非液体润滑滑动轴承的设计计算

合集下载

机械设计(9.4.2)--非液体摩擦滑动轴承的计算思考题

机械设计(9.4.2)--非液体摩擦滑动轴承的计算思考题

10-4 第十章 非液体摩擦滑动轴承设计
1、非液体摩擦滑动轴承设计准则是什么?
轴承的平均压强小于材料的许用压强p<[p];压力和速度的乘积小于许用值pv<[pv];滑动速度小于轴瓦材料的许用滑动速度v<[v];
2、非液体摩擦滑动轴承计算中,限定p<[p]、pv<[pv]、v<[v] 各考虑什么问题?答:p<[p]—防止轴瓦过度磨损;
pv<[pv]—限制发热量,避免胶合;
v<[v]—防止轴瓦边缘局部磨损。

3、在设计液体动压滑动轴承时,是否要进行非液体摩擦滑动轴承的计算,为什么?
要进行非液体摩擦滑动轴承的计算。

因为滑动轴承并不是在所有情况下都能够建立流体动力润滑,实际上,多数滑动轴承处于非液体摩擦状态,即在滑动表面上同时存在着干摩擦、边界摩擦和液体摩擦的混合状态。

4、液体动压和静压滑动轴承在起动和停车时,摩擦状态有何差异?
液体动压滑动轴承在起动和停车时,轴颈和轴承主要是金属相接触,液体静压
滑动轴承由于是液压系统供给压力油,在起动和停车时仍然是液体摩擦状态。

5、是否所有的轴承都应设计成液体摩擦轴承?为什么?
不用,在不重要的工作场合,不能保证液体摩擦并且满足非液体摩擦滑动轴承的设计要求时可以选择非液体摩擦轴承。

滑动轴承

滑动轴承

第八章滑动轴承8.1 重点、难点分析本章的重点内容是滑动轴承轴瓦的材料及选用原则;非液体摩擦滑动轴承的设计准则及设计计算;液体动力润滑径向滑动轴承的设计计算。

难点是液体动力润滑径向滑动轴承的设计计算及参数选择。

8.1.1 轴瓦材料及其应用对轴瓦材料性能的要求:具有良好的减摩性、耐磨性和咬粘性;具有良好的摩擦顺应性、嵌入性和磨合性;具有足够的强度和抗腐蚀的能力和良好的导热性、工艺性、经济性等。

常用轴瓦材料:金属材料、多孔质金属材料和非金属材料。

其中常用的金属材料为轴承合金、铜合金、铸铁等。

8.1.2 非液体摩擦滑动轴承的设计计算对于工作要求不高、转速较低、载荷不大、难于维护等条件下的工作的滑动轴承,往往设计成非液体摩擦滑动轴承。

这些轴承常采用润滑脂、油绳或滴油润滑,由于轴承得不到足够的润滑剂,故无法形成完全的承载油膜,工作状态为边界润滑或混合摩擦润滑。

非液体摩擦轴承的承载能力和使用寿命取决于轴承材料的减摩耐磨性、机械强度以及边界膜的强度。

这种轴承的主要失效形式是磨料磨损和胶合;在变载荷作用下,轴承还可能发生疲劳破坏。

因此,非液体摩擦滑动轴承可靠工作的最低要求是确保边界润滑油膜不遭到破坏。

为了保证这个条件,设计计算准则必须要求:p≤[p],pv≤[pv],v≤[v]限制轴承的压强p,是为了保证润滑油不被过大的压力挤出,使轴瓦产生过度磨损;限制轴承的pv值,是为了限制轴承的温升,从而保证油膜不破裂,因为pv值是与摩擦功率损耗成正比的;在p及pv值经验算都符合要求的情况下,由于轴发生弯曲或不同心等引起轴承边缘局部压强相当高,当滑动速度高时,局部区域的pv值可能超出许用值,所以在p较小的情况下还应该限制轴颈的圆周速度v。

8.1.3液体动力润滑径向滑动轴承设计计算液体动力润滑的基本方程和形成液体动力润滑(即形成动压油膜)的条件已在第一章给出,这里不再累述。

1.径向滑动轴承形成动压油膜的过程径向滑动轴承形成动压油膜的过程可分为三个阶段:(1)起动前阶段,见图8-1a;(2)起动阶段,见图8-1b;(3)液体动力润滑阶段,见图8-1c;图8-1 径向滑动轴承形成液体动力润滑的过程对于这一形成过程应掌握如下要点:(1)从轴颈开始转动到轴颈中心达到静态平衡点的过程分析;(2)在给定载荷、轴颈转动方向及偏心距e的大小时,如何确定轴颈的平衡位置;(3)确定轴颈平衡位置后,油膜压力分布的大致情况以及最小油膜厚度h min的位置;(4)影响轴颈静态平衡点位置的主要因素有外载荷F,润滑油粘度η和轴颈转速n。

完整的轴承选型计算方法

完整的轴承选型计算方法

轴瓦得材料
减摩性:材料副具有较低得摩擦系数。 耐磨性:材料得抗磨性能,通常以磨损率表示。 抗咬粘性(胶合):材料得耐热性与抗粘附性。 摩擦顺应性:材料通过表层弹塑性变形来补偿轴承滑动表面初始配合 不良得能力。
嵌入性:材料容纳硬质颗粒嵌入,从而减轻轴承滑动表面发生刮伤 或磨粒磨损得性能。
磨合性:轴瓦与轴颈表面经短期轻载运行后,形成相互吻合得表面形 状与粗糙度得能力(或性质)。
§7-4 非液体摩擦滑动轴承得设计
一、失效形式
1、磨损
导致轴承配合间隙加大,影响轴得旋转精度,甚至使 轴承不能正常工作。
2、胶合
高速重载且润滑不良时,摩擦加剧,发热多,使轴承上 较软得金属粘焊在轴颈表面而出现胶合。
二、设计准则
B
Fr
1、限制轴承得压强 p :
d
目得 — 防止轴瓦过度磨损。
平均压强: p Fr [ p] MPa dB
(5)、根据调心性能 轴刚性差、轴承座孔同轴度差或多点支承
—— 选调心轴承( “1” 类 或 “2” 类 );
§11-5 滚动轴承得寿命计算
一、滚动轴承得载荷分析
Qi
各滚动体上得受力情况如何?
当轴承仅受到纯轴向力 Fa 作用时:
Fa
载荷由各滚动体平均分担,即:
Qi = Qj
Qj
当轴承仅受到纯径向力 Fr 作用时: 接触点产生弹性变形,内圈下沉δ,
此外还应有足够得强度与抗腐蚀能力、良好得导热性、工艺性与经 济性。
常用轴瓦材料有: 金属材料 —轴承合金(巴氏合金、白合金)就是由锡、铅、锑、铜等组成得合金 —铜合金 分为青铜与黄铜两类。 —铸铁 有普通灰铸铁、球墨铸铁等。
粉末冶金材料 —由铜、铁、石墨等粉末经压制、烧结而成得多孔隙轴瓦材料。

河南理工大学机械设计基础第12章 滑动轴承

河南理工大学机械设计基础第12章 滑动轴承
38
第7节 其他形式滑动轴承简介
39
休 息 一 会 儿
2011年6月
……
40
[v]—材料的许用滑动速度 4.选择配合 一般可选H9/d9或H8/f7、H7/f6
31
第6节 液体动压润滑径向滑动轴承的设计计算
液体动力润滑径向滑动轴承的设计计算1
一、流体动力润滑基本方程的建立 对流体平衡方程(Navier-Stokes方程)作如下假设,以便得到简 化形式的流体动力平衡方程。这些假设条件是 :
2
第1节 概述
工作时轴承和轴颈的支撑面间形成直接或间接活动摩擦的 轴承,称为滑动轴承。
滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在 以下场合,则主要使用滑动轴承:
1.工作转速很高,如汽轮发电机。
2.要求对轴的支承位置特别精确,如精密磨床。
3.承受巨大的冲击与振动载荷,如轧钢机。 4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。 6.在特殊条件下工作的轴承,如军舰推进器的轴承。
◆ ◆
◆ ◆
流体为牛顿流体,即 (
u ) y

流体的流动是层流,即层与层之间没有物质和能量的交换;
忽略压力对流体粘度的影响,实际上粘度随压力的增高而增加;
略去惯性力及重力的影响,故所研究的单元体为静平衡状态或匀速直 线 运动,且只有表面力作用于单元体上;
◆ ◆
流体不可压缩,故流体中没有“洞”可以“吸收”流质;
四.润滑装置及润滑方法 常用的润滑方法有:
油润滑
1)间歇式供油
旋套式注油油杯
压配式压注油杯
26
第4节 滑动轴承的润滑剂和润滑方法
2)连续式供油
3)飞溅润滑

《机械设计基础》第15章 滑动轴承

《机械设计基础》第15章  滑动轴承

τ
P+dp τ+dτ
雷诺耳实验(1883年)——层流与湍流的现象
雷诺方程:
h0 - h dp = 6ηv dx h3
其中:p——油膜压力 η——润滑油粘度 V——速度 h——间隙厚度(油膜厚度) h0——油膜压力为极限值时的间隙厚度
分析雷诺方程:
(1)当相对运动的两表面 形成收敛油楔时。即能保 证移动件带着油从大口走 u 向小口。 o
形成动压润滑的条件: (1)相对运动的两表面形成收敛油楔时。 (2)两表面必须有一定的相对速度。
(3)润滑油必须有一定的粘度,并供油充分。
(4)油膜的最小厚度应大于两表面不平度之和。
例:试判断下列图形能否建立动压润滑油膜?
v v v v
向心滑动轴承形成动压油膜的过程:
F F FF F
o
o1 o1 o o1 1 o1
润滑脂 (黄油) 固体润滑剂
钙基、钠基、铅基、锂基等。
石墨、二流化钼、聚氟乙烯树脂等 (用于高温下的轴承)。
空气、氢气等(只用于高速、高 温以及原子能工业等特殊场合)
气体润滑剂
●润滑剂的主要指标:
(1) 粘度——是润滑油最重要的物理性能指标,是选择润滑 油的主要依据,它标志着流体流动时内摩擦阻 力的大小。粘度越大,内摩擦阻力越大,即流 动性越差。 (2)凝点——是润滑油冷却到不能流动时的温度。凝点越低越好。 (3) 闪点——是润滑油在靠近试验火焰发生闪燃时的温度。 闪点是鉴定润滑油耐火性能的指标。在工作温度 较高和易燃环境中,应选用闪点高于工作温度 20°~30°C的润滑油。 (4) 油性——是指润滑油湿润或吸附在表面的能力。吸附能力 越强,油性越好。 (5) 滴点——是指润滑脂受热后开始滴落时的温度。润滑脂使 用工作温度应低于滴点20°~30°C,低于40°~ 60°更好。 (6)针入度(稠度)——是表征指润脂稀稠度的指标。针入度越 小,表示润滑脂越稠;反之,流动性越大。

机械设计基础 复习题2要点

机械设计基础   复习题2要点

机械设计基础复习题(二)第八章蜗杆传动复习题⒈判断题(1) 所有蜗杆传动都具有自锁性。

(×)(2) 蜗杆传动的接触应力计算,其目的是为防止齿面产生点蚀和胶合失效。

(√)(3) 蜗杆传动中,为了使蜗轮滚刀标准化、系列化,新标准中,将蜗杆的分度圆直径定为标准值。

(√)⒉选择题1. 两轴线 C 时,可采用蜗杆传动。

a.相交成某一角度 b.平行 c.交错 d.相交成直角2 计算蜗杆传动比时,公式 C 是错误的。

a.i=ω1/ ω2 b.i=z2/ z1 c.i=d2/ d13. 轴交角为90˚的阿基米德蜗杆传动,其蜗杆的导程角γ=8˚8΄30˝(右旋),蜗轮的螺旋角应为 B 。

a.81˚51΄30˝ b.8˚8΄30˝ c.20˚ d.15˚4. 对于重要的蜗杆传动,应采用 B 作蜗轮齿圈材料。

a.HT200 b.ZCuSn10Pb1 c.40Cr调质 d.18CrMnTi渗碳淬火5. 当蜗杆头数增加时,传动效率 B 。

a.减小 b.增加 c.不变⒊问答题(1) 蜗杆传动有哪些特点?适用于哪些场合?为什么?大功率传动为什么很少用蜗杆传动?(2) 何谓蜗杆传动的中间平面?何谓蜗杆分度圆直径?(3) 一对阿基米德圆柱蜗杆与蜗轮的正确啮合条件是什么?(4) 蜗杆传动的传动比等于什么?为什么蜗杆传动可得到大的传动比?为什么蜗杆传动的效率低?(5) 蜗杆传动中,为什么要规定d1与m 对应的标准值?第九章轮系复习题1 选择题(1) _C___轮系中的两个中心轮都是运动的。

a.行星 b.周转 c.差动(2) __A__轮系中必须有一个中心轮是固定不动的。

a.行星 b.周转 c.差动(3) 要在两轴之间实现多级变速传动,选用A轮系较合适。

a.定轴 b.行星 c.差动(4) 自由度为1的轮系是B。

a.周转 b.行星 c.差动(5) 差动轮系的自由度为 C 。

a.1 b.1或2 c.2(6) 在平面定轴轮系中,传动比的符号可由B决定。

轴承选用计算及其组合设计

轴承选用计算及其组合设计

§17-2 滚动轴承的结构、类型和代号
滚动轴承的组成:外圈、内圈、滚动体、保持架。 各零件的作用:
内圈:支撑轴;
装在机座或零件轴孔内;
外圈:支撑零件或轴系;
内外圈上有滚道,当内外圈相对旋转时,滚动体将沿着滚道滚动。
滚动体:滑动滚动;
保持架: 将滚动体分开。 滚动副的材料要求:
硬度和接触疲劳强度↑ 、耐磨性和冲击韧性↑ 用含铬合金钢制造,经热处理后硬度达:61~65HRC。 工作表面需经磨削或抛光。

第14页/共56页
2˚ ~3˚
主要承受径向载荷, 同时也能承受少量 轴向载荷。因为外 滚道表面是以轴承 中点为中心的球面, 故能调心。
表17-3 滚动轴承的主要类型和特性(续)
轴承名称、 类型及代号
结构简图 承载方向 极限转速 允许角偏差
主要特性和应用
调心滚 子轴承 20000C
能承受很大的径向载荷
绕此边线自行 倾斜
润滑剂和润滑装置
一、 润滑剂
作用:降低摩擦功耗、减少磨损、冷却、吸振、防锈等。
液体润滑剂----润滑油
A、B两板之间充满了液体,B板静止,A板水 平移动速度为v。由于液体与金属表面的吸附
分类
半固体润滑剂----润滑脂 作用,A板表面的液体速度为v,而B板表面的 液体速度为0。两板之间的速度呈线性分布。
后置代号
或加
注:
代表字母;
代表数字
1. 前置代号----成套轴承分部件代号。 是轴承代号的基础,有三项 2. 基本代号:表示轴承的基本类型、结构和尺寸。
类型代号 ----左起第一位,为0(双列角接触球轴承)
则省略。
第20页/共56页
调心球轴承 10000

滑动轴承 习题

滑动轴承  习题

滑动传动课后习题
一、选择题
1、巴氏合金用来制造__。

A、单层金属轴瓦
B、双层或多层金属轴瓦
C、含油轴承轴瓦
D、非金属轴瓦
2、在滑动轴承材料中,__通常只用作双金属轴瓦的表层材料。

A、铸铁
B、巴氏合金
C、铸造锡磷青铜
D、铸造黄铜
3、非液体摩擦滑动轴承,验算pv<[pv]是为了防止轴承__。

A、过度磨损
B、过热产生胶合
C、产生塑性变形
D、发生疲劳点蚀
4、在__情况下,滑动轴承润滑油的粘度不应选得较高。

A、重载
B、高速
C、工作温度高
D、承受变载荷或振动冲击载荷
5、温度升高时,润滑油的粘度__。

A、随之升高
B、保持不变
C、随之降低
D、可能升高也可能降低
二、填空题
1.对非液体摩擦滑动轴承,为防止边界膜破裂,轴承过度磨损,应校核(),
为防止轴承温升过高产生胶合,应校核()。

2.液体动压润滑轴承形成动压润滑的必要条件是:()、()和()。

3.设计计算非液体滑动轴承时要验算1)p≤[p],其目的是();2)pv
≤[pv],其目的是()。

4.滑动轴承按受载荷方向的不同,可分为()和();根据滑动表
面间润滑状态不同,可分为()和()。

按承载机理的不同,又
可分为()和()。

5.两摩擦表面间的典型摩擦状态是()、()和()。

滑动轴承设计参数与计算方法

滑动轴承设计参数与计算方法

第三章滑动轴承设计参数与计算方法!"#滑动轴承的类型、特性与选用滑动轴承的种类繁多,分类方法亦繁多,按润滑原理不同,将其分为:无润滑轴承、粉末冶金含油轴承、动压轴承和静压轴承。

以粉末冶金含油轴承代表处于混合润滑状态下的轴承;无润滑轴承亦代表固体润滑轴承。

!"#"#滑动轴承的性能比较(表$%!%#)表$%!%#滑动轴承的性能比较轴承型式无润滑轴承粉末冶金含油轴承动压轴承静压轴承轴承性能承载能力!!高温适应性好,可以在材料的温度极限以下运转差,受润滑剂氧化的限制一般,可以在润滑剂温度极限以下运转低温适应性优一般好,摩擦阻力大真空适应性优好,需要专用润滑剂一般,需专用润滑剂差潮湿适应性好,轴须耐腐蚀好尘埃适应性好,需注意密封必须密封好,需密封和过滤装置好抗振性一般好旋转精度差好优摩擦阻力大较大小最小噪声一般小最小润滑装置最简单简单复杂程度差异较大复杂w w w.bz f x w.c om!"#"$滑动轴承的承载能力与极限转速几种主要滑动轴承的极限承载能力和极限转速曲线见图!"#"$和图!"#"%。

可供选择滑动轴承类型时参考。

对动压轴承,按中等粘度润滑油进行计算;对无润滑轴承和混合润滑轴承,按磨损寿命为$&’(计算;对静压轴承,理论上在材料强度允许图%&!&#径向轴承的极限载荷与转速""""无润滑轴承—·—液体动压轴承—··—粉末冶金含油轴承—滚动轴承图%&!&$推力轴承的极限载荷与转速""""无润滑轴承—·—液体动压轴承—··—粉末冶金含油轴承—滚动轴承w w w.bz f x w.c om的载荷和转速范围内均可应用。

为了便于比较,还将疲劳寿命为!"#$的滚动轴承的极限承载能力和极限转速曲线画出。

【精选】非液体摩擦滑动轴承

【精选】非液体摩擦滑动轴承

2、胶合
当轴承在高速、重载且润滑不良时工作,摩擦加 剧,发热过多,可能会发生胶合失效。严重时, 甚至轴承与轴颈焊死。
二、设计计算
1.径向滑动轴承
2.止推滑动轴承
1.径向滑动轴承
一般已知: 轴颈直径d(mm)、 转速 n(r/min)、 轴承承受的径向载 荷FR(N)
设计步骤:
(1)确定轴承及相应的轴瓦的结构型 式,并选定轴瓦材料。
pv FR d B

dn
60 1000
[pv ]
(3)验算轴承的工作能力 3)校核v值 对于比压小的轴承,即使p和pv值验算合格,如果滑动速 度过高,也会发生加速磨损而使轴承报废。
v
dn
60 1000
[v ]
[p]、[pv]和[v]值见表13-1
4)选择轴承的配合 参考表13-2 根据不同的使用要求,为了保证一定的旋转精度,要选择 合理的轴承配合。
刘燕姚小燕1磨损磨损非液体磨擦滑动轴承的工作表面在工作时有局部的金属接触会产生不同程度的摩擦和磨损使配合间隙增大当间隙超过某一允许值时机器正常运行受到破坏噪声增大旋转精度变低
讲课单位:H1-602
团队成员:刘燕 姚小燕 喻波
一、主要失效形式
1、磨损
非液体磨擦滑动轴承的工作表面,在工作时有局 部的金属接触,会产生不同程度的摩擦和磨损, 使配合间隙增大,当间隙超过某一允许值时,机 器正常运行受到破坏,噪声增大,旋转精度变低。
2.止推滑动轴承
止推滑动轴 承的计算步 骤与径向滑 动轴承的相 同
1)磨损——校核压强p
p
4
FA
(d 22 d 12 )K
[p ]
d1 (0.4 ~ 0.6)d 2

滑动轴承计算

滑动轴承计算

第十七章 滑动轴承基本要求及重点、难点滑动轴承的结构、类型、特点及轴瓦材料与结构。

非液体摩擦轴承的计算。

液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。

多油楔动压轴承简介。

润滑剂与润滑装置。

基本要求:1) 了解滑动轴承的类型、特点及其应用。

2) 掌握各类滑动轴承的结构特点。

3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。

4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。

5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。

6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。

7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。

8) 了解滑动轴承采用的润滑剂与润滑装置。

重点:1) 轴瓦材料及其应用。

2) 非液体摩擦滑动轴承的设计准则与方法。

3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。

难点:液体动压润滑的基本方程及形成液体动压润滑的必要条件。

主要内容:一:非液体润滑轴承的设计计算。

二:形成动压油膜的必要条件。

三:流体动压向心滑动轴承的设计计算方法,参数选择§17-1概述:滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。

一 分类:1.按承载方向 径向轴承(向心轴承。

普通轴承)只受.推力轴承: 只受 组合轴承:,.2.按润滑状态 液体润滑: 摩擦表面被一流体膜分开(1.5—2.0以上)表面间摩擦为液体分子间的摩擦 。

例如汽轮机的主轴。

非液体润滑:处于边界摩擦及混合摩擦状态下工作的轴承为非液体润滑轴承。

rF aF aF rF m关于摩擦干:不加任何润滑剂。

边界:表面被吸附的边界膜隔开,摩擦性质不取决于流体粘度,与边界膜的表面的吸附性质有关。

液体:表面被液体隔开,摩擦性质取决于流体内分子间粘性阻力。

混合:处于上述的混合状态.相应的润滑状态称边界、液体、混合、润滑。

3.液体润滑按流体膜形成原理分:1)流体动压润滑轴承:靠摩擦表面几何形状相对运动并借助粘性流体动力学作用产生力。

邱宣怀《机械设计》(第4版)(名校考研真题 滑动轴承)【圣才出品】

邱宣怀《机械设计》(第4版)(名校考研真题 滑动轴承)【圣才出品】

第17章 滑动轴承一、选择题1.下列叙述错误的是()。

[西安交通大学2007研]A.滑动轴承的摩擦阻力一定比滚动轴承大B.一般来讲,与滚动轴承相比滑动轴承径向尺寸小C.一般来讲,与滚动轴承相比滑动轴承运转平稳,噪声低D.滑动轴承可以用在转速很高的情况下【答案】A【解析】滑动轴承与滚动轴承相比。

优点:与滚动轴承同等体积的载荷能力要大很多;振动和噪音小,使用于精密度要求高,又不允许有振动的场合;对金属异物造成的影响较小,不易产生早起损坏。

缺点:摩擦系数大,功率消耗;不适于大批量生产,互换性不好,不便于安装、拆卸和维修。

内部间隙大,加工精度不高。

传动效率低,发热量大,润滑维护不方便,耗费润滑剂。

载荷、转速和工作温度适应范围窄,工况条件的少量变化,对轴承的性能影响较大。

不能同时承受径向和轴向载荷。

2.下列各种机械设备中,()只采用滑动轴承。

[国防科技大学2002研]A.大型水轮发电机主轴B.中小型减速器齿轮轴C.发电机转子D.铁路机车车辆行走部分【答案】A【解析】滑动轴承常用在工作转速高、特大冲击与振动、径向空间尺寸受到限制或必须剖分安装、以及需在水或腐蚀性介质中工作的场合。

3.一滑动轴承公称直径d=80mm ,相对间隙,已知该轴承在液体摩擦状0.002ϕ=态下工作,偏心率x=0.48,则最小油膜厚度( )。

[中南大学2005研]min h =A .84μm B .42μm C .76μm D .38μm【答案】B【解析】最小油膜厚度。

3min (1)=40100.0021-0.48μm=42μm h r x ϕ=-⨯⨯⨯()4.在滑动轴承设计中,如果轴承宽度较大,宜采用______结构。

[北京理工大学2006研]A .整体式B .部分式C .自位式D .多楔式【答案】C5.在设计液体动压径向滑动轴承时,如相对间隙ψ、轴颈转速n ,润滑油黏度η和轴承的宽径比B/d ,均已取定时,在保证得到动压润滑的情况下,偏心率ε越大时,则______。

滑动轴承的设计

滑动轴承的设计

滑动轴承的设计§ 1滑动轴承概述用于支撑旋转零件(转轴,心轴等)的装置通称为轴承。

按其承载方向的不同,轴承可分为:径向轴承Radial bearing:轴承上的反作用力与轴心线垂直的轴承称为径向轴承;推力轴承Thrust bearing:轴承上的反作用力与轴心线方向一致的轴承称为推力轴承。

按轴承工作时的摩擦性质不同,轴承可分为:滑动轴承和滚动轴承。

滑动轴承,根据其相对运动的两表面间油膜形成原理的不同,还可分为:流体动力润滑轴承(简称动压轴承)(Hydrodynamic lubrication)流体静力润滑轴承(简称静压轴承)(Hydrostatic lubrication)。

本章主要讨论动压轴承。

和滚动轴承相比,滑动轴承具有承载能力高、抗振性好,工作平稳可靠,噪声小,寿命长等优点,它广泛用于内燃机、轧钢机、大型电机及仪表、雷达、天文望远镜等方面。

在动压轴承中,随着工作条件和润滑性能的变化,其滑动表面间的摩擦状态亦有所不同。

通常将其分为如下三种状态:1、完全液体摩擦完全液体摩擦状态(图8-1a)是指滑动轴承中相对滑动的两表面完全被润滑油膜所隔开,油膜有足够的厚度,消除了两摩擦表面的直接接触。

此时,只存在液体分子之间的摩擦,故摩擦系数很小(f =0.001~0.008),显著地减少了摩擦和磨损。

2、边界摩擦当滑动轴承的两相对滑动表面有润滑油存在时,由于润滑油与摩擦表面的吸附作用,将在摩擦表面上形成一层极薄的边界油膜(图8-1b),它能承受很高的压强而不破坏。

边界油膜的厚度比一微米还小,不足以将两摩擦表面分隔开,所以,相对滑动时,两摩擦表面微观的尖峰相遇就会把油膜划破,形成局部的金属直接接触,故这种状态称为边界摩擦状态。

一般而言,边界油膜可覆盖摩擦表面的大部分。

虽它不能像完全液体摩擦完全消除两摩擦表面间的直接接触,却可起着减轻磨损的作用。

这种状态的摩擦系数f =0.008~0.01。

3、干摩擦两摩擦表面间没有任何物质时的摩擦称为干摩擦状态(图8-1c),在实际中,没有理想的干摩擦。

第10章滑动轴承分析计算题

第10章滑动轴承分析计算题

第10章滑动轴承分析计算题1某一非液体摩擦径向滑动轴承,轴颈转速B/d=1.0,轴瓦表面粗糙度R z1=6.3 m m,轴颈粗糙度R z2=3.2 m m,轴转速n=500 r/min,径向载荷F r=50kN。

若要轴承达到液体摩擦,润滑油动力粘度为多少Pa s?【解】解题思路为:确定[h min]和h min;分别在最大和最小半径间隙情况下,δ→χ→C p→η,取η较大值。

1) 确定定允许的最小油膜厚度根据公式(10-23),取h min=[ h min]=S(R z1+ R z2)=2×(6.3+3.2)=19m m=0.019mm2)确定最大和最小相对间隙根据和偏心率,001475.02/200019.011max min ×−=ψ−=χr h =0.8711 4)确定轴承的承载量系数(索莫菲尔德数)根据轴承的宽径比,查表10-6得,C p 或S o =(4.408+7.772)/2=6.093 (线性插值)5)确定润滑油的粘度根据公式(10-21)vBF C p ηψ=22其中,轴承速度100060500200100060×××π=×π=dn v =5.236 m/s 得 2.0236.5093.62001475.050000222××××=ψ=ηvB C F p =0.00852MPa s 如果安全系数S 取3,重新计算如下1) 确定定允许的最小油膜厚度根据公式(10-23),取 h min =[ h min ]=S (R z1+ R z2)=3×(6.3+3.2)=19m m=0.0285 mm2)确定最大和最小相对间隙 根据 和思考:要求最小油膜厚度增大,则润滑油的粘度应增大。

或者说明润滑油的粘度增大,滑动轴承的承载能力提高了。

如果安全系数S取3,按照最小相对间隙计算如下1) 确定定允许的最小油膜厚度根据公式(10-23),取h min=[ h min]=S(R z1+ R z2)=3×(6.3+3.2)=19m m=0.0285 mm2)确定最大和最小相对间隙根据和。

轴承介绍及其种类介绍

轴承介绍及其种类介绍

轴承介绍及其种类介绍轴承是用来支承轴或轴上回转零件的部件。

根据工作时磨擦性质的不同,轴承分为滑动轴承和滚动轴承两大类。

滚动轴承一般由专门的轴承厂家制造,广泛应用于各种机器中。

但对要求不高或有特殊要求的场合,如高速、重载、冲击较大及需要剖分结构等,使用更多的则是滑动轴承。

所以我们应了解两类轴承的特点,掌握以下几方面的内容:1. 合理选择滑动轴承的材料,确定其参数及结构;2. 合理选择滚动轴承的类型并定出轴承的型号;3. 确定轴承的安装、调整、润滑和密封等。

滑动轴承概述工作时轴承和轴颈的支承面间形成直接或间接滑动摩擦的轴承,称为滑动轴承(图12-1a)。

滑动轴承工作表面的摩擦状态有非液体摩擦和液体摩擦之分。

图12-1b、图12-1c 是轴承摩擦表面的局部放大图,如图12-1b所示,摩擦表面不能被润滑油完全隔开的轴承称为非液体摩擦滑动轴承。

这种轴承的摩擦表面容易磨损,但结构简单,制造精度要求较低,用于一般转速,载荷不大或精度要求不高的场合。

摩擦表面完全被润滑油隔开的轴承称为液体摩擦滑动轴承,如图12-1c所示。

这种轴承与轴表面不直接接触,因此避免了磨损。

液体摩擦滑动轴承制造成本高,多用于高速、精度要求较高或低速、重载的场合。

a 滑动轴承原理图b非液体摩擦状态 c 液体摩擦状态图12-1滑动轴承的摩擦状态根据轴承所能承受的载荷方向不同,滑动轴承可分为向心滑动轴承和推力滑动轴承。

向心滑动轴承用于承受径向载荷;推力滑动轴承用于承受轴向载荷。

一、 滑动轴承的结构1.整体式滑动轴承 是在机体上、箱体上或整体的轴承座上直接镗出轴承孔,并在孔内镶入轴套,如图12-2所示,安装时用螺栓联接在机架上。

这种轴承结构形式较多,大都已标准化。

它的优点是结构简单、成本低;缺点是轴颈只能从端部装入,安装和维修不便,而且轴承磨损后不能调整间隙,只能更换轴套,所以只能用在轻载、低速及间歇性工作的机器上。

图12-2整体式向心滑动轴承2.剖分式滑动轴承(对开式滑动轴承) 如图12-3所示,它由轴承座、轴承盖、剖分式轴瓦等组成。

轴承习题及解答

轴承习题及解答

1
2
3
4
5
6
轴承(滚动)
轴承(滚动)
27. 滚动轴承有那些失效形式? (1)一般工作条件下为滚道及滚动体表面疲劳点蚀; (2)高速场合下可能发生磨损与胶合; (3)转速很低或低速摆动、载荷大时可能发生塑性变形; (4)其他失效有:保持架破损等。 28. 什么是滚动轴承的基本额定寿命和基本额定动载荷? 滚动轴承的基本额定寿命:可靠度为90%时,一组同一型号的轴承在同一条 件下运转所能达到或超过的寿命。 滚动轴承的基本额定动载荷:可靠度为90%,寿命达到106转时轴承所能承受 的载荷。(以上两个参数均在试验条件下获得)
八、轴承(滑动)
含油轴承是采用 制成的。
A. 塑料 B. 铅青铜C. 硬橡胶 D. 粉末合金
动压径向滑动轴承在获得液体摩擦时,轴心位置O1与轴承中心位置O及轴承中 的油压分布,如图 A 所示。
八、轴承(滑动)
3. 在非液体摩擦滑动轴承中,限制p(压强)值的主要目的是 。 A. 防止轴承衬材料过度磨损 B. 防止轴承衬材料发生塑性变形 C. 防止轴承衬材料过度发热 D. 防止出现过大的摩擦阻力矩 4. 在非液体摩擦滑动轴承设计中,限制pv(表示摩擦功率的相对大小)值的主要目的是 。 A. 防止轴承衬材料过度磨损 B. 防止轴承衬材料发生塑性变形 C. 防止轴承衬材料过度发热 D. 防止出现过大的摩擦阻力矩
滚动轴承的主要失效形式有点蚀、塑性变形、保持架破损等 。
保持架的作用是隔离滚动体,并使其均匀排列 。
滚动轴承的代号为60220的类型、内径分别为深沟球轴承,d=100mm 。
轴承(滚动)
轴承(滚动)
18. 一批同型号轴承在同一条件下运转,其可靠度为90%时,能达到或超过的寿 命称为基本额定寿命 。 19. 滚动轴承的基本额定寿命为106转时所能承受的载荷称为基本额定动载荷 。 20. 滚动轴承工作时,滚动体和滚道表面接触应力特性近似为脉动循环 。 21. 滚动轴承固定常用的两种方式为两端固定,一端固定、一端游动 。 22. 滚动轴承预紧的目的是提高轴的旋转精度和刚度 。 23. 滚动轴承是标准件,其内圈与轴颈配合为基孔制;基轴制 ;外圈与轴承座孔的配合 为 减轻磨损、吸振、冷却 。

机械设计基础_西安交通大学中国大学mooc课后章节答案期末考试题库2023年

机械设计基础_西安交通大学中国大学mooc课后章节答案期末考试题库2023年

机械设计基础_西安交通大学中国大学mooc课后章节答案期末考试题库2023年1.关于等效动力学模型,下列说法错误的是()。

参考答案:等效力或等效力矩、等效质量或等效转动惯量均取决于机械系统中各个构件的真实速度2.普通平键连接和切向键连接采用双键时,一般两键在周向间隔角度分别为()。

参考答案:180°,120°3.阶梯轴一般由具有不同长度和直径的轴段组成,其中与滚动轴承配合的部分称为()。

参考答案:轴颈4.动平衡转子()是静平衡的,而静平衡转子()是动平衡的。

参考答案:一定;不一定5.轴承的调心性能是指轴承能适应内外圈的能力,具有较大调心性能的球轴承是调心球轴承。

参考答案:轴线倾斜##%_YZPRLFH_%##轴线偏斜6.限制带在小轮上的包角α1≥120°的目的是增大以提高传动能力。

参考答案:摩擦力##%_YZPRLFH_%##Ff##%_YZPRLFH_%##摩擦##%_YZPRLFH_%##有效拉力7.双拨销四槽外槽轮机构,其运动系数为()。

参考答案:0.58.用于止动、转位分度、送进等,()常用于低速轻载或对运动精度要求不很严格的间歇运动场合。

参考答案:棘轮机构9.V带截面形状做成梯形是为了利用 V带和轮槽间摩擦的楔形效应。

普通V带的指的是带截面基准宽度处的圆周长。

参考答案:基准带长10.带传动中,带中的最小应力发生在松边与大带轮相切处;带传动中,带中的最大应力发生在相切处。

参考答案:紧边与小带轮##%_YZPRLFH_%##小带轮与紧边11.承受预紧力和轴向变载荷的紧螺栓联接,当其螺栓的总拉力F0的最大值和被联接件的刚度Cm不变时,螺栓的刚度Cb愈小,则()。

参考答案:螺栓中总拉力的变化幅度愈小12.十字滑块联轴器允许被联接的两轴有较大的()偏移。

参考答案:径向13.带传动中,传动带受的三种应力是拉应力,离心拉应力和弯曲应力,则最大应力等于σ1+ σb1+σc,它发生在带的紧边开始绕上小带轮处,若带的许用应力小于它,将导致带的失效。

非液体摩擦滑动轴承的设计计算.

非液体摩擦滑动轴承的设计计算.

上一页
课间休息
退出
20
3. v≤[v] (2)-- 参数 [v] P202表4-19
情景4
机械轴系零部件分析与设计—滑动轴承
上一页
下一页
课间休息
退出
18
三、不完全液体润滑轴承的计算 4.不完全液体摩擦径向滑动轴承的配合
情景4
机械轴系零部件分析与设计—滑动轴承
上一页
下一页
课间休息
退出
19
结束
情景4
机械轴系零部件分析与设计—滑动轴承
4.3.3 滑动轴承的设计计算
情景4
机械轴系零部件分析与设计—滑动轴承
下一页
课间休息
退出
1
一、滑动轴承的失效形式
1.磨粒磨损
进入轴承间隙硬颗粒有的随轴转动, 对轴承表面起研磨作用;
情景4
机械轴系零部件分析与设计—滑动轴承
下一页
课间休息
退出
2
一、滑动轴承的失效形式
2.刮伤
进入轴承间隙的硬
颗粒或轴径表面粗糙的 微观轮廓尖峰,在轴承 表面划出线状伤痕。
情景4 机械轴系零部件分析与设计—滑动轴承 上一页 下一页 课间休息 退出
7
三、不完全液体润滑轴承的计算 1. 润滑状态
边界膜
运动副表面有一层厚度<1 μm的薄油膜,不足 以将两金属表面完全分开,其表面部分微观高峰部 分仍将相互搓削。
情景4 机械轴系零部件分析与设计—滑动轴承 上一页 下一页 课间休息 退出
11
三、不完全液体润滑轴承的计算 4. p ≤[p] (3)--参数F
F p [ p] Bd
F为轴承径向载荷,单位N;
情景4 机械轴系零部件分析与设计—滑动轴承 上一页 下一页 课间休息 退出

17-5 非全液体润滑滑动轴承的设计计算_机械设计基础_[共2页]

17-5 非全液体润滑滑动轴承的设计计算_机械设计基础_[共2页]

第17章 轴承 325(4)浸油润滑。

将轴颈直接浸在油池中,不需另用润滑装置。

(5)飞溅润滑。

利用下端浸在油池中的转动件(如齿轮)将润滑油溅成油沫以润滑轴承。

(6)压力循环润滑。

用油泵进行压力供油可以提供充足的油量来润滑和冷却轴承,适合于重载、高速或交变载荷作用下的轴承。

2.脂润滑脂润滑只能间歇供应。

旋盖式油脂杯(见图17-14)是应用最广的脂润滑装置。

杯中装满润滑脂后,旋动上盖即可将润滑脂挤入轴承中。

也常见用黄油枪向轴承补充润滑脂。

17-5 非全液体润滑滑动轴承的设计计算液体润滑是滑动轴承最理想的一种润滑状态。

但是大多数轴承只能在混合摩擦润滑状态(即边界润滑和液体润滑同时存在的状态)下运转。

这类轴承可靠的工作条件是维持边界油膜不受破坏,以减少发热与磨损,并以此计算准则,根据边界膜的机械强度和破裂温度来决定轴承的工作能力。

但影响边界膜的因素很复杂,所以目前仍采用简化的条件性计算。

一、径向滑动轴承非全液体润滑滑动轴承的条件性计算有如下三个准则。

1. 限制轴承的平均比压p限制平均比压的目的是为避免在载荷作用下出现润滑油被完全挤出而导致轴承过度磨损。

[] (MPa)F p p dB=≤ (17-1) 式中,F ——轴承的径向载荷,N ;d ——轴颈直径,mm ;B ——轴颈有效宽度,mm ;[p ]——许用比压,MPa ,其值见表17-1。

对于低速轴或间歇回转轴的轴承,只需进行比压验算即可。

2. 限制轴承的pv 值pv 值反映单位面积上的摩擦功耗与发热。

pv 值越高,轴承温升越高,容易引起边界膜的破裂。

所以,限制pv 值就是控制轴承温升。

其计算式为π[](MPa m/s)60100019100≤F dn Fn pv pv dB B=×≈×i (17-2) 式中,n ——轴颈转速,r /min ;v ——轴颈圆周线速度,m /s ;[pv ]——轴承材料的pv 许用值,其值见表17-1。

机械设计题库10_滑动轴承

机械设计题库10_滑动轴承

滑动轴承一 选择题(1) 宽径比d B /是设计滑动轴承时首先要确定的重要参数之一,通常取 d B / C 。

A. 1~10B.0.1~1C. 0.3~1.5D. 3~5(2) 下列材料中 C 不能作为滑动轴承轴瓦或轴承衬的材料。

A. ZSnSb11Cu6B. HT200C. GCr15D. ZCuPb30(3) 在非液体润滑滑动轴承中,限制p 值的主要目的是 C 。

A. 防止出现过大的摩擦阻力矩B. 防止轴承衬材料发生塑性变形C. 防止轴承衬材料过度磨损D. 防止轴承衬材料因压力过大而过度发热(4) 在滑动轴承材料中, B 通常只用于作为双金属或三金属轴瓦的表层材料。

A. 铸铁B. 轴承合金C. 铸造锡磷青铜D. 铸造黄铜(5) 在滑动轴承轴瓦材料中,最易用于润滑充分的低速重载轴承的是 C 。

A. 铅青铜B. 巴氏合金C. 铝青铜D. 锡青铜(6) 滑动轴承的润滑方法,可以根据 A C 来选择。

A. 平均压强pB. 3pvC. 轴颈圆周速度vD. pv 值(7) B 不是静压滑动轴承的特点。

A. 起动力矩小B. 对轴承材料要求高C. 供油系统复杂D. 高、低速运转性能均好(8) 设计液体动压径向滑动轴承时,若通过热平衡计算发现轴承温升过高,下列改进措施中,有效的是 C 。

A. 增大轴承宽径比B. 减小供油量C. 增大相对间隙D. 换用粘度较高的油(9) 巴氏合金用于制造 B 。

A. 单层金属轴瓦B. 双层及多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦(10) 含油轴承是采用 D 制成的。

A. 塑料B. 石墨 C 铜合金 D. 多孔质金属(11) 下述材料中, C 是轴承合金(巴氏合金)。

A. 20CrMnTiB. 38CrMnMoC. ZSnSb11Cu6D. ZCuSnl0Pbl(12) 液体摩擦动压径向轴承的偏心距e 随 B 而减小。

A. 轴颈转速n 的增加或载荷F 的增加B. 轴颈转速n 的增加或载荷F 的减少C. 轴颈转速n 的减少或载荷F 的减少D. 轴颈转速n 的减少或载荷F 的增加(13) 温度升高时,润滑油的粘度 C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)常用轴承材料
轴承合金
铜合金 铝基轴承合金 铸铁 多孔质金属材料 工程塑料
滑 动 轴 承 材 料
金属材料
非金属材料
碳—石墨 橡胶
木材
1) 轴承合金(白合金、巴氏合金)
是锡、铅、锑、铜等金属的合金, 锡或铅为基体。
优点: f 小,抗胶合性能好、对油的吸附性强、耐腐蚀 性好、容易跑合、是优良的轴承材料,常用于高速、重载 的轴承。
第15章 本章教学内容
滑动轴承
§15-1 滑动轴承的润滑状态 §15-2 滑动轴承的结构型式
§15-3 轴瓦及轴承衬材料
§15-4 润滑剂和润滑装置 §15-5 非液体润滑滑动轴承的设计计算 §15-6 动压润滑的基本原理 §15-7 液体动力润滑径向滑动轴承的设计计算 §15-8 其它形式滑动轴承简介
二、润滑油及其选择
润滑油的特性: 1)温度 t ↑ → η ↓ η 0.08
L-TSA32 L-TSA32
L-TSA32 L-TSA32
2)压力p ↑ → η ↑
但P
0.07 0.06
0.05
10MPa 时可忽略。
变化很小
选用原则: MPa 0.04 1) 载荷大、转速低的轴承, 0.03 宜选用粘度大的油; 0.02 2) 载荷小、转速高的轴承, 0.01 宜选用粘度小的油;
缺点:价格贵、机械强度较差; 只能作为轴承衬材料浇注在钢、铸铁、或青铜轴瓦上。 工作温度:t<120℃ 由于巴式合金熔点低
2)铜合金 优点:青铜强度高、承载能力大、耐磨性和导热性都优于 轴承合金。工作温度高达250℃。 缺点:可塑性差、不易跑合、与之相配的轴径必须淬硬。 青铜可以单独制成轴瓦,也可以作为轴承衬浇注在钢或铸 铁轴瓦上。 锡青铜 →中速重载 铅青铜 铝青铜 3)含油轴承 →中速中载
2) 剖分式向心滑动轴承 将轴承座或轴瓦分离 螺纹孔 联接螺栓 榫口
制造,两部分用联接
螺栓。 特点:结构复杂,可
以调整因磨损而造成
的间隙,安装方便。
轴承盖 剖分轴瓦
轴承座 应用场合: 低速、轻载或间歇性工作的机器。
二、 推力滑动轴承
作用:用来承受轴向载荷 结构形式:
F
1
F
1
2 2 2
F
1
2
F
1
空心式---轴颈接触面上压力分布较均匀,润滑条件比实心 式要好。 单环式---利用轴颈的环形端面止推,结构简单,润滑方便, 广泛用于低速、轻载的场合。 多环式---不仅能承受较大的轴向载荷,有时还可承受双向 轴向载荷。
汽车用滑动轴承故障原因的平均比率
故障原因 比率/% 故障原因 不干净 38.3 腐 蚀 润滑油不足 11.1 制造精度低 安装误差 15.9 气 蚀 对中不良 8.1 其 它 超 载 6.0
比率/%
5.6
5.5
2.8
6.7
二、滑动轴承的材料
(一)轴承材料性能的要求 1) 减摩性----材料副具有较低的摩擦系数。 2) 耐磨性----材料的抗磨性能,通常以磨损率表示。 3) 抗胶合----材料的耐热性与抗粘附性。 4) 摩擦顺应性--材料通过表层弹塑性变形来补偿轴承滑动表 面初始配合不良的能力。 5) 嵌入性--材料容纳硬质颗粒嵌入,减轻轴承滑动表面发生 刮伤或磨粒磨损的性能。 6) 磨合性--轴瓦与轴颈表面经短期轻载运行后,形成相互吻 合的表面形状和粗糙度的能力。 此外还应有足够的强度和抗腐蚀能力、良好的导热性、 工艺性和经济性。 工程上常用浇铸或压合的方法将两种不同的金属组合在 一起,性能上取长补短。
→低速重载
用粉末冶金法制作的轴承,具有多孔组织, 可存储润滑油。可用于加油不方便的场合。
工程塑料:具有摩擦系数低、可塑性、跑合性良好、耐磨、 耐腐蚀、可用水、油及化学溶液等润滑的优点。 橡胶轴承:具有较大的弹性,能减轻振动使运转平稳,可 用水润滑。常用于潜水泵、沙石清洗机、钻机 等有泥沙的场合。
木材:具有多孔结构,可在灰尘极多的环境中使用。
结构特点:在轴的端面、轴肩或安装圆盘做成止推面。在 止推环形面上,分布有若干有楔角的扇形快。其数量一般 为6-12。 固定式 类型 可倾式 ---倾角随载荷、转速自行 调整,性能好。 ---倾角固定,顶部预留平台,
F
F 绕此边线自行 倾斜
§15-3
轴瓦失效实例:
轴瓦及轴承衬材料
轴瓦磨损
表面划伤
疲劳点蚀
4.承受巨大冲击和振动载荷的轴承,如破碎机; 5.根据装配要求必须做成剖分式的轴承,如曲轴轴承; 6.在特殊条件下(如水中、或腐蚀介质)工作的轴承, 如舰艇螺旋桨推进器的轴承;
§15-2 一、向心滑动轴承
滑动轴承的结构型式
1) 整体式向心滑动轴承
组成:轴承座、轴套或轴瓦等。
油杯孔 轴承座 轴承
特点: 1) 结构简单,成本低廉。 2) 因磨损而造成的间隙无法调整。 3) 只能从沿轴向装入或拆。 应用:低速、轻载或间歇性工作的机器中。
选择原则:
1.当压力高和滑动速度低时,选择针入度小一些的品种; 反之,选择针入度大一些的品种。 2.所用润滑脂的滴点,一般应较轴承的工作温度高约20~
30℃,以免工作时润滑脂过多地流失。
3.在有水淋或潮湿的环境下,应选择防水性能强的钙基
或铝基润滑脂。在温度较高处应选用钠基或复合钙基
润滑脂。
表12-4 滑动轴承润滑脂的选择
表12-1
常用轴瓦及轴承衬材料的性能
续表12-1 常用轴瓦及轴承衬材料的性能
§15-4 一、概述
润滑剂和润滑装置
作用:降低摩擦功耗、减少磨损、冷却、吸振、防锈等。 液体润滑剂----润滑油 分类
半固体润滑剂----润滑脂
固体润滑剂
二、润滑脂及其选择
特点:无流动性,可在滑动表面形成一层薄膜。 适用场合:要求不高、难以经常供油,或者低速重载以及 作摆动运动的轴承中。
§15-1
轴承的分类: 按摩擦 性质分
摩擦状态
轴承的功用:用来支承轴及轴上零件。 滚动轴承 优点多,应用广 用于高速、高精度、重载、 结构上要求剖分等场合。
滑动轴承
滑动轴承的应用领域: 1.工作转速特高的轴承,汽轮发电机; 2.要求对轴的支承位置特别精确的轴承,如精密磨床;
3.特重型的轴承,如水轮发ห้องสมุดไป่ตู้机;
3) 高温时,粘度应高一些; 低温时,粘度可低一些。
30 40 50 60 70 80 90 ℃
表12-5 滑动轴承润滑油的选择 轴径圆周速度 m/s
<0.1 0.1~0.3 0.3~2.5 2.5~5 5~9.0 >9.0
相关文档
最新文档