知识,提高解题能力。

教学反思:本节课的重点在于通过讲解和实际练习,让学生掌握解直角三角形的方法和技巧,培养学生的解题思维和逻辑推理能力。

在教学过程中,需要引导学生积极思考、合作讨论,提高学生的学习兴趣和自主解题能力。

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)

高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

(2)通过公式的运用,树立学生"大众教学"的思想意识。

(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。

心理体验,产生热爱数学的情感。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教具:现代教育多媒体技术。

教学过程一、创设情景,导入新课。

师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。

提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。

(教师观察学生的表情反映,然后将此问题缩小十倍)。

我们来看这样一道一例题。

例1,计算:1+2+3+4+5+6+7+8+9+10。

这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题 :●教学目标§1.1.1 正弦定理授课类型:新授课知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发, 共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程Ⅰ. 课题导入如图 1. 1-1 ,固定ABC的边 CB及B,使边 AC绕着顶点C 转动。

A思考: C 的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角 C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来?C BⅡ . 讲授新课[ 探索研究 ](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1. 1-2 ,在 Rt ABC中,设 BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有a sin A,bsinB,C c, 1c c又s i n c A则a b cc b c sin A sin B sin C从而在直角三角形ABC中,a b cC a Bsin A sin B sin C( 图 1. 1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图 1.1-3 ,当ABC是锐角三角形时,设边AB上的高是 CD,根据任意角三角函数的定义,有 CD=b sin A , 则a bCa sin B sin A sin B,同理可得c bB,b a sin C sin从而a b cA cB sin A sin B sin C(图 1. 1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题, 从而可以考虑用向量来研究这个问题。

2024人教版高三数学必修5全册教学课件

2024人教版高三数学必修5全册教学课件
教学手段
运用多媒体技术、网络技术等现代教育技术手段 ,创设生动形象的数学教学情境,提高教学效果 和学生的学习效率。
02
基础知识回顾与拓展
数列概念及性质
01 数列定义
按照一定顺序排列的一列数。
02 数列的通项公式
表示数列第n项与n之间关系的公式。
03 数列的性质
包括周期性、有界性、单调性等。
等差数列及其求和公式
任意角的表示方法
终边相同的角的集合,象 限角的表示方法。
任意角的三角函数
1 2
任意角的三角函数定义
正弦、余弦、正切的定义及性质,各象限三角函 数的符号。
同角三角函数的基本关系
平方关系、商数关系、诱导公式及其应用。
3
三角函数的图象与性质
正弦函数、余弦函数的图象与性质,周期函数的 概念。
三角函数的图象与性质
等差数列定义
相邻两项之差为常数的数 列。
等差数列的求和公式
Sn=n/2*[2a1+(n-1)d], 其中Sn为前n项和。
等差数列的通项公式
an=a1+(n-1)d,其中a1 为首项,d为公差。
等比数列及其求和公式
等比数列定义
相邻两项之比为常数的数列。
等比数列的通项公式
an=a1*q^(n-1),其中a1为首项,q为公比。
对于离散型随机变量,期望表示其取值的平均水平,方差表示其取值 的波动程度。通过具体例子说明期望和方差的计算方法和意义。
07
总结回顾与备考建议
本册知识点总结回顾
集合与函数概念
包括集合的运算、函数的概念、 函数的性质等。
基本初等函数
包括指数函数、对数函数、幂函数 等的基本性质和图像。

高中数学必修五教案全集(48份) 人教课标版(实用教案)

高中数学必修五教案全集(48份) 人教课标版(实用教案)

高中数学必修五教案全集(48份)人教课标版(实用教案)第一章解三角形本章规划《课程标准》和教科书把“解三角形”这部分内容安排在数学必修五的第一部分,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁.教学中应加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,提高教学效益,并有利于学生对于数学知识的学习和巩固.要重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导..教学内容全章有三大节内容:第一大节:正弦定理和余弦定理,这一节通过初中已学过的三角中的边角关系,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”重点是正弦定理的概念和推导方法,体现了从特殊到一般的思想,并可以向学生提出用向量来证明正弦定理,这一点可以让学生探究.在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.设置这些问题,都是为了加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角形的方法,需要对三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力.第二大节:应用举例,在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较.对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法.学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够.针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题.第三大节:实习作业,适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题和解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果的能力,增强学生应用数学的意识和数学实践能力.教师要注意对学生实习作业的指导,包括对实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题..作用与地位本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.学习数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱.为解决此问题,教学中要用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构..学习目标本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章学习,学生应当达到以下学习目标:()通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..重点和难点通过对三角形中边角关系的探索,证明正弦定理、余弦定理及其推论,并能应用它们解三角形..课时安排正弦定理和余弦定理(课时)应用举例(课时)实习作业(课时)本章复习(课时)人生最大的幸福,莫过于连一分钟都无法休息零碎的时间实在可以成就大事业珍惜时间可以使生命变的更有价值时间象奔腾澎湃的急湍,它一去无返,毫不流连一个人越知道时间的价值,就越感到失时的痛苦得到时间,就是得到一切用经济学的眼光来看,时间就是一种财富时间一点一滴凋谢,犹如蜡烛漫漫燃尽我总是感觉到时间的巨轮在我背后奔驰,日益迫近夜晚给老人带来平静,给年轻人带来希望不浪费时间,每时每刻都做些有用的事,戒掉一切不必要的行为时间乃是万物中最宝贵的东西,但如果浪费了,那就是最大的浪费我的产业多么美,多么广,多么宽,时间是我的财产,我的田地是时间时间就是性命,无端的空耗别人的时间,知识是取之不尽,用之不竭的。

人教版高中数学必修5教案

人教版高中数学必修5教案

人教版高中数学必修5教案学科:数学年级:高中必修五教材:人教版高中数学必修五单元:(具体单元名称)课时:(具体课时)【教学目标】1. 知识与技能(1)掌握本节课所讲述的知识点;(2)能够熟练运用相关方法解决问题。

2. 过程与方法(1)培养学生的数学思维和分析能力;(2)激发学生对数学的兴趣。

3. 情感态度与价值观(1)培养学生良好的学习习惯和方法;(2)培养学生合作、分享的精神。

【教学重点】1. 确定本节课的重点知识点;2. 确定本节课的重点难点。

【教学准备】1. 教材和教辅资料;2. 准备好相关的教学工具;3. 制定好教学流程。

【教学过程】1. 预习导入(1)复习上一节课内容,引出本节课的主题;(2)介绍本节课的教学内容和目标。

2. 知识讲解(1)结合教材内容,对本节课的知识点逐一进行讲解;(2)举例说明相关概念和方法。

3. 课堂练习(1)带领学生进行相关习题训练;(2)鼓励学生主动思考和讨论。

4. 拓展延伸(1)引导学生进行相关拓展知识的讨论和学习;(2)鼓励学生进行相关问题的解答。

5. 讲评总结(1)总结本节课的重点知识点和难点;(2)对学生的表现进行评价和指导。

【教学反思】1. 教学过程中遇到的问题及解决方法;2. 教学效果及学生反馈。

【布置作业】1. 布置相关作业;2. 提醒学生复习相关知识点。

【扩展阅读】1. 推荐相关的数学书籍和资料;2. 鼓励学生自主学习和探索。

以上为教案范本,具体内容根据教学实际情况进行调整。

人教版高中必修五数学教案

人教版高中必修五数学教案

人教版高中必修五数学教案
课时:第一课时
教学内容:数学基础概念
教学目标:
1.了解数学的起源和发展历史。

2.理解数学基本概念和术语。

3.掌握数学基础知识。

教学重点、难点:
1.数学的起源和发展历史。

2.数学基本概念和术语的理解。

教学方法:讲授、示范演练、讨论
教具准备:教科书、黑板、彩色粉笔
教学过程:
一、导入:用一个问题引导学生思考数学的起源和意义。

二、讲解:介绍数学的起源和发展历史,引导学生了解数学的重要性。

三、讲解:介绍数学的基本概念和术语,引导学生掌握数学基础知识。

四、示范演练:通过例题演练,让学生掌握数学基础知识。

五、讨论:让学生讨论数学在日常生活中的应用,并分享自己的观点。

六、总结:对本节课的内容进行总结,并布置作业。

教学反思:本节课主要介绍了数学的基础概念和发展历史,通过讲解、示范演练和讨论,让学生深入理解数学的重要性和应用价值。

在未来的教学中,应该注重培养学生的数学思维和解决问题的能力。

高中数学必修5教案

高中数学必修5教案

高中数学必修5教案新课标高中数学必修5教案篇一一、教材分析1、《指数函数》在教材中的地位、作用和特点《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。

通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

2、教学目标、重点和难点通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

二、教法设计由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:1、创设问题情景。

最新新人教版高中数学必修五精品教案 全册名师优秀教案

最新新人教版高中数学必修五精品教案 全册名师优秀教案

新人教版高中数学必修五精品教案全册新人教版高中数学必修五精品教案全册(第一章在后面) 课题进位制1 课型新授课课时备课时间理解进位制的概念,了解一个数能够作不同进位制之间的知识与技能转换;根据对进位制的理解,体会计算机的计数原理;能设计不同进位制之间转换的算法程序框图及程序。

学生经历由探究算理,到抽象算法步骤,绘制程序框图,再到设计并优化程序的全过程,使学生明确教学过程与方法自己是在学数学而不仅仅是在编程序或玩计算机,目标这一过程的主要目的是使学生得到算法思想的熏陶与提升。

以问题引导学习,体现数学知识的形成与学生认知情感态度与价值观的过程性,加强数学知识间的联系性,促使学生主动探究,培养学生的创新意识和应用意识。

重点“十进制转k进制”与“k 进制转十进制”的算理分析难点“十进制转k进制”与“k进制转十进制”的算理分析教学方法教学过程情景步骤师生活动设计意图1(“猜生月生日游戏”: 教师给出生月生日表~这个游戏中用到的“生月生日“请先依次指出表格并同时讲清游戏规则~表”的制作原理是二进制记数,见附注1,中哪些行然后请一位或两位学法~它需要掌握“十进制转二有你的生月~然后再依生根据表格回答~教师进制”的方法,计算生月生日次指出表格中哪些行记录学生的回答~并立的程序1的算理是“二进制转有你的生日~便知道你即给出学生的生月生十进制”的算理~这一过程可的生月生日(” 日( 以引起学生对游戏的算法的兴趣~从而引入本节课( 2(提出进位制的定义、教师在学生阅读课文让学生体会十进制记数法及不表示法及进制的一般的基础上介绍进位制同的进位制实质。

表现形式。

的意义及发展历程。

3(以3721为例~探究教师启发~学生观察了解进位制的基本特点~为学32十进制数的含义( 习k 进制的含义做准备 3721,3,10,7,10,2,10,1通过实例体会“二进制转十进9(以1011001为例~师生一起将“情景步骤,,2制”的算理~为得到“k进制转4”中的“师生活动”探究“二进制化十进十进制”的算法程序作铺垫( 所得到的算式由后往制”的算理(前代入并整理得到:61011001,1×2,0,,2543×2,1×2,1×2,210×2,0×2 0,1×2,89(6(从操作过程中提炼教师让学生先思考上得出“二进制转十进制”的算出“二进制转十进制”述操作中的算法结构~法步骤~并推广到“k进制转十新人教版高中数学必修五精品教案全册(第一章在后面) 算法步骤~并推广到然后写出算法步骤并进制”的算法步骤,见附注4,( “十进制转k进制”的进行交流~最后由教师算法步骤( 评析并给出正确的算法步骤(7. 由“k进制转十进让学生写出程序框图得出“k进制转十进制”的程序制”的算法步骤写出程并进行交流~随后教师框图,见附注5,~进一步领会序框图评析并给出正确的算法结构(程序框图(10(编写计算机程序并使学生掌握“十进制转k进制”让学生在编写程序并上机运行“十进制转k的算法程序,见附注7,~促使运行~以1011001、,,2进制”程序( 学生积极主动并有效地学习(324分别转十进制~,,5检查学生的程序是否正确(4(以十进制数89为例~让学生模仿得出: 得出“除2取余”的二进探究“除2取余”的过制记数法则( 89 = 44×2 ,1,程( 44 = 22×2 ,0,22 = 11×2 ,0,11 = 5×2 ,1,5 = 2×2 ,1,2 = 1×2 ,0,1 = 0×2 ,1.5(以89为例~实现“除师生一起进行下述操探究“十进制化二进制”算法2取余”的过程( 作: 中的主要算法结构:条件结构89? 与循环结构(,取余,,取商,重复进行上述取余与取商的操作~直至商为0(6(从操作过程中提炼教师让学生先思考上得出“十进制转二进制”的算出“十进制转二进制”述操作中的算法结构~法步骤~并推广到“十进制转k算法步骤~并推广到然后写出算法步骤并进制”的算法步骤,见附注4,( “十进制转k进制”的进行交流~最后由教师算法步骤( 评析并给出正确的算法步骤(7. 由“十进制转k进让学生写出程序框图得出“十进制转k进制”的程制”的算法步骤写出程并进行交流~随后教师序框图,见附注5,~进一步领序框图评析并给出正确的会算法结构(程序框图(8(根据“十进制转k让学生在TI,92PLUS这是本节课的一个重要环节~新人教版高中数学必修五精品教案全册(第一章在后面) 进制”的程序框图~在图形计算器上编写程不仅能使学生正确掌握“十进TI,92PLUS图形计算序并运行~以89分别制转k进制”的算法程序,见器上编写程序并运行( 转二进制、五进制~检附注6,~还能使学生积极主动查学生的程序是否正并有效地学习(确(通过实例体会“二进制转十进9(以1011001为例~师生一起将“情景步骤,,2制”的算理~为得到“k进制转4”中的“师生活动”探究“二进制化十进十进制”的算法程序作铺垫( 所得到的算式由后往制”的算理(前代入并整理得到:61011001,1×2,0,,2543×2,1×2,1×2,210×2,0×2 0,1×2,89(10(在TI,92PLUS图使学生掌握“k进制转十进制”让学生在TI,92PLUS形计算器上编写并运的算法程序,见附注7,~促使图形计算器上编写程行“k进制转十进制”学生积极主动并有效地学习( 序并运行~以程序( 1011001、324分别,,2转十进制~检查学生的程序是否正确(体会任意两种进位制的11(把二让学生先利用“k进制转十进制”的程序得出:1011001,89~,,2数之间的转化方法:先进制数“k进制转十进制”~再1011001先利用“十进制转k进制”的程序得出: “十进制转s进制”( 89,324~化为五进制数( 所以~1011001,324( ,5,,,2使学生体会教学任务中12(讨论让学生讨论、交流对算法的认识及利用算法思想解决问题的基本步所期望的学习目标( 与小结( 骤~教师进行归纳小结(新人教版高中数学必修五精品教案全册(第一章在后面)课题 ?2.1数列的概念与简单表示法2 课型新授课课时备课时间了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前知识与技能n项和与的关系 a教学n目标过程与方法经历数列知识的感受及理解运用的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高三数学必修五教案
高三频道为你精心准备了《人教版高三数学必修五教案》助你金榜题名!【篇一】教学目标
掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.
教学重难点
掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.
教学过程
【示范举例】
例1:数列是首项为23,公差为整数,
且前6项为正,从第7项开始为负的等差数列
(1)求此数列的公差d;
(2)设前n项和为Sn,求Sn的值;
(3)当Sn为正数时,求n的值.【篇二】
一、教学内容分析
本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。

突出体现了优化思想,与数形结合的思想。

本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

二、学生学习情况分析
本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解.但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

三、设计思想
以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。

注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。

四、教学目标
1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次
不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法
求线性目标函数的最值与相应解;
2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力;
在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、
化归能力、探索能力、合情推理能力;
3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性.
五、教学重点和难点
重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组
的解集及用图解法解简单的二元线性规划问题;
难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过
程探究,简单的二元线性规划问题的图解法的探究.
六、教学基本流程
第一课时,利用生动的情景激起学生求知的欲望,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔.通过学生的
自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

第二课时,重现引例,在学生的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域.让学生对例3、例4进行分析与讨论进一步完善这一过程,突破本小节的第二个难点。

第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让学生思考探究,利用特殊值进行猜测,找到方案;再引导学生对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完美的解答;回顾整个探究过程,让学生在讨论中达成共识,总结出简单线性规划问题的图解法的基本步骤.通过例5的展示让学生从动态的角度感受图解法.最后再现情景1,并对之作出完美的解答。

第四课时,给出新的引例,让学生体会到线性规划问题的普遍性.让学生讨论分析,对引例给出解答,并综合前三个课时的教学内容,连缀成线,总结出简单线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程.总结线性规划的应用性问题的几种类型,让学生更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

人教版高三数学必修五教案。

相关文档
最新文档