正,余弦定理与解三角形
正弦定理、余弦定理及解三角形
第15页
返回目录
结束放映
考点突破 考点四 正、余弦定理在实际问题中的应用
训练 4 (2015·湖北卷)如图,一辆汽车在一条水平的公路上向 正西行驶,到 A 处时测得公路北侧一山顶 D 在西偏北 30°的方向 上,行驶 600 m 后到达 B 处,测得此山顶在西偏北 75°的方向上, 仰角为 30°,则此山的高度 CD=________m.
∴sin B= 1-cos2B
=2 3
2×79-13×4
9
2=1027
2 .
第3页
返回目录
结束放映
考点突破 考点一 利用正、余弦定理解三角形
规律方法
(1)解三角形时,如果式子中含有角的余弦或边的二次式,要 考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则 考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有 可能用到.
=sin∠6(海AB里C)=.ACsBinC120°=2×623= 22. ∴∠ABC=45°,易知 CB 方向与正北方向垂直,
从而∠CBD=90°+30°=120°.在△BCD 中,根据正弦定理,可得 sin∠BCD=BDsinC∠D CBD=10t·1s0in31t20°=12, ∴∠BCD=30°,∠BDC=30°,∴BD=BC= 6(海里),
则有 10t= 6,t=106≈0.245 小时=14.7 分钟.
故缉私船沿北偏东 60°方向,需 14.7 分钟才能追上走私船.
第14页
返回目录
结束放映
考点突破 考点三 和三角形面积有关的问题
规律方法
解三角形应用题的两种情形: (1)实际问题经抽象概括后,已知量与未知量全部集中在一 个三角形中,可用正弦定理或余弦定理求解; (2)实际问题经抽象概括后,已知量与未知量涉及到两个或 两个以上的三角形,这时需作出这些三角形,先解够条件的三角 形,然后逐步求解其他三角形,有时需设出未知量,从几个三角 形中列出方程(组),解方程(组)得出所要求的解.
解三角形正弦定理余弦定理三角形面积公式
解三角形正弦定理余弦定理三角形面积公式三角形是平面几何中的一个基本图形,研究三角形的性质与定理在数学中具有重要地位。
本文将介绍三角形中的三个重要定理,正弦定理、余弦定理和三角形的面积公式。
一、正弦定理:正弦定理是研究三角形中角度和边长之间关系的重要定理。
给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。
那么,正弦定理可以表述为:sin(A) / a = sin(B) / b = sin(C) / c其中,sin(A)表示A角的正弦值,a表示边a的长度。
正弦定理可以从三角形的面积公式推导得出。
二、余弦定理:余弦定理是研究三角形中角度和边长之间关系的另一个重要定理。
给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。
那么,余弦定理可以表述为:c^2 = a^2 + b^2 - 2ab * cos(C)其中,cos(C)表示C角的余弦值,c表示边c的长度。
余弦定理可以用来求解三角形的边长或角度,进而计算三角形的面积。
三、三角形的面积公式:给定一个三角形,设其底边长度为b,对应的高为h。
那么,三角形的面积可以通过以下公式来计算:S=1/2*b*h其中,S表示三角形的面积。
在计算三角形的面积时,还可以使用海伦公式。
海伦公式可以通过三角形的三边长来计算三角形的面积,其公式如下:S=√(p*(p-a)*(p-b)*(p-c))其中,p表示三角形的半周长,计算公式为:p=(a+b+c)/2在使用海伦公式计算三角形面积时,需确保三条边长满足三角不等式,即任意两边之和大于第三边的长度。
总结:通过正弦定理、余弦定理和三角形的面积公式,可以解决三角形相关的问题。
正弦定理和余弦定理给出了通过角度和边长计算三角形的方法,而三角形的面积公式提供了计算三角形面积的途径。
这些定理在三角形等应用中具有重要的价值,对于解题和扩展应用都非常有帮助。
三角函数与解三角形:正弦定理和余弦定理
正弦定理和余弦定理【考点梳理】1.正弦定理和余弦定理(1)S=12a·h a(h a表示边a上的高);(2)S=12ab sin C=12ac sin B=12bc sin A.(3)S=12r(a+b+c)(r为内切圆半径).【考点突破】考点一、利用正、余弦定理解三角形【例1】在△ABC中,∠BAC=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.[解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin 2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.【类题通法】1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.【对点训练】1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为()A.30°B.45°C.60°D.120°[答案]A[解析] 由正弦定理a sin A =b sin B =csin C 及(b -c )·(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,∴a 2+c 2-b 2=3ac .又∵cos B =a 2+c 2-b 22ac ,∴cos B =32,∴B =30°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[答案] 2113[解析] 在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin B sin A =1×636535=2113.考点二、判断三角形的形状【例2】(1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满足a cos A =b cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形(2)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] (1)D (2)A[解析] (1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,故选D.(2)由A +B +C =π,A +B <C ,可得C >π2,故三角形ABC 为钝角三角形,反之不成立.故选A. 【类题通法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能. 【对点训练】1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] 法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .2.在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形[答案] D[解析]根据余弦定理有1=a2+3-3a,解得a=1或a=2,当a=1时,三角形ABC为等腰三角形,当a=2时,三角形ABC为直角三角形,故选D.考点三、与三角形面积有关的问题【例3】已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin A sinC.(1)若a=b,求cos B;(2)设B=90°,且a=2,求△ABC的面积.[解析] (1)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B=a2+c2-b22ac=14.(2)由(1)知b2=2ac.因为B=90°,由勾股定理得a2+c2=b2,故a2+c2=2ac,进而可得c=a= 2.所以△ABC的面积为12×2×2=1.【类题通法】三角形面积公式的应用方法:(1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【对点训练】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.[解析] (1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。
高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
用正、余弦定理解三角形
灵活应用正、余弦定理解三角形利用正余弦定理解三角形在近几年的高考中出现的频率比较频繁,因此,掌握好正、余弦定理在各种题型中的应用就显得尤其重要。
下面就正、余弦定理的几种应用作一个归纳,希望能帮助同学们更好地掌握。
一、直接利用定理求边和角。
例1:在△ABC 中,0060,30,366==+=+B A b a ,求边c 的长。
解:∵ )(1800B A c +-==090 由正弦定理:Cc B b A a sin sin sin ==及等比定理得 0060sin 30sin 366sin sin sin ++=++=B A b a C c ∴12)31(21)31(62321366=++=++=c 二、配凑公式求边和角。
例2:若a ,b ,c 分别表示△ABC 的顶点A 、B 、C 所对的边长,且(a +b+c )(a +b -c )=3a b ,求cos (A+B )。
解: 由(a +b+c )(a +b -c )=3a b ,得ab c b a 3)(22=-+整理得:ab c b a =-+222, 故cos (A+B )=-cosC =-2122222-=-=-+ab ab ab c b a 三、利用定理求边和角的求值范围。
例3:①在锐角△ABC 中,a =1,b=2则c 的取值范围是多少?②设a ,a +1, a +2为钝角三角形的三边,则a 的取值范围是__________.解:①由余弦定理得: =2c C C ab b a cos 45cos 222-=-+由0<cosC<1 得512<<c 即 51<<c②由余弦定理得: 0)1(2)2()1(cos 222<++-++=a a a a a C 30310322<<⇔<<-⇔<--⇔a a a a四、利用定理判断三角形的形状。
例4:在△ABC ,已知)sin()()sin()(2222B A b a B A b a +-=-+,判断△ABC 的形状。
(完整版)正余弦定理及解三角形整理(有答案)
正余弦定理考点梳理:1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) A(2)锐角之间的关系:A +B =90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A =cos B =,cos A =sin B =,tan A =。
C B c a c b ba2.2.斜三角形中各元素间的关系: a如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =_____(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
(R 为外接圆半径)R CcB b A a 2sin sin sin ===3.正弦定理:===2R 的常见变形:asin A b sin B csin C (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)====2R ;a sin Ab sin B csin C a +b +csin A +sin B +sin C (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =,sin B =,sin C =.a 2Rb 2R c2R 4.三角形面积公式:S =ab sin C =bc sin A =ca sin B .1212125.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
余弦定理的公式: 或.2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩6.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两边和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.7.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.8.解题中利用中,以及由此推得的一些基本关系式进行三角变换ABC ∆A B C π++=的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-.sincos ,cos sin ,tan cot222222A B C A B C AB C+++===9. 解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C 。
正弦定理和余弦定理解直角三角形
第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 33.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403 4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3C .3∶5∶7D .4∶5∶66.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90°14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .52.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π123.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .44.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.235.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 8.△ABC 中,已知a =2,b =4,C =60°,则A =________.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150°2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等边三角形 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120°4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C .能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π314.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA ·BC = 23,求a+c 的值.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表:已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A +B +C =180°求出另一 角.在有解时只有一解.三边(a ,b ,c )余弦定理 由余弦定理求出角A 、B ;再利用A +B +C =180°,求出角C .在有一解时只有一解. 两边和其中一边的对角如 (a ,b ,A ) 余弦定理 正弦定理 由正弦定理求出角B ;由A +B +C =180°,求出角C ;再利用正弦定理或余弦定理求c .可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)一、选择题 1答案 D 2答案 C 解析 由正弦定理a sin A =b sin B, 得4sin 45°=bsin 60°,∴b =2 6. 3答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5答案 C解析 由a sin A =b sin B 得sin B =b sin Aa=2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°. 6答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3. 又C ∈(0°,180°),∴C =120°. 二、填空题 7答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin 150°1010=102.9答案 1解析 由正弦定理,得 3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1. 10答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°,∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11解 ∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4. ∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3. 12解 a =23,b =6,a <b ,A =30°<90°.又因为b sin A =6sin 30°=3,a >b sin A ,所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°. 当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.13答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2. ∴sin(π4+B )=1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12. 又a <b ,∴A <B ,∴A =π6. 1.1.1 正弦定理(二)一、选择题1答案 D2答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C ,∴A =B =C .3答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C . ∴0<c ≤403. 4答案 A解析 由a =2b cos C 得,sin A =2sin B cos C ,∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C .5答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6,∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b 6=k (k >0), 则⎩⎪⎨⎪⎧ b +c =4k c +a =5ka +b =6k ,解得⎩⎪⎨⎪⎧ a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1. 二、填空题7答案 2 3解析 ∵cos C =13,∴sin C =223, ∴12ab sin C =43,∴b =2 3. 8答案 2 解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B, ∴sin B =12,故B =30°或150°.由a >b , 得A >B ,∴B =30°,故C =90°,由勾股定理得c =2.9答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C=2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183, ∴sin C =12,∴c sin C =a sin A=12,∴c =6. 三、解答题11证明 因为在△ABC 中,a sin A =b sin B =c sin C=2R , 所以左边=2R sin A -2R sin C cos B 2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin B sin A. 12解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形.13答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45. 所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87. 1.1.2 余弦定理(一)一、选择题1答案 A2答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2. 4答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34. 5答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a 22bc ⇒a 2+b 2=c 2,符合勾股定理. 故△ABC 为直角三角形.6答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C , ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45° .二、填空题7答案 120°8答案 30°解析 c 2=a 2+b 2-2ab cos C=22+42-2×2×4×cos 60°=12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12. ∵a <c ,∴A <60°,A =30°.9答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12, ∴θ=120°. 10答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13, ∴cos C =a 2+b 2-c 22ab =-113,sin C =1213, ∴tan C =-12=-2 3.11解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12, 又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32. 1.1.2 余弦定理(二)一、选择题1答案 C解析 ∵(a +b -c )(a +b +c )=ab ,∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12, ∴cos C =-12,∴∠C =120°. 2答案 C解析 ∵2cos B sin A =sin C =sin(A +B ),∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B .3答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7,不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12. ∴C =120°.∴最小外角为60°.4答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5答案 A解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角.二、填空题7答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C=a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1. ∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2,化简得:0<a <8.又∵a +2a -1>2a +1,∴a >2,∴2<a <8.9答案 12解析 S △ABC =12AB ·AC ·sin A =12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49,∴AB +AC =7,∴△ABC 的周长为12.10答案 13π3解析 S △ABC =12bc sin A =34c =3, ∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A=12+42-2×1×4cos 60°=13,∴a =13.∴2R =a sin A =1332=2393, ∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin B sin C ·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C . 12解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21.∴ac=35,∵cosB =53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54 = 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =b sin B. ∴sin C =c b sin B =542×45=22. ∵c <b 且B 为锐角,∴C 一定是锐角.∴C =45°.13答案 A 解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1, ∴0<sin C ≤12. ∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6, ∴0<C ≤π6. 14解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC = 23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2. 由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a2+c2=b2+2ac·cos B=5,∴(a+c)2=a2+c2+2ac=5+4=9,∴a+c=3.。
高中数学-必修二6.3解三角形-知识点
1高中数学-必修二6.3解三角形-知识点1、正弦定理:A sin a =B sin b =C sin c =2R (R 是三角形的外接圆半径)。
常见变形:① sinA :sinB :sinC= a :b :c ;② a=2RsinA ,b=2RsinB ,c=2RsinC ;③sinA=R 2a ,sinB=R 2b ,sinC=R 2c。
★在满足等号两边(或是分子与分母)齐次的情况下,可将正弦值和边相互切换。
比如:若b=a cosC ,则可快速切换为sinB = sinA cosC 。
2、余弦定理:a 2 = b 2 + c 2 +2bc cosA ;b 2 = a 2 + c 2 +2ac cosB ;c 2 = a 2 + b 2 +2ab cosC ;cosA =bc 2a c b 222-+,cosB =ac 2b c a 222-+,cosC =b a 2c b a 222-+。
3、三角形面积公式:S=21absinC = 21bcsinA = 21acsinB .4、解斜三角形时,如果已知条件是 SAS , ASA , AAS , SSS ,则有 唯一 解;如果已知条件是 SSA ,则可能 一 解,也可能 两 解,要根据题目条件去判断。
5、在三角形中,大边对大角,小边对小角,等边对等角。
也就是说,非最长边所对的角,一定是锐角,而最长边所对的角,可能是锐角,可能是直角,可能是钝角。
6、在求角时,我们尽量用cos 而不用sin ,因为cos 在锐角和钝角的情况下,值是不一样的,这样就简化了计算,避免了讨论。
7、在三角形角的计算中,要熟练运用sinA = sin (B+C ),cosA = -cos (B+C ),tanA = -tan (B+C )。
8、题型:三角形形状的判断。
主要看是否是等腰三角形,等边三角形,直角三角形,等腰直角三角形,锐角三角形,钝角三角形。
9、反正弦:arcsinx(x ∈[-1 ,1 ])表示一个在[-π/2,π/2]范围中且正弦值为x 的角。
正弦定理与余弦定理在解三角形中的运用
正弦定理与余弦定理在解三角形中的运用正弦定理和余弦定理是解三角形中非常常用的定理。
它们可以帮助我们在已知一些边长或角度的情况下,求解出其他未知边长或角度。
在本文中,我们将详细介绍正弦定理和余弦定理的概念,并阐述它们在解三角形中的运用。
一、正弦定理正弦定理是解三角形中最为基础和常用的定理之一、它可以用来求解三角形的任意一个角度或边长。
正弦定理的表达形式如下:a / sinA =b / sinB =c / sinC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。
在应用正弦定理求解问题时,需要注意以下几个方面:1.已知两边和它们对应的夹角,求第三边:根据正弦定理,我们可以将等式重写为 a = b * sinA / sinB 或 a = c * sinA / sinC。
2.已知两边和它们对应的夹角,求第三个角度:根据正弦定理,我们可以将等式重写为 sinA = a * sinC / c 或 sinA = b * sinC / c,然后通过求反函数 sin^-1 求解出 A 的值。
3.已知两个角度和一个对边,求第三边:根据正弦定理,我们可以将等式重写为 b = a * sinB / sinA 或 b = c * sinB / sinC。
4.已知两个角度和一个对边,求第三个角度:根据正弦定理,我们可以将等式重写为 sinB = b * sinA / a 或 sinB = b * sinC / c,然后通过求反函数 sin^-1 求解出 B 的值。
由于正弦定理可以用来求解任意一个角度或边长,因此它非常灵活和实用。
二、余弦定理余弦定理是解三角形中另一个重要的定理。
它可以用来求解三角形的边长或角度。
余弦定理的表达形式如下:a^2 = b^2 + c^2 - 2bc * cosAb^2 = c^2 + a^2 - 2ac * cosBc^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形.正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。
高中数学正余弦定理和解三角形
正余弦定理和解三角形的实际应用要求层次重难点正余弦定理 C 使学生掌握正、余弦定理及其变形;能够灵活运用正、余弦定理解题解三角形C(一) 知识内容1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a . (1)三边之间的关系:a 2+b 2=c 2.(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =a c,cos A =sin B =b c,tan A =a b. 2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边. (1)三角形内角和:A +B +C =π.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.2sin sin sin a b cR A B C===.(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨⎪⎪=+-⎩+-⎪=⎪⎩3.三角形的面积公式:(1)S △=12ah a =12bh b =12ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); 例题精讲高考要求板块一:正弦定理和余弦定理正余弦定理和解三角形(2) S △=12ab sin C =12bc sin A =12ac sin B ;(3) S △=2sin sin 2sin()a B C B C +=2sin sin 2sin()b C A C A +=2sin sin 2sin()c A BA B +;(4) S △=2R 2sin A sin B sin C .(R 为外接圆半径) (5) S △=4abcR; (6) S △=()()()s s a s b s c ---;1()2s a b c ⎛⎫=++ ⎪⎝⎭;(海伦公式)(7) S △=r ·s . 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . (1)角与角关系:A +B +C = π;(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)边与角关系:正余弦定理. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点. 6.推论:正余弦定理的边角互换功能①2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2cC R= ③sin sin sin a b c A B C ===sin sin sin a b cA B C++++=2R ④::sin :sin :sin a b c A B C =⑤222sin sin sin 2sin sin cos A B C B C A =+- 222sin sin sin 2sin sin cos B C A C A B =+-222sin sin sin 2sin sin cos C A B A B C =+-7.三角形中的基本关系式:sin()sin ,cos()cos B C A B C A +=+=-, sincos ,cos sin 2222B C A B C A++== (二)主要方法:1.通过对题目的分析找到相应的边角互换功能的式子进行转换.2.利用正余弦定理可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系 .(三)典例分析:【例1】 已知△ABC 中,AB a =,AC b =,0a b ⋅<,154ABC S ∆=, 3,5a b ==,则BAC ∠=( )A .30B .150-C .150°D . 30或150°【变式】 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos2A =,3AB AC ⋅=. (1)求ABC ∆的面积;(2)若6b c +=,求a 的值.【变式】 ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos2B CA ++取得最大值,并求出 这个最大值.【变式】 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc , 求∠A 的大小及sin b Bc的值.【变式】 已知在ABC ∆中,a =45o B =,c =.【变式】 已知:,3,5,7ABC a b c ∆===中求:ABC ∆中的最大角.【变式】 已知△ABC 中,AB =1,BC =2,则求角C 的取值范围.【例2】 在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形【变式】 在△ABC 中,若cos cos a A b B =,试判断此三角形的形状.【变式】 在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,则判断△ABC 的形状.【例3】 若△ABC 的三条长分别是3,4,6,求它的较大的锐角的平分线分三角形所成的两个三角形的面积比.【例4】 已知三角形的三边长为三个连续自然数, 且最大角是钝角.求这个三角形三边的长.【例5】 在△ABC 中,BC =a ,AC =b ,a,b 是方程02322=+-x x 的两个根,且2cos(A +B )=1求:(1)角C 的度数;(2)AB 的长度; (3)△ABC 的面积.【变式】 在C A a c B b ABC ,,1,60,30和求中,===∆【变式】C B b a A c ABC ,,2,45,60和求中,===∆【教师选做】证明海伦公式<教师备案>1.海伦公式的变形形式:①②③④⑤2.海伦公式的其他证明方法证一 勾股定理分析:先从三角形最基本的计算公式S △ABC =12aha 入手,运用勾股定理推导出海伦公式.证明:如图ha ⊥BC ,根据勾股定理,得: 222222a a x a y hb y hc x =-⎧⎪=-⎨⎪=-⎩x =2222a c b a +-, y =2222a c b a-+∴ S △ABC =12aha=12a此时S △ABC 为变形④,故得证.证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha. 斯氏定理:△ABC 边BC 上任取一点D , 若BD=u ,DC=v,AD=t.则t 2 = 22b u cv uv a+-证明:由证一可知, u =2222a b c a -+,v =2222a b c a+-∴2ah = t 2 =224222222422b a b b c c a c b c a -+++--42222()4a b c a --∴ S △ABC =12aha =12a= 此时为S △ABC 的变形⑤,故得证.证三:余弦定理 即本题所采用证法. 证四:恒等式分析:考虑运用S △ABC =r p ,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式.恒等式:若∠A+∠B+∠C =180○那么tan 2A · tan 2B + tan 2A · tan 2C + tan 2B · tan 2C = 1证明:如图,tan 2A = r y ① tan 2B = rz ②tan 2C = rx ③根据恒等式,得:1111tan tan tan tan tan .tan222222A B C A B C ++=⋅ ①②③代入,得: 3x y z xyzr r++=∴r2(x+y+z) = xyz ④如图可知:a +b-c = (x+z)+(x+y)-(z+y) = 2x∴x =2a b c +-,同理:y =2b c a +- z =2a cb +-zy BC代入④,得: r 2 ·2a b c ++=()()()8a b c b c a a c b +-+-+-两边同乘以2a b c++,得:r 2·2()4a b c ++=()()()()16a b c a b c b c a a c b +++-+-+-两边开方,得: r ·2a b c ++左边r ·2a b c++= r ·p= S △ABC 右边为海伦公式变形①,故得证.证五:半角定理半角定理:tan2Atan 2Btan 2C证明:根据tan 2A=r y ,∴y ①同理z ②× x ③①×②×③,得:xyz∵由证一,x =2b a c +-=2b a c++-c = p-c y =2b a c -+=2b a c ++-a = p-az =2a b c -+=2b ac ++-b = p-b∴∴∴S △ABC = r ·故得证. 3.海伦公式的推广由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广.由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD 中,设p=2a b c d+++,则S 四边形=现根据猜想进行证明.证明:如图,延长DA ,CB 交于点E. 设EA = e EB = f∵∠1+∠2 =180○ ∠2+∠3 =180○ ∴∠1 =∠3,∴△EAB ~△ECDCzy B∴f a e +=e f c +=bdEAB ABCD S S ∆四边形=222b d b -解得: e =22()b ab cd d b +- ①f =22()b ad bcd b+- ②由于S 四边形ABCD =222d b b -S △EAB将①,②跟b =2222()b d b d b +-代入公式变形④,得:∴S 四边形ABCD =2224d b b -2222224()e b e b f -+-=2224d b b -42222222222222224222222222()()()()()4[()]()()()()b ab cd d b b ab cd b d b b ad bc d b d b d b d b +-+-+-+-----=2224d b b -{}422222222222244()()[()()()]()b ab cd d b ab cd d b ad bcd b +--++--+- =2214()d b -22222222224()()[{}{}{}]ab cd d b ab cd d b ad bc +--++--+=2214()d b -22222222442222224()()(2)ab cd d b a b c d d b d b a d b c +--+++--- =2214()d b -222222222222224()()[()()ab cd d b b a b d c d d b a c +--+--+--+ =2214()d b -222222222()[4()()]d b ab cd c d b a -+-+--=1422222222(22)(22)ab cd c d b a ab cd d b a c +++--+-++- =22221[()()][()()]4a c b d b d a c +--+-- =1()()()()4a b c d a b d c a d c b b d c a ++-++-++-++- =()()()()p a p b p c p d ----所以,海伦公式的推广得证.4.海伦公式的推广的应用海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍.【例6】 如图,四边形ABCD 内接于圆O 中,S ABCD =433,AD = 1,AB = 1, CD = 2. 求:四边形可能为等腰梯形.(一) 知识内容解斜三角形和证明三角形全等或相似类似,已知条件必须能确定这个三角形,才能求出唯一的其他未知条件的解.如果板块二:正余弦定理的实际应用dcbaOCA已知条件不能确定一个三角形,则可能无解或有两解,如两边和一个非两边夹角.大致可以把解斜三角形用下面的表格来概括:(二)典例分析【例7】 如图所示,已知在梯形ABCD 中(//AB CD ),CD =2,AC 60o BAD ∠=,求梯形的高DE .【变式】 在△ABC 中,已知4=AB ,7=AC ,BC 边上的中线27=AD ,那么求BC 为多少.【变式】 在△ABC 中,已知AC B AB ,66cos ,364==边上的中线BD =5,求sin A 的值.【变式】 已知△ABC 中,a 、b 、c 为角A 、B 、C 的对边,且a +c =2b ,A –B =60o ,求sin B 的值.【例8】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC =0.1km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km≈1.414≈2.449)【变式】 已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.D【变式】 某观测站C 在A 城的南偏西20°方向,由A 城出发有一条公路定向是南偏东40°,由C 处测得距C 为31km 的公路上B 处有1人沿公路向A 城以v =5km/h 的速度走了4h 后到达D 处,此时测得C 、D 间距离为21km.问这人以v 的速度至少还要走多少h 才能到达A 城.【教师选做】利用正余弦定理证明三角恒等式【例9】 在△ABC 中, 求证:22cos cos a b A B -+ +22cos cos b c B C -+ +22cos cos c a C A-+=0.【例10】 在△ABC 中,角A ,B ,C 的对边分别为a , b , c , 证明:222sin()sin a b A B C c --=.【例11】 在△ABC 中,记BC =a , CA =b , AB =c , 若22299190a b c +-=,则cot cot cot C A B +为多少.<教师备案>规律方法总结:1.要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解.2.两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式.3.记住一些结论:π,,,A B C A B C ++=均为正角,1sin 2S ab C =等.4.余弦定理的数量积表示式:cos ||||BA CA A BA CA ⋅=.5.余弦定理中,涉及到四个量,利用方程思想,知道其中的任意三个量可求出第四个量.。
正弦定理与余弦定理在解三角形中的运用
知识回顾:
1.正弦定理 在一个三角形中,各边和它所对角的正弦的比 相等 , 即
a b c = = sin A sin B sin C
.
正弦定理适用的解三角形的问题:
(1)已知三角形的任意两角与一边 (2)已知三角形的任意两边与其中一边的对角
例1(1)已知△ABC中,a=20,A=30°,C=45°,
3 1 1 解:由正弦定理,有 = ,即 sin B= 2π sin B 2 sin 3 π 又 C 为钝角,所以 B 必为锐角,所以 B= 6 π 所以 A= .故 a=b=1. 6
例3.在△ABC中,已知BC=7,AC=8,AB=9,试求
AC边上的中线长. 思考:用正弦还是余弦定理?
解:设 AC 的中点为 D,由余弦定理的推论得: AB2+AC2-BC2 92+82-72 2 cos A= = = , 2· AB· AC 2×9×8 3 在三角形 ABD 中,由余弦定理知: BD2=AD2+AB2-2· AD· ABcos A 2 =4 +9 -2×4×9× =49 3
方法感悟: 所给边不是已知角的对边 先求出第三个角, 再由正弦定理求另外两边
6- 2 2
B
6- 2 2
a
A C
b=1
2.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去 两倍这两边与它们的夹角的余弦的积,即 a2= b2+c2-2bccos A ,b2= a2+c2-2accos B , c2= a2+b2-2abcos C .(三边一角)
法一:由余弦定理 b2=a2+c2-2accos B, 得 32= a2+(3 3)2- 2× 3 3a× cos 30° , 即 a2- 9a+18=0,∴a=6 或 a=3. 1 6× asin B 2 = =1 当 a= 6 时,由正弦定理得 sin A= b 3 a ∴ A= 90° , C=60° . 当 a= 3 时, A=30° ,C=120° .
正余弦定理与解三角形
正余弦定理与解三角形(一).三角形中的各种关系设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . 1.角与角关系:A+B+C = π,由A =π-(B +C )可得:1)sinA =sin (B +C ),cosA =-cos (B +C ). 2)222C B A+-=π.有:2cos2sinC B A +=,2sin2cosC B A +=.2.边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b <c ,b -c < a ,c -a > b .3.边与角关系: 1)正弦定理R Cc Bb Aa 2sin sin sin ===变式有:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===; ③CB A c b a Cc Bb Aa sin sin sin sin sin sin ++++===;④C B A c b a sin :sin :sin ::=。
正弦定理可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 2)余弦定理 c 2 = a 2+b 2-2bccosC ,b 2 = a 2+c 2-2accosB ,a 2 = b 2+c 2-2bccosA .常选用余弦定理鉴定三角形的形状.注:余弦定理是勾股定理的推广. 变式有:cosA=bcacb2222-+;cosB=cabac2222-+;cosC=abcba2222-+.余弦定理的应用:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.(3)已知三角形两边及其一边对角,可求其它的角和第三条边。
(见解三角形公式)判定定理(角边判别法): 1. 当a>bsinA 时①当b>a 且cosA>0(即A 为锐角)时,则有两解;②当b>a 且cosA<=0(即A 为直角或钝角)时,则有零解(即无解); ③当b=a 且cosA>0(即A 为锐角)时,则有一解;④当b=a 且cosA<=0(即A 为直角或钝角)时,则有零解(即无解); ⑤当b<a 时,则有一解2.当a=bsinA 时①当cosA>0(即A 为锐角)时,则有一解;②当cosA<=0(即A 为直角或钝角)时,则有零解(即无解); 3.当a<bsinA 时,则有零解(即无解);3)射影定理: a =b ·cosC +c ·cosB ,b =a ·cosC +c ·cosA ,c =a ·cosB +c ·cosA . (二)面积公式(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sinsin 222S ab C bc A ca B ===. (3)O A B S ∆=(三)已知a, b 和A, 用正弦定理求B 时的各种情况: ⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA⑵若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a题型练习例1 在△ABC 中,已知a =3,b =2,B =45°,求角A 、C 及边c .解:A 1=60° C 1=75° c 1=226+A 2=120° C 2=15° c 2=226-变式训练1 (1)A B C ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =( )A .14B .34C 4D 3解:B 提示:利用余弦定理(2)在△ABC 中,由已知条件解三角形,其中有两解的是 ( )A.0020,45,80b A C === B.030,28,60a c B === C.014,16,45a b A === D.012,15,120a c A ===解:C 提示:在斜三角形中,用正弦定理求角时,若已知小角求大角,则有两解;若已知大角求小角,则只有一解 (3)在△ABC 中,已知5cos 13A =,3sin 5B =,则cos C 的值为( )A1665B5665C 1665或5665D 1665-解:A 提示:在△ABC 中,由sin sin A B A B >⇔> 知角B 为锐角(4)若钝角三角形三边长为1a +、2a +、3a +,则a 的取值范围是 .解:02a << 提示:由222(1)(2)3(1)(2)(3)a a a a a a +++>+⎧⎨+++<+⎩可得(5)在△ABC 中,060,1,sin sin sin A B C a b c A b S A B C++∠===++ 则= .解:34c =,由余弦定理可求得a =(6)在A B C ∆中,451a ,b c ,tan A tan B tan A tan B )=+=+=-,求sin A .7(7)已知在B b a C A c ABC 和求中,,,30,45,100===∆ (8)在C A a c B b ABC ,,1,60,30和求中,===∆ (9) C B b a A c ABC ,,2,45,60和求中,===∆例2 在A B C ∆中,已知22a tan Bb tan A =,试判断A B C ∆的形状.答案:等腰三角形或直角三角形变式训练2 在A B C ∆中,若20sin A sin B cos C -=,则A B C ∆必定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形 变式训练3 在A B C ∆中,若22a(b cos B c cos C )(b c )cos A -=-,试判断A B C ∆的形状。
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形知识点清单一.正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R(其中R是三角形外接圆的半径)sin A sin B si2.变形:1) a b c a b csin sin si nC sin sin si nC2)化边为角:a :b: c sin A: sin B :s in C -a si nA.b sin B a sin AJb sin Bc sin C c sin C '3)化边为角:a 2Rsin A, b 2Rsi nB, c 2Rs inC4)化角为边:sin A a ;J sin B b ; si nA aJ7sin B b sin C c sin C c5)化角为边:sin A a sin B b si nC c2R‘2R'2R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=18°0,求角A,由正弦定理-Sn) - Sn^; b sin B c sin C a sin A;求出b与cc sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理旦血求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理旦泄求出c边c sin C4. △ ABC中,已知锐角A,边b,贝U①a bsin A时,B无解;②a bsinA或a b时,B有一个解;③ bsin A a b 时,B 有两个解。
如:①已知A 60 ,a 2,b2, 3 ,求B (有一个解) ②已知A 60 ,b 2,a23,求B (有两个解)注意:由正弦定理求角时,注意解的个数。
正弦定理余弦定理解三角形技巧
正弦定理余弦定理解三角形技巧以正弦定理和余弦定理为基础的三角形解题技巧在解决三角形相关问题时,正弦定理和余弦定理是非常有用的工具。
它们可以帮助我们计算三角形的各个角度和边长,从而解决一系列问题,比如求解未知边长、未知角度、判断三角形类型等。
下面我将介绍一些使用正弦定理和余弦定理解决三角形问题的技巧。
一、正弦定理正弦定理是指在一个三角形中,三条边的长度与对应的角的正弦值之间的关系。
具体表达式如下:a/sinA = b/sinB = c/sinC其中a、b、c分别代表三角形的三条边的长度,A、B、C分别代表三角形的三个角度。
通过正弦定理,我们可以解决以下几类问题:1. 已知两个角和一个边的长度,求解其他未知边和角。
2. 已知两个边和一个角的大小,求解其他未知边和角。
3. 已知一个边和两个角的大小,求解其他未知边和角。
以一个具体的例子来说明,假设有一个三角形ABC,已知边长a=5,边长b=7,角C的大小为30度,我们可以利用正弦定理求解其他未知边和角。
根据正弦定理,我们可以得到以下等式:5/sinA = 7/sinB = c/sin30通过计算可得sinA ≈ 0.866,sinB ≈ 0.5。
将这些结果代入等式中,可以求解出c ≈ 8.66,A ≈ 60度,B ≈ 30度。
二、余弦定理余弦定理是指在一个三角形中,三条边的长度与对应的角的余弦值之间的关系。
具体表达式如下:c² = a² + b² - 2abcosC其中a、b、c分别代表三角形的三条边的长度,C代表三角形的一个角的大小。
通过余弦定理,我们可以解决以下几类问题:1. 已知三个边的长度,求解三个角的大小。
2. 已知两个边和对应的夹角,求解第三边的长度。
3. 已知两个边和一个角的大小,求解其他未知边和角。
以一个具体的例子来说明,假设有一个三角形ABC,已知边长a=5,边长b=7,角C的大小为30度,我们可以利用余弦定理求解其他未知边和角。
高三正余弦定理与解三角形
正弦余弦定理涵义及公式一、同步知识梳理一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。
2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C ===(2)化角为边:sin ,sin ,sin ;222a b cA B C RR R ===(3)::sin :sin :sin a b c A B C =(4)2sin sin sin sin sin sin a b c a b cR A B C A B C++====++.3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一)二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=3=+3=-210,∵102sin 45sin o B =,12=3(+76,2267===b .122bc ==-sin cos B Bsin C的对边长分别为】对是cos化角化边都可以。
析】:2b2b解法二:由余弦定理得:a2=AsinAsinbc=.【总结】面对解三角形,可以考虑正弦定理,也可以考虑余弦定理,两种方法只是计算量上的差别。
,(I)由正弦定理得。
正弦定理、余弦定理及解三角形
正弦定理、余弦定理及解三角形知识梳理1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC 外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sinC;(4)a sin B=b sin A,b sin C=c sincos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22abB ,a sinC =c sin A2.三角形面积公式:S △ABC =12 ah (h 表示边a 上的高) ;S △ABC =12ab sin C =12bc sin A =12ac sin B ;S △ABC =abc4R;S △ABC =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3.三角形解的判断在△ABC 中,已知a 、b 和A 时,三角形解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sinA <a <b a ≥ba >b解的 个数一解两解一解 一解典例剖析题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =5,sin A =13,则sin B =________.答案 59解析 在△ABC 中,由正弦定理a sin A =b sin B ,得sin B =b sin Aa =5×133=59. 变式训练 在△ABC 中,若A =60°,B =45°,BC =32,则AC =________. 答案 23解析 在△ABC 中,AC sinB =BC sinA ,∴ AC =BC·sinBsinA =32×2232=2 3.解题要点 如果已知两边一角或是两角一边解三角形时,通常用正弦定理.题型二 利用余弦定理解题例2 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.答案 332解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.变式训练 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC = . 答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x +20=0,解得x =4或x =5.解题要点 如果已知两边一角或是已知三边解三角形时,通常用余弦定理.题型三 综合利用正余弦定理解题例3 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知(b -2a )cos C +c cos B =0. (1)求C ;(2)若c =7,b =3a ,求△ABC 的面积.解析 (1)由已知及正弦定理得:(sin B -2sin A )cos C +sin C cos B =0,sin B cos C +cos B sin C =2sin A cos C ,sin(B +C )=2sin A cos C ,∴sin A =2sin A cos C . 又sin A ≠0,得cos C =12.又C ∈(0,π),∴C =π3.(2)由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴⎩⎪⎨⎪⎧a 2+b 2-ab =7,b =3a ,解得a =1,b =3.故△ABC 的面积S =12ab sin C =12×1×3×32=334.变式训练 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.解析 (1)由b sin A =3a cos B 及正弦定理a sin A =bsin B ,得sin B =3cos B .所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac .所以a =3,c =2 3.解题要点 解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.当堂练习1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.答案 332解析 由c 2=(a -b )2+6,可得a 2+b 2-c 2=2ab -6.① 由余弦定理及C =π3,可得a 2+b 2-c 2=ab .②所以由①②得2ab -6=ab ,即ab =6. 所以S △ABC =12ab sin π3=12×6×32=332.2.在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知b =2,B =30°,C =15°,则a 等于________. 答案 2 2解析 A =180°-30°-15°=135°,由正弦定理a sin A =b sin B ,得a 22=212,即a =2 2.3. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________. 答案 3+1 解析A =π-(B +C )=π-⎝ ⎛⎭⎪⎫π6+π4=7π12,由正弦定理得a sin A =bsin B ,则a =b sin Asin B =2sin7π12sin π6=6+2,∴S △ABC =12ab sin C =12×2×(6+2)×22=3+1.4.(2015重庆理)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________. 答案6解析 由正弦定理得AB sin ∠ADB =AD sin B ,即2sin ∠ADB =3sin 120°,解得sin ∠ADB =22,∠ADB =45°,从而∠BAD =15°=∠DAC ,所以C =180°-120°-30°=30°,AC =2AB cos 30°= 6. 5.(2015江苏)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析(1)由余弦定理知,BC2=AB2+AC2-2AB·AC·cos A=4+9-2×2×3×12=7,所以BC=7.(2)由正弦定理知,ABsin C=BCsin A,所以sin C=ABBC·sin A=2sin 60°7=217.因为AB<BC,所以C为锐角,则cos C=1-sin2C=1-37=277.因此sin 2C=2sin C·cos C=2×217×277=437.课后作业一、填空题1.(2015广东文)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=23,cos A=32且b<c,则b等于________.答案 2解析由余弦定理a2=b2+c2-2bc cos A,得4=b2+12-2×b×23×32,即b2-6b+8=0,∴b=4或b=2,又b<c,∴b=2.2.已知△ABC,a=5,b=15,A=30°,则c=________.答案 25或 5解析 ∵a sin A =b sin B ,∴sin B =b sin A a =155·sin30°=32.∵b >a ,∴B =60°或120°.若B =60°,C =90°,∴c =a 2+b 2=2 5. 若B =120°,C =30°,∴a =c = 5.3.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b 等于________. 答案 5解析 由题意知,23cos 2A +2cos 2A -1=0,即cos 2A =125,又因为△ABC 为锐角三角形,所以cos A =15.在△ABC 中,由余弦定理知72=b 2+62-2b ×6×15,即b 2-125b -13=0,即b =5或b =-135(舍去).4.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为________. 答案 直角三角形解析 ∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又∵sin A>0,∴sin A=1,∴A=π2,故△ABC为直角三角形.5.在某次测量中,在A处测得同一平面方向的B点的仰角是50°,且到A的距离为2,C点的俯角为70°,且到A的距离为3,则B、C间的距离为________.答案19解析∵∠BAC=120°,AB=2,AC=3.∴BC2=AB2+AC2-2AB·AC cos∠BAC=4+9-2×2×3×cos120°=19.∴BC=19.6.△ABC的内角A,B,C所对的边分别为a,b,c.若B=2A,a =1,b=3,则c=________.答案 2解析由正弦定理asin A=bsin B得:1sin A=3sin B,又∵B=2A,∴1sin A=3sin2A=32sin A cos A,∴cos A=32,∴∠A=30°,∴∠B=60°,∠C=90°,∴c=12+(3)2=2.7.在△ABC中,∠ABC=π4,AB=2,BC=3,则sin∠BAC=________.。
解三角形(正弦定理余弦定理三角形面积公式)课件
当光线遇到平面镜时,会产生反射现象。通过解三角形的方法可以计算入射角和反射角的关系,从而解释反射现 象。
建筑学中的角度计算
确定建筑物的角度
在建筑设计中,需要计算建筑物与水平面之间的角度,以确保建筑物的稳定性。利用解三角形的方法 可以计算出建筑物所需的倾斜角度。
测量建筑物的高度
通过观测建筑物与水平面之间的角度,利用解三角形的方法可以计算出建筑物的高度。
将三角形的三边长度转化为面积的表 达式,便于计算。
面积公式的应用
01
解决实际问题
利用三角形面积公式解决实际 问题,如土地测量、建筑规划
等。
02
数学竞赛解题
在数学竞赛中,三角形面积公 式是解决几何问题的重要工具
之一。
03
数学建模
在数学建模中,三角形面积公 式可以用于描述和解决现实生 活中的问题,如最优分割等。
详细描述
其中一种常见的证明方法是利用三角形的外接圆性质,通过相似三角形和勾股定 理进行推导。此外,还可以利用三角函数的加法定理、三角形的面积公式等其他 方法进行证明。掌握多种证明方法有助于加深对正弦定理的理解和应用。
02
余弦定理
定义与性质
总结词
余弦定理是三角形中一个重要的 定理,它描述了三角形各边与其 所对的角之间的关系。
应用场景
01
总结词
02
详细描述
正弦定理在解决三角形问题时非常有用,特别是在已知两边及夹角、 已知两角及夹边等情况下求解第三边。
通过正弦定理,我们可以解决各种与三角形相关的问题,如计算三角 形的面积、判断三角形的形状、解决几何作图问题等。它是三角函数 和几何学中非常重要的定理之一。
证明方法
总结词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A为钝角或直角
图形
关系式 a=bsin A bsin A<a<b
解的个数
一解
两解
a≥b 一解
a>b 一解
3.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
C=
1 2acsin
B
=
1 2bcsin A
;
(3)S=12r(a+b+c)(r 为三角形内切圆半径).
√
)
(4)在三角形中,已知两边和一角就能求三角形的面积.( √ )
123456
题组二 教材改编 2.[P10B组T2]在△ABC中,acos A=bcos B,则这个三角形的形状为 等腰三角形或直角三角形 . 解析 由正弦定理,得sin Acos A=sin Bcos B, 即sin 2A=sin 2B,所以2A=2B或2A=π-2B, 即 A=B 或 A+B=π2, 所以这个三角形为等腰三角形或直角三角形.
2.本例(2)中,若将条件变为a2+b2-c2=ab,且2cos Asin B=sin C,判断 △ABC的形状. 解 ∵a2+b2-c2=ab,∴cos C=a2+2ba2b-c2=12, 又 0<C<π,∴C=π3, 又由2cos Asin B=sin C得sin(B-A)=0,∴A=B, 故△ABC为等边三角形.
(2)若△ABC 的面积 S=a42,求角 A 的大小. 解 由 S=a42,得12absin C=a42, 故有 sin Bsin C=12sin A=12sin 2B=sin Bcos B, 由sin B≠0,得sin C=cos B.
又 B,C∈(0,π),所以 C=π2±B. 当 B+C=π2时,A=π2;当 C-B=π2时,A=π4.
【概念方法微思考】 1.在△ABC中,∠A>∠B是否可推出sin A>sin B? 提示 在△ABC中,由∠A>∠B可推出sin A>sin B.
2.如图,在△ABC中,有如下结论:bcos C+ccos B=a.试类比写出另外两个 式子. 提示 acos B+bcos A=c; acos C+ccos A=b.
√A.2 2
B.
3 2
C.
2 3
D.3 2
(2)在△ABC 中,a,b,c 分别为角 A,B,C 所对的边,A=π4,b2sin C=4 2sin B,则△ABC 的面积为___2____. 解析 因为 b2sin C=4 2sin B, 所以 b2c=4 2b,所以 bc=4 2, S△ABC=12bcsin A=12×4 2× 22=2.
跟踪训练1 (1)在△ABC中,角A,B,C所对的边分别是a,b,c.已知8b= 5c,C=2B,则cos C等于
√7
A.25
B.-275
7
24
C.±25
D.25
解析 ∵8b=5c,∴由正弦定理,得8sin B=5sin C.
又∵C=2B,∴8sin B=5sin 2B,
∴8sin B=10sin Bcos B.
命题点2 求解几何计算问题 例 4 (2018·云南 11 校跨区调研)如图,在四边形 ABCD 中,∠DAB=π3,AD∶AB
=2∶3,BD= 7,AB⊥BC.
(1)求sin∠ABD的值;
解 因为AD∶AB=2∶3,所以可设AD=2k,AB=3k.
又 BD= 7,∠DAB=π3, 所以由余弦定理,得( 7)2=(3k)2+(2k)2-2×3k×2kcos π3,解得 k=1,
多维探究
题型三 正弦定理、余弦定理的应用
命题点1 判断三角形的形状 例3 (1)在△ABC中,a,b,c分别为角A,B,C所对的边,若a=2bcos C, 则此三角形一定是
A.等腰直角三角形 B.直角三角形
√C.等腰三角形
D.等腰三角形或直角三角形
(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=
(2)设a=2,c=3,求b和sin(2A-B)的值. 解 在△ABC 中,由余弦定理及 a=2,c=3,B=π3, 得 b2=a2+c2-2accos B=7,故 b= 7.
由 bsin A=acosB-π6,可得 sin A=
21 7.
因为
a<c,所以
cos
A=2
7
7 .
因此 sin 2A=2sin Acos A=47 3,cos 2A=2cos2A-1=17. 所以 sin(2A-B)=sin 2Acos B-cos 2Asin B=47 3×12-17× 23=3143.
∴AD=a,BD=
2a3,BC=
4a 3.
在△ABD 中,cos∠ADB=a2+2a4×3a22-a3a2= 33,
∴sin∠ADB=
36,∴sin∠BDC=
6 3.
在△BDC
中,sBinDC=sin∠BCBDC,∴sin
C=BD·sபைடு நூலகம்Bn∠C BDC=
6 6.
师生共研
题型二 和三角形面积有关的问题
√A.钝角三角形 B.直角三角形
C.锐角三角形 D.等边三角形 解析 由已知及正弦定理得sin C<sin Bcos A, ∴sin(A+B)<sin Bcos A, ∴sin Acos B+cos Asin B<sin Bcos A, 又sin A>0,∴cos B<0,∴B为钝角, 故△ABC为钝角三角形.
综上,A=π2或 A=π4.
思维升华 (1)对于面积公式 S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就 使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.
跟踪训练 2 (1)(2018·承德质检)若 AB=2,AC= 2BC,则 S△ABC 的最大值为
123456
5.(2018·桂林质检)在△ABC中,已知b=40,c=20,C=60°,则此三角形的解
的情况是
A.有一解
B.有两解
√C.无解
D.有解但解的个数不确定
解析 由正弦定理得sinb B=sinc C,
∴sin
B=bsicn
C=40×20
3 2=
3>1.
∴角B不存在,即满足条件的三角形不存在.
123456
6.(2018·包头模拟)设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+ 2π
c=2a,3sin A=5sin B,则C= 3 . 解析 由3sin A=5sin B及正弦定理,得3a=5b.
又因为 b+c=2a,所以 a=53b,c=73b, 所以 cos C=a2+2ba2b-c2=53b22×+53bb2-×b37b2=-12. 因为 C∈(0,π),所以 C=23π.
123456
2 题型分类 深度剖析
PART TWO
师生共研
题型一 利用正弦、余弦定理解三角形
例 1 (2018·天津)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知 bsin A
=acosB-π6. (1)求角B的大小; 解 在△ABC 中,由正弦定理sina A=sinb B,可得 bsin A=asin B. 又由 bsin A=acosB-π6,得 asin B=acosB-π6, 即 sin B=cosB-π6,所以 tan B= 3. 又因为 B∈(0,π),所以 B=π3.
基础自测
JICHUZICE
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)三角形中三边之比等于相应的三个内角之比.( × )
(2)当b2+c2-a2>0时,三角形ABC为锐角三角形.( × )
(3)在△ABC
中,sina
A=sin
a+b-c A+sin B-sin
.( C
2R
(5)a∶b∶c= sin A∶sin B∶sin C;
(6)asin B=bsin A,
bsin C=csin B,
asin C=csin A
b2+c2-a2 (7)cos A= 2bc ;
c2+a2-b2 cos B= 2ac ;
a2+b2-c2 cos C=____2_a_b____
2.在△ABC中,已知a,b和A时,解的情况 A为锐角
跟踪训练 3 (1)(2018·安徽六校联考)在△ABC 中,cos2B2=a2+cc(a,b,c 分别
为角 A,B,C 的对边),则△ABC 的形状为
7
7 =4
3
3 .
2
思维升华
(1)判断三角形形状的方法 ①化边:通过因式分解、配方等得出边的相应关系. ②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A+B+C= π这个结论. (2)求解几何计算问题要注意: ①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.
所以AD=2,AB=3,
sin∠ABD=ADsinB∠D DAB=2×723=
21 7.
(2)若∠BCD=23π,求 CD 的长. 解 因为 AB⊥BC,所以 cos∠DBC=sin∠ABD= 721, 所以 sin∠DBC=27 7,所以sin∠BDBCD=sin∠CDDBC,
所以 CD=
7×2 3
∵sin B≠0,∴cos B=54, ∴cos C=cos 2B=2cos2B-1=275.
(2)如图所示,在△ABC 中,D 是边 AC 上的点,且 AB=AD,2AB= 3BD,BC 6
=2BD,则 sin C 的值为 6 .
解析 设 AB=a,∵AB=AD,2AB= 3BD,BC=2BD,