全国高中数学联赛(上海)赛区竞赛试卷

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年上海市高中数学竞赛

一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分) 1.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则所有这些六边形的面积和是 .

2.已知正整数1210,,

,a a a 满足:

3

,1102

>≤<≤j

i a i j a ,则10a 的最小可能值是 .

3.若17tan tan tan 6αβγ++=

,4

cot cot cot 5αβγ++=-,cot cot αβ 17

cot cot cot cot 5

βγγα++=-,则()tan αβγ++= .

4.已知关于x 的方程()()lg 2lg 1=+kx x 仅有一个实数解,则实数k 的取值范围是 .

5.如图,∆AEF 是边长为

x 的正方形ABCD 的内接三角形,已知

90∠=︒AEF ,,,==>AE a EF b a b ,则=x .

6.方程1233213+⋅-+=m n n m

的非负整数解(),=m n .

7.一个口袋里有5个大小一样的小球,其中两个是红色的,两个是白色的,一个是黑色的,依次从中摸出5个小球,相邻两个小球的颜色均不相同的概率是 .(用数字作答) 8.数列{}n a 定义如下:()122

1211,2,,1,2,22

+++===-=++n n n n n

a a a a a n n n .若

2011

22012

>+

m a ,则正整数m 的最小值为 .

E1

D 1

A

二、解答题 9.(本题满分14分)如图,在平行四边形ABCD 中,AB x =,1BC =,对角线AC 与BD 的夹角45BOC ∠=︒,记直线AB 与CD 的距离为()h x .

求()h x 的表达式,并写出x 的取值范围.

10.(本题满分14分)给定实数1a >,求函数(sin )(4sin )

()1sin a x x f x x

++=+的最小值.

11.(本题满分16分)正实数,,x y z 满足94xyz xy yz zx +++=,求证:

(1)43

xy yz zx ++≥

; (2)2x y z ++≥.

O

D

C

B

A

12.(本题满分16分)给定整数(3)n ≥,记()f n 为集合{}1,2,,21n -的满足如下两个条件

的子集A 的元素个数的最小值:

(a ) 1,21n A A ∈-∈;

(b ) A 中的元素(除1外)均为A 中的另两个(可以相同)元素的和. (1)求(3)f 的值; (2)求证:(100)108f ≤.

2012年上海市高中数学竞赛答案

1 2、9

2 3、11 4、(){},04-∞ 52

6、()()3,0,

2,2

7、

2

5

8、4025 9.解 由平行四边形对角线平方和等于四条边的平方和得

2222211

()(1)22

OB OC AB BC x +=

+=+. ① …………………(2分)

在△OBC 中,由余弦定理

2222cos BC OB OC OB OC BOC =+-⋅∠,

所以 2

2

1OB OC OC +⋅=, ②

由①,②得 2

OB OC ⋅=. ③

…………………(5分)

所以 144sin 2

ABCD OBC S S OB OC BOC ∆==⋅⋅∠

OC =⋅21

2

x -=, 故 ()AB h x ⋅21

2

x -=,

所以 21

()2x h x x

-=. …………………(10分)

由③可得,2

10x ->,故1x >.

因为22

2OB OC OB OC +≥⋅,结合②,③可得

221(1)22x +≥

解得(结合1x >)

11x <≤.

综上所述,21

()2x h x x

-=

,11x <≤. …………………(14分)

10.解 (sin )(4sin )3(1)

()1sin 21sin 1sin a x x a f x x a x x

++-==++++++.

当7

13

a <≤

时,02<,此时

3(1)

()1sin 221sin a f x x a a x

-=++++≥++,

且当(]()

sin 11,1x =∈-

时不等式等号成立,故min ()2f x a =+. …………………(6分) 当73a >

2,此时“耐克”函数3(1)a y t t

-=+

在(

0,内是递

减,故此时

min 3(1)5(1)

()(1)2222

a a f x f a -+==+

++=.

综上所述,min 72,1;3()5(1)7,.

2

3a a f x a a ⎧

+<≤⎪⎪=⎨

+⎪>⎪⎩ …………………(14分) 11.证 (1

)记t =

)

3

32

2

3xy yz zx xyz ++⎛⎫=

≤ ⎪⎝⎭

…………………(4分) 于是 3

2

4993xyz xy yz zx t t =+++≤+,

所以 ()()

2

323320t t t -++≥,

而2

3320t t ++>,所以320t -≥,即2

3

t ≥

,从而 4

3

xy yz zx ++≥. …………………(10分)

(2)又因为

2()3()x y z xy yz zx ++≥++,

相关文档
最新文档