不等式证明的若干方法
不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
不等式的证明方法

不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
证明不等式的八种方法

1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
2022考研数学:不等式证明的7种方法总结

2022考研数学:不等式证明的7种方法总结
不等式证明的7种方法总结
1. 拉格朗日中值定理适用于已知函数导数的条件,证明涉及函数(值)的不等式;
2. 泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式;
3. 应用函数的单调性定理证明:(1)对于证明数的大小比较的不等式,转化为同一函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;(2)对于证明函数大小比较的不等式,转化为同一个函数在区间内的任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;
4. 利用函数最大值、最小值证明不等式。
把待证的不等式转化为区间上任意一点函数值与区间上某点x出的函数值大小的比较,然后证明(fx)为最大值或最小值,即可证不等式成立;
5. 利用函数取到唯一的极值证明不等式。
把待证的不等式转化为区间上任意一点函数值与区间内某点x处的函数值大小的比较,然后证明(fx)为唯一的极值且为极大值或极小值,即(fx)为最大值或最小值,即可证不等式成立;
6. 用柯西中值定理证明不等式;
7. 利用曲线的凹凸性证明不等式。
证明不等式的几种方法

证明不等式几种的方法1.1比较法(作差法)[1]在比较两个实数a 和b 的大小时,可借助b a -的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 证明 02)(2222≥-=-+=-+b a ab b a ab b a , 故得ab b a ≥+2. 1.2作商法在证题时,一般在a ,b 均为正数时,借助1>b a 或1<b a 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1).例2 设0>>b a ,求证:a b b a b a b a >.证明 因为 0>>b a ,所以 1>ba ,0>-b a . 而 1>⎪⎭⎫ ⎝⎛=-b a a b b a b a b a b a , 故 a b b a b a b a >.1.3分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:15175+>+.证明 要证15175+>+,即证1521635212+>+,即15235+>,1541935+>,16154<,415<,1615<.由此逆推即得 15175+>+.1.4放缩法[5]在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例4 求证:01.0100009999654321<⨯⨯⨯⨯ . 证明 令,100009999654321⨯⨯⨯⨯= p 则 ,10000110001111000099991431211000099996543212222222222222<=-⨯⨯-⨯-<⨯⨯⨯⨯= p所以 01.0<p .1.5函数极值法通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的.例5 设R x ∈,求证:812sin 32cos 4≤+≤-x x . 证明 81243sin 2sin 3sin 21sin 32cos )(22+⎪⎭⎫ ⎝⎛--=+-=+=x x x x x x f 当43sin =x 时, ;812)(m ax =x f 当1sin -=x 时, .4)(m in -=x f故 812sin 32cos 4≤+≤-x x . 1.6单调函数法当x 属于某区间,有0)(≥'x f ,则)(x f 单调上升;若0)(≤'x f ,则)(x f 单调下降.推广之,若证)()(x g x f ≤,只须证)()(a g a f =及)),((),()(b a x x g x f ∈'≤'即可. 例 6 证明不等式x e x +>1,.0≠x证明 设,1)(x e x f x --=则.1)(-='xe xf 故当0>x 时,f x f ,0)(>'严格递增;当f x f x ,0)(,0<'<严格递减.又因为f 在0=x 处连续,则当0≠x 时, ,0)0()(=>f x f从而证得.0,1≠+>x x e x 1.7中值定理法利用中值定理:)(x f 是在区间],[b a 上有定义的连续函数,且可导,则存在ξ,b a <<ξ,满足))(()()(a b f a f b f -'=-ξ来证明某些不等式,达到简便的目的.例7 求证:y x y x -≤-sin sin .证明 设 x x f sin )(=,则ξξcos )(n si )(sin sin y x y x y x -='-=-故 y x y x y x -≤-≤-ξcos )(sin sin .1.8利用拉格朗日函数例 8 证明不等式,)111(331abc cb a ≤++- 其中c b a ,,为任意正实数. 证明 设拉格朗日函数为对).1111(),,,(rz y x xyz z y x L -+++=λλ 对L 求偏导数并令它们都等于0,则有02=-=x yz L x λ, 02=-=y zx L y λ, 02=-=x xy L z λ, .01111=-++=rz y x L λ由方程组的前三式,易的.111μλ====xyz z y x 把它代入第四式,求出.31r =μ从而函数L 的稳定点为.)3(,34r r z y x ====λ 为了判断3)3()3,3,3(r r r r f =是否为所求条件极小值,我们可把条件rz y x 1111=++看作隐函数),(y x z z =(满足隐函数定理条件),并把目标函数),(),(),,(y x F y x xyz z y x f ==看作f 与),(y x z z =的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:,22xz z x -=,22y z z y -= ,2xyz yz F x -=,2y xz xz F y -= ,2,232233xy z x z y z z F xyz F xy xx +--== .233yxz F yy = 当r z y x 3===时,,3,6r F F r F xy yy xx ===.02722>=-r F F F xy yy xx由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式).1111,0,0,0()3(3rz y x z y x r xyz =++>>>≥ 令,,,c z b y a x ===则,)111(1-++=cb a r 代入不等式有 31])111(3[-++≥cb a abc 或 ).0,0,0()111(331>>>≤++-c b a abc c b a。
初中数学知识点:不等式证明的六大方法

马行软地易失蹄,人贪安逸易失志。
对待生命要认真,对待生活要活泼。
以下是为您推荐初中数学知识点:不等式证明的六大方法。
1、比较法:包括比差和比商两种方法。
2、综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。
3、分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的
条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
不等式证明方法大全

不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。
目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。
二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。
三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。
四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。
五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。
六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。
七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。
以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。
不等式证明方法

不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。
不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。
一、数学归纳法。
数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。
在不等式证明中,我们可以利用数学归纳法证明不等式的成立。
具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。
通过数学归纳法,我们可以比较简单地证明一些不等式的成立。
二、换元法。
换元法是不等式证明中常用的一种方法。
当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。
换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。
三、分析法。
分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。
在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。
四、综合利用不等式性质。
不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。
具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。
五、几何法。
在不等式证明中,几何法也是一种常用的证明方法。
通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。
在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。
六、数学推理法。
数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。
在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。
不等式证明的几种方法

不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。
例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。
2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。
该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。
例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。
由此可知,不等式不成立。
3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。
通过反证法证明。
例如,要证明n^2<2^n,首先当n=1时,不等式成立。
假设当n=k时,不等式也成立,即k^2<2^k成立。
我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。
通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。
4.几何法几何法可以通过将不等式转化为几何问题来证明。
例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。
通过建立几何模型,可以直观地看出不等式成立的原因。
例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。
5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。
例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。
以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。
在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。
基本不等式的20种证明方法

基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
不等式的几种证明方法及其应用

不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
证明不等式的几种方法

不等式证明题的命题形式多样,证明不等式的方法也很多,如综合法、分析法、反证法、放缩法、构造法等.本文主要介绍一下综合法、分析法、反证法的应用技巧.一、综合法用综合法证明不等式,需先根据题目中的已知信息,以及已知的事实、结论、性质、定理等,一步步推导,直到推导出需要证明的式子为止.因而综合法就是由“因”到“果”的推导过程.每一步的推导过程一定要符合数学逻辑.在证明不等式时,可以从左往右推导,也可以从右往左推导.例1.若a,b,c是不完全相等的正数,求证:ln a+b2+ln b+c2+ln c+a2>ln a+ln b+ln c.证明:由于a,b,c都是正数,所以a+b2≥ab>0,b+c2≥bc>0,a+c2≥ac>0,又因为a,b,c是不完全相等的正数,如果这三个不等式都成立,就取不到等号,因此a+b2·b+c2·c+a2>ab·bc·ca=abc,在上式的两边取对数得:ln(a+b2·b+c2·c+a2)>ln(abc),即:lna+b2+ln b+c2+ln c+a2>ln a+ln b+ln c.解答本题主要运用基本不等式a+b2≥ab;然后根据不等式的可乘性,通过取对数,将不等式左边的式子进行化简.在推导不等式的过程中,经常需要用到这几个不等式:a2+b2≥2ab,a+b2≥ab(当且仅当a=b时取等号).二、分析法用分析法解题的思路和综合法相反,用分析法证明不等式,需要从要证明的不等式出发,然后分析这个不等式成立的充分条件是什么,一步一步递推,证明不等式成立的充分条件符合题中给出的信息,或者符合已知的数学结论.一般来说,分析法常用于证明较复杂的不等式问题.若由不等式一边的式子很难推导出另一边的式子,就可以采用分析法进行证明,通过分析、推理,一步步简化不等式,最终得到一个比较简便的等价不等式.例2.设a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.证明:要证:(a-b)28a a+b2ab(a-b)28b,即证:(a+b)28a<(a-b)22<(a-b)28b,由于a>b>0,所以a≠b,即证:(a+b)24a<1<(a+b)24b,<1<1<,根据a>b>0,可知该不等式成立,于是得证:(a+b)28a<a+b2-ab<(a-b)28b.这个不等式较为复杂,我们很难从不等式左边的式子推导出右边的式子,同样也很难反向推导出结论,但是可以用分析法,将不等式一步步简化,先将中间项合并,再将其化为1,然后通过恒等变换,化简即可.三、反证法反证法是解答证明题的一个重要手段.一般地,当题目中出现“至少”“不存在”“至多”等字眼时,都可以考虑使用反证法进行证明.用反证法证明不等式,要首先假设命题不成立;然后结合题中已知的信息和已有的数学知识,得到存在矛盾的结论,那就说明假设的命题不成立,这样就可以证明不等式成立.例3.已知a>0,b>0,且a+b>2,求证:1+b a,1+a b中至少有一个小于2.证明:假设1+b a,1+a b都大于2,因为a>0,b>0,则1+b≥2a,1+a≥2b,将这两个式子相加得:2+a+b≥2a+2b,化简得:a+b≤2,与题目中的a+b>2相矛盾,因此,1+b a,1+a b中至少有一个小于2.由题目中出现了“至少”的字眼,所以考虑使用反证法进行证明.在提出假设命题时,要注意命题的反面情况,如“1+b a、1+a b至少有一个小于2”的反面情况是“1+b a、1+a b都大于2”.熟练掌握综合法、分析法、反证法的适用情形、特点,以及解题的步骤,对解题有很大的帮助.同学们在日常学习中,要学会积累解题技巧和规律,以提升解题的效率.(作者单位:江西省龙南中学)赖明辉备考指南59。
证明不等式的基本方法

恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2
证明不等式的方法

证明不等式的方法1.比较法。
在证明不等式的方法中,比较法是最基本、最重要的方法。
比较法是利用不等式两边的差是正还是负来证明不等关系的。
利用不等式的性质对不等式进行变形,变形目的在于判断差的符号,而不考虑值是多少。
2.综合法。
综合法是由已知条件出发,推导出所要证明的不等式成立,即由已知逐步推演不等式成立的必要条件得到结论。
综合法是“由因导果”。
3.分析法。
分析法也是证明不等式的一种常用的基本方法,当证题不知从何入手时,有时可以用分析法获得解决。
分析法是和综合法对立统一的两种方法,它是由结果步步寻求不等式成立的充分条件,找寻已知,是“执果索因”。
分析法和综合法常常是不能分离的,如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程。
4.作商法。
将不等式左右两端作商、变形化简商式到最简形式,判断商与1的大小,应用范围一般是被证式的两端都是正数,被证式子两端都是乘积形式或指数形式时常用此法。
5.判别式法,对于含有两个或两个以上字母的不等式,在使用比较法无效时,若能整理成一边为零,而另一边为某个字母的二次式时,这时候可用判别式法。
6.代换法。
代换法中常用的有两种:一种是三角代换法,一种是增量代换法。
三角代换法多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时候可考虑三角代换,将两个变量都用同一个参数表示。
此法可以把复杂的代数问题转化为三角问题。
要注意的是可能对引入的角有一定的限制,这一点要根据已知来定。
增量代换法一般是在对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量法进行代换,代换的目的是通过代换达到减元的目的,使问题化难为易,化繁为简。
7.构造函数法。
函数思想是中学数学重要的思想方法之一,有些数学问题只要将其中某些变化的量建立起联系,构造出函数,再利用函数的性质,就能解决问题。
8.反证法。
用直接法证明不等式困难时,可考虑用反证法。
例谈证明不等式的四种常用措施

=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
不等式证明的若干种方法

不等式证明的若干种方法四川省成都市铁路中学校610081不等式的证明在中学数学中占到了重要地位,本文对比较法和数学归纳法这两种证明方法进行了讨论,以合适的例题进行了分析与评价,最后对能用比较法和数学归纳法解决的问题的特征及具体解法做了详细说明。
一、比较法利用比较法证明不等式即对a, b作差或者作商,探究结果的范围,从而证明不等式。
例1:设a,b是任意实数,求证a2+b2≥a+b+ab-1。
证明:∵(a2+b2)-(a+b+ab-1)=a2+b2-a-b-ab+1=(2a2+2b2-2a-2b-2ab+2)=[(a2-2a+1)+(b2-2b+1)+(a2-2ab+b2)]=[(a-1)2+(b-1)2+(a-b)2]≥0∴a2+b2≥a+b+ab-1.分析:例1是一个能够运用作差法解决的不等式证明问题,其主要步骤如下:(1)作差:将不等式左右两边作差得到多项式(a2+b2)-(a+b+ab-1)。
(2)变形:通过配方将多项式整理为与(a-1)2+(b-1)2+(a-b)2的乘积,即一个正数与一个非负数乘积。
(3)判断符号:一个正数与一个非负数之积为非负数,故多项式(a2+b2)-(a+b+ab-1)≥0。
(4)得结论:利用不等式的基本性质一得到原不等式a2+b2≥a+b+ab-1成立。
例2:若a>0,b>0,c>0,求证:aabbcc≥(abc)。
证明:∵a,b,c,具有对称性,故不妨假定ab,c>0,∴a-b≥0,b-c≥0,a-c≥0,∴≥1,≥1,≥1,∴()>1,()>1,()>1,(abc)>0,∴ =ab c=()()()≥1,∴aabbcc≥(abc)。
当且仅当a=b=c>0时,等号成立。
分析:例2是一个能够运用作商法解决的不等式证明问题,主要步骤如下:(1)作商:将不等式左右两边作商,得到式子;(2)变形:利用同底数幂的除法法则和积的乘方性质可将式子整理为()()(),即三个大于1的数的乘积,(3)判断:三个大于1的数之积仍大于1,故()()()>1,(4)结论:由(abc)>0和不等式基本性质二得到原不等式aabbcc≥(abc)成立。
证明函数不等式的六种方法

证明函数不等式的六种方法在高中数学中,函数的不等式是一个重要的主题。
证明函数不等式是一个基本的技能,它可以帮助学生更好地理解函数的性质并提高数学思维能力。
下面我们介绍六种证明函数不等式的方法。
1. 代数法这种方法是最常用的方法之一。
我们可以将不等式两边的函数展开,并进行简单的代数计算,以确定不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)展开,然后将它们相减,得到:f(x) - g(x) = x + 1因此,f(x) > g(x) 当且仅当 x > -12. 消元法这种方法通常适用于含有多个变量的不等式。
我们可以将其中一个变量消去,从而使不等式简化。
例如,我们要证明:f(x, y) > g(x, y)其中f(x, y) = x^2 + y^2g(x, y) = x^2 - y^2我们可以将y消去,得到:f(x, y) - g(x, y) = 2y^2因此,f(x, y) > g(x, y) 当且仅当 y ≠ 03. 极限法这种方法通常适用于连续函数的不等式。
我们可以将不等式两边取极限,以确定不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)的极限计算出来,得到:lim (f(x)) = +∞x→+∞lim (g(x)) = +∞x→+∞因此,f(x) > g(x) 当 x → +∞4. 导数法这种方法通常适用于在区间内单调的函数不等式。
我们可以计算函数的导数,以确定函数的单调性和不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^3 + 3x^2 + 3x + 1g(x) = x^2 + 2x + 1我们可以计算f(x)和g(x)的导数,得到:f'(x) = 3x^2 + 6x + 3g'(x) = 2x + 2由于f'(x) > g'(x) 在 [-1, +∞) 上成立,并且f(-1) > g(-1) ,因此,f(x) > g(x) 在 [-1, +∞) 上成立。
不等式的八种证明方法及一题多证

不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。
使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。
2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
高中数学证明不等式的九种常用方法

ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1
①
∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
`学科分类号110本科毕业论文题目不等式证明的若干方法姓名朱虹霞学号51院(系)数学与计算机科学学院专业数学与应用数学年级 2011级指导教师晟职称副教授二○一五年五月师学院本科毕业论文诚信声明本人重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
本科毕业论文作者签名:年月日目录摘要 (1)Abstract (2)1 常用的不等式证明方法 (3)1.1 作差比较法 (3)1.2 作商比较法 (4)1.3 分析法 (5)2 假设法证明不等式 (5)2.1 反证法 (5)2.2 数学归纳法 (6)3 构造法证明不等式 (7)3.1 代换法 (7)3.2 构造复数 (8)4 利用微分中值定理证明不等式 (9)4.1 利用拉格朗日中值定理 (9)4.2 利用柯西中值定理证明不等式 (10)4.3 利用泰勒展开式证明不等式 (11)5 利用积分定理证明不等式 (12)5.1 利用定积分定义证明不等式 (12)5.2 利用定积分性质证明不等式 (13)6 一题多解 (14)结语 (17)参考文献 (18)致 (19)摘要不等式是数学学习过程当中一个根本的问题,它浸透于数学研究的各个方面,因而不等式证明在数学中有着至关重要的作用和地位。
在本文中,我主要从不同方面总结了一些证明不等式的方法。
尤其是在初等数学中不等式证明,经常会使用到比较法,假设法,反证法等等。
在高等数学中还会用到中值定理、积分定理等等。
于是,一个更完美的不等式的证明,有助于我们进一步的探索研究。
经过去掌握这些证明方法,可能会帮助我们去解决一些数学题目。
关键词:比较法;中值定理;积分定理AbstractInequality is the mathematical learning process is a fundamental issue, it soaked in all aspects of mathematical research, which proves inequality has a crucial role and position in mathematics. In this article, I mainly summarizes some different aspects to prove inequality. Especially proving inequalities in elementary mathematics, is often used to compare methods, assumptions law, reductio ad absurdum, and so on. Higher Mathematics will be used in the mean value theorem, integral theorem and so on. Thus, a more perfect proof of inequality, helping us to further exploration and research. After prove to master these methods may help us to solve some math problems.Keywords: Comparative Law; value theorem; integral theorem引言在数学学习过程中,不等式是基本的数学关系,不等式的证明也证明了它是数学领域一个非常重要的容,然而,这些容在初等数学与高等数学中又有一个很好的体现。
到17世纪之后,它已经逐渐发展为不等式理论,成为数学基础的一个重要要组成部分。
在不等式证明之前,要根据其结构特点,往往需要对其部结构进行分析,来采取适当的,熟悉各种证据推理方法,并要掌握相应的环节,技术和语言特点,揭示问题的本质特点,使得难解的问题变动为可解性问题。
黄冬梅在《关于不等式证明的若干方法的探究》中提到过,利用“对称和均分”的观点。
根据微积分的知识,通过一些例子来探讨不等式证明在初等数学中应用。
东洪平在《利用二次求导确定函数单调性证明一些不等式》中涉及到,根据利用二阶导数方法来证明函数的单调性,通常用一个函数来求导确定,因此,某些函数的单调性不能确定的时候,对这些函数进行二次求导来确定其单调函数.忠彦在《用数学归纳法证明一类不等式的技巧》中提到,对于一边是常数的数列不等式,不妨借助于数学归纳法,直接证明概括往往有一定的困难,如果使用不等式的传递性、可加性,通过增强命题,比例常数和其他技能,就可以成功完成了归纳过渡。
1 常用的不等式证明方法比较法是不等式数学证明中最基本、最根本的方法,主要有作差法和作商法。
1.1 作差比较法作差比较法:要证不等式()->-<即可。
比较a b a b><,只要证()a b a b00法包括以下几个步骤:作差、变形、判断的符号(正或负)、得出结论。
例1 实数,a b 为正数,求证22222a b a b ++≥+。
分析:两个多项式大小的比较通常是用作差比较法。
解:()22222a b a b ++-+()()222121a a b b =-++-+()()22110a b =-+-≥小结:作差:要比较两个数(或式子)作差的大小;变形:对差值进行因式分解或几个数(或式子)的完全平方和; 判别:结合变形和题设前提下判断差的符号。
1.2 作商比较法商比较:在一般情况下,当,a b 均为正数时,借助1a b >或1a b <,来表示它的大小,一般步骤为:作商——变形——判别(大于1或小于1)。
例2 设,a b R +∈,求证:()2a ba b a b ab +≥。
分析:关于一些含有幂指数类型的题通常都用作商比较法。
证明:()2222a b a b b a a b a b a b a a b b ab ---+⎛⎫=⋅= ⎪⎝⎭, 又指数函数的性质,当a b =时,21a b a b -⎛⎫= ⎪⎝⎭;当0a b >>时,1a b >,02a b ->,21a b a b -⎛⎫> ⎪⎝⎭;当0b a >>时,01a b <<,02a b -<,21a b a b -⎛⎫> ⎪⎝⎭; 即2a b a b a b ab +≥.注:作商法通常适用于含“幂”、“指数”比较类型的式子。
1.3 分析法分析法是从结论开始,一步步的向上推导,探索下去,然而证明已知的题目中设条件,在证明的过程中,推导的每一步都要可逆。
例3 已知:c b a ,,为互不相等的实数,求证:ca bc ab c b a ++>++222.证明:要证ca bc ab c b a ++>++222成立,即证明0222>---++ca bc ab c b a需要证022*******>---++ca bc ab c b a即()()()0222>-+-+-a c c b b a因为c b a ≠≠,所以()()()0,0,0222>->->-a c c b b a .由此逆推,即可证明。
2 假设法证明不等式2.1 反证法反证法是证明与命题相对立的结论,可以先来假设一个错误的结论,应用到以往所学的知识来证明假设是错误的。
理论依据:命题“p ”与命题“非p ”一真、一假。
例4 已知10,10,10<<<<<<c b a ,求证:()()()a c c b b a ---1,1,1至少有一个小于等于41。
分析:“小于等于”的反面是“大于”,可以考虑用反证法。
证明:假设()()()a c c b b a ---1,1,1都大于41,则10,10,10<<<<<<c b a∴01,01,01>->->-c b a根据平均值不等式,有()()2141121=>-≥+-b a b a同理()()2121,2121>+->+-ac c b ,∴()()()23212121212121=++>+-++-++-a c c b b a2323>∴.显然矛盾,所以结论成立。
注:反证法适合用于证明一些“存在性的问题、唯一性的问题”,“至少有一个”或“至多有一个”等类型的数学问题。
2.2 数学归纳法一般地,证明一个与正整数n 有关的命题,即按下列步骤进行:()1证明当n 取第一个值1=n 时命题成立;()2一个命题,证明了命题的假设命题进行()*0,n k k n k N =≥∈证明,建立当1n k =+时,命题也成立。
综上所述,建立了所有的自然数都成立。
例5 nn n n n 212111211214131211+++++=--++-+- 。
证明:()1当1n =时,左11122=-=,右12=,一个命题成立。
()2假设当n k =时,命题成立, 即k k 211214131211--++-+- kk k 212111+++++= . 那么当1n k =+时, 左边221121211214131211+-++--++-+-=k k k k 221121212111+++++++++=k k k k k 2211213121++++++++=k k k k 上式表明当1n k =+时,命题也成立。
由()()12知,命题对一切正整数均成立。
注意:(1)数学归纳法证明命题,步骤严谨,务必严格按步骤进行。
(2)归纳推理是难点,要仔细看准再变形。
3 构造法证明不等式构造法是利用已知条件为前提,把条件进行变换和替代或模型结构的条件下,复杂等,来实现不等式的证明过程的简单化。
3.1 代换法提取一个式子作为一个整体,一个变量来代替它,使问题得以简单化,称为代换法。
还原转化的本质,关键在于构建元素和组元,理论原由是基于等效替代,这样的非标准化的问题,复杂的问题。
例7 计算下面的算式()()()()7.88 6.77 5.669.3110.98107.88 6.77 5.66109.3110.98++⨯++-+++⨯+ 解: 令7.88 6.77 5.66a =++,9.3110.98b =+, 则原式()()1010a b a b =⨯+-+⨯ ()()1010ab a ab b =+-+ 1010ab a ab b =+-- ()10a b =⨯-()107.88 6.77 5.669.3110.98=⨯++-- 100.02=⨯ 0.2=注意:在解题过程中,往往要根据解题的需要,通常把较大的数字或者复式的式子用字母来代替,这样才会使式子中的复杂的关系更加简单明了,简化或计算过程也会简便些。