专题19 动量守恒定律及其应用(解析版)
考点19 动量守恒定律及其一般应用
考点19动量守恒定律及其一般应用[题组一基础小题]1.下列情况中系统动量守恒的是()①小车停在光滑水平面上,人在车上走动时,对人与车组成的系统②子弹水平射入放在光滑水平面上的木块中,对子弹与木块组成的系统③子弹射入紧靠墙的木块中,对子弹与木块组成的系统④气球下用轻绳吊一重物一起加速上升时,绳子突然断开后的一小段时间内,对气球与重物组成的系统A.只有①B.①和②C.①和③D.①③④答案 B解析小车停在光滑水平面上,车上的人在车上走动时,对人与车组成的系统,受到的合力为零,系统动量守恒,故①正确;子弹水平射入放在光滑水平面上的木块中,对子弹与木块组成的系统,所受外力之和为零,系统动量守恒,故②正确;子弹射入紧靠墙的木块中,对子弹与木块组成的系统,受到墙的作用力,系统所受外力之和不为零,系统动量不守恒,故③错误;气球下用轻绳吊一重物一起加速上升时,绳子突然断开后的一小段时间内,对气球与重物组成的系统,所受的合力不为零,系统动量不守恒,故④错误。
综上可知,B正确。
2.(2019·江苏高考)质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦。
小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为()A.mMv B.MmvC.mm+Mv D.Mm+Mv解析由题意知,小孩跃离滑板时小孩和滑板组成的系统动量守恒,则M v+m v′=0,得v′=-M vm,即滑板的速度大小为M vm,B正确。
3.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块弹片水平飞出,甲、乙的质量比为3∶1。
不计质量损失,取重力加速度g =10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是()答案 B解析弹片做平抛运动的时间t=2hg=1 s,爆炸过程两块弹片组成的系统水平方向动量守恒,设弹丸质量为m,以爆炸前弹丸的水平速度方向为正方向,则m v=34m v甲+14m v乙,又v甲=x甲t,v乙=x乙t,t=1 s,则有34x甲+14x乙=2 m,将各选项中数据代入计算,可知B正确,A、C、D错误。
高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)
高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。
0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。
动量守恒定律及其应用(含答案)
专题动量守恒定律及其应用【考情分析】1.理解动量守恒定律的确切含义,知道其适用范围。
2.掌握动量守恒定律解题的一般步骤。
3.会应用动量守恒定律解决一维运动有关问题。
【重点知识梳理】知识点一动量守恒定律及其应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.(2)动量守恒定律的表达式:m1v1+m2v2=m1v1′+m2v2′或Δp1=-Δp2.2.系统动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.3.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
【拓展提升】动量守恒定律的“五性”12量,p ′1、p ′2…必须是系统中各物体在相互作用后同一时刻的动量,不同时刻的动量不能相加系统性研究的对象是相互作用的两个或多个物体组成的系统,而不是其中的一个物体,更不能题中有几个物体就选几个物体普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统 知识点二 碰撞1.概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. 2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒. 3.分类种类 动量是否守恒机械能是否守恒弹性碰撞 守恒 守恒 非弹性碰撞 守恒 有损失 完全非弹性碰撞守恒损失最大【拓展提升】1.弹性碰撞后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 ① 解得v 1′=m 1-m 2v 1+2m 2v 2m 1+m 2v 2′=m 2-m 1v 2+2m 1v 1m 1+m 22.弹性碰撞分析讨论当碰前物体2的速度不为零时,若m1=m2,则v1′=v2,v2′=v1,即两物体交换速度。
高考物理动量守恒定律的应用解题技巧及练习题(含答案)及解析
高考物理动量守恒定律的应用解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律的应用1.如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=37°,A 、B 是两个质量均为m =1kg 的小滑块(可看作质点),C 为左端附有胶泥的薄板(可移动且质量不计),D 为两端分别连接B 和C 的轻质弹簧.当滑块A 置于斜面上且受到大小为F =4N 、方向垂直于斜面向下的恒力作用时,恰能沿斜面向下匀速运动.现撤去F ,让滑块A 从斜面上距斜面末端L =1m 处由静止下滑.(g 取10m/s 2,sin37°=0.6,cos37°=0.8)(1)求滑块A 到达斜面末端时的速度大小(2)滑块A 与C (原来C 、B 、D 处于静止状态)接触后粘连在一起,求此后两滑块和弹簧构成的系统在相互作用过程中弹簧的最大弹性势能是多少? 【答案】(1) v =2m/s (2) E P =1J 【解析】 【分析】 【详解】(1)滑块A 匀速下滑时,受重力mg 、恒力F 、斜面支持力N 和摩擦力f 作用 由平衡条件有: ()sin cos 0mg mg F αμα-+= 代入数据解得: μ=0.5撤去F 后,滑块A 匀加速下滑,由动能定理有: ()21sin cos 2mg mg L mv αμα-= 代入数据得: v =2m/s(2)两滑块和弹簧构成的系统在相互作用过程中动量守恒,当它们速度相等时,弹簧具有最大弹性势能,设共同速度为v 1, 由动量守恒: mv =2mv 1 由能量守恒定律有: 22111222P E mv mv =-⨯ 联立解得: E P =1J2.如图所示,质量为M=2kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R=0.4m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。
质量为m=1kg 的滑块B(可视为质点)以初速度08/v m s =从圆弧的顶端沿圆弧下滑,B 从A 右端的上表面水平滑入时撤走圆弧。
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
动量定理及动量守恒定律的应用(解析版)-2023年高考物理压轴题专项训练(全国通用)
压轴题05动量定理及动量守恒定律的应用考向一/选择题:弹簧类问题中应用动量定理考向二/选择题:流体类和微粒类问题中应用动量定理考向三/选择题:碰撞类和类碰撞类问题中应用动量守恒定律考向一:弹簧类问题中应用动量定理1.动量定理的表达式F ·Δt=Δp 是矢量式,在一维的情况下,各个矢量必须以同一个规定的方向为正方向。
运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力。
2.动量定理的应用技巧(1)应用I=Δp 求变力的冲量如果物体受到大小或方向改变的力的作用,则不能直接用I=Ft 求冲量,可以求出该力作用下物体动量的变化Δp ,等效代换得出变力的冲量I 。
(2)应用Δp=F Δt 求动量的变化考向二:流体类和微粒类问题中应用动量定理1.流体类“柱状模型”问题流体及其特点通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ分析步骤1建立“柱状模型”,沿流速v 的方向选取一段柱形流体,其横截面积为S2微元研究,作用时间Δt 内的一段柱形流体的长度为Δl ,对应的质量为Δm =ρSv Δt3建立方程,应用动量定理研究这段柱状流体2.微粒类“柱状模型”问题微粒及其特点通常电子流、光子流、尘埃等被广义地视为“微粒”,质量具有独立性,通常给出单位体积内粒子数n分析步1建立“柱状模型”,沿运动的方向选取一段微元,柱体的横截面积为S2微元研究,作用时间Δt 内一段柱形流体的长度为Δl ,对应的体积为ΔV =Sv 0Δt ,则微元内的粒子数N =nv 0S Δt骤3先应用动量定理研究单个粒子,建立方程,再乘以N 计算考向三:碰撞类和类碰撞类问题中应用动量守恒定律1.碰撞三原则:(1)动量守恒:即p 1+p 2=p 1′+p 2′.(2)动能不增加:即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2.(3)速度要合理①若碰前两物体同向运动,则应有v 后>v 前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v 前′≥v 后′。
高考物理动量守恒定律技巧和方法完整版及练习题含解析
高考物理动量守恒定律技巧和方法完整版及练习题含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d ==解得:1 1.25TB=(3)当所加磁场22TB=,2221mcm vrqB==要让Q从gh边穿出磁场且在磁场中运动的时间最长,则Q在磁场中运动轨迹对应的圆心角最大,则当gh边或ef边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rrα-︒-=解得:127α=︒运动周期:222mTqBπ=则Q在磁场中运动的最长时间:222127127•s360360360mt TqBπαπ===︒此时对应的β角:190β=︒和2143β=︒4.如图所示,质量为M=2kg的小车静止在光滑的水平地面上,其AB部分为半径R=0.3m 的光滑14圆孤,BC部分水平粗糙,BC长为L=0.6m。
动量守恒定律及其应用
动量守恒定律及其应用一、动量守恒定律1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
(2)表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2。
(1)理想守恒:系统不受外力或所受外力的合力为0,则系统动量守恒。
(2)近似守恒:系统受到的合外力不为0,但当内力远大于合外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合外力为0或沿该方向F内≫F外时,系统在该方向上动量守恒。
二、动量守恒定律的应用1.碰撞(1)特点①作用时间:极短;②相互作用力:极大;③动能:不增加。
(2)分类(1)反冲的定义:一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另外一部分必然向相反方向运动,这个现象叫反冲。
(2)反冲的特点①物体的不同部分在内力的作用下向相反方向运动。
②在反冲运动中,系统的合外力一般不为0,但内力远大于外力,可认为反冲运动中系统动量守恒。
③在反冲运动中机械能总量一般是增加的。
(3)反冲现象的应用和防止①应用:反击式水轮机是使水从转轮的叶片中流出,由于反冲而使转轮旋转,从而带动发电机发电的;火箭、喷气式飞机是靠喷出气流的反冲作用而获得巨大的推力的。
②避免有害的反冲运动。
(4)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以认为系统动量守恒。
爆炸过程中位移很小,可忽略不计,可认为爆炸后各部分从相互作用前的位置以新的动量开始运动。
考点1动量守恒的判断1.(系统动量守恒的判断)如图所示,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。
以地面为参考系(可视为惯性系),从撤去推力开始,小车、弹簧和滑块组成的系统()A. 动量守恒,机械能守恒B. 动量守恒,机械能不守恒C. 动量不守恒,机械能守恒D. 动量不守恒,机械能不守恒B解析:因为滑块与车厢水平底板间有摩擦,且撤去推力时滑块在车厢底板上有相对滑动,则有摩擦力做功,而水平地面是光滑的;对小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知,撤去推力后该系统动量守恒,机械能不守恒,故选项B正确。
高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx
高中物理动量守恒定律的技巧及练习题及练习题( 含答案 ) 含解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为 M=l kg,点火后全部压缩气体以 v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有m的压缩气体,每级总2质量均为M,点火后模型后部第一级内的全部压缩气体以速度v o从底部喷口在极短时间2内竖直向下喷出,喷出后经过2s时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计, g 取 10 m / s2,求两种模型上升的最大高度之差。
【答案】 116.54m【解析】对模型甲:0 M m v甲mv0v甲21085m200.56 m h甲 =92g对模型乙第一级喷气:0M m v乙1m v022解得:v乙130ms2s 末:v乙‘1=v乙1gt10msh乙1= v乙21v '乙2140m2 g对模型乙第一级喷气:Mv乙‘1 =(M m)v乙2mv02222解得:v乙2=670 m9sh乙2= v乙2222445m277.10 m 2g81可得:h h乙1+h乙2h甲 =9440m116.54m 。
动量守恒定律及其应用(解析版)--2024届高考物理一轮复习热点题型
动量守恒定律及其应用目录题型一 动量守恒定律的理解类型1 系统动量守恒的判断类型2 某一方向动量守恒定律的应用题型二 动量守恒定律的基本应用题型三 动量守恒定律和图像问题的结合题型四 应用动量守恒定律分析多过程问题题型五 应用动量守恒定律处理临界问题题型六 反冲运动的理解和应用题型七 应用动量守恒定律分析“跳车”问题动量守恒定律的理解类型1系统动量守恒的判断1(2023春·浙江宁波·高三统考阶段练习)如图所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法正确的是()A.男孩和木箱组成的系统机械能守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.小孩推力的冲量小于木箱的动量的变化量【答案】C【详解】A.男孩和木箱组成的系统动能增大,由人体生物能转化为系统机械能,机械能不守恒,故A错误;BC.系统受合外力为零,系统动量守恒,所以男孩、小车与木箱三者组成的系统动量守恒,故B错误,C正确;D.由动量定理可知,合外力的冲量等于动量的变化量,所以小孩推力的冲量等于木箱的动量的变化量,故D错误。
故选C。
2(多选)(2022·福建龙岩市质量检测)如图所示,在世界女排大奖赛中,中国球员朱婷竖直跳起,恰好在她达最高点时将水平飞来的排球迎面击出,排球以更大的速率水平返回,直接落在对方的场地上。
则下列说法正确的是()A.在击打过程中朱婷与球组成的系统动量不守恒B.击打前后瞬间朱婷与球组成的系统的动能相等C.朱婷击打球完后比排球先落地D.朱婷击打球完后落回起跳点上【答案】 AC【解析】 击打过程中朱婷与球在半空中都受到重力的作用,故朱婷和球组成的系统动量不守恒,A 正确;击打前后瞬间朱婷用力使球加速,自身化学能转变为球的动能,动能不守恒,B错误;击球后朱婷与球均做平抛运动,朱婷离地高度低于球的高度,且不可视为质点,故应先落地,C正确;朱婷击球后,向后做平抛运动,故击完球后不会落回起跳点上,D错误。
高二暑假985培优讲义:第19讲 动量守恒定律模型应用专题(类碰撞、爆炸和反冲)
类碰撞、爆炸和反冲(人船模型)一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,根据能量守恒定律,机械能的减少量等于因摩擦而产生的热量,ΔE=F f·s相对,其中s相对为滑块和木板相对滑动的路程.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1如图所示,B是放在光滑的水平面上质量为3m的一块木板,物块A(可看成质点)质量为m,与木板间的动摩擦因数为μ.最初木板B静止,物块A以水平初速度v0滑上长木板,木板足够长.求:(重力加速度为g)(1)木板B的最大速度的大小;(2)从刚滑上木板到A、B速度刚好相等的过程中,木块A所发生的位移大小;(3)若物块A恰好没滑离木板B,则木板至少多长?针对训练如图所示,长为L、质量为2m的长木板B放在光滑的水平面上,质量为m的铁块A放在长木板右端。
一质量为m的子弹以速度v0射入木板并留在其中,铁块恰好不滑离木板。
子弹射入木板中的时间极短,子弹、铁块均视为质点,铁块与木板间的动摩擦因数恒定,重力加速度为g,则()A.整个过程中子弹、A、B三者构成的系统动量守恒v0B.木板获得的最大速度为14C.铁块获得的最大速度为1v03D.铁块与木板之间的动摩擦因数为v0224gL二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(时间极短且未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)子弹射入木块的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.针对训练长方体滑块由材料不同的上下两层粘在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块,若射击上层,则子弹恰好不射出;若射击下层,则整个子弹恰好嵌入。
动量守恒定律的应用 课件
作者编号:43999
新知学习
解:以地面为参考系,取初速度方向为正方向
冰壶出手时,假设掷壶队员的速度为v,方向沿正方
向,则冰壶的对地速度为v+v1:
根据系统动量守恒定律有:
(M+m)v0 = Mv + m(v+v1)
整理可得:v=
(+)0 −1
+
代入数据求得:v= 0.5m/s,方向不变。
第一章 动量和动量守恒定律
第4节 动量守恒定律的应用
作者编号:43999
新知导入
生
活
中
的
碰
撞
现
象
都适合用动量守恒定律分析.
作者编号:43999
新知学习
01 动量守恒定律的应用
1.动量守恒定律的普适性:适用于计算合外力为零时系统中物体相互作用的规律。
(1)不仅适用于正碰,也适用于斜碰;
(2)不仅适用于碰撞,也适用于任何形式的互相作用;
应用中一般不会超过四级,因为级数太多时,
连接机构和控制机构的质量会增加很多,工
作的可靠性也会降低.
作者编号:43999
新知学习
3. 反冲现象的应用及防止
(1)反冲现象的应用
灌溉喷水器
作者编号:43999
礼花燃放
海上冲水
新知学习
(2)反冲现象的防止
步枪射击
作者编号:43999
大炮止退犁
枪身的反冲会影响射击的准确性,
相等。
即Mx2=mx1。
x1
x2
x1
M
m
t
t
人船模型:1.人走船走,人停船停;人快船快,人慢船慢
2.系统满足动量守恒,人、船的位移与质量成反比
动量守恒定律的典型模型及其应用+课件
动能损失为
E=12m1v12012m2v22012 m1m2v2
m1m1
2m1 m2
v10v20 2
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如: 追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
2 特例: 质量相等的两物体发生弹性正碰
v1
m1 m2 v10 2m2v20 m1 m2
v2
m2 m1 v20 2m1v10 m1 m2
碰后实现动量和动能的全部转移 (即交换了速度) 第219页2题
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m 1 v 1 0 m 2 v 2 0 m 1 m 2 v
ABD
• 图中,轻弹簧的一端固定,另一端与滑块B相连,B静 止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A,从导轨上的P点以某一初速度向B滑行,当 A滑过距离l1时,与B相碰,碰撞时间极短,碰后A.B紧
贴在一起运动,但互不粘连。已知最后A恰好返回出发
点P并停止,滑块A和B与导轨的滑动摩擦因数都为
高三物理重点专题
动量守恒定律的典型模型 及其应用
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)反冲运动、爆炸模型
(三)子弹打木块类的问题:
(四)人船模型: 平均动量守恒
• (1)在弹性形变增大的过程中,系统中两物 体的总动能减小,弹性势能增大,在系统形变 量最大时,两物体速度相等. 在形变减小(恢 复)的过程中,系统的弹性势能减小,总动能 增大.
2020高考备考物理重难点《动量守恒定律》(附答案解析版)
重难点07 动量守恒定律【知识梳理】一、动量守恒定律的条件及应用1.动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
2.动量守恒定律的适用条件( 1)前提条件:存在相互作用的物体系;( 2)理想条件:系统不受外力;( 3)实际条件:系统所受合外力为0;( 4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力;( 5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。
3.动量守恒定律的表达式(1)m1V l+m2V2=m i V1 ' m2V2',相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和;(2)A p i= - ^2,相互作用的两个物体动量的增量等大反向;(3)A p=0,系统总动量的增量为零。
4 .动量守恒的速度具有四性”①矢量性;②瞬时性;③相对性;④普适性。
5.应用动量守恒定律解题的步骤:( 1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);( 2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);( 3)规定正方向,确定初、末状态动量;( 4)由动量守恒定律列出方程;( 5)代入数据,求出结果,必要时讨论说明。
二、碰撞与动量守恒定律1 .碰撞的特点( 1)作用时间极短,内力远大于外力,总动量总是守恒的。
( 2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
( 3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
( 4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律3 •关于弹性碰撞的分析两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为 m i 的钢球沿一条直线以速度 v o 与静止在水平面上的质量为 m 2的钢 球发生弹性碰撞,碰后的速度分别是V i 、V 2m 1v 0 m i v 1 m 2v 2 ① 1 2 1 2 1 2m 1v 0 m 1v 1m 2v 2 ②2 2 2m m 2由①②可得:v 1-2V o ③m 1 m 2利用③式和④式,可讨论以下五种特殊情况:a .当 当叶 m 2时,v 1 0 , v 2 0,两钢球沿原方向原方向运动; b . 当m 1m 2时,v 1 0 , v 2 0,质量较小的钢球被反弹,质量较大的钢球向前运动; c .当 当叶 m 2时, v 10 , v 2v 0,两钢球交换速度。
高考物理压轴题专项练习:动量守恒定律及其应用 含答案
高考物理压轴题专项练习:动量守恒定律及其应用一、解答题(共20小题)1. 如图所示,水平面上有一质量为m的木板,木板上放置质量为M的小物块(M>m),小物块与木板间的动摩擦因数为μ。
现给木板和小物块一个初速度,使小物块与木板一起向右运动,之后木板以速度v0与竖直墙壁发生第一次弹性碰撞,已知重力加速度为g。
求:(1)若水平面光滑,木板与墙壁第一次碰撞后到木板再次与墙壁碰撞,小物块没有从木板上掉下,则最初小物块与木板右端的距离至少为多少。
(2)若水平面粗糙,木板足够长,且长木板与水平面间动摩擦因数为0.4μ,M=1.5m,请分析长木板能否与竖直墙壁发生第二次碰撞?如能相撞求出木板与墙壁撞前瞬间的速度,如不能相撞,求出木板右端最终与墙壁间的距离。
2. 如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M=6.0kg的物块A。
装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。
传送带的皮带轮逆时针匀速转动,使传送带上表面以u=2.0m/s匀速运动。
传送带的右边是一半径R=1.25m位于竖直平面内的光滑1圆弧轨道。
质量4 m=2.0kg的物块B从1圆弧的最高处由静止释放。
已知物块B与传送带之间的动摩擦因数μ=40.1,传送带两轴之间的距离l=4.5m。
设物块A、B之间发生的是正对弹性碰撞,第一次碰撞前,物块A静止。
取g=10m/s2。
求:(1)物块B滑到1圆弧的最低点C时对轨道的压力;4(2)物块B与物块A第一次碰撞后弹簧的最大弹性势能;(3)如果物块A、B每次碰撞后,物块A再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B与物块A碰撞的第n次到n+1次之间的过程中,物块B在传送带上运动的时间。
3. 如图所示,在光滑的绝缘水平面内建立平面直角坐标系xOy,在第一、二、四象限内存在竖直向下的匀强磁场,第三象限内存在竖直向上的匀强磁场,两个磁场的磁感应大小都为B,在原点O 放置一个不带电的小球a,球a质量为m。
高考物理总复习 第六单元 动量 第2课时 动量守恒定律及其应用(含解析)
课时2 动量守恒定律及其应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,则这个系统的总动量保持不变。
(2)表达式:对两个物体组成的系统,常写成p1+p2=p1'+p2'或m1v1+m2v2=m1v1'+m2v2'。
(3)适用条件:系统不受外力或者所受外力的矢量和为零。
2.弹性碰撞和非弹性碰撞(1)弹性碰撞:碰撞过程中机械能守恒。
(2)非弹性碰撞:碰撞过程中机械能减少。
(3)完全非弹性碰撞:碰撞后合为一体或碰撞后具有共同速度,这种碰撞动能损失最多。
3.反冲运动(1)定义:一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另外一个部分必然向相反方向运动,这个现象叫反冲。
(2)特点:①物体的不同部分在内力的作用下向相反方向运动。
②在反冲运动中,系统的合外力一般不为零,但内力远大于外力,可认为反冲运动中系统动量守恒。
③在反冲运动中机械能总量一般是增加的。
(3)反冲现象的应用和防止①应用:反击式水轮机是使水从转轮的叶片中流出,由于反冲而使转轮旋转,从而带动发电机发电,火箭、喷气式飞机是靠喷出气流的反冲作用而获得巨大的推力,等等。
②避免有害的反冲运动。
1.(2018湖北宜昌六校联考)甲、乙两运动员在做花样滑冰表演,沿同一直线相向运动,速度大小都是1 m/s,甲、乙相遇时用力推对方,此后都沿各自原方向的反方向运动,速度大小分别为 1 m/s 和2 m/s。
则甲、乙两运动员的质量之比为()。
A.2∶3B.3∶2C.1∶2D.2∶1B2.(2018湖南长沙模拟)图示为中国队队员投掷冰壶的镜头。
在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行。
若两冰壶质量相等,规定向前运动方向为正方向,则碰后中国队冰壶的速度为()。
A.0.1 m/sB.-0.1 m/sC.0.7 m/sD.-0.7 m/sA3.(2018江苏南通第二次质量调研模拟)(多选)下列属于反冲运动的是()。
动量守恒定律的应用和实例
动量守恒定律的应用和实例动量守恒定律是物理学中一个重要的基本定律,它描述了一个封闭系统中的总动量保持不变。
本文将探讨动量守恒定律的应用和实例,并分析其在真实世界中的重要性。
一、动量守恒定律的基本原理动量是物体运动的一种物理量,它是质量与速度的乘积。
动量守恒定律指出,在一个封闭系统中,如果没有外力的作用,该系统的总动量将保持不变。
换句话说,当一个物体在没有外力作用下发生运动时,它的动量将保持不变。
二、动量守恒定律在碰撞中的应用碰撞是动量守恒定律最常见的应用之一。
碰撞可以分为完全弹性碰撞和非完全弹性碰撞两种情况。
1. 完全弹性碰撞完全弹性碰撞是指两个物体发生碰撞后,既不改变动量也不改变动能的碰撞。
在完全弹性碰撞中,动量守恒定律可以表示为:m1*v1i + m2*v2i = m1*v1f + m2*v2f其中,m1和m2分别是两个物体的质量,v1i和v2i是碰撞前的速度,v1f和v2f是碰撞后的速度。
2. 非完全弹性碰撞非完全弹性碰撞是指碰撞后物体的动能发生了改变的碰撞。
在非完全弹性碰撞中,动量守恒定律仍然成立,但动能不再守恒。
三、动量守恒定律在火箭运动中的应用火箭运动是动量守恒定律在实际应用中的重要例子。
当火箭喷射出高速气体时,火箭会向相反的方向获得推力。
根据动量守恒定律,火箭获得的动量与喷射气体的动量相等但方向相反。
火箭的动量变化可以用以下公式表示:m1*v1 + m2*v2 = (m1 + m2)*v其中,m1和v1是火箭质量和速度,m2和v2是喷射气体的质量和速度,(m1 + m2)*v是火箭的最终速度。
火箭利用动量守恒定律实现了垂直起飞和太空探索的壮举,具有重要的科学和技术价值。
四、动量守恒定律在汽车碰撞中的应用动量守恒定律在汽车碰撞中也具有重要应用。
当两辆车在道路上发生碰撞时,动量守恒定律可以帮助我们分析碰撞的后果以及减少事故造成的伤害。
根据动量守恒定律,两辆车碰撞前的总动量等于碰撞后的总动量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考物理一轮复习热点题型归纳与变式演练专题19 动量守恒定律及其应用【专题导航】目录热点题型一动量守恒的理解和判断 (1)动量守恒的条件判断 (2)某一方向上的动量守恒问题 (3)爆炸反冲现象中的动量守恒 (5)热点题型二对碰撞现象中规律的分析 (6)碰撞的可能性分析 (7)弹性碰撞规律求解 (8)非弹性碰撞的分析 (12)热点题型三“人船模型”类问题的处理方法 (14)【题型归纳】热点题型一动量守恒的理解和判断1.动量守恒定律适用条件(1)前提条件:存在相互作用的物体系.(2)理想条件:系统不受外力.(3)实际条件:系统所受合外力为0.(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力.(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒.2.动量守恒定律的表达式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp=0,系统总动量的增量为零.3.动量守恒定律的“五性”动量守恒的条件判断【例1】.如图所示,A、B两物体的质量之比为m A∶m B=1∶2,它们原来静止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑.当弹簧突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车),则有()A.A、B系统动量守恒B.A、B、C及弹簧组成的系统机械能守恒C.小车C先向左运动后向右运动D.小车C一直向右运动直到静止【答案】D【解析】A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因m A∶m B=1∶2,由摩擦力公式F f=μF N=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B 两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故A、B、C错误,D正确.【变式1】如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板车C上,A、B间有一根被压缩的弹簧,地面光滑.当弹簧突然被释放后,以下系统动量不守恒的是()A.若A、B与C上表面间的动摩擦因数相同,A、B组成的系统B.若A、B与C上表面间的动摩擦因数相同,A、B、C组成的系统C.若A、B所受的摩擦力大小相等,A、B组成的系统D.若A、B所受的摩擦力大小相等,A、B、C组成的系统【答案】:A【解析】:如果A、B与C上表面间的动摩擦因数相同,弹簧被释放后,A、B分别相对C向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A∶m B=3∶2,所以F A∶F B=3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒;对A、B、C组成的系统,A与C、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒;若A、B所受的摩擦力大小相等,则A、B组成的系统所受的外力之和为零,故其动量守恒.综上所述,A正确.某一方向上的动量守恒问题【例2】.(多选)(2019·佛山模拟)如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下滑()A.在下滑过程中,小球和槽之间的相互作用力对槽不做功B .在下滑过程中,小球和槽组成的系统水平方向动量守恒C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球能回到槽上高h 处【答案】BC【解析】:.在下滑过程中,小球和槽之间的相互作用力对槽做功,选项A 错误;在下滑过程中,小球和槽组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,选项B 正确;小球被弹簧反弹后,小球和槽在水平方向不受外力作用,故小球和槽都做匀速运动,选项C 正确;小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被弹簧反弹后与槽的速度相等,故小球不能滑到槽上,选项D 错误.【变式1】质量为M 的小车静止于光滑的水平面上,小车的上表面和14圆弧的轨道均光滑.如图所示,一个质量为m 的小球以速度v 0水平冲向小车,当小球返回左端脱离小车时,下列说法中正确的是( )A .小球一定沿水平方向向左做平抛运动B .小球可能沿水平方向向左做平抛运动C .小球可能沿水平方向向右做平抛运动D .小球可能做自由落体运动【答案】:BCD【解析】:小球水平冲向小车,又返回左端,到离开小车的整个过程中,系统机械能守恒、水平方向动量守恒,相当于小球与小车发生弹性碰撞.如果m <M ,小球离开小车向左做平抛运动;如果m =M ,小球离开小车做自由落体运动;如果m >M ,小球离开小车向右做平抛运动.【变式2】(多选) (2020·湖北武汉三模)如图所示,在光滑水平面上有一辆平板车,一人手握大锤站在车上。
开始时人、锤和车均静止。
此人将锤抡起至最高点,此时大锤在头顶的正上方,然后,人用力使锤落下敲打车的左端,如此周而复始,使大锤连续地敲打车的左端,最后,人和锤都恢复至初始状态并停止敲打。
在此过程中,下列说法中正确的是 ( )A.锤从最高点落下至刚接触车的过程中,车的动量方向先水平向右,后水平向左B.锤从刚接触车的左端至锤的速度减小至零的过程中,车具有水平向左的动量,车的动量减小至零C.锤从刚离开车的左端至运动到最高点的过程中,车具有水平向右的动量,车的动量先增大后减小D.在任一时刻,人、锤和车组成的系统动量守恒【答案】AB【解析】由水平方向动量守恒可知锤从最高点落下至刚接触车的过程中,车的动量方向先水平向右,后水平向左,故A正确;锤从刚接触车的左端至锤的速度减小至零的过程中,车具有水平向左的动量,车的动量减小至零,故B正确;锤从刚离开车的左端至运动到最高点的过程中,锤的动量方向先向左再向右,则车的动量先向右再向左,故C错误;人、锤和车组成的系统,在水平方向上所受的外力之和为零,水平方向上动量守恒,故D错误。
【变式3】(多选)如图所示,小车在光滑水平面上向左匀速运动,水平轻质弹簧左端固定在A点,物体与固定在A点的细线相连,弹簧处于压缩状态(物体与弹簧未连接),某时刻细线断了,物体沿车滑动到B端粘在B端的油泥上,取小车、物体和弹簧为一个系统,下列说法正确的是()A.若物体滑动中不受摩擦力,则该系统全过程机械能守恒B.若物体滑动中有摩擦力,则该系统全过程动量守恒C.不论物体滑动中有没有摩擦,小车的最终速度与断线前相同D.不论物体滑动中有没有摩擦,系统损失的机械能相同【答案】BCD【解析】物体与油泥粘合的过程,发生非弹性碰撞,系统机械能有损失,故A错误;整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确;取系统的初速度方向为正方向,根据动量守恒定律可知,物体在沿车滑动到B端粘在B端的油泥上后系统共同的速度与初速度是相同的,故C正确;由C的分析可知,当物体与B端油泥粘在一起时,系统的速度与初速度相等,所以系统的末动能与初动能是相等的,系统损失的机械能等于弹簧的弹性势能,与物体滑动中有没有摩擦无关,故D正确.爆炸反冲现象中的动量守恒【例3】.(2017·高考全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30 kg·m/s B.5.7×102 kg·m/s C.6.0×102 kg·m/s D.6.3×102 kg·m/s【答案】A【解析】:.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p,根据动量守恒定律,可得p-mv0=0,解得p=mv0=0.050 kg×600 m/s=30 kg·m/s,选项A正确.【变式1】如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,下列说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为M∶m C.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动【答案】:BC【解析】:AB与C组成的系统在水平方向上动量守恒,C向右运动时,AB应向左运动,故A错误;设碰前C的速率为v1,AB的速率为v2,则0=mv1-Mv2,得v1v2=Mm,故B正确;设C与油泥粘在一起后,AB、C的共同速度为v共,则0=(M+m)v共,得v共=0,故C正确,D错误.【变式2】(2020·江西会昌中学)(多选)如图所示,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b,用轻绳紧紧地把它们捆在一起,使它们发生微小的形变。
该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动。
某时刻轻绳突然自动断开,断开后两球仍沿原直线运动。
经过时间t =5.0s 后,测得两球相距s =4.5m ,则下列说法正确的是( )A .刚分离时,a 球的速度大小为0.7m/sB .刚分离时,b 球的速度大小为0.2m/sC .刚分离时,a 、b 两球的速度方向相同D .两球分开过程中释放的弹性势能为0.27J【答案】ABD【解析】:系统的总动量守恒,以向右为正方向,由动量守恒定律得(m 1+m 2)v 0=m 1v 1+m 2v 2,两球相距s =v 1t -v 2t ,代入数据解得v 1=0.7m/s ,v 2=-0.2m/s ,负号表示速度方向与正方向相反,故A 、B 正确,C 错误;由能量守恒定律得12(m 1+m 2)v 20+E p =12m 1v 21+12m 2v 22,代入数据解得E p =0.27J ,故D 正确。
热点题型二 对碰撞现象中规律的分析1.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2. (3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v 后>v 前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v ′前≥v ′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,有m 1v 1=m 1v ′1+m 2v ′212m 1v 21=12m 1v ′21+12m 2v ′22 解得v ′1=(m 1-m 2)v 1m 1+m 2,v ′2=2m 1v 1m 1+m 2. 结论:∶当两球质量相等时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.∶当质量大的球碰质量小的球时,v ′1>0,v ′2>0,碰撞后两球都沿速度v 1的方向运动.∶当质量小的球碰质量大的球时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来.∶撞前相对速度与撞后相对速度大小相等.(2)完全非弹性碰撞∶撞后共速.∶有动能损失,且损失最多. 碰撞的可能性分析【例4】.(2020·湖北宜昌西陵区期末)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m/s ,p 2=7 kg·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s ,则两球质量m 1与m 2间的关系可能是( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2【答案】:C【解析】:甲、乙两球在碰撞过程中动量守恒,所以有p 1+p 2=p 1′+p 2′,即p 1′=2 kg·m/s.由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加,所以有p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2,所以有m 1≤2151m 2.因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<57m 2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1≤p 2′m 2,所以m 1≥15m 2.因此C 选项正确.【变式1】两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v ′A =5 m/s ,v ′B =2.5 m/s B .v ′A =2 m/s ,v ′B =4 m/sC .v ′A =-4 m/s ,v ′B =7 m/sD .v ′A =7 m/s ,v ′B =1.5 m/s【答案】B【解析】:.虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v ′A 大于B 的速度v ′B ,必然要发生第二次碰撞,不符合实际;C 项中,两球碰后的总动能E ′k =12m A v ′2A +12m B v ′2B=57 J ,大于碰前的总动能E k =22 J ,违背了能量守恒定律;而B 项既符合实际情况,也不违背能量守恒定律,故B 项正确.【变式2】(多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m/s(设为正),B 的速度v 2=-3 m/s ,则它们发生正碰后,其速度可能分别是( )A .均为1 m/sB .+4 m/s 和-5 m/sC .+2 m/s 和-1 m/sD .-1 m/s 和5 m/s【答案】AD【解析】:由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 21+12m 2v 22=12×4×9 J +12×2×9 J =27 J E k ′=12m 1v 1′2+12m 2v 2′2 由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B .选项C 虽满足E k ≥E k ′,但A 、B 沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A ′>0,v B ′<0),这显然是不符合实际的,因此C 错误.验证选项A 、D 均满足E k ≥E k ′,故答案为选项A (完全非弹性碰撞)和选项D (弹性碰撞).【变式3】如图所示,半径和动能都相等的两个小球相向而行。