数学分析课件PPT之十三章函数列与函数项级数

合集下载

数学分析课件PPT之十三章函数列与函数项级数

数学分析课件PPT之十三章函数列与函数项级数

审敛原理存在自然数N ,使得当 n N 时,对
于任意的自然数 p 都有
a a n1
n2
an p
.
2
由条件(1),对任何 x I ,都有
un1 ( x) un2 ( x) un p ( x)
un1 ( x) un2 ( x) un p ( x)
an1 an2
an p
例3 研究级数
x ( x2 x) ( x3 x2 ) ( xn xn1 )
在区间( 0 , 1]内的一致收敛性.
解 该级数在区间(0,1)内处处收敛于和s( x) 0,
但并不一致收敛.
对于任意一个自然数
n,
取 xn
1 ,于是 n2
sn ( xn )
xn n
1, 2
但 s( xn ) 0,
一 一致收敛函数列的性质 二 函数项级数的性质
一. 一致收敛函数列的解析性质
1 函数及限与序列极限交换定理
fn
x
f
x
lim
x x0
fn
x
an
lim
n
an
(即nlim
lim
xx0
lim xx0
fn x
f
x 存在
lim
xx0
lim
n
fn
x)
讨论单侧极限是, 只要把以上定理中的
n 1
在 D 上一致收敛的一个必要条件是:
函数列un (x)在 D 上一致收敛于 0.
3.若已知和函数 S(x) 可用下面的判别法
定理 13-4 函数项级数 un (x)在 D 上一致收 n 1
敛于 S(x)
lim sup
n xD
Rn (x)

数学分析2课件:13-1函数项级数及其一致收敛性

数学分析2课件:13-1函数项级数及其一致收敛性

x(1,1) 1 x n 1
n1
而右端极限为,
故原级数在(-1,1)不一致收敛。
但限制x [a,a],a 1,则
sup
x(a,a )
|
sn( x)
s( x) |
sup
x(a,a )
| 1 xn 1 x
1 1
x
|
sup | xn | an , x(a,a) 1 x 1 a
[( xn ) 0,单调增] 1 x
故 un( x)在数集D上一致收敛。
n1
证毕。
注1 在这个定理的条件下,可得| un( x) | 也一致收敛。
n1
注2 不是每个收敛级数都有优级数。
例8
sin n
nx
p
,
cos n
nx
p
,(
p
1)在(,)一致收
敛。
优级数均为
1 np
.
(1)n sin nx的优级数为 np
1, np
一致收敛。
xn在[a,a](a 1)的优级数为 an,一致收敛。
an为绝对收敛级数,则 an sin nx, an cos nx
n1
n1
n1
在(,)一致收敛,且| an | 就是其优级数。
n1
全体收敛点的集合称为收敛域。
un( x) s( x)
n1
——和函数。
例5
xn 1 x x2 x3
n0
lim
n
sn( x)
lim
n
1 xn 1 x
1 , 1 x 发散,
| x | 1 | x | 1
xn在( 1,1)内收敛于s( x)
1
.
n0

函数项级数和函数列的区别

函数项级数和函数列的区别

函数项级数和函数列的区别函数项级数和函数列是数学中的两种重要概念,它们在数学分析和数值计算中有着广泛的应用。

虽然它们都涉及到无穷项的求和,但在定义和性质上有一些不同之处。

我们来看函数项级数。

函数项级数是指一系列函数按照一定的顺序进行求和的过程。

具体地说,给定一个函数项序列{an(x)},其中an(x)表示第n个函数项,函数项级数可以写成S(x) = a1(x) + a2(x) + a3(x) + ...的形式。

在函数项级数中,每一项都是一个函数,而求和的结果也是一个函数。

函数项级数的求和可以通过逐项求和的方式进行,即对每个函数项分别求和,并将结果相加得到函数项级数的和。

函数项级数的收敛性和性质可以通过一系列定理进行研究和判断。

与函数项级数相比,函数列是一系列函数按照一定的顺序排列的序列。

给定一个函数列{fn(x)},其中fn(x)表示第n个函数,我们可以将函数列写成f1(x), f2(x), f3(x), ...的形式。

函数列的性质和收敛性可以通过逐点收敛和一致收敛来刻画。

逐点收敛是指对于每个x值,函数列在该点处的极限存在,而一致收敛是指函数列在整个定义域上的极限存在且收敛速度足够快。

从定义上看,函数项级数和函数列有一些相似之处。

它们都是一系列函数按照一定的顺序排列的序列。

然而,它们的主要区别在于求和的方式和求和的结果。

函数项级数的求和结果是一个函数,而函数列的求和结果是一个极限值。

此外,函数项级数的求和是逐项进行的,而函数列的求和是对整个函数列进行的。

在应用上,函数项级数和函数列都有着重要的作用。

函数项级数在数学分析中常用于研究函数的性质和逼近问题,如泰勒级数和傅里叶级数。

函数列在数值计算中常用于逼近函数的值和求解方程,如插值方法和迭代法。

函数项级数和函数列是数学中的两个重要概念。

它们在定义和性质上有所不同,但在应用上具有相似之处。

函数项级数和函数列在数学分析和数值计算中有着广泛的应用,对于理解和研究函数的性质和逼近问题具有重要意义。

13.2一致收敛函数列与函数项级数级数的性质

13.2一致收敛函数列与函数项级数级数的性质

因为函数列 { fn } 在 [a , b]上一致收敛于 f ,所以
对任给的ε> 0 , 存在 N > 0 , 当 n > N 时,对一切
x ∈ [a , b],
都有
| fn ( x ) - f ( x ) | < ε
b
于是当 n > N 时有
| f n ( x ) dx f ( x ) dx |
由柯西准则知数列 { an } 收敛.

lim a n A ,
n
x x0
下面证明: lim f ( x ) A . 因为{ fn } 一致收敛于 f ,数列 { an } 收敛于 A , 因此对任给的ε > 0 , 存在 N > 0 , 当 n > N 时, 对任何 x ∈(a , x0 )∪(x0 , b) 有 | fn(x) – f (x) | <ε/3 和 | an – A | <ε/3 同时成立.特别取 n = N +1,有 | fN+1(x) – f (x) | <ε/3 和 | aN+1 – A | <ε/3
n
( iii ) lim f n ( a ) 不存在,
n
则{ f n ( x )} 在 ( a , b )内不一致收敛
定理 13.9(连续性) 设函数列 { fn } 在区间 I 上一致收敛于 f ,且 fn ( n = 1, 2, . . . ) 在 I 上连续, 则 f在 I 上也连续.
证 要证:对任何 x0 ∈I , lim f ( x ) f ( x 0 ) .
x x0
由定理 13.8, lim lim lim f ( x ) x x lim f n ( x ) lim x x f n ( x ) n n

数学分析课件一致收敛函数列与函数项级数的性质

数学分析课件一致收敛函数列与函数项级数的性质
详细描述
对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。

一致收敛函数列与函数项级数级数的性质.ppt

一致收敛函数列与函数项级数级数的性质.ppt


lim
x x0
fN1( x) aN1
,
所以存在δ > 0 , 当0 < | x – x0 | <δ时,
| fN+1(x) – aN+1 | <ε/3
这样当0 < | x – x0 | <δ时,
| f (x) A|
| f ( x) f N 1( x) | | f N 1( x) aN 1 | | aN 1 A |

? lim
x x0
n1
un ( x)

n1
lim
x x0
un
(
x)
注:对函数序列{Sn ( x)}而言,应为
? lim
x x0
lim
n
Sn
(
x
)
lim
n
lim
x x0
Sn
(
x)
2.求导运算与无限求和运算交换次序问题
? d
dx n1 un ( x)
d n1 dx un ( x)
lim lim
x x0 n
fn
(
x)

lim
n
lim
x x0
fn(x) .
这表明在一致收敛的条件下,极限可以交换顺序.
证 先证数列 { an } 收敛.因为{ fn } 一致收敛,
故对任给的ε > 0 , 存在 N > 0 , 当 n > N 时,对任何 正整数 p ,对一切 x ∈(a , x0 )∪(x0 , b) 有
| fn(x) – f n+p(x) | <ε
从而
lim
x x0
|

函数项级数和函数列一致收敛

函数项级数和函数列一致收敛

函数项级数和函数列一致收敛函数项级数和函数列是数学中非常重要的概念。

在许多数学领域,我们经常会遇到这两个概念,并且它们在解决许多问题时发挥着重要的作用。

本文将介绍函数项级数和函数列的概念,并探讨它们之间的联系和应用。

首先,我们来看看函数项级数的概念。

一个函数项级数是指一系列函数的无穷和。

具体而言,给定一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,其中$f_n(x)$是一个函数序列。

我们可以将级数记为$S(x)=\sum_{n=1}^{\infty}f_n(x)$。

函数项级数的收敛性是指$S(x)$是否存在有限的极限。

当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。

与之相对应的是函数列。

函数列是一系列函数的序列。

对于给定的$x$,函数列的极限是指当$n$趋向于无穷大时,函数序列中的每个函数在$x$处的极限都存在,并且这些极限构成了一个函数。

具体而言,给定一个函数列$(f_n(x))$,其极限为$f(x)$,可以表示为$\lim_{n\to\infty}f_n(x)=f(x)$。

函数项级数和函数列之间存在着紧密的联系。

实际上,函数项级数可以看作是函数列的一种特殊情况。

考虑一个函数项级数$\sum_{n=1}^{\infty}f_n(x)$,我们可以构造一个函数列$(S_n(x))$,其中$S_n(x)$表示级数的部分和,即$S_n(x)=\sum_{k=1}^{n}f_k(x)$。

函数列$(S_n(x))$就是函数项级数$\sum_{n=1}^{\infty}f_n(x)$的部分和函数列。

一个重要的问题是函数项级数和函数列的收敛性之间的关系。

当级数对于所有的$x$都收敛时,我们说该函数项级数是一致收敛的。

类似地,当函数列对于所有的$x$都收敛时,我们也说该函数列是一致收敛的。

可以证明,函数项级数的一致收敛性等价于其部分和函数列的一致收敛性。

也就是说,如果函数项级数收敛于函数$S(x)$,那么它的部分和函数列也收敛于$S(x)$。

《数学分析》第13章 函数列与函数项级数ppt课件

《数学分析》第13章 函数列与函数项级数ppt课件
使函数列 { fn }收敛的全体收敛点集合, 称为函数列 { fn }的收敛域.
例1 设 fn( x) xn, n 1,2, 为定义在(-, ) 上的 函数列, 证明它的收敛域是 (1, 1], 且有极限函数
0, | x | 1,
f
(
x)
1,
x 1.
证 任给 0 (不妨设 1), 当 0 | x | 1 时, 由于
只限于在区间 0, b (b 1)上, 则容易看到, 只要
f (x) ,
xD
或 fn(x) f (x) (n ) , x D.
函数列极限的 N 定义: 对每一固定的 x D , 任 给正数 , 总存在正数N(注意: 一般说来N值与 和 x 的值都有关, 所以有时也用N( , x)表示三者之间
的依赖关系), 使当 n N 时, 总有
| fn( x) f ( x) | .
§1 一致收敛性
对于一般项是函数的无穷级数,其收敛性 要比数项级数复杂得多,特别是有关一致收 敛的内容就更为丰富,它在理论和应用上有 着重要的地位.
一、函数列及其一致收敛性
二、函数项级数及其一致收敛性 三、函数项级数的一致收敛判别法
一、函数列及其一致收敛性

f1, f2 , , fn ,
பைடு நூலகம்
(1)
是一列定义在同一数集 E 上的函数,称为定义在E
| fn( x) f ( x) || xn |,
只要取 N ( , x) ln , 当 n N ( , x) 时,就有
ln | x |
| fn( x) f ( x) || x |n| x |N .
当 x 0 和 x 1时, 则对任何正整数 n, 都有
| fn(0) f (0) | 0 , | fn(1) f (1) | 0 .

函数项级数的收敛域与和函数

函数项级数的收敛域与和函数
即 lim f n ( x ) f ( x ) " N"定义 n x D, 0, N ( , x) N,当n N有 f n ( x ) f ( x ) (4) 定义4 函数列{ f n ( x )}收敛点的全体集合 , 称为{ f n ( x )}的收敛域.
下页 返回
(3) 定义3 若{ f n ( x )}在D上收敛,则可确定一个新的 函数f ( x ),x D. 则称f ( x )为函数列{ f n ( x )}的极限函数. 记为: lim f n ( x ) f ( x ), x D或x D, f n ( x ) f ( x ), n n
0,| x | 1 从而 f n ( x ) f ( x) , x (1,1] 1, x 1 fn ( x) f ( x ),(n ), x D 0 0,N N, n0 N , x0 D,有 fn0 ( x0 ) f ( x0 ) 0
1. 函数列的定义: (1) 定义1 设函数f1 ( x ), f 2 ( x ),, f n ( x ),是定义在同 一个数集E上,则称其为E上的函数列. 记为: { f n ( x )}或f n ( x ), n 1,2, 特别地取定x x0 ,则函数列{ f n ( x )}为一个数列 { f n ( x0 )}.
k 1 k 1 1 n n 1
1 un ( x )dx 0[lim u ( x ) ] dx 0 n s k 0[lim n ( x )]dx n k 1 1 n
1
1
n
uk ( x )dx lim [0 uk ( x )dx] [0 un ( x )dx] lim 0 n n n1

数学分析13.1一致收敛性

数学分析13.1一致收敛性

第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。

《数学分析》课件 (完整版)

《数学分析》课件 (完整版)
第十一章 广义积分
§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得

时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。

数学分析课件-函数列

数学分析课件-函数列

05
结论
函数列的重要性和意义
函数列是数学分析中的重要概念,它对于理解函数的性质、 极限、连续性和可微性等方面具有重要意义。通过函数列, 我们可以更好地理解函数在不同点上的行为,以及函数在极 限状态下的性质。
函数列在解决实际问题中也有广泛应用。例如,在物理学、 工程学和经济学等领域中,经常需要用到函数列来描述物理 量随时间的变化规律、工程结构在不同载荷下的响应以及经 济数据的趋势等。
函数列的未来发展方向
随着数学和其他学科的不断发展,函数列的 研究也在不断深入。未来,函数列的研究将 更加注重与其他数学分支的交叉融合,例如 与调和分析、复分析、微分方程和概率论等 领域的结合,以产生更加丰富的研究成果。
随着计算机技术的不断发展,数值计算和模 拟在科学研究中的应用越来越广泛。函数列 的数值计算和模拟也是未来的一个重要研究 方向,例如在计算物理、计算化学和计算生 物学等领域中的应用。此外,随着大数据和 人工智能技术的兴起,函数列在数据分析和 机器学习等领域中也具有广阔的应用前景。
THANKS
感谢观看
解的存在性
通过构造满足特定条件的函数列,并 证明其收敛,可以证明某些积分方程 解的存在性。
在实数列极限中的应用
极限的性质
利用函数列的性质,可以证明实数列极 限的一些性质,如极限的唯一性、四则 运算性质等。
VS
收敛准则
通过研究函数列的收敛性,可以得到实数 列收敛的一些准则,如Cauchy收敛准则 等。
函数列是由一列函数组成的集合,这 些函数可以是同一变量或不同变量的 函数。
函数列中的每个函数都有自己的定义 域和值域,并且按照某种顺序排列。
02
函数列的一致收敛性
一致收敛的定义

函数列与函数项级数

函数列与函数项级数
幂级数在数学分析、微分方程、复变函数等领域有广泛应 用。
三角级数
三角级数定义
三角级数是形如 (a_0 + a_1cos x + a_2cos 2x + ldots) 的无限项和,其中 (a_0, a_1, a_2, ldots) 是常数,(x) 是自变 量。
三角级数的性质
三角级数具有周期性,可以表示为傅里叶级数的形式。
全局收敛
如果存在某个定义域内的所有点,都有$lim_{n to infty} f_n(x) = f(x)$,则称该函数列在定义域内全局收 敛于$f(x)$。
02 函数项级数的定义与性质
函数项级数的定义
函数项级数
由一列函数构成的数列,记作 ${ f_n(x) }$,其中 $n=1,2,3,ldots$。
函数列与函数项级数
目 录
• 函数列的定义与性质 • 函数项级数的定义与性质 • 函数列与函数项级数的应用 • 特殊类型的函数列与函数项级数 • 函数列与函数项级数的扩展概念
01 函数列的定义与性质
函数列的定义
函数列:由一簇函数构成的集合,通 常表示为$f_n(x)$,其中$n$是指标, $x$是自变量。
每个函数$f_n(x)$都有定义域,并且 对于固定的$n$,所有函数$f_n(x)$的 定义域相同。
函数列的性质
连续性
如果函数列在某一点连续,则该 点是该函数列的收lim_{n to infty} f_n(x) = f(x)$, 则称该函数列在全域上一致收敛
04 特殊类型的函数列与函数 项级数
幂级数
幂级数定义
幂级数是形如 (a_0 + a_1x + a_2x^2 + ldots) 的无限项和, 其中 (a_0, a_1, a_2, ldots) 是常数,(x) 是自变量。

第十三章 函数列与函数项级数

第十三章 函数列与函数项级数
函数列(1)不一致收敛于的f充要条件:
存在某个正整数 0对任何正数N ,都有
D上某一点x'与自然数n' N , 使得
fn' (x') f (x') 0
定理13.1: 函数列{ fn}在数集D上一致收敛的充要条件
是:对任给正数,总存在正数N , 使得当n, m N时,对一切x D,都有 fn (x) fm (x)
第十三章 函数列与函数项级数
∮1 一致收敛性
㈠ 函数列及其一致收敛性
函数列: f1, f2.., fn ,..(1) 是一列定义在同一数集E上的函数,则称之为 定义在E上的函数列。
设x0 E,以x0代入(1)可得函数列: f1( x0 ), f2 ( x0 ),..fn ( x0 ),..(2)
fn (0) f (0) 0 , fn (1) f (1) 0 ,
即证得{ fn}在(1,1]上收敛,且有如题所示 的极限函数。
例2: 定义在(,)上的函数列fn (x) sin nx / n, n 1,2,...由. 于对任何实数x,都有sin nx / n
1/ n,故对任给的 0,只要n N 1/ , 就有sin nx / n 0 .
证明:必要性
设fn (x) f (x)(n ), x D,即对给任何 0
存在正数N,使得当n N时,对一切x D都
有 fn (x) f (x) / 2,于是当n, m N时,就可
得 fn (x) fm (x) fn (x) f (x) f (x) fm (x)
fn(x) f (x) f (x) fm(x) / 2 / 2
..
xn
..的部分和函数为Sn
(x)
1 xn 1 x

函数列与函数项级数

函数列与函数项级数

§3.2 函数列与函数项级数一、主要知识点和方法1、基本概念函数列 收敛域 极限函数设{()}n f x 是定义在数集E 上的函数列,若存在x E '∈,使得数列{()}f x '收敛,则称函数列{()}n f x 在点x '收敛。

所有收敛点的集合称为收敛域,记为D 。

{()}n f x 在D 上每点的极限(是D 上的函数),称为极限函数,记为()f x 。

于是对任意x D ∈有lim ()()n n f x f x →∞=,或记为()()Dn f x f x −−→,称{()}n f x 在D 上收敛于()f x 。

函数列一致收敛性若0ε∀>,N ∃,当n N >时,对任意x D ∈都有()()n f x f x ε-<,则称{()}n f x 在D 上一致收敛于()f x ,记为()()Dn f x f x −−−→一致。

函数列一致有界性若存在常数0M >,使得对任意的自然数n 以及任意的x D ∈有()n f x M ≤,则称{()}n f x 在D 上一致有界。

函数项级数 和函数设{()}n u x 是E 上的函数列,称1()n n u x ∞=∑为E 上的函数项级数。

若其部分和函数列{()}n S x 在D 上收敛于收敛于极限函数()S x ,则称1()n n u x ∞=∑在D 上收敛于和函数()S x ,记为1()()n n u x S x ∞==∑。

函数项级数级数一致收敛性 设{()}n S x 是1()nn u x ∞=∑的部分和函数列,若()()DnS x S x −−−→一致,则称级数在D 上一致收敛(于()S x )。

柯西一致收敛准则{()}n f x 在D 上一致收敛的充分必要条件是:0ε∀>,N ∃,当,m n N >时,对任意x D ∈都有()()n m f x f x ε-<。

1()n n u x ∞=∑在D 上一致收敛的充分必要条件是:0ε∀>,N ∃,当m n N ≥>时,对任意x D ∈都有()mk k nu x ε=<∑。

数学分析函数列与函数项级数一致收敛

数学分析函数列与函数项级数一致收敛

数学分析函数列与函数项级数一致收敛函数列与函数项级数的一致收敛是数学分析中的重要概念,它在函数的极限、连续性、可积性等方面具有重要的应用价值。

我们先来简单介绍一下函数列和函数项级数的定义,然后详细讨论一致收敛的概念。

函数列是指一列函数组成的序列,记作{f_n(x)}。

函数项级数是指一列函数项组成的级数,记作Σf_n(x)。

在这里我们只讨论实函数的情况,即函数的定义域是实数集R。

一致收敛是函数列与函数项级数的重要性质之一,它是一种比点wise收敛更强的收敛方式。

我们先来回顾一下点wise收敛的定义。

【定义】函数列{f_n(x)}在定义域上点wise收敛到函数f(x),即对于任意的实数x,有lim┬(n→∞)⁡〖f_n (x)=f(x)〗。

点wise收敛的定义是逐点逼近,即对于每个固定的x,函数列中的函数值逐渐接近极限函数的函数值。

但是,它并不能保证对于每个函数点x,函数列中的函数在该点附近都可以逐渐逼近极限函数。

为了能够在整个定义域上都能够逐渐逼近极限函数,我们引入了一致收敛的概念。

【定义】函数列{f_n(x)}在定义域上一致收敛到函数f(x),即对于任意的正数ε,存在正整数N,使得当n>N时,对于所有的x∈R,有,f_n(x)-f(x),<ε。

可以看出,一致收敛关注的是函数列中的函数在整个定义域上的逼近性,而点wise收敛只关注固定点x的逼近性。

一致收敛的定义中,要求对于每个n>N,函数列中的函数与极限函数的差值都小于ε。

这意味着函数列中的函数可以在整个定义域上同时逐渐逼近极限函数。

一致收敛的定义意味着函数列中的函数一致地逼近极限函数,差值不受特定点的影响。

这使得我们可以在整个定义域上对函数列和极限函数进行更深入的比较与分析。

一致收敛在函数的极限、连续性、可积性等方面都有重要的应用。

例如,一致收敛的函数列的极限函数仍然是连续函数,一致收敛的函数项级数仍然是可积的。

简单总结一下,函数列与函数项级数的一致收敛是指函数列或函数项级数在整个定义域上同时逐渐逼近极限函数的性质。

课程自学资料9

课程自学资料9

注 上述用开区间的“内闭”一致收敛来得出和函数连
续性方法是函数项级数中典型的解题方法, 请关注.
还可证明和函数 f 在(1,1)上可导并可逐项求导.
数学分析 第十三章 函数列与函数项级数
高等教育出版社
f
(
x)
|
3
.
取定n0
N,
因为
fn
(
0
x
)
一致连续,故对上述的
0,
0, 使当x, x I , 且 | x x | 时,有
|
fn0 ( x)
f n0
(
x
)
|
3
.
f ( x) f ( x) f ( x) fn ( x) fn ( x) fn ( x) fn ( x) f ( x)
=
1
ex
= ex ,x[ ,).
(ex 1)2
数学分析 第十三章 函数列与函数项级数
高等教育出版社
§2一致收敛函数列与函数项级数的性质
习题课二
由于 的任意性,知
S( x)= ex , x (0,). (ex 1)2
数学分析 第十三章 函数列与函数项级数
高等教育出版社
§2一致收敛函数列与函数项级数的性质
§2一致收敛函数列与函数项级数的性质
习题课二
第十一讲 习题课二
数学分析 第十三章 函数列与函数项级数
高等教性质
重要内容回顾
习题课二
1.一致收敛函数列的性质; 极限交换定理,连续性定理, 可积性定理,可微性定理
2.一致收敛函数项级数的性质;
逐项求极限定理,和函数连续性定理, 逐项求积定理,逐项求导定理
数学分析 第十三章 函数列与函数项级数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2n
n
x,
0
x
1 2n
fn (x)
2
n
2nn
x,
1 2n
n xx0
fn (x)
即极限次序可换 .
3. 可积性定理
若在区间 [ a ,b ] 上函数列{ fn (x) }一致收
敛 , 且每个 f n (x) 在[ a , b ] 上连续. 则有
b
b
a
lim
n
fn (x)
dx lim n
a fn (x)dx.

设在[ a , b ] 上
fn
f (x) ,
线 y sn ( x)将位于曲线
y s( x) 与 y s( x) 之间.
y
y s( x)
y s( x)
y sn(x)
y s( x)
o
I
x
例2 研究级数
1 x1
x
1
2
x
1
1
x
1
n
x
1 n
1
在区间[ 0,)上的一致收敛性.

sn( x)
x
1
, n
1
s( x)
, 2
令 p ,则由上式得
rn (
x)
2
.
因此函数项级数 un ( x) 在区间I 上一致收敛. n1
例4 证明级数
sin x sin 22 x sin n2 x
12
22
n2
在(,)上一致收敛.
证 在(,)内
sin n2 x 1
n2
n2
(n 1,2,3, )
级数
1 收敛,
n2
4.一致收敛性简便的判别法:
定理13.5(Weierstrass判别法)
如果函数项级数 un ( x)在区间I 上满足条件: n1
(1) un ( x) an (n 1,2,3 );
(2) 正项级数 an 收敛, n1
则函数项级数 un ( x)在区间 I 上一致收敛. n1
证 由条件(2),对任意给定的 0 ,根据柯西
n 1
在 D 上一致收敛的一个必要条件是:
函数列un (x)在 D 上一致收敛于 0.
3.若已知和函数 S(x) 可用下面的判别法
定理 13-4 函数项级数 un (x)在 D 上一致收 n 1
敛于 S(x)
lim sup
n xD
Rn (x)
lim sup n xD
S(x) Sn (x)
0.
x
U
x0
与x
x0分别改为U
x0
(或U
x0
)与x
x0
(或x
x0 )即可.
2.连续性定理
设在 D上
fn
f (x) ,且对
n
,函数
fn (x)
在 D 上连续 , f (x) 在 D 上连续.
证 ( 要证 : 对 x0 D, f (x) 在点 x0
连续 .即证: 对 0 , 0 , 当 | x x0 | 时, | f (x) f (x0 ) | . )
从而
rn ( xn )
s( xn )
sn ( xn )
1. 2
只要取 1 ,不论n 多么大,在(0,1)总存在
2 点 xn, 使得 rn( xn ) ,
因此级数在( 0, 1 )内不一致连续.
说明: 虽然函数序列 sn ( x) xn 在( 0, 1 )内处处 收敛于 s( x) 0 , 但 sn ( x)在( 0, 1 )内各点处收
称s( x)为函数项级数的和函数.
s( x) u1( x) u2( x) un( x) (定义域是?)
函数项级数的部分和 sn ( x), 余项 rn ( x) s( x) sn ( x)
lim
n
sn
(
x)
s(
x)
lim
n
rn
(
x)
0
(x在收敛域上)
注意 函数项级数在某点x的收敛问题,实质上 是数项级数的收敛问题.
敛于零的“快慢”程度是不一致的.
从下图可以看出:
y y sn ( x) x n (1,1)
n1
n2
n n410
n 30
o
1x
注意:对于任意正数r 1,这级数在[0,r] 上 一致收敛.
小结 一致收敛性与所讨论的区间有关.
三一致收敛性判别
1.用定义 2.一致收敛的柯西准则 定理13-1(函数列一致收敛的柯西准则)
得当 n N 时,对一切 x D,都有
fn (x) f (x)
由上确界的定义,亦有
sup fn (x) f (x)
xD
则有
lim
n
su
xD
pf
n
(x)
f (x)
0.
[充分性] 由假设,对任给的 0 ,
存在正整数 N ,使得当 n N ,有
sup fn (x) f (x)

Th1,
函数 f (x) 在区间[ a , b ] 上连续,因此可积.
我们要证
lim
n
b
a fn (x)dx
b f (x)dx .
a
注意到
b
b
b
a f n a f
|
a
fn
f
|,
可见只要
|
fn (x)
f
(x) |
ba
在[ a , b ] 上成立.
例 1.定义在[0,1]上的函数列
函数列 fn在数集 D 上一致收敛的充要条件是:
对任给的正数 ,总存在正数 N ,使得
当 n, m N 时,对一切 xD ,都有
fn(x) fm(x)
证 [必要性] 设 fn (x)
u ur
f (x)
(n ), x D,
即对任给 0 ,存在正数 N ,使得当 n N
时,对一切 x D,都有
一 点态收敛
现在我们将级数的概念从数推广到函数上去. (一)函数项级数的一般概念
1.定义:
设 u1( x), u2( x), ,un( x), 是定义在 I R 上的
函数,则 un( x) u1( x) u2 ( x) un( x)
n1
称为定义在区间I 上的(函数项)无穷级数.
例如级数 xn 1 x x2 ,
定理13-3(函数项级数一致收敛的柯西准则) 函对数于项级 数 0n,1 unN(x,) 在使D得上当一n致收N敛时, 对一切 x D和一切正整数 p ,都有
Sn p (x) Sn (x)
即 un1(x) un2 (x) unp (x) . 特别地,当 p 1时,得到函数项级数 un (x)
xD
因为对一切 x D,总有
fn (x) f (x) sup fn (x) f (x)
xD

fn (x) f (x) .
于是 fn 在 D 上一致收敛于 f .
例 4.定义在[0,1]上的函数列
2n 2 x,0
x
1 2n
f n (x)
2n
2n 2 x,
1 2n
x
1 n
0,
1 n
x 1
n
1,2,
由于
fn (0)
0
,故
f
(0)
lim
n
fn (0)
0.

0
x
1时,只要
n
1 x
,就有
fn
(x)
0

故在
(0,1]
上有
f
(x)
lim
n
fn
(x)
0
.于是函数列
在[0,1]上的极限函数 f (x) 0,又由于(n )
sup
x[0,1]
fn (x)
f (x)
f
n
(
1 2n
)
n
所以,所给函数列在[0,1]上不一致收敛.
一 一致收敛函数列的性质 二 函数项级数的性质
一. 一致收敛函数列的解析性质
1 函数及限与序列极限交换定理
fn
x
f
x
lim
x x0
fn
x
an
lim
n
an
(即nlim
lim
xx0
lim xx0
fn x
f
x 存在
lim
xx0
lim
n
fn
x)
讨论单侧极限是, 只要把以上定理中的
第十三章
函数列与函数项级数
13.1 一致收敛性
一 点态收敛 二 函数项级数(或函数序列)的基本问题 三 函数项级数(或函数列)的一致收敛性 四 一致收敛性判别 五 小结
问题的提出
问题: 有限个连续函数的和仍是连续函数,有限 个函数的和的导数及积分也分别等于他们的导数 及积分的和.对于无限个函数的和是否具有这些 性质呢?
于是当 n, m
N
fn (x)
,就有
f
(x)
2
fn (x)
fm (x)
fn (x) f (x)
f (x)
fm
(x)
2
2
[充分性] 若 fn (x) fm(x) 成立,由数列收
敛的柯西准则, fn在 D 上任一点都收敛,
记其极限函数为 f (x) , x D .现固定上式中的
n ,让 m ,于是当 n N 时,对一切 x D
例3 研究级数
x ( x2 x) ( x3 x2 ) ( xn xn1 )
在区间( 0 , 1]内的一致收敛性.
相关文档
最新文档