人教版七年级下册数学《变量之间的关系》教案

合集下载

新版初一数学下册第四章教案:变量之间的关系

新版初一数学下册第四章教案:变量之间的关系

新版初一数学下册第四章教课设计:变量之间的关系教课设计往常又叫课时计划,包含时间、方法、步骤、检查以及教材的组织等。

它是教课成功的重要依照。

基于教课设计的重要性,下文精心准备了这篇新版初一数学下册第四章教案,我们一同来阅读吧!一、知识导航1、主要观点:变量是自变量是;因变量是。

2、变量之间关系的三种表示方法:。

其特色是:列表:关于表中自变量的每一个值,能够不经过计算,直接把的值找到,查问方便;可是欠,不可以反应变化的全貌,不易看出变量间的对应规律。

关系式:简洁简要、规范正确 ;但有些变量之间的关系很难或不可以用关系式表示。

图像:形象直观。

能够形象地反应失事物变化的过程、变化的趋向和某些特色;但图像是近似的、局部的,由图像确立因变量的值欠正确。

3、主要数学思想方法:类比和比较的方法(举例说明 );数形结合和数学建模思想(举例说明 )。

二、学习导航1、相关观点应用例 1 以下各题中,那些量在发生变化 ?此中自变量和因变量各是什么 ?①用总长为60 的篱笆围成一边长为L(m) ,面积为S(m2)的矩形场所 ;②正方形边长是3,若边长增添x ,则面积增添为y.2、利用表格找寻变化规律例 2 研究表示,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有以下关系:施肥量(千克 /公顷土豆产量(吨 /公顷上表中反应了哪两个变量之间的关系 ?哪个是自变量 ?哪个是因变量 ?依据表格中的数据,你以为氮肥的使用量是多少时比较适合 ?变式 (湖南 )一辆小汽车在高速公路上从静止到起动 10 秒后的速度经丈量以下表:时间 /秒速度 /米 /秒 00.31.32.84.97.611.014.118.424.228.9 ①上表反应了哪两个变量之间的关系 ?哪个是因变量 ? ②假如用 t 表示时间, v 表示速度,那么跟着 t 的变化, v 的变化趋向是什么 ?③当 t 每增添 1 秒时, v 的变化状况同样吗?在哪 1 秒中, v的增添最大 ?④若高速公路上小汽车行驶的速度的上限为120 千米 /时,试预计大概还需要几秒小汽车速度就将达到这个上限?3、用关系式表示两变量的关系例 3.、①设一长方体盒子高为 10,底面积为正方形,求这个长方形的体积 v 与底面边长 a 的关系。

七年级数学下册第四章教案:变量之间的关系

七年级数学下册第四章教案:变量之间的关系

书山有路勤为径;学海无涯苦作舟
七年级数学下册第四章教案:变量之间的关系
教案一般包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等内容。

为大家提供了七年级数学下册第四章教案,希望对大家有帮助。

用表格表示的变量间的关系
【学习目标】
1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

2.在具体情境中理解什幺是变量、自变量、因变量,并能举出反映变量之间关系的例子。

3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:能从表格的数据中分清什幺是变量,自变量、因变量以及因变量随自变量的变化情况。

难点:对表格所表达的两个变量关系的理解。

【学习过程】
模块一预习反馈
一、学习准备
1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.
你能从生活中举出一些发生变化的例子吗?
教材精读
1.请同学们观察思考,逐一回答下面的问题:
今天的努力是为了明天的幸福。

七年级数学下册第四章教案:用关系式表示的变量间关系-经典教学教辅文档

七年级数学下册第四章教案:用关系式表示的变量间关系-经典教学教辅文档

2019七年级数学下册第四章教案:用关系式表示的变量间关系教案是教师对一节课的全体想象,创造性的教学设计,严谨、科学、有序的教学策略,能够有效的进步教学效率。

因而,编辑老师为各位老师预备了这篇2019七年级数学下册第四章教案,希望可以帮助到您!【学习目标】1、经历探求某些图形中变量之间的关系的过程,进一步领会一个变量对另一个变量的影响,发展符号感。

2、能根据具体情景,用关系式表示某些变量之间的关系。

3、能根据关系式求值,初步领会自变量和因变量的数值对应关系。

【学习方法】自主探求与小组合作交流相结合.【学习重难点】重点: 1、找成绩中的自变量和因变量。

2、根据关系式找自变量和因变量之间的对应关系。

难点:根据关系式找自变量和因变量之间的对应关系。

【学习过程】模块一预习反馈一、学习预备(1)如果△ABC的底边长为a,高为h,那么面积S△ABC=____ ____.(2)如果梯形的上底、下底长分别为a、b,高为h,那么面积S梯形=_________(3)圆柱的底面半径为r ,高为h ,面积S圆柱=_____________V圆柱=__________;二、教材精读1.如图所示,△ABC底边BC上的高是6厘米.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,自变量是________,因变量是_______.如果三角形的底边长为x (厘米),那么三角形的面积y (厘米2)可以表示为__________,当底边长从12厘米变化到3厘米时,三角形的面积从________厘米2变化到_______厘米2.归纳:表示变量之间关系的另一种方法:利用。

我们可以根据任何一个的值求出相应的应变量的。

2.如图所示,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之而发生了变化。

(1)在这个变化过程中,自变量是____________,因变量是______________.(2)如果圆锥底面半径为r (厘米),那么圆锥的体积V(厘米3)与r 的关系式是_____________(3)当底面半径由1 厘米变化到10厘米时,圆锥的体积由______厘米3变化到______厘米3.模块二合作探求3.如图所示,长方形的长为12,宽为x,则(1)若设长方形的面积S,则面积S与宽x之间有甚么关系?(2)若用C表示长方形的周长,则周长C与宽x之间有甚么关系?(3)当x添加一倍时,长方形的面积S 是如何变化的?周长C又是如何变化的?说一说你为甚么会这样认为?模块三构成提升1、某种长途电话免费方式为按时免费,前3分钟免费1.8元,以后每加一分钟免费1元,求:(1)当工夫t3分钟时的电话费y (元)与t (分)之间的关系.(2)计算当工夫分别为5分、10分、30分、50分的电话费。

七年级数学变量之间的关系

七年级数学变量之间的关系

“变量之间的关系回顾与思考”教学设计一、课前分析1.教材分析本节课是北师大版七下第三章的最后一节课,属于章节复习课.探索变量之间的关系是在代数式求值、探索规律等知识的基础上进行的,同时也为后续学习函数奠定基础.2.学情分析在本章的学习中学生已经分别从表格、图像、关系式这三种表示方法对变量之间的关系进行了讨论.七年级学生有好奇心和较强的求知欲,喜欢丰富的现实情境,喜欢创新,但是抽象思维能力较弱.为此本节复习课上创设了各种不同的设问形式,给予学生充分的时间和多个角度感受生活中的变量,并将其抽象为数学模型,再由数学模型想象生活实际情境,将学生对于变量之间关系的认识上升到一个新的境界.二、教学目标1.回顾总结表示变量之间关系的方法.2.深刻理解用表格、关系式和图像表示某些变量之间的关系的意义,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测,体会建模思想. 3.进一步感受用运动变化的观点去认识数学对象,发展对数学更高层次的认识.三、教学过程环节一:知识整理思维聚合在教师的引导下,师生总结本章知识结构:设计意图:对本章的知识进行系统的回顾、思考与总结,给学生全局整体的认识. 环节二:基础抢答思维巩固师:请同学们注意力集中看大屏幕,我们将进行基础抢答,点到的同学请说出答案并说明理由.1.某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结定价/元 1.82 2.3 2.5 2.83销量/个202530262218你认为其因变量为()A.成本价 B.定价C.销量 D.以上说法都不正确2. 声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如表:气温x(℃)0 5 10 15 20音速y(米/秒)331 334 337 340 343下列结论错误的是()A.在变化中,气温是自变量,音速是因变量B.y随x的增大而增大C.当气温为30℃时,音速为350米/秒D.温度每升高5℃,音速增加3米/秒3. 汽车开始行驶时,油箱中有油40升,如果每小时耗油8升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为,该汽车最多可行驶小时.4. 小赵是一位自行车运动爱好者,小赵在一次秋游时的路程与时间变化情况如图所示,从图中可以看出平均车速为每小时10千米的时段是()A.前3小时B.第3至5小时C.最后1小时 D.后3小时设计意图:本环节设计了4个小题,这4个题分别从辨别自变量与因变量、分析表格获得变量之间的关系、用关系式表示变量之间的关系、分析图像得到变量之间的关系这四个方面考察学生的掌握情况.以抢答的形式进行,既能激发学生的兴趣和积极性,也能培养学生的语言表达能力.环节三:训练提升思维拓展5. 在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度h(米)与操控无人机的时间t(分)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是_________,因变量是___________;(2)无人机在75米高的上空停留的时间是_____分钟;(3)求无人机在上升或下降过程中的速度;(4)求图中a与b表示的数.6.如图1,长方形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以每秒1cm的速度沿折线A→B→C→D运动,设点P运动的时间为t(秒),△ADP的面积为y(cm2),图2是y关于t的部分图象.t… 2 5 10 14 20 …y… 6 24 …(3)当△ADP的面积超过15时,求点P运动的时间t的取值范围.设计意图:本环节设置两道综合性的题目,从单个知识点向多个知识点发散,层层深入,发挥题目以点带面的作业,达到能挖掘问题的内涵和外延,实现复习的知识从量到质的转变.本环节意在培养学生全面看问题的眼光,使学生对知识的理解有进一步的提升.环节四:自主测评思维体验1.球的体积V与半径R之间的关系式为,当球的大小发生变化时,关于π,R 说法中,正确的是()A.R是常量B.π是变量C.R是自变量D.R是因变量2.一个直角三角形的两直角边长分别为x,y,其面积为3,则y与x之间的关系用图象表示大致为()A.B.C.D.3.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部分按每立方米3.8元收费,该市每户居民6月份用水x立方米(x>10),应交水费y元,则y与x的关系式为.4.一空水池,现需注满水,水池深4.9m,现以均匀的流量注水,如下表:水的深度h(m)0.7 1.4 2.1 2.8注水时间t(h)0.5 1 1.5 2由上表信息,我们可以推断出注满水池所需的时间是h.5.某学校校长暑假带领学生去旅游,甲旅游社说:“若校长买全票一张,则学生可享受半价优惠”.乙旅行社说:“包括校长在内都6折优惠”.若全票价是1 200元,设学生人数为x,甲旅行社收费为y甲、乙旅行社收费为y乙.求:(1)分别写出两家旅行社的收费与学生人数的关系式;(2)当学生人数是多少时,两家旅行社的收费是一样的?6.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据下图给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中______的路程与时间的关系,线段OD 表示赛跑过程中_____的路程与时间的关系,赛跑的全程是_______m;(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48 千米/小时的速度跑向终点,结果还是比乌龟晚到了0.5 min,请你算算兔子中间停下睡觉用了多少分钟.设计意图:检测学生对本节课所学知识的掌握情况,培养学生独立解决问题的能力.本环节教师可依据课堂时间和学生知识掌握情况选用或改为课后作业.四、教学反思从教科书的设计思路看,变量之间关系的学习,是函数内容学习的非形式化阶段,目的是让学生初步体会变量之间的关系在现实世界中是广泛存在的,我们可以用数学的方法去刻画它们;利用数学的工具,我们能对变量之间的关系有更加理性的认识,并逐渐形成数学模型思想.教学实践告诉我们,对变量之间的关系的表示,特别是表格、关系式、图像三种表示之间的联系,对初学者还是会构成一定的困难,因此需要在教学中对学生提出具有一定挑战性的问题,使学生能够逐步理解并用这些方法解决问题.。

初中数学《变量之间的关系》单元教学设计以及思维导图

初中数学《变量之间的关系》单元教学设计以及思维导图

学习函数图像奠定了基础。 本专题的重点是理解用图像表示两个变量之间的关系
本专题的主要学习活动是利用图像法解决一些实际问题。
学生的主要学习成果:
能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会
利用图象找到准确的信息。
专题学习目标
知识技能:
1.培养学生的观察能力,根据图像预测能力,分析能力,动手操作
(1)这个变化过程中,自变量、因变量各是什么? (2)如果三角形的底边长为 x(厘米),那么三角形的面积 y(厘米 2) 可以表示为 ________________。 (3) 当底边长从 12 厘米变化到 3 厘米时,三角形的面积从_____平 方厘米变化到_____平方厘米. 活动 3:(1)同学们能根据要求填写下列的表格吗? 根据三角形的底边长为 x(厘米),和三角形的面积 y(厘米 2)的 关系式填表:
量间的关系判断和识别图像。
主 题 单 元 问 1. 举例说明自变量和因变量,常量。
题设计
2. 表示变量之间关系的方法有哪些,各有什么特点?
专题一:用表格表示变量之间的关系
( 1 课时)
专题划分
专题二:用关系式表示变量之间的关系 ( 1 课时)
专题三: 用图像表示变量之间的关系
( 2 课时)
专题一
用表格表示变量之间的关系
专题二
用关系式表示变量之间的关系
所需课时 课内 1 课时 专题二概述
本专题内容是建立在学生已理解变量、自变量、因变量的意义和体会 到了因变量是随自变量变化而变化的基础上,教材通过对三角形的底
边的变化引起三角形面积的变化问题的探索,探索出了变量间的变化
规律可用关系式来表达,运用表达式可以描述出自变量和因变量具体 变化的情况。

七年级数学下册第四章教案:用关系式表示的变量间关系

七年级数学下册第四章教案:用关系式表示的变量间关系

2019七年级数学下册第四章教案:用关系式表示的变量间关系教案是教师对一节课的整体设想,创造性的教学设计,严谨、科学、有序的教学策略,能够有效的提高教学效率。

因此,编辑老师为各位老师准备了这篇2019七年级数学下册第四章教案,希望可以帮助到您!【学习目标】1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。

2、能根据具体情景,用关系式表示某些变量之间的关系。

3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。

【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点: 1、找问题中的自变量和因变量。

2、根据关系式找自变量和因变量之间的对应关系。

难点:根据关系式找自变量和因变量之间的对应关系。

【学习过程】模块一预习反馈一、学习准备(1)如果△ABC的底边长为a,高为h,那么面积S△ABC=____ ____.(2)如果梯形的上底、下底长分别为a、b,高为h,那么面积S梯形=_________(3)圆柱的底面半径为r ,高为h ,面积S圆柱=_____________V圆柱=__________;二、教材精读1.如图所示,△ABC底边BC上的高是6厘米.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,自变量是________,因变量是_______.如果三角形的底边长为x (厘米),那么三角形的面积y (厘米2)可以表示为__________,当底边长从12厘米变化到3厘米时,三角形的面积从________厘米2变化到_______厘米2.归纳:表示变量之间关系的另一种方法:利用。

我们可以根据任何一个的值求出相应的应变量的。

2.如图所示,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之而发生了变化。

(1)在这个变化过程中,自变量是____________,因变量是______________.(2)如果圆锥底面半径为r (厘米),那么圆锥的体积V(厘米3)与r 的关系式是_____________(3)当底面半径由1 厘米变化到10厘米时,圆锥的体积由______厘米3变化到______厘米3.模块二合作探究3.如图所示,长方形的长为12,宽为x,则(1)若设长方形的面积S,则面积S与宽x之间有什么关系?(2)若用C表示长方形的周长,则周长C与宽x之间有什么关系?(3)当x增加一倍时,长方形的面积S 是如何变化的?周长C又是如何变化的?说一说你为什么会这样认为?模块三形成提升1、某种长途电话收费方式为按时收费,前3分钟收费1.8元,以后每加一分钟收费1元,求:(1)当时间t3分钟时的电话费y (元)与t (分)之间的关系.(2)计算当时间分别为5分、10分、30分、50分的电话费。

3.2用关系式表示变量间的关系(教案)

3.2用关系式表示变量间的关系(教案)
在讲授新课的过程中,我发现通过具体案例引入关系式的概念非常有效,学生们能够更直观地理解关系式的意义和应用。同时,我也注意到在讲解重点和难点时,举例和对比的方法有助于学生更好地消化吸收知识。因此,我会在接下来的教学中继续采用这种方法,力求让学生在理解上更加透彻。
实践活动环节,学生们分组讨论和实验操作的积极性很高,这让我感到非常欣慰。不过,我也发现部分小组在讨论过程中出现了偏离主题的现象。为了提高讨论的效率,我计划在下次活动中加强对学生的引导,确保讨论能够紧扣主题,更好地为学习服务。
1.讨论主题:学生将围绕“关系式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
这三个方面的核心素养目标与新教材重点
1.教学重点
-掌握关系式的概念:强调关系式是表达变量间关系的一种数学表达方式,如线性关系、正比例关系、反比例关系等。
-理解变量与常量的区别:使学生明白在关系式中,变量是可变的,而常量是固定不变的。
2.继续采用案例教学、举例对比等方法,强化学生对关系式概念的理解。
3.在实践活动和小组讨论中加强对学生的引导,确保讨论紧扣主题,提高课堂效率。
4.注重培养学生的自信心,鼓励他们在课堂上积极表达自己的观点。
-理解关系式的推导过程:在关系式的推导过程中,学生可能会对公式的由来和推导方法产生困惑。
-运用关系式进行问题求解:在解决问题时,学生可能会对如何运用关系式求解感到困难。

七年级下册数学 第三章 变量之间的关系

七年级下册数学 第三章 变量之间的关系

第三章变量之间的关系1.能发现实际情境中的变量及其相互关系,并确定其中的自变量与因变量.2.从表格、图象中分析出某些变量之间的关系,并能用自己的语言表达,培养有条理的思考和表达的能力.3.根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.4.能从图象中获取变量之间关系的信息,并能用语言进行描述.1.经历探索具体情境中两个变量之间关系的过程,进一步培养符号感和抽象思维.2.经历从图象中分析变量之间关系的过程,体会变量之间的关系,结合具体情境,理解图象上的点表示的意义.1.能从运动变化的角度解释生活中的数学现象,体验成就感,获得学习的乐趣,发展对数学更高层次的认识.2.感受数学来源于生活又服务于生活,激发学习数学的乐趣.3.体验从运动变化的角度认识数学对象的过程,培养对数学的认识.本章对于学生来说是一章全新的知识,主要是从数学的角度研究变量和变量之间的关系,将有助于人们更好地认识现实世界、预测未来.同时,研究现实世界中的变化规律,也使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式.我们知道,函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容.本套教材对函数的学习不是一蹴而就的,而是遵照循序渐进、螺旋上升的原则进行设计.在七年级上册中,教材已经在代数式求值、探索规律等地方渗透了变化的思想,而本章则是第三学段第一次集中讨论变量之间的关系.本章通过大量学生感兴趣的日常生活或其他学科中的问题(如骆驼的体温、潮汐的涨落),使他们体会变量和变量之间相互依赖的关系,感受数学的应用价值.本章还通过分析用表格、关系式和图象所表示的变量间关系的活动,使学生初步理解并尝试用数学的方法描述变量之间的关系.学生通过本章中对变量间关系的学习,将为以后顺利过渡到函数学习打下基础.为了发展学生对函数思想的理解,必须使他们对变量间关系的多种表示——表格表示、关系式表示、图象表示有相当丰富的经历.因此教材在第1节中通过探讨小车下滑时间的活动,使学生初步体会变量之间的相依关系,并用表格来表示变量之间的关系.使学生学习如何从表格中获取信息,发展他们通过数据分析进行预测和解决问题的能力.在学生已经学会计算一些图形的面积和体积的基础上,教材在第2节讨论由底边长(或半径、高)的变化引起的面积(或体积)的变化,并由此引出运用关系式表示变量之间的关系.然后运用形象的“机器输入输出图”,渗透自变量和因变量值的对应思想,为以后理解函数的概念做铺垫.“排碳计算公式”内容的设计是为了将生活中变量之间关系的表达转化为数学上的关系式表达.在第3节第1课时中,通过学生所熟悉的气温变化图,引入变量之间关系的第三种表示方法——图象.图象表示因其直观性有着其他表示方式所不能替代的作用,它是将关系式和数据转化为图形形式,是“看见”相应的变化规律的途径之一.因此,本章在第3节第2课时中特别又对图象所表示的变量之间的关系进行了讨论,让学生用语言描述图象所表示的变化过程,加强他们对图象表示的理解,发展从图象中获得信息的能力及有条理地进行语言表达的能力.概括起来说,第1节是本章的起始课,除给出变量、常量的概念,还给出变量之间关系的第一种表示方式——表格表示法.第2节给出变量之间关系的第二种表示方式——关系式表示法.第3节给出变量之间关系的第三种表示方式——图象表示法,并力图与表格表示法、关系式表示法进行联系,但不要求学生画图象.【重点】能根据表格中的数据、关系式中的变量、图象上的点来获取信息,明确自变量、因变量所表示的实际意义.【难点】三种表示变量之间关系的方法之间的联系,能从具体问题中获取变量之间的关系.1.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论变量的有关概念.教师可以充分利用教科书中提供的问题,也可以创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论.2.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实习或实践其他可操作性的实习,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对变量之间关系的理解,必须使他们对变量之间关系的多种表示——表格表示、关系式表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表述.当学生运用语言进行表述时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.4.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对两个变量之间关系的三种表达形式进行讨论.5.在本章的学习中,好多信息都是由学生花费了较多的时间从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动中获得的,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程教师应给予学生大量支持与鼓励,而不是直接将结论告诉学生.教学时教师应从以下几方面对学生加以关注:从事活动的投入程度;从表格、关系式、图象中获取信息的准确性和广泛性;对具体情境中变量之间关系的敏感性;运用语言描述变量之间关系的合理性等.1用表格表示的变量间关系1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感.2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子.3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测.经历实习、操作、观察、猜想、交流等获取信息的过程,体会我们生活在一个变化的世界中,进一步理解变量之间的关系,从表格中获取两个变量之间关系的有关信息.激发学生学习数学的兴趣,认识到现实生活中蕴含着大量两个变量之间关系的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决.【重点】通过具体情境理解变量、自变量和因变量的概念,能从表格中发现变量之间的变化关系,并能用自己的语言描述出来.【难点】对表格中的数据作出分析和预测,用变量之间变化的思想描述我们所生活的世界中的变化.【教师准备】多媒体课件.【学生准备】预习教材P62~63.导入一:前一段时间大萌子和萌爸的三十年照片被晒在网上,这30张照片是一个北京姑娘1岁到30岁和爸爸的合影,从小到大,她的每一步都有爸爸陪伴,每张照片都有那一年的故事,触动心灵!孩子茁壮成长,父母日渐老去.[处理方式]通过上面的例子,我们感到:我们生活在一个变化的世界中.从数学的角度研究变化的量,讨论它们之间的关系,将有助于我们更好地了解自己、认识世界和预测未来,这也是我们第三章将要学习的变量之间的关系.[设计意图]通过具体生活的实例激发学生的学习兴趣,在学生熟悉的情境中自然地引入本章的内容,学生感到亲切、贴近生活,乐意去学习探究,又通过具体的情境,让学生对本章学习研究的内容有个大致的了解,目的性较强,直接指向本节课所要学习的内容.导入二:猜猜看:他是谁?[处理方式]让学生观察交流,感受身边的日常变化.[设计意图]通过具体情境激发学生的学习兴趣,让学生观察图片作为课堂教学的引入,通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力,让学生感受事物的变化,进而引向本节课所要学习的内容.探究活动1小车下滑实习思路一【活动内容1】直观感知支撑物的高度与小车下滑时间的变化关系.下面我们来观察一个小车下滑实习:(课件出示)王波学习小组利用同一块木板,测量小车从不同高度下滑的时间.【问题】支撑物的高度不同,小车下滑的时间有怎样的变化?(如上图)[处理方式]课件演示小车从不同高度下滑的实习.讨论得出:图(1)小车下滑的时间较长,图(4)小车下滑的时间较短.从图(1)到图(4),随着支撑物的增高,小车下滑的时间逐渐变短.由于木板的长度不变,因此支撑物的高度越高,木板就越陡,小车下滑的时间就越短.【活动内容2】数据感知支撑物的高度与小车下滑时间的变化关系.(1)支撑物高度为70 cm时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10 cm,t的变化情况相同吗?(4)估计当h=110 cm时,t的值是多少?你是怎样估计的?(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?[处理方式]先小组讨论后,汇报交流,师引导学生根据表格中数据进行适当的运算,通过观察分析这些计算结果,得出相应的结论,让学生了解这是利用表格分析变化关系、预测变化趋势的一种常用的方法.得出答案:(1)支撑物高度为70 cm时,小车下滑时间是1.59 s.从表格中直接可以查出.(2)t随着h的增大而减少.支撑物的高度越高,下滑的时间就越短.(3)h每增加10 cm,t的变化情况不相同.通过计算,可得到h每增加10 cm,t的变化量依次减少1.23 s,0.55 s,0.32 s,0.24 s,0.18 s,0.12 s,0.09 s,0.09 s,0.06 s.因此h每增加10 cm,t的变化情况不相同,但是随着h(4)t的变化量的变化趋势可以发现t的减少量要小于0.06 s或等于0.06 s,故可估计t的减少量为0.05 s,因此t的值大约为1.35- 0.05=1.30(s).(5)随着支撑物高度h的变化,下滑的时间t会发生变化,小车下滑的路程没有发生变化.探究小车下滑的时间随高度变化的情况.[处理方式]请两名同学到前面来进行实习.其他每组同学记录实习数据.(拿出实习器材:小车、木板、秒表、调节高度的装置,找两名学生到前面来进行实习,说明实习的目的及步骤)根据实习数据师生共同讨论,得出问题答案.猜想:随着小车的下滑高度的增加,小车下滑的时间逐渐减小.师:那么事实是不是这样呢?我们就来验证一下,让小车从不同的高度滑下,用秒表记录下每次小车下滑的时间,看看有何规律.师生:支撑物高度为70 cm时,小车下滑时间为1.59 s.师:如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?生:随着h逐渐变大,t逐渐变小.师:h每增加10 cm,t的变化情况相同吗?为什么?生:不相同.因为我是通过计算得到的,h每增加10 cm,t的变化量依次减少1.23 s,0.55 s,0.32 s,0.24 s,0.18 s,0.12 s,0.09 s,0.09 s,0.06 s.(如下表:教师此时展示差值表,便于学生分析回答问题)因此h每增加10 cm师生:当h=110 cm时,t的值可能是1.30 s,从表格中可以看出当小车的高度从90 cm上升到100 cm 时,时间减少了0.06 s,而且随着高度的增加,时间减少的越来越少,所以当小车的高度从100 cm上升到110 cm时,时间最多减少0.06 s,所以我认为减少0.05 s比较合适,所以我认为h=110 cm时,t的值可能是1.30 s.师:这位同学回答得很好.我们推测估计时,要根据表中的数据进行分析整理,然后作出合理的回答.(教师可说明答案是1.29 s至1.35 s中的任意一个值)师:随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?生:随着支撑物高度h的变化,小车下滑的时间t会发生变化,小车下滑的路程没有发生变化.[设计意图]通过小车下滑的实习,让学生参与到收集数据的实习过程中,借助于数据感受具体的变化及其中蕴含的规律;亲身感受随着支撑物高度的增加,小车下滑所用的时间越来越少.体会这一过程中变化的量,为变量、自变量、因变量、常量这些概念的引入打下基础.同时鼓励学生充分进行交流,培养他们从表格中获取信息的能力.程中,若有两个变量x和y,其中y随着x的变化而发生变化,我们就把x叫自变量,y叫因变量.始终不变的量叫做常量.②利用在变化过程中,两个变量的因果关系,确定自变量和因变量.③借助表格,可以表示因变量随自变量的变化而变化的情况.④在利用表格表示变量之间的关系时,通常自变量在表格的第一行,而因变量则在第二行.[设计意图]为更好地感受变量之间的关系;通过小车下滑实习进一步积累感性认识,进一步体会在具体的情境中,变量之间的依存关系和变化关系,既能激起学生学习的兴趣,又为知识的直接概括积累了材料,在此基础上通过学生看书自学,明确各自意义,再通过回顾前置实习巩固概念,符合学生的认知规律,最后点题,明确表格是表示变量之间关系的一种常用方法.先独立完成下列问题,然后小组内交流.1.我国从1949年到(1)上表反映了和两个变量之间的关系,是自变量,是因变量.(2)如果用x表示时间,y表示我国人口数量,那么随着x的变化,y的变化趋势是什么?(3)从1949年起,时间每向后推移10年,我国人口是怎样变化的?[处理方式]引导学生观察表格中的数据变化,发现变量的整体变化趋势;利用变量之间的因果关系,区分出自变量和因变量.通过计算人口数量随年份的增加量,根据增加量的变化,得出人口数量随时间的变化关系.解:(1)时间人口数量时间人口数量(2)随着x的增加,y也增加.(3)从1949年起,时间每向后推移10年,我国人口增加1.5亿左右.但最后10年的增加量大约只有0.76亿.(答案合理即可)2.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间有如下的关系(其中0≤x≤30(1)(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间是多少时,学生的接受能力最强?[处理方式]引导学生观察表格中的数据变化,发现变量间的变化关系和变化趋势.解:(1)提出概念所用的时间和学生的接受能力之间的关系.提出概念所用的时间是自变量,学生的接受能力是因变量.(2)59.(3)13分钟.[设计意图]利用不同的问题情境,使学生感受到变量之间的依赖关系和变化关系,理解变量、自变量、因变量的概念,能根据表格中的数据,对变量进行分析和预测,达到掌握知识的目的;新颖的问题情境,能够吸引学生积极地参与学习;简单口述,既能训练学生的思维能力和语言表达能力,又可以节省时间,起到提高学习效率的作用.[知识拓展]1.在一个变化过程中,数值发生变化的量叫做变量.2.一般地,在一个变化过程中,主动变化的量是自变量,受其他量影响而发生变化的量是因变量.3.自变量和因变量是相对的,一个量在某一变化过程中是自变量,而在另一变化过程中可能是因变量.4.常量和变量是相对的,在不同的研究过程中,二者可以相互转化.5.因变量的数值与自变量的数值必须一一对应.1.变量、常量、自变量、因变量的定义.2.借助表格,我们可以表示因变量随自变量的变化而变化的情况.1.(1)上表反映了与之间的变化关系其中是自变量,是因变量;(2)如果用x表示时间,y表示电话费,那么随着x的增加,y的变化趋势是;(3)丽丽打了5分钟电话,应该付元的电话费;(4)你能帮助丽丽预测一下,如果打10分钟电话,那么需付元电话费;(5)你能知道每打1分钟电话,需要付多少元电话费吗?电话费与打电话的时间有怎样的关系?解:(1)时间电话费时间电话费(2)不断增加(3)3.0(4)6.0(5)每分钟0.6元,电话费=0.6×时间.2.(1)上述哪些量在变化?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由.解:(1)排数和座位数在变化,排数是自变量,座位数是因变量.(2)第5排有76个座位,第6排有80个座位.(3)第n排有60+4(n- 1)=(4n+56)个座位,每一排比前一排多4个座位.1用表格表示的变量间关系探究活动1小车下滑实习探究活动2变量、自变量、因变量、常量等概念一、教材作业【必做题】教材第63页习题3.1知识技能第1,2题.【选做题】教材第64页习题3.1问题解决第4,5题.二、课后作业【基础巩固】1.在利用太阳能热水器来加热水的过程中,热水器里水的温度随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积2.据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐增加,如果用t表示时间,y表示人口数量,那么是自变量,是因变量.3.某条河受暴雨袭击,(1)上表反映了与之间的关系其中是自变量,是因变量;(2)12时的水位是;(3)这个时段水位上升最快.【能力提升】4.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为方.5.苹果熟了,:(1)上表反映了和两个变量之间的关系,是自变量,是因变量;(2)根据表格中的数据,售价y是随销售数量x的变化而的;(3)估计当x=15时,y的值是.【拓展探究】6.下表是某冰箱厂2015(1)根据表格中的数据,(2)根据表格你知道哪几个月的月产量相同?哪个月的月产量最高?(3)求2015年前半年的平均月产量是多少.【答案与解析】1.B(解析:由题意可知,水的温度随着所晒时间的变化而变化,所晒时间是自变量,水的温度是因变量.故选B.)2.时间(或t)人口数量(或y)3.(1)时间水位时间水位(2)4米(3)20至24时4.20(解析:由题意得5月份用水量超过18方,设超过的部分为x方,由题意列方程为12×2+6×2.5+3x=45,解得x=2,所以5月份用水量为20方.)5.(1)销售数量售价销售数量售价(2)变化(3)31.56.解:(1)随着月份x的增大,月产量y正在逐渐增加.(2)1月、2月两个月的月产量相同,6月份月产量最高.(3)(10000+10000+12000+13000+14000+18000)÷6≈12833(台).故2015年前半年的平均月产量约为12833台.用学生比较熟悉而又感兴趣的具体问题情境和实例展开知识的学习和探究,学生能积极、主动地参与知识的学习过程;学生充分地交流讨论,较好地训练了学生的语言表达能力和对知识的理解能力;学生主动参与实习,亲身感受变量之间的变化关系,印象深刻,理解到位;通过口答叙述,小组讨论达成共识,再进行交流展示,既节省了时间,又达到了目标.整体来看,学生积极参与,踊跃发言,对变量、自变量、因变量的理解较好,对表格表示的变量间的关系,有一个比较清楚的了解,对数据的分析和预测比较客观、合理.由于本节知识点较少,也较为简单,在设计教学过程的时候,比较松散,学生训练的题目较少,特别对表格中的数据变化有一定规律的题目训练不够,对数据变化的情况学生叙述不够准确、客观,教师的引导不够到位,学生使用数学语言的能力还要进一步加强.加强对数学语言训练的力度,结合具体的问题情境训练学生语言表达的准确性和简洁性;设计灵活多样而新颖的题目,加强对学生理解知识能力的训练,同时结合具体题目做好渗透,为下一节的学习做好铺垫;增大课堂容量,采取更加灵活的方式,加大训练的强度,增加训练的效果.随堂练习(教材第63页)1.解:如气温随时间的变化,脉搏随运动强度的变化,作物的高度随种植时间的变化等.(答案不唯一)2.解:(1)氮肥的施用量和土豆产量之间的关系;氮肥的施用量是自变量,土豆产量是因变量.(2)32.29t,15.18 t.(3)如可以回答氮肥的施用量为336 kg/hm2时比较适宜,因为此时土豆的产量最高;还可以回答氮肥的施用量为259 kg/hm2时比较适宜,因为此时土豆的产量与施用量为336 kg/hm2时差不多,而又可以节约肥料.合理即可.(4)这里主要关注的是对变化过程的大致刻画,答案只要合理即可.习题3.1(教材第63页)知识技能1.解:2.解:(1)(3).问题解决4.解:(1)老花镜的度数越大,镜片与光斑的距离越小.(2)140度~150度(估计的度数接近即可).5.解:(1)反映了海拔高度与空气含氧量之间的关系.海拔高度是自变量,空气含氧量是因变量.(2)299.3g/m3,182.08 g/m3.(3)大约为150.66 g/m3(合理即可).奥运会的年份与届数如下表所示,表中n的值等于()年份1896 1900 1904 (2012)A.28B.29C.30〔解析〕年份是自变量,届数是因变量,根据数据可得二者的变化规律:第1届相应的举办年份=1896+4×(1- 1)=1892+4×1=1896;第2届相应的举办年份=1896+4×(2- 1)=1892+4×2=1900;第3届相应的举办年份=1896+4×(3- 1)=1892+4×3=1904;…;第n届相应的举办年份=1896+4×(n-1)=1892+4n.根据规律代入相应的年份即可算出届数.令1892+4n=2012,解得n=30.故选C.[解题策略]此题主要考查了数字的变化,解题关键是弄清题意,根据题目中给出的规律列出代数式.本题每届举办年份比上一届举办年份多4.2用关系式表示的变量间关系1.经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感.2.能根据具体情境,用关系式表示某些变量之间的关系.3.能根据关系式求值,初步体会自变量和因变量的数值对应关系.1.如何将生活中的实际问题转化为数学问题.2.如何用数学方法解决实际生活中的问题.培养学生动手的能力,探索问题、研究问题的能力及应用数学知识的能力.通过教学让学生领悟探索问题和研究问题的方法.【重点】通过用关系式表示变量之间的关系,体会变量之间的数值对应关系.【难点】将具体问题抽象成数学问题并将它用关系式表示出来.【教师准备】多媒体课件.【学生准备】预习教材P66~67.导入一:【活动内容】复习用表格表示两个变量之间的关系.【问题】随着手机的普及,现代人们的通信越来越便捷.打电话要交话费,下表是某同学家长调取的。

七年级下册初一数学《变量之间的关系》教案

七年级下册初一数学《变量之间的关系》教案

变量之间的关系§4.1 用表格表示的变量间关系【例题】一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:时间(秒) 0 1 2 3 4 5 6 7 8 9 10 速度0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9(米/秒)(1)上表反映了哪两个变量之间的关系? 哪个是自变量? 哪个是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒时,v的变化情况相同吗? 在哪1秒钟内,v的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?【变式】1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点数……(2)每层点数是如何随层数的变化而变化的? 所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100? 为什么?84x 102202、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:降价(元) 5 10 15 20 25 30 35 日销量(件)780810840870900930 960(1)上表反映了哪两个变量之间的关系? 其中那个是自变量,哪个是因变量? (2)每降价5元,日销量增加多少件? 请你估计降价之前的日销量是多少?(3)如果售价为500元时,日销量为多少?§4.2 用关系式表示的变量间关系【例题】如图,已知梯形的上底为x ,下底为8,高为4.(1)求梯形面积y 与x 的关系;(2)用表格表示,当x 从3到7(每次增加1)时,y 的相应值;(3)当x 每增加1时,y 如何变化? (4)当y=50时,x 为多少?(5)当x=0时,y 等于多少? 此时它表示的是什么?【变式】1、将若干张长为20cm 、宽为10cm 的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm .(1)求4张白纸粘合后的总长度;(2)设x 张白纸粘合后的总长度为y cm ,写出y 与x 之间的关系式;(3)并求当x=20时,y 的值。

初中数学七年级下册《变量之间的关系》大单元教学设计

初中数学七年级下册《变量之间的关系》大单元教学设计

初中数学七年级下册《变量之间的关系》大单元教学设计一.教材分析变量之间的关系是继学习代数式求值、探索规律后运用各变量之间的关系解决具体实际问题。

在本章的学习中学生已经分别利用表格、图像、表达式等多种方法表示变量之间的关系上,进一步依据学生实际创新的情景,解决实际问题。

此外从本章开始,学生的数学学习从常量进入了变量的世界,由于是刚刚接触一种新的思维方式,学生对于变量之间的关系的理解停留在表象上,事实上我们期望通过本章对变量和变量之间的关系的丰富经历,为学生以后顺利的过度到函数学习打下基础,而为了发展学生对函数的理解,必须使他们对函数的多种表示有相当丰富的经历,结合本章的学习,学生的抽象思维将不断加强,对数学知识的认识将上升到新的境界。

二.整体结构函数是研究现实世界变化规律的一个重要模型,在六年级上学期中,教科书已经在代数式求值、探索规律等地方渗透了变化的思想,而本章则是第三学段第一次集中讨论变量之间的关系,主要是让学生联系实际背景了解变量以及量与量之间变化的规律,为以后顺利过渡到函数学习打下基础。

从木章开始学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。

本单元主要内容是两个变量之间的关系及表示方法,能确是其中的自变量或因变量,能够正确写出变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测,通过表格、图像、表达式获取信息解决实际问题。

本章的重点是用表格、表达式和图像表示变量之间的关系,难点是从表格、表达式和图像中分析变量之间的关系,并进行变化规律的预测。

三.对应课标①探索简单实例中的数量关系和变化规律,了解常量、变量的意义;了解函数的概念和表示法,能举出函数的实例。

②能结合图象对简单实际问题中的函数关系进行分析(例68)。

③能确定简单实际问题中函数自变量的取值范围,会求函数值。

④能用适当的函数表示法刻画简单实际问题中变量之间的关系, 理解函数值的意义。

⑤结合对函数关系的分析,能对变量的变化情况进行初步讨论。

七年级数学下册第三章变量之间的关系3.3.1变量之间的关系教案

七年级数学下册第三章变量之间的关系3.3.1变量之间的关系教案

3.3.1变量之间的关系课题 3.3.1变量之间的关系课型教学目标1.能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会利用图象找到准确的信息。

2.培养学生的观察能力,根据图像预测能力,分析能力,动手操作能力,发展学生合作交流的能力和数学表达能力。

重点能够从图象中分析变量之间的关系,明确图象上点所表示的意义,难点根据图像预测能力,分析能力,动手操作能力.教学用具教学环节七个教学环节:第一环节:课前准备——搜集图像资料。

第二环节:情境引入;第三环节:合作学习;第四环节:运用巩固;第五环节:自我反馈;第六环节:课堂小结;第七环节:布置作业。

二次备课复习第一环节:课前准备复习回顾通过前面的学习,我们知道,可以用表格或关系式表示变量间的关系,同时掌握了根据自变量的取值求出相应因变量的方法.请你根据前面的知识解决下列问题.1、给定自变量x与因变量的y的关系式2248y x x=-+,填表:2、假设圆柱的高是5厘米,当圆柱的底面半径由小到大变化时;(1)圆柱的体积如何变化?在这个变化中,自变量、因变量是什么?(2)如果圆柱底面半径为r(厘米),圆柱的体积v可以表示为 . (3)当r由1厘米变化到10厘米时,v由变化到 . 3.请把你所找到的资料粘贴在此处,并提出问题。

X 0 1 2 3Y新课导入第二环节:情境引入活动内容:预习课本内容,感受图像表示的变量之间关系1.某地某天的温度变化情况如下图示,观察下表回答下列问题:(1)、上午9时的温度是;12时的温度是 .(2)、这一天时的温度最高,最高温度是;这一天时的温度最低,最低温度是 .(3)、这一天的温差是,从最高温度到最低温度经过了,(4)、在什么时间范围内温度在上升?在什么时间范围内温度在下降?课程讲授第三环节:合作学习活动内容:1、提问:通过课前预习的内容我们学到哪些新的知识?教师归纳:前图表示了温度随时间的变化而变化的情况,它是温度与时间之间关系的图象。

七年级数学下册第四章教案:变量之间的关系

七年级数学下册第四章教案:变量之间的关系

七年级数学下册第四章教案:变量之间的关系七年级数学下册第四章教案:变量之间的关系教案一般包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等内容。

查字典数学网为大家提供了七年级数学下册第四章教案,希望对大家有帮助。

用表格表示的变量间的关系【学习目标】1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。

3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

难点:对表格所表达的两个变量关系的理解。

【学习过程】模块一预习反馈一、学习准备1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.(3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?(4)你能根据此表格预测2009年时我国人口将会是多少? 在人口统计数据中:时间和人口数都在变化,它们都是。

其中人口数随时间的变化而变化。

时间是,人口数是。

归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况模块二合作探究1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。

(4)粗略说一说氮肥的施用量对土豆产量的影响。

模块三形成提升某电影院地面的一部分是扇形,座位按下列方式设置:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由。

第六章 - 变量之间的关系教案

第六章 - 变量之间的关系教案

第六章 - 变量之间的关系教案教案:第三章变量之间的关系一、教学目标1.经历探索具体情境中两个变量之间关系的过程,进一步发展符号感和抽象思维.2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量.3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力.4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.5.体验从运动变化的角度认识数学对象的过程,发展对数学的认识.二、课时安排建议1小车下滑的时间~~~~~~~~~~~~~1课时 2变化中的三角形~~~~~~~~~~~~~1课时 3温度的变化~~~~~~~~~~~~~~~1课时 4速度的变化~~~~~~~~~~~~~~~1课时回顾与思考~~~~~~~~~~~~~~~~1课时三、教学建议1.创设丰富的现实情境,使学生在对变化规律的丰富经历中理解变量之间的相依关系.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论函数的有关概念.教师可以充分利用教科书中提供的问题,也可以根据学生实际创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论. 2.注重使学生亲身经历探索现实世界变化规律的过程.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实验或实践其他可操作性的实验,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对函数思想的理解,必须使他们对函数的多种表示――数值表示、解析表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表达.当学生运用语言进行表达时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.四、评价建议1.关注对学生探索现实世界变化规律的过程的评价.在本章的学习中,学生花费了较多的时间经历从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程的考查应当成为评价的首要方面.对这一方面评价的重点显然不是记忆概念的准确性和使用技能、法则的熟练程度,而是对以下诸方面的考查:从事活动的投入程度,从表格、关系式、图象中获取信息的准确性和广泛性,对具体情境中变量之间关系的敏感性,运用语言等描述变量之间关系的合理性等.例如,在对学生探索小车下滑时间与支撑物高度关系的过程进行评价时,可以关注以下几个方面:学生是否积极地进行活动,并在活动中进行独立思考;能否从实际操作或表格中意识到下滑时间与支撑物高度之间存在着相依关系;能否从表格中获取尽可能多的信息;能否运用自己的语言描述下滑时间与支撑物高度之间的关系等.2.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对函数性质本身(如单值对应、三种表达形式)进行讨论.§3.1 小车下滑的时间一、[教学目标]1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

初一数学(下)变量之间的关系知识点(最新人教版教案)

初一数学(下)变量之间的关系知识点(最新人教版教案)

变量之间的关系知识点及常见题型一、基础知识1、常量:在一组数据中或者关系式中不会没发生变化的量;2、变量:变化的量(1)自变量:可以自己发生变化的量;(2)因变量:随自变量的变化而变化的量。

二、表示方式1、表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计; 2、关系式(1)能根据题意列简单的关系式; (2)能利用关系式进行简单的计算; 3、图像(1)识别图像是否正确;(2)利用图像尽可能地获取自变量因变量的信息。

第一节 小车下滑的时间课前引入1.小张从学校给妈妈打电话,在这个过程中,打电话的时间越长,电话费就越( )。

2.银行的年利率是2.25%,存入的本金越多,( )也越多,在这个问题中,( )是固定不变的。

( )随( )的改变而改变。

3.球的体积V 与球的半径的关系式V=34πr 3中,( )是一个定值。

( )随( )的改变而改变。

经典例题下表是某同学做“观察水的沸腾”实验时所记录的数据:(1)时间为8分钟时,水的温度是多少?(2)上表反应了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (3)水的温度是怎样随时间变化的?(4)根据表格,你认为13分钟、14分钟时水的温度是多少?(5)为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气?过手练习1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A、明明B、电话费C、时间D、爷爷2上述问题中,第五排、第六排分别有个、个座位;第排有个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量,是自变量,是因变量。

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着自变量的变化,因变量变化的趋势是什么?(3)你认为入学儿童的人数会变成零吗?5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30)(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?(5)根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少?第二节 变化中的三角形课前引入1.计划购买40元的某种文化用品,则所购买的总数N (个)和单价想X (元)的关系式为( )。

初中数学七年级下册第三章变量之间的关系3用图象表示的变量间关系教案

初中数学七年级下册第三章变量之间的关系3用图象表示的变量间关系教案

3 用图象表示的变量间关系教材与学情分析1、本节教材"温度的变化"从学生所熟悉的情境人手,从图像中获取两变量之间的关系的信息,经历从数学的角度体会变量和变量之间相互依赖的关系,体会图像在表达两变量间变化关系的直观性,感受数学的应用价值。

本节教材能使学生初步感受函数思想,能更好地发展学生有条理地进行思考和表达的能力,为以后顺利过渡到函数学习打下基础。

2、学生通过观察现实生活,对用图像来反映两变量之间的关系有了一定的体验,积累有了一些生活的经验;具有初步的搜集信息的能力。

通过本节的学习,培养了学生的观察能力、思维表达能力等。

教学目标知识与技能目标:1、了解两个变量之间的对应关系,初步形成函数的思想.2、结合具体情境理解图象上的点所表示的意义.3、发展从图象中获得信息的能力及有条理地进行语言表达的能力.4、理解用数学的方法描述变量之间的关系,感受数学的价值.过程与方法目标:经历从图象中分析变量之间的关系的过程,进一步体会变量之间的关系,在具体情境中培养学生对变量之间关系的认识和语言描述的合理性,培养学生从图象中获取信息的广泛性和准确性.情感与态度目标:从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.教学重点把实际问题转化为数学图像,再根据图像来研究实际问题,使学生获得对图象反映变量之间关系的体验.教学难点从图像中获得一些信息与在现实情景下用语言进行描述之间的等价转化;用图像法来反映两变量之间关系,解决自己身边的一些实际问题,根据图像的特点来研究实际问题.教学过程设计:2021222324252627282930313233343536373803691215182124温度/℃ 时间/创设情境同学们见过股市走势图吗?生活中还有那些类似现象?你能看懂这些图像吗?本节课我们就来学习:用图像来表示一些量与量之间的关系1、营造良好氛围,激发学生好奇心,引导学生快速进入状态.2、启发引导学生思考分析,从多个角度展开联想.根据老师提出的问题,联想前面学过的知识,积极思考,探求最佳方案.联系生活实际创设问题情境,激发学习兴趣,调动学生的积极性与主动性.发现探究下图是老师绘制的一张气温变化曲线图,直观形象地表达了温度随时间的变化而变化的情况,你能根据下图回答下列问题吗?(1)上午9时的温度是多少?12时呢? (2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最低温度到最高温度经过了多少时间?1、让学生展示自己的分析过程.2、引导学生将新旧知识联系起来,发现新问题,利用所学知识解决新问题,引导学生进行自主探究,获得新知.1、学生根据自己的生活经验积极寻求最佳表述方式.2、学生展示自己的分析与解决过程. 3、在老师的引导下分组讨论. 4、与同桌通过对层层推进的问题串的形式逐步引导学生获得图象所传达的信息,熟悉图象语言,培养学生自主探索的意识和能力,使学生在探索教学内容教师活动学生活动设计 意图教学 过程B A(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?进行交流.5、总结.的过程中形成自己的观点,让学生体会成功的喜悦.发散探究就上述温度随时间变化而变化的图象特征,请同学们再想一想,我们还可以得出哪些看法?变量之间的关系还可以怎样表示?(学生分组讨论)教师小结:图象是我们表示变量之间关系的又一种方法,它的特点是非常直观。

七年级下册初一数学《变量之间的关系》教案

七年级下册初一数学《变量之间的关系》教案

变量之间的关系§4.1 用表格表示的变量间关系【例题】一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:时间(秒) 0 1 2 3 4 5 6 7 8 9 10 速度0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9(米/秒)(1)上表反映了哪两个变量之间的关系? 哪个是自变量? 哪个是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒时,v的变化情况相同吗? 在哪1秒钟内,v的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?【变式】1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点数……(2)每层点数是如何随层数的变化而变化的? 所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100? 为什么?8 4x 102202、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:降价(元) 5 10 15 20 25 30 35 日销量(件)780810840870900930960(1)上表反映了哪两个变量之间的关系? 其中那个是自变量,哪个是因变量? (2)每降价5元,日销量增加多少件? 请你估计降价之前的日销量是多少? (3)如果售价为500元时,日销量为多少?§4.2 用关系式表示的变量间关系【例题】如图,已知梯形的上底为x ,下底为8,高为4.(1)求梯形面积y 与x 的关系;(2)用表格表示,当x 从3到7(每次增加1)时,y 的相应值; (3)当x 每增加1时,y 如何变化? (4)当y =50时,x 为多少?(5)当x =0时,y 等于多少? 此时它表示的是什么?【变式】1、将若干张长为20cm 、宽为10cm 的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm .(1)求4张白纸粘合后的总长度;(2)设x 张白纸粘合后的总长度为y cm ,写出y 与x 之间的关系式; (3)并求当x =20时,y 的值。

人教版变量之间关系教案

人教版变量之间关系教案

人教版变量之间关系教案标题:人教版《变量之间关系》教案一、教学目标:1. 理解变量在数学中的概念,并能够准确运用。

2. 了解和掌握变量之间的关系,包括一元一次方程的解以及二元一次方程的解。

3. 运用所学的知识解决实际问题,培养数学建模能力。

二、教学重点:1. 理解变量的概念,能够正确运用变量解决问题。

2. 掌握一元一次方程和二元一次方程的解法。

3. 运用所学的知识解决实际问题。

三、教学难点:1. 运用变量解决复杂的实际问题。

2. 知识的灵活运用。

四、教学准备:1. 人教版《数学》教材。

2. 教学投影仪和电脑。

3. 活动设计和练习题。

五、教学过程:第一步:导入新知1. 利用投影仪展示一个简单的实际问题,让学生思考问题中是否存在变量,并进行讨论。

2. 引导学生正确理解变量的概念,解释什么是变量以及在数学中的作用。

第二步:讲解一元一次方程的解法1. 通过具体的例题,讲解一元一次方程的概念和解法,并与变量的概念进行联系。

2. 针对不同类型的一元一次方程,进行分类讲解,并引导学生掌握基本的解题方法。

第三步:讲解二元一次方程的解法1. 引导学生思考实际生活中存在的二元一次方程问题,并进行讨论。

2. 通过具体的例题,讲解二元一次方程的概念和解法,并引导学生理解二元一次方程与一元一次方程的区别。

第四步:练习与实践1. 设计一些练习题,让学生巩固所学的一元一次方程和二元一次方程的解法,并能够灵活运用到实际问题中。

2. 鼓励学生将所学知识运用到解决实际问题中,培养数学建模能力。

第五步:总结和归纳1. 对本节课所学内容进行总结,让学生从容掌握变量在数学中的作用。

2. 引导学生理解变量之间的关系,总结一元一次方程和二元一次方程的解法。

六、课后作业:1. 完成课堂练习题和作业题。

2. 提醒学生在日常生活中积极运用所学的知识解决问题。

七、教学反思:本节课通过导入实际问题引发学生学习兴趣,以解题的方式引导学生理解变量的概念,并掌握一元一次方程和二元一次方程的解法。

新版初一数学下册第四章教案:变量之间的关系-文档资料

新版初一数学下册第四章教案:变量之间的关系-文档资料

新版初一数学下册第四章教案:变量之间的关系教案通常又叫课时计划,包括时间、方法、步骤、检查以及教材的组织等。

它是教学成功的重要依据。

鉴于教案的重要性,下文精心准备了这篇新版初一数学下册第四章教案,我们一起来阅读吧!一、知识导航1、主要概念:变量是自变量是 ;因变量是。

2、变量之间关系的三种表示方法:。

其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把的值找到,查询方便;但是欠,不能反映变化的全貌,不易看出变量间的对应规律。

关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。

图像:形象直观。

可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。

3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。

二、学习导航1、有关概念应用例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?①用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;②正方形边长是3,若边长增加x,则面积增加为y.2、利用表格寻找变化规律例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:施肥量(千克/公顷)03467101135202259336404471土豆产量(吨/公顷)15.1821.3625.7232.2930.0339.4543.1543.4640.8330.75上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:时间/秒012345678910速度/米/秒00.31.32.84.97.611.014.118.424.228.9①上表反映了哪两个变量之间的关系?哪个是因变量?②如果用t表示时间,v表示速度,那么随着t的变化,v 的变化趋势是什么?③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加最大?④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?3、用关系式表示两变量的关系例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。

2.3《变量间的相互关系》教案(新人教必修3)

2.3《变量间的相互关系》教案(新人教必修3)

2.3.1变量之间的相关关系教学目标:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

教学重点:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

教学过程:案例分析:一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。

为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表。

关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。

(3)如果一个学生的身高是188cm ,你能估计他的一拃大概有多长吗? 解:根据上表中的数据,制成的散点图如下。

它们之间是线性相关的。

那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)二点确定一条直线。

同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同。

同学3:多取几组点对,确定几条直线方程。

再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距。

同学4:我从左端点开始,取两条直线,如下图。

再取这两条直线的“中间位置”作一条直线。

同学5:我先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多。

1015202530150155160165170175180185190195同学6:我先将所有的点分成两部分,一部分是身高在170 cm 以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线。

同学7:我先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量之间的关系§4.1 用表格表示的变量间关系【例题】一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:(1)上表反映了哪两个变量之间的关系? 哪个是自变量? 哪个是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒时,v的变化情况相同吗? 在哪1秒钟内,v的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?【变式】1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:(2)每层点数是如何随层数的变化而变化的? 所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100? 为什么?8 4x 102202、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:降价(元) 5 10 15 20 25 30 35 日销量(件)780810840870900930960(1)上表反映了哪两个变量之间的关系? 其中那个是自变量,哪个是因变量? (2)每降价5元,日销量增加多少件? 请你估计降价之前的日销量是多少? (3)如果售价为500元时,日销量为多少?§4.2 用关系式表示的变量间关系【例题】如图,已知梯形的上底为x ,下底为8,高为4.(1)求梯形面积y 与x 的关系;(2)用表格表示,当x 从3到7(每次增加1)时,y 的相应值; (3)当x 每增加1时,y 如何变化? (4)当y =50时,x 为多少?(5)当x =0时,y 等于多少? 此时它表示的是什么?【变式】1、将若干张长为20cm 、宽为10cm 的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm .(1)求4张白纸粘合后的总长度;(2)设x 张白纸粘合后的总长度为y cm ,写出y 与x 之间的关系式; (3)并求当x =20时,y 的值。

ABC P2、声音在空气中传播的速度y (米/秒)与气温x C 之间有如下关系:33315y x =+ (1)在这一变化过程中,自变量是________、因变量是________; (2)当气温15x C =时,声音速度y =________米/秒;(3)当气温22x C =时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米。

3、如图,在Rt ABC ∆中,已知90C ∠=,边AC =4cm ,BC =5cm ,点P 为CB 边上一动点,当点P 沿CB 从点C 向点B 运动时,APC ∆的面积发生了变化. (1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP 长为xcm ,APC ∆的面积为2ycm ,则y 与x 的关系可表示为_______________;(3)当点P 从点D (点D 为BC 的中点)运动到点B 时,则APC ∆的面积从______2cm 变到______2cm§4.3 用图象表示的变量间关系【例题1】某山区今年6月中旬的天气情况是:前6天小雨,后6天暴雨,那么反映该地区某河流水位变化的图象大致是( )AB C D【变式1】为节约用水,利民学校冲厕水箱经改造后,当水箱水满后就按一定的速度放掉水箱的一半水,随后立即按一定的速度注水,等水箱的水满后,又立即按一定的速度放掉水箱一般的水,下面的图象可以刻画水箱的存水量v (立方米)与放水或注水时间t (分钟)之间的关系的是( )A B C D【例题2】新成药业集团研究开发了一种新药,在实验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高? 是多少微克?(2)A点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?(4)你建议该儿童首次服药后几小时再服药? 为什么?【变式2】如图,是表示某天小明上学从家到学校时,离家的距离与时间的关系的图象。

(1)小明从家到学校有多远? 他一共用了多长时间到校?(2)中途小明停下来子啊路边的商店买了一些练习本,图中那一段曲线表示这一过程?(3)你能想象小明从离家到第4min时的情况吗?【拓展】1、王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y (含备用零钱)的关系如图所示。

根据图象回答下列问题:(1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?2、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象。

(1)通话1分钟,要付电话费多少元? 通话5分钟要付多少电话费?(2)通话多少分钟以内,所支付的电话费不变?(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是=+-,那么通话4分钟的电话费是多少元?y t2.5(3)§4.4 速度的变化【例题1】如图,是某人骑自行车的行驶路程s (千米)与行驶时间t (时)的函数图象,下列说法不正确的是( )A. 从0时到3时,行驶30千米B. 从1时到2时匀速前进C. 从1时到2时原地不动D. 从出发地到1时与从2时到3时的行驶速度相同速度/v时间/tadcb 0路程/S时间/ta cb0 【小结】1、观察右图回答下列问题:(1)a 代表物体从____________开始____________运动; (2)b 代表物体________________运动; (3)c 代表物体________________运动;(4)a 表示的速度________d 表的速度(填“>”、“=”或“<”) 2、观察右图回答下列问题: (1)a 代表物体____________运动; (2)b 代表物体____________;(3)c 代表物体__________运动直至回到______;【变式1】(1)一列火车从青岛站出发,加速行驶一段时间开始匀速行驶。

过了一段时间,火车到达下一个车站。

乘客上下车后,火车又加速,一段时间后再次开始匀速行驶,下面可以近似地刻画出火车在这段时间内的速度变化情况的图是下图中的( )A .B .C .D .(2)小李骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b <a ),再前进c 千米,则他离起点的距离s 与时间t 的关系示意图是( )【例题2】小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系? 哪个是自变量? 哪个是因变量? (2)10时和13时,他分别离家多远?(3)他到达离家最远的地方时什么时间? 离家多远? (4)11时到12时他行驶了多少千米? (5)他可能在哪段时间内休息,并吃午餐? (6)由他离家最远的地方返回时的平均速度是多少?【变式2】(1)如图,是自行车行驶路程与时间的关系图,则整个行驶过程的平均速度是( ) A .20B .40C .15D .25(2)如图所示,OA 、BA 分别表示甲、乙两名学社运动的路程与时间的 关系图象,图中S 和t 分别表示运动路程和时间,根据图象判断快者 的速度比慢者的速度每秒快( ) A .2.5mB .2mC .1.5mD .1m【拓展】1、甲、乙两地相距80千米,A 骑自行车,B 骑摩托车沿相同路线由甲地到乙地行驶,两人行驶的路程y (千米)与时间x (时)的关系如图所示,请你根据图象回答或解决下面的问题: (1)谁出发较早? 早多长时间? 谁到达乙地较早? 早多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的路程y (千米)与时间x (小时)的关系。

2、某单位急需用车,但又不准备买车,他们准备和一家个体车主或一家国有出租车公司签订租车合同,合同中规定所付月租金的多少与出租车每月行驶的距离有关。

下图表示出租车每月行驶的距离与所付月租金的关系,(1y 表示个体车主,2y 表示国有出租车)观察图象回答下列问题 (1)每月行驶路程在什么范围内时租国有公司的车合算?(2)租个体车主的车,租来的车如果没有行驶,是否也要缴租金? 缴多少租金? 租国有公司的车呢?(3)每月行驶路程等于多少时,租两家车的费用相同?(4)如果这个单位估计每月行驶的路程2300米,那么这个单位租哪家的车合算?知识整合与解题指导一、知识导航1、主要概念:变量是;自变量是;因变量是。

2、变量之间关系的三种表示方法:。

其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把因变量的值找到,查询方便;但是不能反映变化的全貌,不易看出变量间的对应规律。

关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。

图象:形象直观。

可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图象是近似的、局部的,由图象确定因变量的值欠准确。

有关概念应用【例题1】下列各题中,那些量在发生变化? 其中自变量和因变量各是什么?(1)用总长为60的篱笆围成一边长为L (m),面积为S (m2)的矩形场地;(2)正方形边长是3,若边长增加x,则面积增加为y.用关系式表示两变量的关系【例题2】①设一长方体盒子高为10,底面为正方形,求这个长方体的体积v与底面边长a的关系。

②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。

【变式】如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:。

0 1 2 3 4 5y (千米)30 15x (小时)甲乙45用图象表示两变量的关系【例题3】2003年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是2003年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道: (1)5月6日新增确诊病例人数为 人;(2)在5月9日至5月11日三天中,共新增确诊病例人数为 人; (3)从图上可看出,5月上半月新增确诊病例总体呈 趋势.【例题4】星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( ). A . 从家出发,到了一个公共阅报栏,看了一会儿报,就回家了 B . 从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了 一段,然后回家了C . 从家出发,一直散步(没有停留),然后回家了D . 从家出发,散了一会儿步,就找同学去了,18分钟后才开始返【变式】右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A 地到B 地时,行驶的路程y (千米)与经过的时间x (小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发小时与电动自行车相遇;电动自行车的速度为 千米/时;汽车的速度为 千米/时;汽车比电动自行车早 小时到达B 地.【提高练习】(1)(2)(3)(4)1、小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )ABCD2.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为 . 3.如图,都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位……,依此规律,则第(5)个图形的表面积是 个平方单位. 4、小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( ) A .8.6分钟 B .9分钟C .12分钟D .16分钟输入x 值(-2≤x ≤-1)(-1<x ≤1)(1<x ≤2)输出y 值5、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是;(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高? 在什么时间段内,甲蜡烛比乙蜡烛低?6、某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示.回答问题:(1)机动车行驶几小时后加油? (2)中途中加油_________L;(3)已知加油站距目的地还有240km,车速为40/km h,若要达到目的地,油箱中的油是否够用? 并说明原因.7、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂质量/x kg0 1 2 3 4 5弹簧长度/y cm18 20 22 24 26 28(1)上表反映了哪两个变量之间的关系? 哪个是自变量? 哪个是因变量?(2)当所挂物体重量为3kg时,弹簧多长? 不挂重物时呢?(3)若所挂重物为7kg时(在允许范围内),你能说出此时的弹簧长度吗?8、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题: (1)求降价前销售金额y (元)与售出西瓜x (千克)之间的关系式; (2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚子多少钱?9、某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x 分钟,两种方式的费用分别为1y 元和2y 元. (1)写出1y 、2y 与x 之间的关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同?(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?10、如图是某水库的蓄水量v (万米3)与干旱持续时间t (天)之间的关系图,回答下列问题: (1)该水库原蓄水量为多少万米3? 持干旱持续时间10天后,水库蓄水量为多少万米3?(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?11.某公司有2位股东,20名工人. 从2000年至2002年,公司每年股东的总利润和每年工人的工资总额如下图所示.(Ⅰ)填写下表:(Ⅱ)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?年 份 2000年 2001年2002年工人的平均工资(元) 5000 股东的平均利润(元)250002000 2001 年份2002 5 15 2.512.5 10 7.5 万元··· ··工人工资总额 股东总利润 ·。

相关文档
最新文档