因式分解知识点归纳资料讲解

合集下载

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。

因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。

注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。

3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。

系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。

例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。

因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

因式分解

因式分解

因式分解知识点一:因式分解的概念及注意事项因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;知识点二:因式分解基本方法方法一·提公因式法1、提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的整式.2、提公因式法分解因式,关键在于观察、发现多项式的公因式.3、找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4、注意事项:多项式的公因式应是各项所共有的最高因式,公因式的系数原则上是不定的。

但对整系数的多项式,其公因式的系数一般取所有系数的最大公约数;对分数系数的多项式,其公因式的系数一般取所有分母的最小公倍数分之一;公因式的字母取各项共有的字母,各相同字母的指数取其次数最低的。

公因式可以是单项式也可以是多项式,有时要进行适当变形才能出现公因式。

题型展示:1、将下列各式分解因式: (1)y)2b(x -y)3a(x ++;(2)32)(18)(12n m n m -+-;(3)3)2(6)2(3x y y x ---;(4)22222)(83)(41p q ab q p b a ---; 2、下列分解因式结果正确的是( )A.)6)(2()2()2(6x x x x x +-=-+-B.)2(2223x x x x x x +=++C.)()()(2b a a b a ab b a a -=-+- D.)2(3632+=+x xn xn n x提高练习1、如果b -a =-6,ab =7,那么22ab b a -的值是( )A.42B.-42C.13D.-132、若4x 3-6x 2=2x 2(2x +k ),则k =________.3、2(a -b )3-4(b -a )2=2(a -b )2(________).4、36×29-12×33=________.5、分解因式(1)2)())((y x y x y x +--+(2))(4)(82x y b y x a ---6.计算与求值29×20.03+72×20.03+13×20.03-14×20.03.7、.先化简,再求值a (8-a )+b (a -8)-c (8-a ),其中a =1,b =21,c =21.8、已知812=-y x ,2=xy ,求43342y x y x -的值.方法二·公式法【知识精读】把乘法公式反过来,就可以得到因式分解的公式。

因式分解知识点总结

因式分解知识点总结

因式分解知识点总结一、因式分解的概念。

1. 定义。

- 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

例如:x^2-4=(x + 2)(x - 2),就是将多项式x^2-4因式分解为两个整式(x + 2)与(x - 2)的积的形式。

2. 与整式乘法的关系。

- 因式分解与整式乘法是互逆的恒等变形。

整式乘法是把几个整式相乘化为一个多项式,如(a + b)(a - b)=a^2-b^2;而因式分解是把一个多项式化为几个整式相乘,如a^2-b^2=(a + b)(a - b)。

二、因式分解的方法。

1. 提公因式法。

- 公因式的确定。

- 系数:取各项系数的最大公因数。

例如,对于多项式6x^2+9x,系数6和9的最大公因数是3。

- 字母:取各项相同的字母。

在6x^2+9x中,相同的字母是x。

- 字母的指数:取相同字母的最低次幂。

对于6x^2+9x,x的最低次幂是1。

所以公因式是3x。

- 提公因式的步骤。

- 找出公因式。

- 用多项式除以公因式,得到另一个因式。

例如,6x^2+9x = 3x(2x+3)。

2. 公式法。

- 平方差公式。

- 公式:a^2-b^2=(a + b)(a - b)。

- 应用条件:多项式必须是两项式,并且这两项都能写成平方的形式,符号相反。

例如,9x^2-16y^2=(3x + 4y)(3x - 4y),这里9x^2=(3x)^2,16y^2=(4y)^2。

- 完全平方公式。

- 公式:a^2+2ab + b^2=(a + b)^2,a^2-2ab + b^2=(a - b)^2。

- 应用条件:多项式是三项式,其中有两项能写成平方的形式,且这两项的符号相同,另一项是这两个数乘积的2倍。

例如,x^2+6x + 9=(x + 3)^2,这里x^2=x^2,9 = 3^2,6x=2× x×3。

3. 十字相乘法(拓展内容,人教版教材部分有涉及)- 对于二次三项式ax^2+bx + c(a≠0),如果能找到两个数m和n,使得m + n=b 且mn = ac,那么ax^2+bx + c=(x + m)(x + n)。

【知识】因式分解知识点归纳

【知识】因式分解知识点归纳

【关键字】知识因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就能够用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就能够得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就能够了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就能够用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

初中数学专题复习资料-----多项式的因式分解

初中数学专题复习资料-----多项式的因式分解
分解因式要求结果到不能再分解为止。 【例题 7】、把下列各式因式分解:
1、(08 年沈阳)
2、(08 年浙江绍兴)
3、(08 年山东)
【练习】
一、填空题:
1、分解因式 2x2 4x
; 4x2 9
; x2 4x 4

2、分解因式; a(x y)2 b( y x)2 _______________ ;
完 公 因 式 后 , 另 一 因 式 的 项 数 与 原 多 项 式 的 项 数 相 同 ); ③、将多项式写成等于两个因式相乘(公因式与余式的积)的形势。
第1页共4页
【例题 3】、把下列各式因式分解:
1、 14abc 7ab 49ab2c ;
2、 xx y yy x; 3、 mx y2 x y
①确定公因式的系数:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;
②确定公因式的字母:公因式的字母取各项都含有的相同的字母(相同的多项式);
③ 确 定 公 因 式 的 指 数 :各 字 母 的 指 数 取 各 项 中 字 母 次 数 最 低 的( 多 项 式 的 次 数 取 最 低 的 )。如
(1) x2 7x 6 ;
(2) x2 13x 36 ;
(3) x2 5x 24 ;
(4) x2 2x 15 ;
(5) x2 xy 6 y2 ;
(6) (x2 x)2 8(x2 x) 12
【例题 6】、把下列各式因式分解:
(1) 12x2 5x 2
(2) 8a 4a2 4;
初中数学专题复习资料-----多项式的因式分解
【知识点归纳 1】 一、因式分解的定义:
把 一 个 多 项 式 化 为 几 个 整 式 的 积 的 形 式 ,这 种 变 形 叫 做 把 这 个 多 项 式 因 式 分 解 ,也 叫 作 分 解 因 式。

因式分解知识点总结

因式分解知识点总结

第一讲因式分解知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

即:多项式f几个整式的积例:-ax+-bx=-x(a-∖-b)3 3 3因式分解,应注意以下几点。

1.因式分解的对象是多项式;2.因式分解的结果一定是整式乘积的形式;3.分解因式,必须进行到每一个因式都不能再分解为止;4.公式中的字母可以表示单项式,也可以表示多项式;5.结果如有相同因式,应写成幕的形式;6.题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

'系数一一取各项系数的最大公约数<字母——取各项都含有的字母指数一一取相同字母的最低次塞例:↑2a3b3c-Sa3b2c3+βa4b2c2的公因式是解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分/匕3g。

302。

3,。

力力:都含有因式/∕c,故多项式的公因式是2a3b2c.②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

例1:把12/b78。

从一2447√分解因式.解析:本题的各项系数的最大公约数是6,相同字母的最低次耗是ab,故公因式为6abo 解:↑2a2b-↑Sab2-24aV=6ab(2a-3b-4a2b2)例2:把多项式3。

-4)+x(4-R)分解因式解析:由于4-x=-(x-4),多项式3(x-4)+M4-x)可以变形为3(x-4)-X(X-4),我们可以发现多项式各项都含有公因式(工-4),所以我们可以提取公因式(x-4)后,再将多项式写成积的形式.解:3(x-4)+x(4-x)=3(x-4)-x(x-4)=(3-x)(x-4)例3:把多项式-f+2为分解因式解:-X2+2x=-(x2-2x)=-x(x-2)(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

数学因式分解知识点总结

数学因式分解知识点总结

数学因式分解知识点总结一、定义:二、常用的数学因式分解方法:1.分解质因数法:将待分解的数分解为素数的乘积。

2.公式法:利用特定的公式,将数进行因式分解。

3.提公因式法:将多项式中的公因式提出来。

4.柯西分解法:将多项式按照柯西和将一个复数分解为实部和虚部的方式进行分解。

5.平方差公式法:根据平方差公式将平方差形式的多项式进行分解。

6.分解平方法:将平方形式的多项式进行分解。

三、分解质因数法:1.从最小的素数2开始,不断地用这个素数去试除待分解的数。

如果是约数,则继续试除,直到不能整除为止。

2.如果一个数不能被2整除,就试试下一个大于2的素数,一直到最接近待分解数的平方根为止。

3.如果一个数不能再被其他比它小的素数整除,那么它本身就是一个素数。

以分解36为例:36÷2=1818÷2=99÷3=33÷3=1最后得到36=2×2×3×3=2^2×3^2四、公式法:例如,将二次多项式x^2-5x+6进行因式分解。

1. 我们可以使用二次方程的求根公式,即 x = (-b ± √(b^2 - 4ac)) / 2a,对其进行因式分解。

2.根据二次方程求根公式,x^2-5x+6=(x-2)(x-3)。

3.因此,x^2-5x+6=(x-2)(x-3)。

五、提公因式法:例如,将多项式2x^2+3x进行因式分解。

1.首先找到多项式中的公因式,即2x是该多项式中的公因式。

2.提取公因式,得到2x(x+3)。

3.因此,2x^2+3x=2x(x+3)。

六、柯西分解法:例如,将多项式x^2+2x+1进行因式分解。

1.我们可以使用柯西分解法,将该多项式分解为两个复数的乘积,即(x+1)^22.因此,x^2+2x+1=(x+1)^2七、平方差公式法:例如,将多项式x^2-1进行因式分解。

1.根据平方差公式,即a^2-b^2=(a+b)(a-b),我们可以将该多项式分解为(x+1)(x-1)。

专题复习:因式分解

专题复习:因式分解

专题因式分解☞解读考点☞2年中考 【2015年题组】1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( ) A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x - C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D .考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( )A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=-D .224(4)(4)x y x y x y -=+- 【答案】B . 【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 5.(2015临沂)多项式2mxm -与多项式221x x -+的公因式是()A .1x -B .1x +C .21x - D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B . 考点:因式分解的应用.7.(2015烟台)下列等式不一定成立的是( )A 0)a a b b b =≠B .3521a a a -•= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -=【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂.8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11xx xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A . 【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x x x --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法.9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用. 11.(2015绵阳)在实数范围内因式分解:23x y y -= .【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y .考点:实数范围内分解因式. 12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -.考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= .【答案】2015. 【解析】试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用. 16.(2015东营)分解因式:2412()9()x y x y +-+-= .【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n ++=-+对x 恒成立,则n= .【答案】4. 【解析】试题分析:∵2(3)()x x m x x n ++=-+,∴22(3)3x x m x n x n ++=+--,故31n -=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除? 并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A 、x2+2x+1=x (x+2)+1,不是因式分解,故错误;B 、(x2﹣4)x=x3﹣4x ,不是因式分解,故错误;C 、ax+bx=(a+b )x ,是因式分解,故正确;D 、m2﹣2mn+n2=(m ﹣n )2,故错误.故选C . 考点:1.因式分解-运用公式法;2.因式分解-提公因式法. 2.(2014年海南中考)下列式子从左到右变形是因式分解的是( ) A .()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+C .()()2a 3a 7a 4a 21-+=+-D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= . 【答案】()()x x 2x 2+-. 【解析】 试题分析:()()()32x 4x x x 4x x 2x 2-=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x (x ﹣3)﹣9= 【答案】(x ﹣3)(4x+3). 【解析】试题分析: x2+3x (x ﹣3)﹣9=x2﹣9+3x (x ﹣3)=(x ﹣3)(x+3)+3x (x ﹣3)=(x ﹣3)(x+3+3x ) =(x ﹣3)(4x+3). 考点:因式分解.5.(2014年徐州中考)若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2. 【解析】试题分析:∵ab=2,a ﹣b=﹣1,∴a2b ﹣ab2=ab (a ﹣b )=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x -=__________________.【答案】x (y+5)(y ﹣5). 【解析】试题分析:原式=x (y2﹣25)=x (y+5)(y ﹣5). 考点:提公因式法与公式法的综合运用. 7.(2014年绍兴中考)分解因式:2aa - = .【答案】()a a 1-.【解析】 试题分析:()2a a a a 1-=-.考点:提公因式法因式分解. 8.(2014年台州中考)因式分解3a 4a -的结果是 .【答案】()()a a 2a 2+-.考点:提公因式法和应用公式法因式分解. 9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念. 归纳 2:提取公因式法分解因式 基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂. 提取公因式法:ma +mb -mc=m (a+b-c ) 注意问题归纳: 提公因式要注意系数; 要注意查找相同字母,要提净.【例2】若ab=2,a ﹣b=﹣1,则代数式a2b ﹣ab2的值等于 . 【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a 3ab += .【答案】()a a 3+.【解析】()2a 3ab a a 3+=+.考点:因式分解-提公因式法.归纳 3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳 4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50 【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4) B.(x+2)(x-2)C.2 (x+2)(x-2) D.2(x+4)(x-4)【答案】C.【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C.考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056 D.1.1111111×1017【答案】D.考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数. 4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= . 【答案】2(x ﹣8)(x+2). 【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x ﹣8)(x+2).故答案为:2(x ﹣8)(x+2). 考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ). 【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用. 6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+. 【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+.考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a = .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2. 【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2.考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= . 【答案】ab (a-b )2. 【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2.考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a(x+y)(x-y).【解析】试题分析:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a (x+y)(x-y).考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a(2a-3)2.【解析】试题分析:4a3-12a2+9a=a(4a2-12a+9)=a(2a-3)2.故答案为:a (2a-3)2.考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是.【答案】3x(x-y)2.考点:提公因式法和公式法的综合运用.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.考点:提公因式法与公式法的综合运用.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。

因式分解知识总结

因式分解知识总结

因式分解一、知识梳理1、因式分解的概念把一个多项式化为几个整式的积的形式,叫做把多项式因式分解. 注:因式分解是“和差”化“积”,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互为相反的变形过程,因些常用整式乘法来检验因式分解.2、提取公因式法把ma+mb+mc,分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+除以m所得的商,像这种分解因式的方法叫做提公因式法.用式子表求如下:ma+mb+mc=m(a+b+c)注:i 多项式各项都含有的相同因式,叫做这个多项式各项的公因式. ii 公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂.3、运用公式法把乘法公式反过用,可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法.ⅰ)平方差公式注意:①条件:两个二次幂的差的形式;②平方差公式中的a、b可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成的形式,并弄清a、b分别表示什么.ⅱ)完全平方公式注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成公式原型,弄清a、b分别表示的量.补充:常见的两个二项式幂的变号规律:4、十字相乘法借助十字叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法.对于二次项系数为l的二次三项式,寻找满足的ab、,则有5、分组分解法定义:分组分解法,适用于四项以上的多项式,例如没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式,即可达到分解因式的目的。

例如:这种利用分组来分解因式的方法叫分组分解法.原则:用分组分解法把多项式分解因式,关键是分组后能出现公因式或可运用公式.6、求根公式法:如果有两个根,那么二、典型例题及针对练习考点1 因式分解的概念例1、在下列各式中,从左到右的变形是不是因式分解?注:左右两边的代数式必须是恒等,结果应是整式乘积,而不能是分式或者是n个整式的积与某项的和差形式..考点2 提取公因式法2注:提取公因式的关键是从整体观察,准确找出公因式,并注意如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正.提出公因式后得到的另一个因式必须按降幂排列.[补例练习]1。

因式分解法知识点

因式分解法知识点

因式分解法知识点一、知识概述《因式分解法》①基本定义:因式分解法呢,就是把一个多项式化成几个整式乘积的形式。

简单说,就像是把一个大的“数学组合体”拆成几个小“零件”相乘的样子。

比如说多项式$x^2 - 4$,把它变成$(x + 2)(x - 2)$,这就是因式分解。

②重要程度:在数学这个学科里,它可太重要了。

在解方程里经常要用,如果不会因式分解,很多方程都解不出来。

而且在分式运算、化简代数式等方面也是超级重要的。

就好比在一个建筑工程里,它是基础中的基础,要是不会,后面一系列高楼大厦(复杂的数学问题)都盖不起来。

③前置知识:那得先掌握整式乘法的知识,像单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这些。

还得知道基本的代数式运算规则,加减乘除啥的。

比如说不知道乘法规则,怎么能知道怎么把一个多项式拆成乘法的形式呢?④应用价值:实际应用啊,就比如在物理计算里,如果要化简一个关于力或者速度的表达式,可能就用到因式分解把式子变简单去计算。

再比如安排人员分组计算的时候,若关系用式子表示出来,因式分解能帮助快速算出分组个数和每组人数的关系。

二、知识体系①知识图谱:在数学这个大乐园里,因式分解算是代数部分的一个重要“景点”。

它跟很多地方都有联系,像是解方程的桥上、分式化简的城堡旁。

②关联知识:跟整式、方程、分式、代数式求值都有关系啊。

就像在一个大家庭里,它和其他成员相互帮助,整式为它提供原材料,方程依靠它来破解答案,分式需要它梳理关系,代数式求值借助它来变身简化。

③重难点分析:- 掌握难度:说实话,这个对于初学者有点难。

因为有时候要观察多项式的特点,不是一眼就能看出来怎么分解的。

- 关键点:关键就在于对多项式的形式要特别敏感。

看到多项式得能想到它可能用哪种分解方法,比如看到平方差形式,就知道可以用平方差公式。

④考点分析:- 在考试中的重要性:考试里经常出现啊,特别是在代数部分的考试中。

不管是选择题、填空题还是解答题,都有可能露面。

因式分解专题复习及讲解(很详细)

因式分解专题复习及讲解(很详细)

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

(完整版)因式分解知识点归纳

(完整版)因式分解知识点归纳

n m n a a +=同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。

因式分解知识要点

因式分解知识要点

因式分解知识要点因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。

1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。

本定义可从以下几方面进行理解:⑴、因式分解是一种恒等变形,如22()()-=+-,无论字母a和b取何值,代数式22a b a b a ba b-与()()+-的值总是相等的;a b a b⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式;⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式;⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。

2、因式分解的方法⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。

如:()++=++。

ma mb mc m a b c⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。

公式法主要有以下两种:①平方差公式:22()()-=+-;a b a b a b②完全平方公式:222±+=±。

2()a ab b a b⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称为分组分解法。

运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。

(完整版)因式分解知识点归纳总结

(完整版)因式分解知识点归纳总结

因式分解知识点归纳总结概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

分解因式与整式乘法互为逆变形。

因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如: -3x^2+x=-x(3x-1))分解因式技巧1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

注意:把 2a^2+1/2 变成 2(a^2+1/4)不叫提公因式提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

例如: -am+bm+cm=a(x-y)+b(y-x)=⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。

因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。

注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。

3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。

系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。

例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。

因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项。

因式分解知识点总结

因式分解知识点总结

一、 知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

即:多项式→几个整式的积例:111()333ax bx x a b +=+因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

⎧⎪⎨⎪⎩系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:333234221286a b c a b c a b c -+的公因式是 . 解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分33323422,,a b c a b c a b c 都含有因式32a b c ,故多项式的公因式是232a b c .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

例1:把2233121824a b ab a b --分解因式.解析:本题的各项系数的最大公约数是6,相同字母的最低次幂是ab ,故公因式为6ab 。

解:2233121824a b ab a b -- 226(234)ab a b a b =--例2:把多项式3(4)(4)x x x -+-分解因式解析:由于4(4)x x -=--,多项式3(4)(4)x x x -+-可以变形为3(4)(4)x x x ---,我们可以发现多项式各项都含有公因式(4x -),所以我们可以提取公因式(4x -)后,再将多项式写成积的形式.解:3(4)(4)x x x -+-=3(4)(4)x x x ---=(3)(4)x x --例3:把多项式22x x -+分解因式 解:22x x -+=2(2)(2)x x x x --=-- (2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。

因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。

注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。

3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。

系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。

例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。

因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

分解因式

分解因式

一、因式分解知识点1、把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

分解因式要进行到每个因式都不能再分解为止. 分解因式的常用方法有:(1)提公因式法 如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.(2)运用公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

平方差公式:a 2-b 2=(a+b)(a-b); 完全平方公式:a 2±2ab +b 2=(a±b)2(a+b+c )2=a 2 +b 2 +c 2+2ab+2ac+2bc立方和公式:a 3+ b 3=(a+b)( a 2-ab+b 2); 立方差公式:a 3-b 3=(a-b)(a 2+ab+b 2); 完全立方公式:a 3±3a 2b +3a b 2±b 3=(a±b)3. 公式:a 3+b 3+c 3-3abc=(a+b+c)(a 2+ b 2+ c 2-ab-bc-ca)(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab=q ,a+b=p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,分组后,有公因式或用公式。

对于四项式一般采用两项、两项分组法或者三项,一项分组,其中三项的一组中应使其成为完全平方公式,而剩下的一项必须能写成代数式的平方,且又与完全平方公式符号相反,则得到(a ±b)2- c 2的形式,再用平方差公式分解。

五项式一般采用三项、两项分组;六项式采用三、三分组,或三、二、一分组,或二、二、二分组。

因式分解一、 提公因式法:1、y x y x y x 234161616-+-2、()()b a b a a +++23、()()y x y x a +-+24、()()a b b b a a ---5、()()33113a c a b ---6、()()332812m n mn n m n m -+-二、 平方差公式:1、1422-b a2、2204.001.0n m -3、n nb a 2294- 4、()22z y x -+5、()22b a a --6、()224m n m -+7、 222a - 8、2732-m9、224520bxy bx a -10、x x -3三、 完全平方公式:1、 2411m m +-2、229124b ab a +-3、22492416n n m m ++4、2244y xy x -+-5、2214424b ab a +-6、14422++ab b a7、361236+-x x 8、()()25102+---b a b a9、2234484b a b a a +-10、2222)(4)(4)(y x y x y x ++---四、 十字相乘法:1、1072+-x x 2、122--x x3、62-+x x 4、2082--y y5、15824+-m m 6、30722--xy y x7、 22283b ab a -+8、()()342++-+y x y x9、201552--a a 10、()()302----a b b a五、 分组分解法:1、an am an am 3322+++2、124323+++x x x3、bx b ax a 3535+--4、m mn n m 32232--+5、abc c a b a a +++2236、22n m an am +--7、x 2-y 2-y+x 8、2222c b ab a -++9、 144422++-a b a 10、16922-+-y y x六.利用简便方法计算 1、2022+19822、32003+6×32002-320043、0.7566.24366.3⨯-⨯4、200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-5、2005×20042004- 2004×200520056、7、2221.12.21.101.10+⨯-8、9、10、 )1011)(911()311)(211(2232----七、求值1、若c bx axx x ++=+-2)5)(32(则_______,___,===c b a2、若x 2+(k +3)x +9是完全平方式, 则k =.3、若442-+x x 的值为0,则51232-+x x 的值是4、已知312=-y x ,2=xy ,求43342y x y x -的值.5、若051294422=+-+-y y x x 求y x 326+的值 6、两个连续的奇数的平方差总可以被 k 整除,求k7、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值8、使218x ax ++能分解因式整数a 有 个9、k x x x +--5223中,有一个因式为()2-x ,则k 值10、若n m y x -=))()((4222y x y x y x +-+, 则m=_______,n=_________八、与几何的应用1、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,△ABC 的形状是2.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解知识点归纳
考点四、十字相乘法
(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式
a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q
++分解成
()()()b x a x ab x b a x q px x ++=+++=++22 例题讲解1、分解因式:652++x x
分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即
2+3=5
1 2
解:652++x x =32)32(2⨯+++x x 1 3
=)3)(2(++x x 1×2+1×3=5
用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例题讲解2、分解因式:672+-x x
解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1
=)6)(1(--x x 1 -6
(-1)+(-6)= -7
练习
分解因式(1)24142++x x (2)36152+-a a (3)542-+x x
(4)22-+x x (5)1522--y y (6)24102--x x
2、二次项系数不为1的二次三项式——c bx ax ++2
条件:(1)21a a a = 1a 1c
(2)21c c c = 2a 2c
(3)1221c a c a b += 1221c a c a b +=
分解结果:c bx ax ++2=))((2211c x a c x a ++
例题讲解1、分解因式:101132+-x x
分析: 1 -2
3 -5
(-6)+(-5)= -11
解:101132+-x x =)53)(2(--x x
分解因式:(1)6752-+x x (2)2732+-x x。

相关文档
最新文档