整式的乘除与因式分解知识点归纳

合集下载

整式的乘除与因式分解知识点复习

整式的乘除与因式分解知识点复习

整式的乘除与因式分解知识点复习乘除与因式分解是数学中非常重要的知识点,广泛应用于各个领域。

在高中阶段,学习乘除与因式分解是为了更好地理解并解决数学问题,为后续学习提供基础。

本文将对乘除与因式分解的相关知识进行复习,以期加深对这一知识点的理解。

1.整式的乘法整式是由常数项和各种变量及其指数的积或和的形式构成的代数式。

整式的乘法是指两个整式之间的乘法运算。

在整式的乘法中,需要注意以下几个知识点:(1)同底数幂的乘法:当两个幂的底数相同时,可以将底数保持不变,指数相加。

例如,5^2*5^3=5^(2+3)=5^5(2)不同底数幂的乘法:当两个幂的底数不同时,将两个底数乘在一起,指数保持不变。

例如,2^3*3^2=2^3*3^2=6^2(3)乘法分配律:乘法分配律是指整式乘法中,对于两个整式a、b和一个整式c,有(a+b)*c=a*c+b*c例如,(2x+3)(4x+5)=2x*4x+2x*5+3*4x+3*5=8x^2+10x+12x+15=8x^2+22x+152.整式的除法整式的除法是指将一个整式除以另一个整式,得到商和余数的运算过程。

在整式的除法中,需要注意以下几个知识点:(1)除法算法:整式的除法运算过程与约分的思想类似。

首先找出被除式中最高次项和除式中最高次项的幂次差,然后将被除式中的每一项与除式的最高次项相乘得到临时商,再将临时商乘以除式,得到临时商与被除式的差,重复之前的步骤,直到无法再继续相除为止。

例如,(2x^3+3x^2-5x+7)/(x-2)=2x^2+7x+9余数为23(2)因式定理:如果整式f(x)除以(x-a)的余数为0,则x-a是f(x)的一个因式。

例如,f(x)=x^2-3x+2,将f(x)除以(x-2),得到(x^2-3x+2)/(x-2)=x-1余数为0,所以x-2是f(x)的一个因式。

3.因式分解因式分解是将一个整式分解成几个乘积的形式,其中每个乘积因式都尽可能简单。

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。

2.整式的加减的实质:合并同类项。

3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。

②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。

③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。

④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。

4.乘法公式:①平方差公式:()()22b a b a b a -=-+。

②完全平方公式:()2222b ab a b a +±=±。

5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。

专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。

八年级上数学整式的乘除与因式分解基本知识点

八年级上数学整式的乘除与因式分解基本知识点

整式是一个或多个代数式的和、差或积。

整式的乘除与因式分解是数学中非常重要的概念,是解决各种代数问题的基础。

本文将详细介绍八年级上数学中整式的乘除与因式分解的基本知识点。

一、整式的乘法1.1 单项式的乘法:单项式的乘法是指单项式与单项式之间的乘法。

例如:2x ×3y = 6xy,-4a^2 × 5b^3 = -20a^2b^31.2多项式的乘法:多项式的乘法是指多项式与多项式之间的乘法。

例如:(3x+2)(x-1)=3x^2+x-2二、整式的除法2.1 单项式的除法:单项式的除法是指单项式除以单项式。

例如:4x^2 ÷ x = 4x,10a^3b^2 ÷ 2ab = 5a^2b。

2.2多项式的除法:多项式的除法是指多项式除以多项式。

例如:(12x^3+9x^2+3x)÷3x=4x^2+3x+1三、整式的因式分解整式的因式分解是将一个整式写成几个整式的乘积的形式,其中每个整式都是原来整式的因式。

例如:12x^2+8xy,将其因式分解为4x(3x+2y)。

3.1 提取公因式:如果一个整式的每一项都能被同一个整式整除,那么这个公因式就是整式的一个因子。

例如:12x^2+8xy,公因式是4x。

3.2分解差的平方:差的平方是指形如"一个数的平方减另一个数的平方"的表达式。

例如:x^2-9,可因式分解为(x-3)(x+3)。

3.3 分解二次三项式:二次三项式是指形如"一个平方项加两个相同系数的次项"的表达式。

例如:x^2+2xy+y^2,可因式分解为(x+y)^2四、习题例析例1:将多项式4x^2+16x因式分解。

解:这个多项式2x的平方加4x的倍数,所以可以因式分解为4x(x+4)。

例2:将多项式a^2-9因式分解。

解:由差的平方公式可得,a^2-9=(a-3)(a+3)。

例3:将多项式4x^2y^2-8xy^2因式分解。

人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳

第十五章整式的乘除与因式分解一、整式的乘法1.同底数幂的乘法:a m·a n=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。

2.幂的乘方法则:(a m)n=a mn(m,n都是正整数)幂的乘方,底数不变,指数相乘。

3.积的乘方法则:(ab)n= a n·b n(n为正整数)积的乘方=乘方的积4.单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2。

2.完全平方公式:(a±b)2=a2±2ab+b2口诀:前平方,后平方,积的两倍中间放,中间符号看情况。

(这个情况就是前后两项同号得正,异号得负。

)3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。

三、整式的除法1.a m÷a n==a m-n(a≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减。

2. a0=1(a≠0)任何不等于0的数的0次幂都等于1。

3.单项式除以单项式:(1)系数相除(2)同底数幂相除(3)只在被除式里的幂不变4.多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加。

四、因式分解1.因式分解:把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2.公因式:一个多项式中各项都含有的相同的因式,叫做这个多项式的公因式。

3.分解因式方法:(1)提公因式法:ma+mb+mc =m(a+b+c)。

a 1 c 1 a 2 c 2X (2)运用公式法:把整式中的乘法公式反过来使用;①平方差公式: a 2-b 2= (a +b )(a -b )②完全平方公式:a 2+2ab +b 2=(a +b )2 ;a 2+b 2=(a +b )2- 2aba 2-2ab +b 2=(a -b )2 ;a 2+b 2=(a -b )2 +2ab③立方差公式: x 3-y 3=(x-y)(x2+xy+y2)(3)①十字相乘法1(二次项系数是1): x 2+(p+q)x+pq= (x+p)(x+q)。

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

C. ﹣2(3x﹣1)=﹣6x﹣2
D. ﹣2(3x﹣1)=﹣6x+2
2.( 2015•济宁)化简 ﹣16( x﹣0.5)的结果是( )
A. ﹣16x﹣0.5
B. ﹣16x+0.5
C. 16x﹣8
3.(2016·佛山)化简 m n (m n) 的结果是( ).
D. ﹣16x+8
A. 0
B. 2m
C.0.2a2b 与﹣ a2b D.a2b3 与﹣a3b2
4.(2015•柳州)在下列单项式中,与 2xy 是同类项的是( )
A.2x2y2
B.3y
C.xy
D.4x
5.(2014•毕节)若 2 am b4 与 5 an2 b2mn 可以合并成一项,则 mm 的值是( )
A.2
B. 0
C.﹣1
D.1
C. x·x2= x4 C.(-x2)3=-x6 C.(a2)3=a6
D.(2x2)2=6x6 D.(x3)2=x5
D.a6÷a3=a2
8.下列运算正确的是 ( )
A. 3 = 3
9.下列计算正确的是 (
B. ( 1 ) 1 22
)
A.a3·a2=a6
B.a2+a4=2a2
10.下列计算正确的是( )
A. 6a-5a=1
B. a+2a2=3a3
) C.-(a-b)=-a+b
D.2(a+b)=2a+b
7.(2012•浙江)化简: 2(a 1) a _______ .
考点 3、根据题意列代数式
1.(2014•盐城)“x 的 2 倍与 5 的和”用代数式表示为

2.(2010·嘉兴)用代数式表示“a、b 两数的平方和”,结果为_______。

初二数学整式的乘除和因式分解

初二数学整式的乘除和因式分解

初二数学整式的乘除和因式分解教案计划一、知识点总结:1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

2、幂的乘法则:幂的乘方,底数不变,指数相乘。

3、积的乘法则:积的乘方,等于各因数乘方的积。

4、同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

5、零指数和负指数;6、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加。

8、多项式与多项式相乘的法则。

二、例题讲解:1、(a+b)(a+b)=a^2+2ab+b^22、(-3)^5=(-3)(-3)(-3)(-3)(-3)= -2433、(2x^2y^3z)(-3xy)= -6x^3y^4z4、(ab)/(a)=b5、2^-3=1/(2^3)=1/86、(-2x^2y^3z)(3xy)= -6x^3y^4z7、2x(2x-3y)-3y(x+y)=4x^2-6xy-3xy-3y^2=4x^2-9xy-3y^28、(3a+2b)(a-3b)=3a^2-7ab-6b^29、单项式的除法法则:单项式相除时,先将系数相除,再将同底数幂相除,将商的因式作为结果,对于只在被除式中含有的字母,则将其连同指数作为商的一个因式。

例如,-7abm÷49ab可以化简为-1/7m。

10、多项式除以单项式的法则:多项式除以单项式时,先将多项式的每一项除以单项式,然后将所有商相加。

例如,(am+bm+cm)÷m可以化简为a+b+c。

11、平方差公式:平方差公式展开只有两项,左边是两个二项式相乘,其中一个二项式的两项互为相反数,右边是相同项的平方减去相反项的平方。

例如,(a+b)(a-b)=a^2-b^2.12、完全平方公式:完全平方公式展开有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。

整式的乘除及因式分解知识点归纳

整式的乘除及因式分解知识点归纳

整式的乘除及因式分解知识点归纳整式是指由字母和常数经过加、减、乘、除运算得到的代数式。

乘除整式的运算及因式分解是代数学中非常基础和重要的知识点,下面将对乘除整式及因式分解的相关知识进行归纳。

一、乘法运算乘法运算是整式运算中最基本的运算。

在乘法运算中,有以下几个重要的法则:1.乘法交换律:a*b=b*a2.乘法结合律:(a*b)*c=a*(b*c)3.分配律:a*(b+c)=a*b+a*c4.单项式相乘法则:单项式相乘时,将各个单项式的系数相乘,同类项的指数相加。

例子:(2x^2)(3x^3)=2*3*x^2*x^3=6x^(2+3)=6x^5二、除法运算除法运算是整式运算中的一种重要运算。

除法运算可分为两种情况:1.恒等除法:当被除式为0时,整式除以0是没有意义的。

即0除以0没有定义。

2.非恒等除法:非零整式除以非零整式时,被除式乘以除数的倒数。

例子:(4x^4)/(2x^2)=4/2*x^4/x^2=2x^(4-2)=2x^2三、因式分解因式分解是指将一个整式表示为几个其它整式相乘的结果,称这些整式为原式的因式。

1.提取公因式:将一个整式的公因式提取出来,得到一个公因式和一个把原式除以公因式的商。

例子:8x^3+12x^2=4x^2(2x+3)2.根据乘法结合律和分配律,将每一个单项式的因式分别提出来。

例子:3xy + 9x + 6y + 18 = 3(x + 3) + 6(y + 3) = 3(x + 3 +2(y + 3)) = 3(x + 2y + 9)3.因式分解中,根据不同的整式形式,可以采用不同的方法进行因式分解。

常见的因式分解方法有:(1)一元二次整式的因式分解:对形如ax^2 + bx + c的一元二次整式,可以使用因式分解公式 (ax + m)(cx + n)进行分解,其中m、n分别是满足m*n=ac的两个数。

例子:x^2-5x+6=(x-2)(x-3)(2)立方差公式:对形如a^3 - b^3的整式,可以使用立方差公式 (a - b)(a^2 + ab + b^2)进行分解。

8年级上整式乘除与因式分解知识点汇总

8年级上整式乘除与因式分解知识点汇总

第十四章 整式乘法与因式分解(一)幂的运算:1.同底数幂的乘法①n 个相同因式(或因数)a 相乘,记作a n ,读作a 的n 次方(幂),其中a 为底数,n 为指数,a n 的结果叫做幂。

①底数相同的幂叫做同底数幂。

①同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m ﹒a n =a m+n 。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+①此法则也可以逆用,即:a m+n = a m ﹒a n 。

①开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

2.同底数幂的除法①同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:n m n m a a a -=÷(n m a ,,0≠都是正整数)。

①此法则也可以逆用,即:a m -n = a m ÷a n (a≠0)。

3.零指数与负指数公式:(1)零指数幂:任何不等于0的数的0次幂都等于1,即:a 0=1(a≠0)。

(2)负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:p p aa 1=-(p a ,0≠是正整数) 注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .绝对值小于1的数可记成n -10a ⨯±的形式,其中10a 1<≤,n 是正整数,n 等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。

4.幂的乘方①幂的乘方是指几个相同的幂相乘。

(a m )n 表示n 个a m 相乘。

①幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

mn n m a a =)(。

(n m ,都是正整数)①此法则也可以逆用,即m n n m mn a a a )()(==。

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。

下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。

将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。

例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。

2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。

将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。

然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。

例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。

然后将乘积减去被除式,得到0。

所以结果为2x + 3。

3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。

例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。

这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。

整式乘除及因式分解讲义

整式乘除及因式分解讲义

第八章整式乘除与因式分解【知识点1】幂的运算1.同底数幂的乘法法例:a m a n a mn(m,n都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数能够是多项式或单项式。

如:(ab)2(ab)3(a b)5x16x x6同底数幂的乘法法例能够逆用:即a p a mn a m a n如:x7x25x2x5x34x3x4能够依据已知条件,对本来的指数进行适合地“分解”。

2.幂的乘方法例:(a m)n a mn(m,n都是正整数)幂的乘方,底数不变,指数相乘。

如:(35)2310幂的乘方法例能够逆用:即a p a mn(a m)n(a n)m如:46(42)3(43)23.积的乘方法例:(ab)n a n b n(n是正整数)。

积的乘方,等于各因数乘方的积。

如:(2x3y2z)5=(2)5(x3)5(y2)5z532x15y10z5积的乘方法例能够逆用:即1n(a1)na n1n 1,b a;a nb n ab n,常有:a n a n1,n为偶数a n1a(1)1n,b a.a a1,n为奇数4.同底数幂的除法法例:a m a n a mn(a0,m,n 都是正整数,且m n)同底数幂相除,底数不变,指数相减。

如:(ab)4(ab)(ab)3a3b3同底数幂的除法法例能够逆用:即a p a mn a m a n如:已知x75,x33,则x4x73x7x3535 35.零指数幂:a01,即任何不等于零的数的零次方等于1。

6.负整指数幂:a p1(a0,p是正整数)a p科学计数法:(1)绝对值大于1的数可记为a 10n,此中1a10,n是正整数,n等于原数数位减1.如2040000记为106(2)绝对值小于1的数可记为a10n,此中1a10,n是正整数,n等于原数中第一个有效数字前方的零的个数(包含小数点前的0).如104记为考点1同底数幂的乘法【例1】以下各式中,正确的选项是()A.m4m4m8 B.m5m52m25 C.m3m3m9 D.y6y62y12【例2】x y5y x4________【例3】若a m=2,a n=3,则a m+n等于() A.5【例4】已知n是大于1的自然数,则c n1cn1()等于A.c n21 B.2nc C.c2n D.c2n【练习】2·107=2.a4a a53.在等式a3·a2·()=a11中,括号里面人代数式应当是_____4.aa 3a m a 8,则m=5. -t 3·(-t)4·(-t)5_____6. 已知xm -n ·x 2n+1=x 11,且ym -1·y4-n=y 7,则m=____,n=____.考点2幂的乘方【例1】(1) x24(2)a 4a 8(3)()2=a 4b 2【例2】若a x 2,则a 3x =【练习】1.x k12 =31xy 2z 3 22. =23.计算x 43x 7的结果是()A.x 12B.x 14C.x 19D.x 844. a 24a 3(-a n )2n 的结果是x 25=考点3 积的乘方【例1 】下边各式中错误的选项是( ).A .(24)3=212B .(-3a )3=-27a 3C .(3xy 2)4=81x 4y 8D .(2a 2b 2)2=2a 4b 2【例2】计算(1)2010(5)2009(1.2)20106【练习】1.面各式中正确的选项是()A.3x2·2x=6x2B.(1xy2)2=1x2y439C.(-2xy2)3=-2x3y6D.(-x2)·(x3)=x52.当a=-1时,-(a2)3的结果是()A.-1B.1C.a6D.以上答案都不对3.与[(-3a2)3]2的值相等的是()A.18a12B.243a12C.-243a12D.以上结论都不对4.以下计算正确的选项是()A.(b2)3b5B.(a3b)2a6b2C.a3a2a5D.2a238a62345.计算3ab的结果是()A.81a8b12B.12a6b7C.12a6b7D.81a8b126.计算(1)9220259643(2)(-1a2x4)2-(2ax2)43(3)-a3·a4·a+(a2)4+(-2a4)2(4)2(x3)2·x3-(3x3)2+(5x)2·x77)20087)2008(5)(-·(12127.已知a2b33,求a6b9的值。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解一、知识点1.幂的运算性质:同底数幂相乘,底数不变,指数相加。

即,am·an=am+n(m、n为正整数)。

例如:(-2a)2(-3a2)3 = 4a2·-27a6 = -108a8.2.幂的乘方性质:幂的乘方,底数不变,指数相乘。

即,a(mn)=(am)n(m、n为正整数)。

例如:(-a5)5 = (-1)5·a25 = a25.3.积的乘方性质:积的乘方等于各因式乘方的积。

即,(ab)n = an·bn(n为正整数)。

例如:(-a2b)3 = (-1)3·a6·b3 = -a6b3.4.幂的除法性质:同底数幂相除,底数不变,指数相减。

即,a/m ÷ a/n = a(m-n)(a≠0,m、n都是正整数,且m>n)。

例如:(1) x8÷x2 = x6;(2) a4÷a = a3;(3) (ab)5÷(ab)2 = a3b3.5.零指数幂的概念:a0 = 1(a≠0)。

任何一个不等于零的数的零指数幂都等于1.例如:若(2a-3b)0=1成立,则a,b满足任何条件。

6.负指数幂的概念:a-p = 1/ap(a≠0,p是正整数)。

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数。

例如:(m/n)-2 = n2/m2.7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:(1) 3a2b·2abc·abc2 = 6a4b2c3;(2) (-m3n)3·(-2m2n)4 = -8m14n7.8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加。

例如:(1) 2ab(5ab+3ab) = 16a2b2;(2) (ab2-2ab)·ab = a2b3-ab2.9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

八年级上册数学第十四章 整式的乘除与分解因式 知识点总结

八年级上册数学第十四章  整式的乘除与分解因式 知识点总结

第十四章 整式的乘除与分解因式 一、知识框架:二、知识概念:1. 基本运算: ⑴同底数幂的乘法: a m ⨯ a n = a m +n⑵幂的乘方: (a m )n= a mn ⑶积的乘方: (ab )n= a n b n等边三角形的性质 2. 整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3. 计算公式:⑴平方差公式: (a - b )⨯(a + b ) = a 2 - b 2⑵完全平方公式: (a + b )2 = a 2 + 2ab + b 2 ; (a - b )2= a 2 - 2ab + b 24. 整式的除法:⑴同底数幂的除法: a m ÷ a n = a m -n⑵单项式÷ 单项式:系数÷ 系数,同字母÷ 同字母,不同字母作为商的因式. ⑶多项式÷ 单项式:用多项式每个项除以单项式后相加.⑷多项式÷ 多项式:用竖式.5. 因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6. 因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式: a 2 - b 2 = (a + b )(a - b )因式分解整式除法 乘法法则整式乘法②完全平方公式:a2± 2ab +b2=(a ±b)2③立方和:a3+b3= (a +b)(a2-ab +b2 )④立方差:a3-b3= (a -b)(a2+ab +b2 )⑶十字相乘法:x2+(p +q)x +pq =(x +p)(x +q)⑷拆项法⑸添项法。

整式乘除及因式分解知识点

整式乘除及因式分解知识点

整式乘除与因式分解一.知识点(要点)1.幂的运算性质:a m·a n=a m +n(m 、n 为正整数)同底数幂相乘,底数不变,指数相加.例:(-2a)2(-3a 2)3.a mn=a mn (m 、n 为正整数)2幂的乘方,底数不变,指数相乘 .例:(-a 5)53.ab na nbn(n 为正整数)积的乘方等于各因式乘方的积.例:(-a 2b)3 练习:(1)5x 32x 2y(2)3ab( 4b 2)(3)3ab2a(4)yz2y 2z 2(5)(2x 2y)3(4xy 2)(6)1a 3b6a 5b 2c(ac 2)23 4.a man=am -n (≠,、都是正整数,且>)a0mn同底数幂相除,底数不变,指数相减 .例:(1)x 8÷x 2(2)a 4÷a(3)(ab )5÷(ab )2(4)(-a )7÷(-a )5(5)(-b)5÷(-b)25.零指数幂的观点:a 0=1(a≠0)任何一个不等于零的数的零指数幂都等于l . 例:若(2a3b)0 1建立,则a,b 知足什么条件?6.负指数幂的观点:1a-p=ap(a≠0,p是正整数)任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.p pnm也可表示为:m7.单项式的乘法法例:n(m≠0,n≠0,p为正整数)单项式相乘,把系数、同底数幂分别相乘,作为积的因式;关于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)3 a b2abc12()13)(2m) abc2(2m38.单项式与多项式的乘法法例:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1)2(5ab 3)22ab)1ab(2)(aba b32(3)(-5m2n)(2n3mn2)(4)2(xy2zxy2z3)xyz9.多项式与多项式的乘法法例:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(x)x)((2xy)(xy)(3212))(例:(1)2mn)练习:1.计算2x3·(-2xy)(-1xy)3的结果是2842.(3×10)×(-4×10)=3.若n为正整数,且x2n=3,则(3x3n)2的值为4.假如(a n b·ab m)3=a9b15,那么mn的值是5.-[-a2(2a3-a)]=6.(-4x2+6x-8)·(-1x2)=27.2n(-1+3mn2)=8.若k(2k-5)+2k(1-k)=32,则k=9.(-3x2)+(2x-3y)(2x-5y)-3y(4x-5y)=10.在(ax2+bx-3)(x2-1x+8)的结果中不含x3和x项,则a=,b=211.一个长方体的长为(a+4)cm,宽为(a-3)cm,高为(a+5)cm,则它的表面积为,体积为。

初中数学整式的乘除与因式分解知识点归纳

初中数学整式的乘除与因式分解知识点归纳

初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。

2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。

3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。

4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。

二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。

2.用辗转相除法进行整式的除法计算。

三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。

2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。

3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。

4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。

5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。

根据这一定理可以找到多项式的因式。

四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。

2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。

3. 符号"相反"公式:a²-2ab+b²=(b-a)²。

4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。

5. 公因式公式:a²+ab=a(a+b)。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解在研究代数的过程中,整式乘除与因式分解是非常重要的知识点。

下面将对这些知识点进行详细讲解。

一.幂的运算性质幂的运算性质是代数中最基本的知识之一。

其中,同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘。

例如,对于表达式(-2a)2(-3a2)3,可以先计算幂的乘方,然后再将同底数幂相乘。

二.乘方的运算乘方的运算也是代数中的基本知识。

根据乘方的运算法则,积的乘方等于各因式乘方的积。

例如,对于表达式(-a5)5,可以将其分解为a的5次方的积,然后再进行乘方运算。

三.同底数幂的除法同底数幂的除法也是代数中的基本知识之一。

根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减。

例如,对于表达式x÷x,可以将其化简为x的0次方,即1.四.零指数幂和负指数幂在代数中,零指数幂和负指数幂也是非常重要的概念。

任何一个不等于零的数的零指数幂都等于1;任何一个不等于零的数的负指数幂,等于这个数的指数幂的倒数。

例如,对于表达式(2a3b)1,可以通过代数式的运算,求出a和b的取值范围。

五.单项式和多项式的乘法单项式和多项式的乘法也是代数中的基本知识之一。

对于单项式相乘,需要将系数和同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

对于单项式与多项式相乘,需要用单项式和多项式的每一项分别相乘,再把所得的积相加。

对于多项式与多项式相乘,需要先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

通过对整式乘除与因式分解的研究,可以更好地理解代数的基本概念和运算法则,为后续的研究打下坚实的基础。

1.计算 (3×10^8)×(-4×10^4) = -1.2×10^132.计算 2x·(-2xy)·(-3) = 12x^2y3.若n为正整数,且x^(2n)=3,则(3x^(3n))^2的值为 274.如果 (anb·abm)^3 = a^9b^15,那么 mn 的值是 55.-[-a^2(2a^3-a)] = 2a^5 - a^36.(-4x^2+6x-8)·(-1/2x) = 2x^3-3x^2+4x7.2n(-1+3mn^2) = -6mn^2+2n8.若 k(2k-5)+2k(1-k) = 32,则 k = 49.(-3x^2)+(2x-3y)(2x-5y)-3y(4x-5y) = -10x^2+31xy-15y^210.在 (ax^2+bx-3)(x^2-x+8) 的结果中不含 x^3 和 x 项,则a = 1/2,b = -311.一个长方体的长为 (a+4)cm,宽为 (a-3)cm,高为(a+5)cm,则它的表面积为 2a^2+22a+32,体积为 (a+4)(a-3)(a+5) = a^3+6a^2-7a-60.若将长方形的长和都扩大了2cm,则面积增大了 8cm^2.12.一个长方形的长是 10cm,宽比长少6cm,则它的面积是 40cm^2.当长和都扩大了2cm时,面积增大了 44cm^2.13.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式。

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点一、整式乘除法同底数幂相乘;底数不变;指数相加. a m·a n=a m+n m;n都是正整数同底数幂相除;底数不变;指数相减. a m÷a n=a m-n a≠0;m;n都是正整数;且m>n任何不等于0的数或式子的0次幂都等于1. a0=1a≠0; 00无意义a mn表示n个a m相乘;a 的m n幂表示m幂的乘方;底数不变;指数相乘. a mn=a mn m;n都是正整数积的乘方;等于把积的每一个因式分别乘方;再把所得幂相乘.ab n=a n b n n为正整数注:不要漏积中任何一个因式单项式与单项式相乘;把它们的系数;相同字母分别相乘;对于只在一个单项式里含有的字母;则连同它的指数作为积的一个因式.ac5·bc2=a·b·c5·c2=abc5+2=abc7 注:运算顺序先乘方;后乘除;最后加减单项式相除;把系数与同底数幂分别相除作为商的因式;只在被除式里含有的字母;则连同它的指数作为商的一个因式单项式与多项式相乘;就是用单项式去乘多项式的每一项;再把所得的积相加;ma+b+c=ma+mb+mc注:不重不漏;按照顺序;注意常数项、负号 .本质是乘法分配律..多项式除以单项式;先把这个多项式的每一项除以这个单项式;再把所得的商相加.多项式与多项式相乘;先用一个多项式的每一项乘另一个多项式的每一项;再把所得的积相乘a+bm+n=am+an+bm+bn乘法公式:平方差公式:两个数的和与这两个数的差的积;等于这两个数的平方差.a+ba-b=a2-b2完全平方公式:两数和或差的平方;等于它们的平方和;加或减它们积的2倍.a±b2=a2±2ab+b2因式分解:把一个多项式化成几个整式积的形式;也叫做把这个多项式分解因式.因式分解方法:1、提公因式法.关键:找出公因式公因式三部分:①系数数字一各项系数最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意;提取完公因式后;另一个因式的项数与原多项式的项数一致;这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式;即分解到“底”;②如果多项式的第一项的系数是负的;一般要提出“-”号;使括号内的第一项的系数是正的.2、公式法.①a2-b2=a+ba-b两个数的平方差;等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=a±b2 完全平方两个数平方和加上或减去这两个数的积的2倍;等于这两个数的和或差的平方.③x3-y3=x-yx2+xy+y2立方差公式3、十字相乘x+px+q=x2+p+qx+pq因式分解三要素:1分解对象是多项式;分解结果必须是积的形式;且积的因式必须是整式2因式分解必须是恒等变形;3因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系:互逆变形;因式分解是把和差化为积的形式;而整式乘法是把积化为和差添括号法则:如括号前面是正号;括到括号里的各项都不变号;如括号前是负号各项都得改符号..用去括号法则验证。

整式的乘除与因式分解知识点归纳

整式的乘除与因式分解知识点归纳

整式的乘除与因式分解知识点归纳整式是由常数、变量及它们的积和和差经过有限次加、减、乘运算得到的式子。

整式有不同的运算法则,包括乘法、除法和因式分解。

以下是整式的乘除与因式分解的知识点归纳:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

在整式相乘时,需注意以下几点:-两个或多个常数相乘,结果仍是常数;-两个或多个同类项相乘,结果是它们的系数相乘,指数相加的同类项;-不同类项相乘时,按照乘法交换律和乘法结合律可以调整次序、合并同类项;-乘法运算中可以运用分配率,将一个整式乘以一个括号内的整式,再将结果分别与括号内的各项相乘,最后合并同类项得出结果。

2.整式的除法:整式的除法是指将一个整式除以另一个整式的运算。

在整式相除时,需要注意以下几点:-除法的定义:对于两个整式f(x)和g(x),若存在整式q(x)和r(x),使得f(x)=q(x)·g(x)+r(x),且r(x)是0或次数低于g(x)的整式,则称g(x)是f(x)的除式,q(x)是商式,r(x)是余式;-除法的步骤:进行长除法运算,从被除式中选择一个最高次项与除式的最高次项相除,得到商式的最高次项;-对除式乘以商式后减去得到的结果,继续进行除法计算,重复以上步骤;-最后得到的商式即为整式的商,最后得到的余式即为整式的余式。

3.整式的因式分解:因式分解是指将一个整式拆分成多个整式的乘积。

在进行因式分解时,需要注意以下几点:-提取公因式:当一个整式的各个项都有相同的因子时,可以提取出该因子作为公因式;-分解差的平方:对于形如a^2-b^2的差的平方,可以分解成(a+b)(a-b)的乘积;-分解一些特殊形式的整式,如完全平方差、完全立方和差、完全立方和等;-假设原式可分解成两个较简单的整式,然后根据求解思路进行分解。

整式的乘除运算和因式分解是数学中重要的操作,有广泛的应用。

在代数方程求解、多项式计算、消元法等多个数学领域中,都需要运用到整式的乘除与因式分解的知识。

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

乘法的结果称为“积”。

-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。

除法的结果称为“商”和“余数”。

-除法的除数不能为0,即被除式不能为0。

-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。

次数为0的项称为常数项,次数最高的项称为最高次项。

4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。

-除法规则:除法运算时,可以通过因式分解的方法进行计算。

5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。

-两个正整数相乘,结果为正数。

-两个负整数相乘,结果为正数。

-一个正整数与一个负整数相乘,结果为负数。

二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。

可以通过提取公因式、配方法等方式进行因式分解。

2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。

3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。

4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。

例如:a^2-b^2=(a+b)(a-b)。

5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。

例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。

7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。

整式的乘除因式分解定义公式总结

整式的乘除因式分解定义公式总结

整式的乘除因式分解定义公式总结.doc整式的乘除与因式分解定义公式总结一、引言整式是代数学中的基础概念,它包括多项式和单项式。

整式的乘除和因式分解是代数学中的重要操作,对于解决代数问题具有重要意义。

本文档旨在总结整式乘除的基本规则和因式分解的常用方法。

二、整式的定义单项式:由系数和变量的乘积组成的代数表达式,例如 (3x^2)。

多项式:由若干个单项式的和组成的代数表达式,例如 (3x^2 + 2x -5)。

三、整式的乘法单项式乘单项式:系数相乘,变量的指数相加,例如 (2x \cdot 3y = 6xy)。

多项式乘多项式:使用分配律逐项相乘,然后合并同类项,例如 ((x + 2)(x - 3) = x^2 - 3x + 2x - 6 = x^2 - x - 6)。

四、整式的除法多项式除以单项式:将多项式的每一项分别除以单项式,然后合并结果,例如((3x^2 + 6x + 9) ÷ 3 = x^2 + 2x + 3)。

多项式除以多项式:使用多项式长除法或合成除法,例如 ((x^2 - 4) ÷ (x - 2) = x + 2)。

五、因式分解的定义因式分解是将一个多项式表达为几个多项式的乘积的过程。

六、因式分解的基本方法提取公因式:找出所有项共有的因子并提取出来,例如 (6x^2 + 9x = 3x(2x + 3))。

公式法:利用已知的代数公式进行因式分解,例如平方差公式 (a^2 - b^2 = (a + b)(a - b))。

配方法:通过添加和减去相同的数,将多项式转化为完全平方的形式,例如 (x^2 + 4x + 4 = (x + 2)^2)。

分组法:将多项式分成几组,每组内部可以提取公因式或应用其他因式分解方法,例如 (x^3 + x^2 + x + 1 = (x^2 + 1)(x + 1))。

七、特殊多项式的因式分解完全平方三项式:形如 (a^2 - 2ab + b^2 = (a - b)^2) 的多项式。

分式、因式分解整式乘除综合知识点及练习

分式、因式分解整式乘除综合知识点及练习

整式的乘除法。

因式分解和分式复习基本概念一.整式的除乘法 1。

同底数幂的乘法:mn m n a a a +=,(m,n 都是正整数),即同底数幂相乘,底数不变,指数相加。

2。

幂的乘方:()m nmna a=,(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.3.积的乘方:()n n nab a b =,(n 为正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

4。

整式的乘法:(1)单项式的乘法法则:一般地,单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式法则:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加.可用下式表示:m (a +b +c )=ma +mb +mc (a 、b 、c 都表示单项式)(3)多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:平方差公式可以用语言叙述为“两个数的和与这两个的差积等于这两个数的平方差",即用字母表示为:(a +b )(a -b )=a 2-b 2;其结构特征是:公式的左边是两个一次二项式的乘积,并且这两个二项式中有一项是完全相同的,另一项则是互为相反数,右边是乘式中两项的平方差.(2)完全平方公式:完全平方公式可以用语言叙述为“两个数和(或差)的平方,等于第一数的平方加上(或减去)第一数与第二数乘积的2倍,加上第二数的平方”,即用字母表示为:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2;其结构特征是:左边是“两个数的和或差”的平方,右边是三项,首末两项是平方项,且符号相同,中间项是2ab ,且符号由左边的“和”或“差”来确定. 在完全平方公式中,字母a 、 b 都具有广泛意义,它们既可以分别取具体的数,也可以取一个单项式、一个多项式或代数式(3)添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都变号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整 式 的 乘 除 及 因 式 分 解
知识点归纳:
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

5、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)
同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:________3=⋅a a ;________32=⋅⋅a a a
532)()()(b a b a b a +=+•+,逆运算为:
6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)
幂的乘方,底数不变,指数相乘。

如:10253)3(=-
幂的乘方法则可以逆用:即m n n m mn a a a )()(==
如:23326)4()4(4==
例如:_________)(32=a ;_________)(25=x ;()
334)()(a a = 7、积的乘方法则:n n n b a ab =)((n 是正整数)
积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-
________)(3=ab ;________)2(32=-b a ;________)5(223=-b a
8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷
________3=÷a a ;________210=÷a a ;________55=÷a a
9、零指数和负指数;
10=a ,即任何不等于零的数的零次方等于1。

p p a
a 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

如:8
1)21(233==- 10、科学记数法:如:0.00000721=7.21610-⨯(第一个不为零的数前面有几个零就是负几次方)
11、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

注意:
①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘以单项式,结果仍是一个单项式。

如:=•-xy z y x 3232
y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅-
12、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,
即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)
注意:
①积是一个多项式,其项数与多项式的项数相同。

②运算时要注意积的符号,多项式的每一项都包括它前面的符号。

③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。

] 如:)(3)32(2y x y y x x +-- )532(2+--y x x
)25(32
b ab a ab +--
13、多项式与多项式相乘的法则;
多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

如:)6)(2(-+x x
)12)(32(+--y x y x ))((22b ab a b a +-+
14、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项 公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。

右边是相同项的平方减去相反项的平方。

如:例如:(4a -1)(4a+1)=___________; (3a -2b)(2b+3a)=___________;
()()11-+mn mn = ; =--+-)3)(3(x x ;
构造平方差公式的形式进行简便运算:
))((z y x z y x +--+
15、完全平方公式:2222)(b ab a b a +±=±
公式特征:左边是一个二项式和的完全平方,其运算结果有三项,就是首平方+尾平方+首尾乘积的2倍。

例如:()____________522=+b a ; ()_______________32
=-y x ()_____________22=+-ab ; ()______________122
=--m 构造完全平方公式的形式进行简便运算
(x-2y+z )2
16、单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

如:b a m b a 242497÷-;
y x y x 2324÷ ()xy y x 6242-÷ ()()5
8103106⨯÷⨯
17、多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。

即:c b a m cm m bm m am m cm bm am ++=÷+÷=÷=÷++)(
()x x xy ÷+56; ()
()a ab a 4482-÷-
()b a b a b a 232454520÷- c c b c a 212122
2÷⎪⎭
⎫ ⎝⎛-
18、化简求值:要点,一定要先化简,再代入求值,减去一个多项式的时候一定要给多项式加上括号!
例如:(2x+y )(2x-y)-(2x+3y )2
,其中x =-1,y=2.
19、因式分解:
(1)把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫把这个多项式分解因式.
(2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式.
(3)分解因式时,其结果要使每一个因式不能再分解为止.。

20、分解因式的方法
1、有公因式的多项式的分解---------------------提公因式法
(1)公因式:多项式中每一项都含有的因式,叫公因式.
(2)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式,这种分解因式的方法叫做提公因式法.
(1)公因式的构成:
①系数:各项系数的最大公约数;
②字母:各项都含有的相同字母及最低次幂.
4y xy - 3
2x x + 6x2+12x 3+4x )1()1(-+-a n a m )a 1()1(-+-n a m 2、平方差式多项式的分解------------- a 2-b 2=(a+b )(a-b)
12-x 2294b a - 22)(16z y x +-
22)2()2(b a b a --+
3、完全平方式多项式的分解-------------222)(2b a b ab a +=++ 222)(2b a b ab a -=+-
442+-m m 2269y xy x ++ 924162++x x 36)(12)(2++-+b a b a
4、综合性多项式的分解------------1提2看3分解4检查
注意:综合性的多项式分解有公因式必学先提取公因式,然后再看是不是平方差式或者完全平方式。

而且一定要把各因式分解到不能再分为止!不能分解的不要死搬硬套.
282-x 161442+-m m 14-x n mn n m 271832
-+-
4、十字相乘法
一般地,用十字交叉线表示
x2+7x+6 (2)、x2-5x-6 (3)、3x2-10x-8。

相关文档
最新文档