平面几何经典难题及解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面几何

经典难题(一)

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .

2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150

. 求证:△PBC 是正三角形.

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1

的中点.

求证:四边形A 2B 2C 2D 2是正方形.(初二)

4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线

交MN 于E 、F .

求证:∠DEN =∠F .

A P C D

B A F

G C

E

B

O D D 2 C 2

B 2 A 2

D 1 C 1 B 1

C B D

A

A 1 B

F

经典难题(二)

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且

(1)求证:AH =2OM ; (2)若∠BAC =600

,求证:AH =AO .(初二)

2、设MN 是圆O 外一直线,

过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)

3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:

设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)

4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,

点P 是EF 的中点.

求证:点P 到边AB 的距离等于AB 的一半.

经典难题(三)

1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .

求证:CE =CF .(初二)

2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .

求证:AE =AF .(初二)

3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .

求证:PA =PF .(初二)

4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求

证:AB =DC ,BC =AD .(初三)

经典难题(四)

1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.

求:∠APB 的度数.(初二)

2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)

3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .

4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与

CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)

经典难题(五)

1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:

≤L<2.

2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.

3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

4、如图,△ABC 中,∠ABC =∠ACB =800

,D 、E 分别是AB 、AC

=200

,求∠BED 的度数.

经典难题解答:

经典难题(一)

1.如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得

EO GF =GO GH =CO

CD

,又CO=EO ,所以CD=GF 得证。

2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得

△DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150

所以∠DCP=300

,从而得出△PBC 是正三角形

3.如下图连接BC

1和AB

1

分别找其中点F,E.连接C

2

F与A

2

E并延长相交于Q点,

连接EB

2并延长交C

2

Q于H点,连接FB

2

并延长交A

2

Q于G点,

由A

2E=1

2

A

1

B

1

=1

2

B

1

C

1

= FB

2

,EB

2

=1

2

AB=1

2

BC=F C1 ,又∠GFQ+∠Q=900和

∠GE B2+∠Q=900,所以∠GE B2=∠GFQ又∠B2FC2=∠A2EB2,

可得△B2FC2≌△A2EB2,所以A2B2=B2C2,

又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,

从而可得∠A2B2 C2=900 ,

同理可得其他边垂直且相等,

从而得出四边形A2B2C2D2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN

和∠QMN=∠QNM,从而得出∠DEN=∠F。

相关文档
最新文档