高考数学选修-不等式

合集下载

上海高考数学复习专题-不等式

上海高考数学复习专题-不等式

【注】本例中
“a>0”是先决条件,否则需要讨论
x1,x2 与对称轴
x=−
$
的大小关系,非常
复杂。(如图 d)
图a
图b
图c
图d
2)分离参数法:将不等式变换为 f(x) ≥a 或 f(x) ≤a 的形式。 f(x) ≥m,x∈R 恒成立(如图 e),则 8! "3R ≥ 2 f(x) ≤m,x∈R 恒成立,(如图 f)则 8! "3 I ≤ 2 f(x) ≥m,在区间[x1,x2]恒成立,(如图 g),则 f! '" ≥ m

当且仅当 ' = $ = ⋯ = 时,取等号。
即:n 个正数的算术平均值,不小于它的几何平均值。当且仅当它们都相等时取等号。
【注】算术平均值 = .# /#⋯ #
几何平均值 = 0 ' ∙ $ ∙ ⋯ ∙
1.3 几个常用的重要结论
ab > 0 ⇒ + ≥ 2,当且仅当 a=b 时,取等号。
>0 2 = 常数 > 0,
一个含参数的等式(或参数)时,不得扩大或缩小原变量的范围。 如:若 a>b ⇒ ac>bc,则有 c>0
H
如:若
>
⇒ bc>ad,则有 ac>0
2.2 求解一元二次不等式
【注】1)对于a $ + + > 0!或 < 0",必须讨论:(1)a=0 ,(2)a≠0 2)一元二次不等式的解集,常与一元二次方程 a $ + + = 0 (a≠0)的根联系在一起。
"> 0
n!I"
m!I" n!I"

0

高考数学知识点:不等式

高考数学知识点:不等式

高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。

不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。

下面将对高考数学中常见的不等式知识点进行详细介绍。

一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。

要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。

2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。

3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。

二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。

要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。

2. 计算抛物线的顶点坐标,即x₀=-b/2a。

3. 根据a的正负性确定抛物线的上升段或下降段。

4. 根据a的正负性确定不等式的解集。

三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。

要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。

2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。

人教a版高考数学(理)一轮课件:选修4-5不等式选讲

人教a版高考数学(理)一轮课件:选修4-5不等式选讲

考纲解读
通过近几年的高考题可以看出, 本 部分内容的考查主要是在绝对值 不等式的几何意义和解绝对值不 等式两个方面,考查难度一般,试题 题型较为单一 .对于绝对值不等式 的证明一般会结合函数、导数等 内容考查,难度较大,属中高档题.
1.绝对值三角不等式 (1)定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. 其中不等式|a+b|≤|a|+|b|又称为三角不等式. (2)在|a+b|≤|a|+|b|中用向量 a,b 分别替换实数 a,b,则|a+b|<|a|+|b|的几 何意义是三角形的两边之和大于第三边(a,b 不共线). (3)定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0 时,等号成立.
(������ + 1)2 ≥ (x + 2)2 , ⇔ ������ + 2 ≠ 0, (������ + 1 + ������ + 2)(������ + 1-������-2) ≥ 0, 即 ������ ≠ -2, 解得 x≤- 且 x≠-2.
3 2
3 .设 a=2- 5,b= 5-2,c=5-2 5,则 a ,b ,c 之间的大小关系是 【答案】 c>b>a 【解析】分别由 a<0,b>0,c>0,再由 b 2-c2<0 得 b<c 判断.
5 .设 m 等于|a| ,|b| 和 1 中最大的一个,当|x|>m 时,求证: +
3 .|ax+b| ≤c,|ax+b| ≥c(c>0)型不等式的解法 (1)|ax+b| ≤c(c>0)型不等式的解法是:先化为不等式-c≤ax+b ≤c,再利用 不等式的性质求出原不等式的解集. (2)|ax+b| ≥c(c>0)的解法是:先化为 ax+b ≥c 或 ax+b ≤-c,再进一步利用不 等式的性质求出原不等式的解集.

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。

高考数学一轮复习选修4_5不等式选讲课件文新人教版

高考数学一轮复习选修4_5不等式选讲课件文新人教版
选修4—5
不等式选讲
-2知识梳理
双基自测
1
2
3
4
1.绝对值三角不等式
(1)定理1:若a,b是实数,则|a+b|≤
时,等号成立;
(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;
(3)定理2:若a,b,c是实数,则|a-c|≤
(a-b)(b-c)≥0
时,等号成立.
5
|a|+|b|
,当且仅当_______
-22考点1
考点2
考点3
考点4
考点5
对点训练2设函数f(x)=|x+1|-m|x-2|.
(1)若m=1,求函数f(x)的值域;
(2)若m=-1,求不等式f(x)>3x的解集.
解:(1)当m=1时,f(x)=|x+1|-|x-2|.
∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,
∴-3≤|x+1|-|x-2|≤3,即函数f(x)的值域为[-3,3].
(3)柯西不等式的向量情势:设α,β是两个向量,则|α||β|≥|α·β|,当且
仅当β是零向量或存在实数k,使α=kβ时,等号成立.
-6知识梳理
双基自测
1
2
3
4
5
5.不等式证明的方法
证明不等式常用的方法有比较法、综合法、分析法等.
-7知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“ ”,错误的打“×”.
所以|x|+|y|+|x-1|+|y-1|=2,即
|| + |-1| = 1,
|| + |-1| = 1.

高考数学不等式解题方法技巧

高考数学不等式解题方法技巧

不等式应试技巧总结1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc d>); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n na b >>(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。

【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22;③22,0b ab a b a >><<则若;④b a b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11,a b a b>>若,则0,0a b ><。

其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。

高考数学选修4-5复习《不等关系与基本不等式》

高考数学选修4-5复习《不等关系与基本不等式》

D.(12)a<(12)b
【解析】 结合不等式性质和函数的性质(单调性)来比较 大小,或用特殊值法判断.
a>b 并不能保证 a,b 均为正数,从而不能保证 A,B 成 立.又 a>b⇒a-b>0,但不能保证 a-b>1,从而不能保证 C 成立.
显然只有 D 成立.事实上,指数函数 y=(12)x 是减函数, 所以 a>b⇔(12)a<(12)b 成立. 【答案】 D
依题意bbaan+n 1=q3q+3+n-nd1-d1-1q=641d=26d, ③
由②知,q 为正有理数,
∴d 为 6 的因子 1,2,3,6 中之一,
因此由②③知 d=2,q=8,
故 an=3+2(n-1)=2n+1,bn=8n-1.
≥100×2
2n-1·2n4-1=400(n≥1),
当且仅当 2n-1=2n4-1,即 n=2 时,ymin=400(万元),
由 5 000-400=4 600(万元), 所以第 2 年该县从这两个企业获得利润最少,还得另外 筹集 4 600 万元才能解决温饱问题.
(2)到 2017 年,即第 10 年,该县从这两个企业获利润:y =100×210-1+400×(12)9
因 ab=10,故 lg a+lg b=1,
只要证明lg
1 alg
b≥4(*),
由 a>1,b>1,故 lg a>0,lg b>0,
所以
0<lg
alg
b≤(lg
a+lg 2
b)2=(12)2=14.
即(*)式成立.
原不等式 loga c+logb c≥4lg c 得证.
本题证明把分析法、综合法融于一体,不仅证明不等式 经常遇到,在解决其他数学问题时也常常需要这样思考.

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结不等式是数学中非常重要的概念之一,它在数学的各个领域和实际问题中有着广泛的应用。

在高考数学中,不等式也是一个考查频率较高的知识点。

下面是对不等式的基本性质的总结:1.不等关系性质不等关系具有自反性、对称性、传递性。

即对任意实数a,b,有:自反性:a≥a,a≤a对称性:如果a≥b,则b≤a;如果a≤b,则b≥a传递性:如果a≥b,b≥c,则a≥c;如果a≤b,b≤c,则a≤c2.加减性质对于不等式a<b和任意实数c,有:a+c<b+ca-c<b-c3.乘除性质(1)正数乘除:对于不等式a<b,如果c是正数,则有:正数乘性:ac < bc正数除性:如果c是正数且c≠0,则有:a/c<b/c(2)负数乘除:对于不等式a<b,如果c是负数,则有:负数乘性:ac > bc负数除性:如果c是负数且c≠0,则有:a/c>b/c(3)双边不等式乘除:对于不等式a<b和任意非零实数c,有:a/c<b/c(当c>0时)a/c>b/c(当c<0时)4.基本不等式基本不等式是指在特定条件下,可以将不等式简化为更为简单形式的不等式。

(1)三角形不等式:对于三角形的三边长a,b,c,有:a+b>ca+c>bb+c>a(2) 平均值不等式:对于任意n个非负实数a1,a2,...,an,有:平均值不等式:(a1+a2+...+an)/n ≥ √(a1a2...an)5.同向不等式同向不等式的性质和解法与等式类似。

对于同向不等式,如果对不等号两边同时乘除以同一个正数,或者对不等号两边同时乘除以同一个负数,则不等号方向不变。

例如,对于不等式2x+1<3x-2,可以同时减去2x,得到1<-2x-2,再同时减去1,得到0<-2x-3,再同时乘以(-1/2),得到0>(2x+3)/2,最后反转不等号得到(2x+3)/2<0。

高考数学复习考点题型专题讲解31 不等式

高考数学复习考点题型专题讲解31 不等式

高考数学复习考点题型专题讲解专题31 不等式高考定位 1.对不等式的性质及不等式的解法的考查一般不单独命题,常与集合、函数图象与性质相结合,也常渗透在三角函数、数列、解析几何、导数等题目中;2.基本不等式主要渗透在其他知识中求最值;3.题型多以选择题、填空题的形式呈现,中等难度.1.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}答案 B解析法一因为A={x|(x-2)(x+1)>0}={x|x<-1或x>2},A={x|-1≤x≤2},故选B.所以∁R法二因为A={x|x2-x-2>0},A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.所以∁R2.(2019·全国Ⅱ卷)若a>b,则( )A.ln(a-b)>0B.3a<3bC.a3-b3>0D.|a|>|b|答案 C解析由函数y=ln x的图像(图略)知,当0<a-b<1时,ln(a-b)<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.3.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则() A.x +y ≤1 B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1答案 BC解析 因为ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ),由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤3⎝ ⎛⎭⎪⎫x +y 22,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为⎝⎛⎭⎪⎫x -y 22+34y 2=1, 设x -y 2=cos θ,32y =sin θ, 所以x =cos θ+33sin θ,y =233sin θ, 因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13=43+23sin ⎝⎛⎭⎪⎫2θ-π6∈⎣⎢⎡⎦⎥⎤23,2, 所以当x =33,y =-33时满足等式, 但是x 2+y 2≥1不成立,所以D 错误.4.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 法一 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2, 所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号. 所以x 2+y 2的最小值为45. 法二 设x 2+y 2=t >0,则x 2=t -y 2.因为5x 2y 2+y 4=1,所以5(t-y2)y2+y4=1,所以4y4-5ty2+1=0. 由Δ=25t2-16≥0,解得t≥45⎝⎛⎭⎪⎫t≤-45舍去.故x2+y2的最小值为4 5 .热点一不等式的性质及应用不等式的常用性质(1)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(2)a>b>0,c>d>0⇒ac>bd>0.(3)a>b>0⇒a n>b n,na>nb(n∈N,n≥2).(4)a>b,ab>0⇒1a<1b.例1 (1)(多选)(2022·苏州模拟)若a>b>0>c,则( )A.ca>cbB.b-ca-c>baC.a c>b cD.a-c>2-bc(2)(2022·长沙模拟)已知a,b,c满足a>b>c,且ac>0,则下列选项中一定能成立的是( )A.ab>acB.c(b-a)>0C.ab(a-c)>0D.cb2>ca2答案(1)ABD (2)C解析(1)由于a>b>0>c,对于A:ca-cb=c⎝⎛⎭⎪⎫1a-1b=c⎝⎛⎭⎪⎫b-aab>0,故ca-cb>0,∴ca>cb,故A正确;对于B:由于a>b>0,所以b-ca-c>ba,故B正确;对于C:当a>b>1时,a c<b c,故C错误;对于D:由于a>b>0>c,所以a-c>b-c>2b(-c)=2-bc,故D正确. (2)取a=-1,b=-2,c=-3,则ab=2<ac=3,cb2=-12<ca2=-3,排除A,D;取a=3,b=2,c=1,则c(b-a)=-1<0,排除B;因为a>b>c,且ac>0,所以a,b,c同号,且a>c,所以ab(a-c)>0.规律方法判断关于不等式命题真假的常用方法(1)作差法、作商法.(2)利用不等式的性质推理判断.(3)利用函数的单调性.(4)特殊值验证法,特殊值法只能排除错误的命题,不能判断正确的命题.训练1 (1)(多选)(2022·广州模拟)设a,b,c为实数且a>b,则下列不等式一定成立的是( )A.1a >1bB.2 023a -b >1C.ln a >ln bD.a (c 2+1)>b (c 2+1)(2)设12<a <1,m =log a (a 2+1),n =log a (1-a ),p =log a 12a,则m ,n ,p 的大小关系是( )A.n >m >pB.m >p >nC.p >n >mD.n >p >m答案 (1)BD (2)D解析 (1)对于A ,若a >b >0,则1a <1b,所以A 错误; 对于B ,因为a -b >0,所以2 023a -b >1,所以B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误; 对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D 正确.故选BD.(2)因为12<a <1, 所以a 2+1-12a =2a 3+2a -12a >0, 12a -(1-a )=1-2a +2a 22a =2⎝ ⎛⎭⎪⎫a -122+122a>0,y =log a x 为减函数, 所以m <p ,p <n .可得n >p >m .热点二 不等式的解法不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I .(2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法.例2 (1)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( )A.(-∞,-3)∪(2,+∞)B.(-3,2)C.(-∞,-2)∪(3,+∞)D.(-2,3)(2)若不等式x 2-ax ≥16-3x -4a 对任意a ∈[-2,4]都成立,则x 的取值范围为() A.(-∞,-8]∪[3,+∞)B.(-∞,0)∪[1,+∞)C.[-8,6]D.(0,3]答案 (1)A (2)A解析 (1)由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0,则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0,即(x +3)(x -2)>0,解得x <-3或x >2,所以不等式的解集为(-∞,-3)∪(2,+∞).(2)由题意得不等式(x -4)a -x 2-3x +16≤0对任意a ∈[-2,4]都成立,则⎩⎨⎧(x -4)×(-2)-x 2-3x +16≤0,(x -4)×4-x 2-3x +16≤0,即⎩⎨⎧-x 2-5x +24≤0,-x 2+x ≤0,解得x≥3或x≤-8.故选A.易错提醒求解含参不等式ax2+bx+c<0恒成立问题的易错点(1)对参数进行讨论时分类不完整,易忽略a=0时的情况.(2)不会通过转换把参数作为主元进行求解.(3)不考虑a的符号.训练2 (1)已知函数f(x)在R上为增函数,若不等式f(-4x+a)≥f(-3-x2)对任意x∈(0,3]恒成立,则a的取值范围为( )A.[-1,+∞)B.(3,+∞)C.[0,+∞)D.[1,+∞)(2)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( )A.(-∞,-2)B.(-2,+∞)C.(-6,+∞)D.(-∞,-6)答案(1)D (2)A解析(1)由题意得,不等式-4x+a≥-3-x2对任意x∈(0,3]恒成立,所以a≥-x2+4x-3对任意x∈(0,3]恒成立,令g(x)=-x2+4x-3=-(x-2)2+1,当x∈(0,3]时,g(x)∈(-3,1],所以a≥1,即a的取值范围为[1,+∞).故选D.(2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max,x∈(1,4). 令g(x)=x2-4x-2,x∈(1,4),所以g(x)<g(4)=-2,所以a<-2.热点三基本不等式及其应用基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑出符合基本不等式条件的项,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y=m+Ag(x)+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式来求最值.例3 (1)(多选)(2022·青岛模拟)设正实数a,b满足a+b=1,则( )A.log2a+log2b≥-2 B.ab+1ab≥174C.2a+1b≤3+22D.2a-b>12(2)(2022·湖北九师联盟质检)已知a>0,b≠0,且a+|b|=3,则9a+b+3|b|的最小值为________.答案(1)BD (2)3+2 3解析(1)log2a+log2b=log2(ab)≤log2⎝⎛⎭⎪⎫a+b22=-2,A错误;因为a>0,b>0,a+b=1,所以ab ≤a +b 2=12(当且仅当a =b 时取等号), 所以0<ab ≤14, 因为函数y =x +1x 在⎝ ⎛⎦⎥⎤0,14上单调递减, 所以ab +1ab ≥14+4=174,B 正确; 因为⎝ ⎛⎭⎪⎫2a +1b (a +b )=3+2b a +a b ≥3+22(当且仅当2b a =a b 时取等号), 所以2a +1b≥3+22,C 错误; 易知0<a <1,0<b <1,所以-1<a -b <1,所以2a -b >2-1=12,D 正确.选BD. (2)9a +b +3|b |=9a +3|b |+b |b |, 当b >0时,b |b |=1, 当b <0时,b|b |=-1. 9a +3|b |=13⎝ ⎛⎭⎪⎫9a +3|b |(a +|b |)=13⎝ ⎛⎭⎪⎫12+9|b |a +3a |b |≥13(12+63) =4+23,当且仅当9|b |a =3a |b |,3+13+1所以当a =333+1,b =-33+1时, 9a +b +3|b |取得最小值,且最小值为3+2 3.易错提醒 利用基本不等式求最值时,要注意其必须满足的条件: (1)一正二定三相等,三者缺一不可;(2)若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.训练3 (1)(2022·湖州质检)若x >0,y >0且x +y =xy ,则x x -1+2yy -1的最小值为( ) A.3 B.52+ 6C.3+6D.3+2 2(2)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2B.2 2 C.4 D.92答案 (1)D (2)B 解析 (1)∵x +y =xy , ∴(x -1)(y -1)=1, ∴x x -1+2y y -1=(x -1)+1x -1+2(y -1)+2y -1=3+1x -1+2y -1≥3+21x -1·2y -1=3+22,x -1y -1(2)∵对任意m ,n ∈(0,+∞), 都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n+2nm≥2m n ·2nm=22, 当且仅当m n=2nm即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.一、基本技能练1.若a ,b ,c 为实数,且a <b <0,则下列说法正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2 答案 D解析 当c =0时,A 不成立; 1a -1b =b -a ab >0,即1a >1b,B 错误;b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,C 错误; 由a <b <0,得a 2>ab >b 2,D 正确.2.不等式4x -2≤x -2的解集是( ) A.(-∞,0]∪(2,4]B.[0,2)∪[4,+∞) C.[2,4)D.(-∞,2)∪(4,+∞) 答案 B解析 当x -2>0,即x >2时,(x -2)2≥4, 即x -2≥2,则x ≥4,当x -2<0,即x <2时,(x -2)2≤4, 即-2≤x -2<0,∴0≤x <2, 综上,0≤x <2或x ≥4.3.(2022·泰安质检)若不等式ax 2-x -c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12,则函数y =cx 2-x -a的图象可以为( )答案 C解析由题意可得-1和12是方程ax 2-x -c =0的两个根,且a <0,∴⎩⎪⎨⎪⎧-1+12=1a ,-1×12=-ca ,解得a =-2,c =-1,则y =cx 2-x -a =-x 2-x +2=-(x +2)(x -1),其图象开口向下,与x 轴交于 (-2,0),(1,0).故选C.4.已知关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为(-∞,x 1)∪(x 2,+∞),且x 2-x 1=52,则a 等于( ) A.-5B.-32C.-2D.-52答案 C解析 x 2-ax -6a 2=(x -3a )(x +2a )>0, ∵a <0,∴x >-2a 或x <3a , ∴x 2=-2a ,x 1=3a ,∴x 2-x 1=-5a =52,∴a =- 2.5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是( )A.f (x )有最大值114B.f (x )有最大值-114 C.f (x )有最小值132D.f (x )有最小值74答案 B解析 f (x )=x -14+9x -1+14= -⎝⎛⎭⎪⎫1-x4+91-x +14≤-21-x 4·91-x +14=-114,当且仅当x =-5时等号成立. 6.原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A.第一种方案更划算B.第二种方案更划算C.两种方案一样D.无法确定 答案 B解析 设小李这两次加油的油价分别为x 元/升、y 元/升,则 方案一:两次加油平均价格为40x +40y 80=x +y2≥xy ,方案二:两次加油平均价格为400200x +200y=2xyx +y ≤xy ,故无论油价如何起伏,方案二比方案一更划算. 7.设x >y >z ,n ∈N *,且1x -y +1y -z ≥n x -z恒成立,则n 的最大值为( ) A.2 B.3 C.4 D.5 答案 C解析 因为x >y >z ,n ∈N *, 所以x -y >0,y -z >0,x -z >0,由1x -y +1y -z ≥n x -z, 可得n ≤(x -z )⎝⎛⎭⎪⎫1x -y +1y -z =[(x -y )+(y -z )]⎝ ⎛⎭⎪⎫1x -y +1y -z =1+1+y -z x -y +x -yy -z≥2+2y -z x -y ·x -yy -z=4, 当且仅当x -y =y -z 时,上式取得等号, 由题意可得n ≤4,即n 的最大值为4.8.已知关于x 的不等式ax 2-2x +3a <0在(0,2]上有解,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,33 B.⎝⎛⎭⎪⎫-∞,47 C.⎝ ⎛⎭⎪⎫33,+∞D.⎝ ⎛⎭⎪⎫47,+∞答案 A解析x ∈(0,2]时, 不等式可化为ax +3a x<2;当a =0时,不等式为0<2,满足题意; 当a >0时,不等式化为x +3x <2a,则2a>2x ·3x=23,当且仅当x =3时取等号, 所以a <33,即0<a <33;当a <0时,x +3x >2a恒成立.综上所述,实数a 的取值范围是⎝⎛⎭⎪⎫-∞,33.选A.9.(多选)(2022·泰州模拟)下列函数中最小值为6的是( ) A.y =ln x +9ln x B.y =6|sin x |+32|sin x |C.y =3x +32-xD.y =x 2+25x 2+16答案 BC解析 对于A 选项,当x ∈(0,1)时,ln x <0, 此时ln x +9ln x<0,故A 不正确.对于B 选项,y =6|sin x |+32|sin x |≥29=6,当且仅当6|sin x |=32|sin x |,即|sin x |=12时取“=”,故B 正确.对于C 选项,y =3x +32-x ≥232=6, 当且仅当3x =32-x ,即x =1时取“=”,故C 正确.对于D 选项,y =x 2+16+9x 2+16=x 2+16+9x 2+16≥29=6, 当且仅当x 2+16=9x 2+16,即x 2=-7无解,故D 不正确.故选BC.10.(多选)已知a >0,b >0,且a +b =1,则( ) A.a 2+b 2≥12B.2a -b >12C.log 2a +log 2b ≥-2D.a +b ≤ 2 答案 ABD解析 因为a >0,b >0,a +b =1,所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B ,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2(ab )≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2,得a +b ≤2,故D 正确. 综上可知,正确的选项为ABD.11.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0, 即x 2-2x -c <0的解集为(m ,m +4), 所以m ,m +4是方程x 2-2x -c =0的两个根, 所以⎩⎨⎧m +m +4=2,m (m +4)=-c ,解得⎩⎨⎧m =-1,c =3.12.若命题“∃x ∈R ,x 2-2x +m <0”为真命题,则实数m 的取值范围为________. 答案 (-∞,1)解析由题意可知,不等式x2-2x+m<0有解,∴Δ=4-4m>0,m<1,∴实数m的取值范围为(-∞,1).二、创新拓展练13.(多选)(2022·苏锡常镇调研)已知正实数a,b满足a+2b=ab,则以下不等式正确的是( )A.2a+1b≥2 B.a+2b≥8C.log2a+log2b<3 D.2a+b≥9答案BD解析对于A,因为正实数a,b满足a+2b=ab,所以a+2bab=1,即2a+1b=1,所以A错误,对于B,因为a>0,b>0,a+2b=ab,所以a+2b≥22ab=22(a+2b),当且仅当a=2b时取等号,所以(a+2b)2≥8(a+2b),因为a+2b>0,所以a+2b≥8,当且仅当a=2b时取等号,所以B正确,对于C,若log2a+log2b<3,则log2a+log2b=log2(ab)<3=log28,所以ab <8,所以a +2b <8,而由选项B 可知a +2b ≥8, 所以log 2a +log 2b <3不成立,所以C 错误, 对于D ,因为正实数a ,b 满足a +2b =ab , 由选项A 知,2a +1b=1,所以2a +b =(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+22ab·2ba=9,当且仅当2ba=2ab,即a=b =3时取等号, 所以D 正确,故选BD.14.(多选)(2022·镇海中学模拟)已知函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,下列选项正确的是( )A.函数f (x )在(-2,1)上单调递增B.函数f (x )的值域为⎣⎢⎡⎭⎪⎫-1e 2,+∞C.若关于x 的方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,则实数a 的取值范围是⎝ ⎛⎭⎪⎫1e 2,4e D.不等式f (x )-ax -a >0在(-1,+∞)恰有两个整数解,则实数a 的取值范围是⎣⎢⎡⎭⎪⎫3e 2,2e答案 ACD解析函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,所以函数f ′(x )=⎩⎨⎧(x +2)e x (x <0),-(x +1)(x -1)e x (x ≥0), 故函数f (x )的大致图象如图1所示,故A 正确,B 错误;对于D ,不等式f (x )>a (x +1),在(-1,+∞)上恰有两个整数解,必为x =0,x =1, 故⎩⎨⎧f (1)>a (1+1),f (2)≤a (2+1),解得a ∈⎣⎢⎡⎭⎪⎫3e 2,2e ,故D 正确;对于C ,如图2,函数y =|f (x )|的图象,原方程可化为|f (x )|=0或|f (x )|=a ,由于方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,所以只需|f (x )|=a 有两个不等实根,所以a ∈⎝ ⎛⎭⎪⎫1e 2,4e ,C 正确,故选ACD. 15.(多选)(2022·全国名校大联考)若实数x ,y 满足2x +2y +1=1,m =x +y ,n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1,则( )A.x <0且y <-1B.m 的最大值为-3C.n 的最小值为7D.n ·2m <2答案 ABD解析 由2x +2y +1=1,得2y +1=1-2x >0,2x =1-2y +1>0,所以x <0且y <-1,故A 正确;由2x +2y +1=1≥22x ·2y +1=22x +y +1,得m =x +y ≤-3,当且仅当x =y +1=-1,即x =-1,y =-2时,等号成立,所以m 的最大值为-3,故B 正确;n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1(2x +2y +1) =5+2×2y 2x +2×2x2y ≥5+22×2y 2x ·2×2x 2y =9, 当且仅当2×2y 2x =2×2x2y ,即x =y =-log 23时,等号成立, 所以n 的最小值为9,故C 错误;n ·2m=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1·2x +y =2y +2x +1=2-3×2y <2,故D 正确.故选ABD. 16.(2022·湖南三湘名校联考)若两个正实数x ,y 满足x +2y -xy =0,且不等式x +2y ≥m 2-7m 恒成立,则实数m 的取值范围为________.答案 [-1,8]解析 由x +2y -xy =0,得2x +1y=1, 所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+x y +4y x ≥8,当且仅当x =4,y =2时等号成立, 所以m 2-7m ≤8,解得-1≤m ≤8.17.已知关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4},则c 2+5a +b 的取值范围为________.答案 [45,+∞)解析 关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4}, 所以a <0,且3和4是关于x 的方程ax 2+bx +c =0的两实数根,由根与系数的关系知:⎩⎪⎨⎪⎧3+4=-b a ,3×4=c a ,解得⎩⎨⎧b =-7a ,c =12a (a <0). 所以c 2+5a +b =144a 2+5a -7a =-24a -56a≥ 2(-24a )·5-6a =45(当且仅当-24a =-56a ,即a =-512时等号成立), 所以c 2+5a +b的取值范围是[45,+∞). 18.(2022·温州测试)已知函数f (x )=x 2+|x -a |+b ,若存在实数b ,使得对任意的|x |≤1都有|f (x )|≤109,则实数a 的最大值是________. 答案 13解析 由题可得,因为存在实数b 对任意的|x |≤1都有|x 2+|x -a |+b |≤109, 所以-109≤x 2+|x -a |+b ≤109, 即存在实数b 对任意的|x |≤1都有-x 2-109-b ≤|x -a |≤109-x 2-b , 由对称性可知,当实数a 取得最大值时,a ≥0,令g (x )=-x 2-109-b ,h (x )=-x 2+109-b ,则g ′(x )=h ′(x )=-2x .因为y =-x +a 的斜率为-1,所以-2x =-1,解得x =12, 所以g ⎝ ⎛⎭⎪⎫12=-14-109-b =-4936-b . 又因为h (-1)=-1+109-b =19-b , 即当a ≥12时,切线斜率k =h (-1)-g ⎝ ⎛⎭⎪⎫12-1-12=-5354>-1,不能满足条件; 故当0≤a <12时,g (x )的零点为a ,此时a 最大,满足⎩⎪⎨⎪⎧g (a )=-a 2-109-b =0,k =-1+109-b -1-a =-1,即⎝⎛⎭⎪⎫a -23⎝ ⎛⎭⎪⎫a -13=0, 由0≤a <12可得a =13.。

高考数学中的不等式基本概念及应用

高考数学中的不等式基本概念及应用

高考数学中的不等式基本概念及应用不等式作为高中数学的一个重要内容,在高考中占有重要的位置。

掌握不等式的基本概念及应用是高考数学考试中取得较高分数的关键因素之一。

本文将介绍不等式的基本概念以及在高考数学中的应用。

一、不等式的定义及性质不等式是数学中的一种关系符号,表示两个数或两个量之间的大小关系。

不等式的基本定义是:若两个量A和B之间的关系可以用“>”或“<”来表示,则称这个关系是不等式。

例如:x>y或x<y。

其中“>”和“<”分别表示两个量之间的大小关系。

如果两个量A和B之间的大小关系不能用“>”或“<”来表示,则称这个关系是等式。

不等式具有很多的基本性质,包括:1、自反性:对于任何实数a,有a≥a或a≤a。

2、对称性:对于任何实数a和b,如果a≥b,则b≤a;如果a≤b,则b≥a。

3、传递性:对于任何实数a、b和c,如果a≥b且b≥c,则a≥c;如果a≤b且b≤c,则a≤c。

4、加减法原理:若a≥b,则a+c≥b+c;若a≤b,则a+c≤b+c(这里c可以是任何实数)。

5、乘法原理:若a≥0,且b≥c,则a×b≥a×c;若a≤0,且b≥c,则a×b≤a×c。

这些基本性质是不等式应用中的基础,理解和掌握这些性质对于解决不等式问题非常重要。

二、不等式的简单应用1、不等关系的确定当两个数的大小关系不能直接用等号来表示时,就需要用不等号(>,<)来表示它们的大小关系。

例如,我们可以用不等号来表示以下不等式:3x+8<7x-9;2y-6>5y-12。

需要注意的是,在应用不等式时,我们应该首先确定不等关系的类型。

此处的不等关系是大于(>)还是小于(<),这是不等式应用的基本前提。

2、高中的不等式变形和求解不等式的变形和求解是高中数学课程中常常涉及到的内容。

不等式变形基本上可以与等式变形类比,不等式的变形同样可以运用加减法、乘除法等基本运算法则。

高考数学复习专题 基本不等式

高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。

2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。

3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。

2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。

4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。

2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。

3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。

4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。

5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。

6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。

7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。

二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。

题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。

2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳) 高中数学基本不等式的巧用一、基本不等式1.若$a,b\in\mathbb{R}$,则$a+b\geq 2ab$,$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“=”)2.若$a,b\in\mathbb{R}$,则$\frac{a+b}{2}\geq\sqrt{ab}$(当且仅当$a=b$时取“=”)3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“=”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“=”);若$x\neq 0$,则$x+\frac{1}{x}\geq 2$或$x+\frac{1}{x}\leq -2$(当且仅当$x=1$或$x=-1$时取“=”)4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$或$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=b$时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。

2)求最值的条件“一正,二定,三取等”。

3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。

应用一:求最值例1:求下列函数的值域1.$y=3x+\frac{11}{2}$2.$y=x+\frac{1}{2x}$解:(1)$y=3x+\frac{11}{2}\geq 6$,所以值域为$[6,+\infty)$。

2)当$x>0$时,$y=x+\frac{1}{2x}\geq 2$;当$x<0$时,$y=x+\frac{1}{2x}\leq -2$;当$x=0$时,$y$无定义。

高考数学专题03 不等式(解析版)

高考数学专题03 不等式(解析版)

专题03 不等式一、单选题1.(2022·江苏宿迁·高三期末)不等式10x x->成立的一个充分条件是( ) A .1x <- B .1x >- C .10x -<< D .01x <<【答案】C 【分析】 首先解不等式10x x->得到1x >或10x -<<,再根据充分条件定理求解即可. 【详解】()()211001101x x x x x x x x-->⇒>⇒+->⇒>或10x -<<, 因为{}{|01x x x x ≠<<⊂或}10x -<<, 所以不等式10x x->成立的一个充分条件是01x <<. 故选:C2.(2022·江苏如皋·高三期末)已知a b =3-ln4,c =32,则下列选项正确的是( )A .a <b <cB .a <c <bC .c <b <aD .c <a <b【答案】C 【分析】由e 2.718,ln 20.69≈≈及不等式性质,进行计算即可得出结果. 【详解】 229e, 2.254a c ===,∴22a c >,即a c >, 2222(3ln 4) 1.62 2.6244b a =-==<,∴a b >,331e 1193ln 4 1.52ln 2ln ln 02216216b =--=-=>>,∴b c >,∴a b c >>,故选:C3.(2022·江苏苏州·高三期末)已知11a b >+> 则下列不等式一定成立的是( ) A .b ab B .11a b a b+>+ C .1e 1ln bb a a+<- D .ln ln a b b a +<+【答案】C 【分析】错误的三个选项ABD 可以借助特殊值法进行排除,C 可以利用求导得出证明. 【详解】取10,8a b ==,则b a b ,故A 选项错误;取3a =,13b =,11a b a b+=+,则B 选项错误; 取3a =,1b =,则ln 3a b ,2ln 1ln31ln 3b a e ,即ln ln a b b a +>+,故D 选项错误;关于C 选项,先证明一个不等式:e 1x x ≥+,令e 1x y x =--,e 1xy '=-, 于是0x >时0y '>,y 递增;0x <时0y '<,y 递减; 所以0x =时,y 有极小值,也是最小值0e 010--=, 于是e 10x y x =--≥,当且仅当0x =取得等号,由e 1x x ≥+,当1x >-时,同时取对数可得,ln(1)x x ≥+, 再用1x -替换x ,得到1ln x x -≥,当且仅当1x =取得等号, 由于11a b >+>,得到e 1bb ,ln 1a a <-,111ln e b a b a ,即1e 1ln bb a a+<-, C 选项正确. 故选:C.4.(2022·湖南郴州·高三期末)已知函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,则2m n +的最小值是( ) A.6 B .C .8 D .【答案】D 【分析】有()()f x f x =-可得m 、n 的关系,再用均值不等式即可. 【详解】因为函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,所以()()f x f x =-,xxxxm n m n --+=+,x xxxx xm n m n m n ++=因为0,0,1,1m n m n >>≠≠,所以1x x m n =,即1mn =,2m n +≥m n =. 故选:D.5.(2022·湖北武昌·高三期末)已知实数a ,b 满足28log 3log 6a =+,6810a a b +=,则下列判断正确的是( ) A .2a b >> B .2b a >> C .2a b >> D .2b a >>【答案】C 【分析】根据对数和指数的单调性可判断2a >,2b >;在构造函数()6810x x xf x =+-,2x >,再根据换元法和不等式放缩,可证明当2x >时,()68100x x xf x =+-<,由此即可判断,a b 的大小.【详解】因为()28221log 3log 6log 3log 233a =+=+⨯2241414317log 3log 233333233=+>=⨯+=>,所以2a >; 由6810a a b +=且2a >,所以683664100a a +>+=,所以2b >,令()6810x x xf x =+-,2x >,令20t x =-> ,则2x t =+,则()6810x x x f x =+-,2x >等价于()36664810010t t tg t =⨯+⨯-⨯,0t >;又()366648100101008100100t t t t tg t =⨯+⨯-⨯<⨯-⨯<,所以当2x >时,()68100x x xf x =+-<,故681010a a b a +=<,所以2a b >>. 故选:C .6.(2022·湖北武昌·高三期末)已知正数x ,y 满足115x y x y+++=,则x y +的最小值与最大值的和为( ) A .6 B .5C .4D .3【答案】B 【分析】利用基本不等式进行变形得4x y xy x y+≥+,然后将115x y x y +++=进行代换得45x y x y++≤+,继而解不等式可得答案. 【详解】 因为0,0x y >>,所以x y +≥,即2()2x y xy +≤ , 所以214()xy x y ≥+,即4x y xy x y+≥+, 又因为115x yx y x y x y xy++++=++=, 所以45x y x y++≤+,即2()5()40x y x y +-++≤ , 解得14x y ≤+≤ ,故x y +的最小值与最大值的和为5, 故选:B7.(2022·山东青岛·高三期末)已知2319,sin ,224a b c ππ===,则( ) A .c b a << B .a b c << C .a <c <b D .c <a <b【答案】D 【分析】先通过简单的放缩比较c 和a 的大小,再通过构造函数,利用图像特征比较b 和a 的大小,由此可得答案. 【详解】 293334π2π2π2πc a ==⨯<= c a ∴<3132π2a π==⨯, 设()sin f x x =,3()g x x π=,当6x π=时,31sin662πππ=⨯= ()sin f x x ∴=与3()g x x π=相交于点1,62π⎛⎫⎪⎝⎭和原点 ∴0,6x π⎛⎫∈ ⎪⎝⎭时,3sin x x π> 10,26π⎛⎫∈ ⎪⎝⎭∴13sin22π>,即b a > ∴c a b <<故选:D.8.(2022·山东枣庄·高三期末)已知1x >,则11x x +-的最小值是( ). A .6 B .5 C .4D .3【答案】D 【分析】 由于1x >,把11x x +-转化为11++11x x --,再利用基本不等式求出最小值即可得到答案. 【详解】1x >,故110,01x x ->>-,111121=31x x ∴-++≥=+-,当且仅当1121x x x -=⇒=-时,等号成立,故11x x +-的最小值是3. 故选:D.9.(2022·河北张家口·高三期末)已知102,105x y ==,则( ) A .1x y +< B .14xy >C .2212x y +> D .25y x ->【答案】C 【分析】结合指数运算、基本不等式、对数运算、比较大小等知识对选项进行分析,由此确定正确选项. 【详解】因为10101010x y x y +⋅==,所以1x y +=,所以A 错误;又102,105x y ==,所以0,0x y >>,又,1x y x y ≠+=>,所以14xy <,所以B 错误; 因为222()12x y x y xy +==++,所以2212x y xy +=-,又14xy <,所以2212x y +>,故C 正确; 因为lg5,lg2y x ==,所以2552lg ,lg1025y x -==,故只要比较52和2510的大小即可,又55255312510010232⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,所以52lg 25y x -=<,故D 错误.故选: C二、多选题10.(2022·江苏无锡·高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <【答案】ABD 【分析】先根据函数单调性,得到0b a <<,AC 选项用作差法比较大小;B 选项用基本不等式求取值范围;D 选项,先用作差法,再结合函数单调性比大小. 【详解】e e 1b a <<,则0b a <<,因为22()()0a b a b a b -=-+<,所以22a b <,A 选项正确;因为0b a <<,所以0,0b a a b >>,由基本不等式得:2a b b a +>=,B 选项正确; 2()0ab b b a b -=-<,2ab b ∴<,C 选项错误;2()0a ab a a b -=-<,2a ab ∴<,2lg lg a ab ∴<,D 选项正确,故选:ABD11.(2022·广东·铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2< C .111a b+≥D .22118a b ≤+ 【答案】CD 【分析】结合基本不等式对选项进行分析,由此确定正确选项. 【详解】22222a b a bab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b+⎛⎫≤ ⎪⎝⎭,则222211112,8,48a b ab a b ≥≤+≥≤+, 即AB 错误,D 正确.对于C 选项,1141414a b a ab ab b ++==≥⨯=,C 选项正确. 故选:CD12.(2022·广东汕尾·高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( ) A .a b c c > B .c c a b >C .log log c c a b >D .11()()4a b ab++>【答案】BD 【分析】根据指数函数,对数函数,幂函数的单调性,结合题意,可判断A 、B 、C 的正误,根据基本不等式,可判断D 的正误,即可得答案. 【详解】函数x y c =,因为01c <<,所以x y c =是减函数, 因为a >b ,所以a b c c <,故A 错.函数c y x =,因为01c <<,所以c y x =在(0,)+∞是增函数, 因为a >b ,所以c c a b >,故B 正确.函数log c y x =,因为01c <<,所以log c y x =在(0,)+∞是减函数, 因为a >b ,所以log log c c a b <,故C 错.11()1124a b a b a b b a ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当a b =时取等号,又a b >,所以11()4a b a b ⎛⎫++> ⎪⎝⎭,故D 正确.故选:BD13.(2022·湖南常德·高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥【答案】BD 【分析】利用基本不等式及指对数函数的性质逐项分析即得. 【详解】∵0a >,0b >,111a b +=≥∴4ab ≥,当且仅当2a b ==时取等号,故A 错误;由()1124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当b aa b =,即2a b ==时取等号,故B 正确;因为228a b ≥=+,当且仅当2a b ==时取等号,故C 错误; 因为()2222log log log log 42a b ab +=≥=,当且仅当2a b ==时取等号,故D 正确. 故选:BD.14.(2022·湖北襄阳·高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>【答案】ACD 【分析】利用()()f a f b =,可得lg lg a b -=,从而得到1ab =,再对每一个选项进行分析即可. 【详解】因为()()f a f b =,且a b <,可得lg lg lg lg 0a b a b -=⇒+=,从而得到1ab =, 因为0a b <<,所以01a b <<<,所以2221111()244b b b b a -=-+=--+<,而12a b b b +=+>,(1b >,等号不成立)所以422a b >==+. 从而可知选项ACD 正确. 故选:ACD15.(2022·山东泰安·高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( ) A .11a b a>- B .11a b > C .2a bb a+>D .a b >【答案】BCD【分析】以求差法判断选项AB ;以均值定理判断选项C ;以绝对值的几何意义判断选项D. 【详解】 选项A :()()11()a a b b a b a a b a a b a ---==---,由0a b <<,可知0a <,0b <,0a b -<,则()0ba b a <-,即11a b a<-.选项A 判断错误;选项B :11b a a b ab --=,由0a b <<,可知0a <,0b <,0b a ->,则0b aab ->,即11a b>.选项B 判断正确;选项C :当0a b <<时,2a b b a +>=.选项C 判断正确;选项D :当0a b <<时,a b >.选项D 判断正确. 故选:BCD16.(2022·山东德州·高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( ) A.a b +的最小值为3+B .22a b +的最小值为16C D .lg lg a b +的最小值为3lg 2【答案】ACD 【分析】利用“1”的代换结合基本不等式判断AD C ,由对数的运算结合基本不等式判断B. 【详解】由2a b ab +=可得,211b a +=,212()3322a b a b a b b a b a ⎛⎫+=++=+++ ⎪⎝⎭(当且仅当2b =等号),故A 正确;214(2)44248a b ab a b b a b a ⎛⎫=++=+++= ⎪⎝⎭(当且仅当24b a ==时,取等号),即lg lg lg lg83lg 2a b ab +=≥=,故D 正确;222a b ab +≥(当且仅当3b a ==时,取等号),8ab (当且仅当24b a ==时,取等号),即2216a b +>,故B 错误;2212112b a b =+++=≤1212a b ==时,取等号),故C 正确; 故选:ACD17.(2022·山东烟台·高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤ D .若1a b +=,则114a b+≥【答案】ABD 【分析】利用基本不等式逐项判断. 【详解】A.若1ab =,则2222a b ab +≥=,当且仅当1a b ==时,等号成立,故正确;B.若1ab =,则112a b +≥当且仅当1a b ==时,等号成立,故正确;C.若1a b +=,则()2221122=+≥+a b a b ,当且仅当1a b ==时,等号成立,故错误; D.若1a b +=,则2111421a b ab a b ab a b +==≥++⎛⎫⎪⎝⎭=,当且仅当1a b ==时,等号成立,故正确; 故选:ABD18.(2022·山东济南·高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( )A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+ D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为4【答案】BC 【分析】对于A ,利用不等式的性质判断,对于BC ,作差判断即可,对于D ,利用基本不等式判断 【详解】对于A ,因为0a b c >>>,所以11a b <,10c a<-,所以()()11a c a b c a >--,所以A 错误, 对于B ,因为0a b c >>>,所以()0,()0c a b a a c ->+>, 所以()()()0()()()b c b a b c b a c ab ac ab bc c a b a c a a a c a a c a a c ++-++----===>++++,所以b b ca a c+<+,所以B 正确, 对于C ,因为0a b c >>>,所以0,0a c b c ->->,所以2()()()()()0ab c ac bc a b c c b c a c b c +-+=---=-->,所以2ab c ac bc +>+,所以C 正确,对于D ,因为0,0a b >>,所以()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时取等号,因为a b >,所以取不到等号,所以()11a b a b ⎛⎫++ ⎪⎝⎭的最小值不为4,所以D 错误,故选:BC三、填空题19.(2022·江苏扬州·高三期末)已知正实数x ,y 满足x +y =1,则23x y xy++的最小值为__________.【答案】9+ 【分析】利用基本不等式来求得最小值. 【详解】 由题意可知,23x y xy ++=233x y x y xy +++=45x y xy +=4y +5x =(4y +5x)(x +y )=4+5+4x y +5y x ≥9+9+,当且仅当4x y =5yx,2x =时取等号, 此时54x y =-=,故23x y xy++的最小值为9+故答案为:9+20.(2022·广东罗湖·高三期末)已知存在实数(),0,1x y ∈,使得不等式21121y yt x x-+<+-成立,则实数t 的取值范围是______. 【答案】(3,)+∞ 【分析】根据基本不等式求得111x x+-的最小值为4,将问题转化为只需存在实数(0,1)y ∈,使得224y y t -+>成立即可,即242y yt ->-,再根据二次函数和指数函数的性质可求得答案.【详解】解:∵11111(1)()224111x x x x x x x x x x -+=+-+=++≥+=---,当且仅当11x x x x -=-,即()01x =,时取等号, ∴111x x+-的最小值为4, ∴只需存在实数(0,1)y ∈,使得224yyt -+>成立即可,即242yyt ->-,又当01y <<时,20y y -<,所以20221y y -<=,∴2423y y -->,∴3t >,∴实数t 的取值范围为(3,)+∞, 故答案为:(3,)+∞.21.(2022·湖南娄底·高三期末)已知a ,b 为正实数,且21a b +=,则22aa b+的最小值为______.【答案】6 【分析】利用已知化简可得24224222a a b a b a a b a b a b +⎛⎫+=+=++ ⎪⎝⎭,根据基本不等式计算即可. 【详解】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++≥= ⎪⎝⎭, 当且仅当22b a a b =,即25a =,15b =时取等号. 故答案为:6.22.(2022·湖北·黄石市有色第一中学高三期末)设0x >,0y >,且2116yx y x ⎛⎫-= ⎪⎝⎭,则当1x y +取最小值时,221x y +=______. 【答案】12 【分析】当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取最小值,变形可得21416=x y x y y x ⎛⎫++ ⎪⎝⎭,由基本不等式和等号成立的条件可得答案. 【详解】解析:∵0x >,0y >,∴当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取得最小值,∵222112x x x y y y ⎛⎫+=++ ⎪⎝⎭,又2116yx y x ⎛⎫-= ⎪⎝⎭,∴221216x y x y y x +=+,∴21416x y x y y x ⎛⎫+=+ ⎪⎝⎭16≥=, ∴14x y+≥,当且仅当416x y y x=,即2x y =时取等号, ∴当1x y +取最小值时,2x y =,221216x x y y++=, ∴2212216y x y y ⋅++=,∴22116412x y +=-=. 【点睛】本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属中档题. 23.(2022·山东日照·高三期末)已知54x >,则函数1445y x x =+-的最小值为_______.【答案】7 【分析】 由54x >,得450x ->,构造导数关系,利用基本不等式即可得到. 【详解】 法一:54x >,450x ∴->, 114(45)52574545y x x x x =+=-++≥+=--, 当且仅当14545x x -=-,即32x =时等号成立,故答案为:7. 法二:54x >,令2440(45)y x '=-=-得1x =或32x =, 当5342x <<时'0y <函数单调递减, 当32x >时'0y >函数单调递增, 所以当32x =时函数取得最小值为:314732452⨯+=⨯-, 故答案为:7. 【点晴】此题考基本不等式,属于简单题.24.(2022·河北深州市中学高三期末)已知正实数a ,b 满足321a b +=,则6a +1b 的最小值为______. 【答案】32 【分析】利用“1"的代换,将6a +1b 转化为6a +1b =(6a +1b )(3a +2b),然后化简整理,利用均值不等式即可求出结果. 【详解】由0a >,0b >且321a b +=,得 6a+1b =(6a +1b )(3a +2b)=18+12b a+3a b+2≥20+2√12b a⋅3a b=32,当且仅当12b a =3a b ,即2a b =时,取等号,此时{a =14b =18,则6a +1b 的最小值为32.故答案为:32.25.(2022·河北保定·高三期末)22244x x x+++的最小值为___________.【答案】9 【分析】由222224445x x x x x+++=++结合基本不等式得出答案.【详解】因为22222444559x x x x x +++=++≥=,当且仅当224x x =,即22x =时,等号成立,所以22244x x x+++的最小值为9. 故答案为:9。

高考数学选修部分专题4绝对值不等式测试卷(含答案)

高考数学选修部分专题4绝对值不等式测试卷(含答案)

高考数学选修部分专题4绝对值不等式学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.设集合M={x||x−1|<1},N={x|x<2},则M∩N=()A. (−1,1)B. (−1,2)C. (0,2)D. (1,2)2.若不等式|x+1|+|x−3|≥|m−1|恒成立,则m的取值范围为()A. [−3,5]B. [3,5]C. [−5,3]D. [−5,−3]3.若关于x的不等式|x+1|−|x−2|<a2−4a有实数解,则实数a的取值范围()A. a<1或a>3B. a>3C. a<1D. 1<a<34.不等式|x−3|−|x+1|≤a2−3a对任意实数x恒成立,则实数a的取值范围是()A. (−∞,−1]∪[4,+∞)B. [−1,4]C. [−4,1]D. (−∞,−4]∪[1,+∞)5.|x−2|−|x+3|≥4的解集为()A. (−∞,−3]B. [−3,−52]C. (−∞,−52] D. (−∞,−3)∪(−3,−52]6.已知全集U=R,集合A={x||x−1|<1},B={x|2x−5x−1≥1},则A∩(∁U B)=()A. {x|1<x<2}B. {x|1<x≤2}C. {x|1≤x<2}D. {x|1≤x<4}7.已知p:|x−1|≤1,q:x2−2x−3≥0,则p是¬q的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8.“-3<a<1”是“存在x∈R,使得|x-a|+|x+1| <2”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件9.对任意x,y∈R,|x−1|+|x|+|y−1|+|y+1|的最小值为()A. 1B. 2C. 3D. 410.已知实数x,y满足x2+4y2≤4,则|x+2y−4|+|3−x−y|的最大值为()A. 6B. 12C. 13D. 14二、填空题(本大题共4小题,共20.0分)11.已知关于x的不等式|x−a|+|x−3|≥2a的解集为R,则实数a的最大值为______.12.设x∈R,则不等式|x−3|<1的解集为______.−a|+a在区间[1,4]上的最大值是5,则a的取值范13.已知a∈R,函数f(x)=|x+4x围是______ .a+2对任意实数x恒成立,则实数a的取值范14.若不等式|2x−1|+|x+2|≥a2+12围是______.三、解答题(本大题共2小题,共30.0分)15.设函数f(x)=|x+1|+|x−a|(x∈R)(1)当a=2时,求不等式f(x)>5的解集;(2)对任意实数x,都有f(x)≥3恒成立,求实数a的取值范围.16.已知函数f(x)=|2x|+|2x+3|+m(m∈R).(1)当m=−2时,求不等式f(x)≤3的解集;(2)若∀x∈(−∞,0),都有f(x)≥x+2恒成立,求m的取值范围.x答案和解析1.【答案】C解:集合M={x||x−1|<1}=(0,2),N={x|x<2}=(−∞,2),∴M∩N=(0,2),故选C.2.【答案】A解:|x+1|+|x−3|表示数轴上的x对应点到−1和3对应点的距离之和,它的最小值等于4,由不等式|x+1|+|x−3|≥|m−1|恒成立知,|m−1|≤4,所以m∈[−3,5].故选A.3.【答案】A解:∵||x+1|−|x−2||≤|(x+1)−(x−2)|=3,∴−3≤|x+1|−|x−2|≤3,由不等式a2−4a>|x+1|−|x−2|有实数解,知a2−4a>−3,解得a>3或a<1.故选A.4.【答案】A解:令y=|x−3|−|x+1|,当x>3时,y=x−3−x−1=−4,当x<−1时,y=−x+3+x+1=4,当−1≤x≤3时,y=−x+3−x−1=−2x+2,所以−4≤y≤4,所以要使得不等式|x+3|−|x−1|≤a2−3a对任意实数x恒成立,只要a2−3a≥y max=4即可,∴a≤−1或a≥4,故选A.5.【答案】C解:当x<−3时,原式化为−(x−2)−[−(x+3)]≥4所以x<−3,,当−3≤x<2时,原式化为−(x−2)−(x+3)⩾4所以−3⩽x⩽−52当x⩾2时,原式化为(x−2)−(x+3)⩾4,无解,].故选C.综上所述,原式解集为(−∞,−526.【答案】C≥1}={x|x<1或x≥4};解:集合A={x||x−1|<1}={x|0<x<2},B={x|2x−5x−1∴∁U B={x|1≤x<4};∴A∩(∁U B)={x|1≤x<2}.故选C.7.【答案】A解:已知p:|x−1|⩽1,∴−1≤x−1≤1,∴0≤x≤2,,记A={x|0≤x≤2}q:x2−2x−3≥0,∴¬q:x2−2x−3<0,∴−1<x<3,记B={x|−1<x<3},∴A⫋B,∴p是¬q的充分不必要条件,故选A.8.【答案】C解:根据绝对值不等式的性质得|x−a|+|x+1|≥|x−a−x−1|=|a+1|,即|x−a|+|x+1|的最小值为|a+1|,若“存在x∈R,使得|x−a|+|x+1|<2”,则|a+1|<2,即−2<a+1<2,得−3<a<1,即“−3<a<1”是“存在x∈R,使得|x−a|+|x+1|<2”的充要条件,故选C.9.【答案】C解:对任意x,y∈R,|x−1|+|x|+|y−1|+|y+1|=|x−1|+|−x|+|1−y|+|y+1|≥|x−1−x|+|1−y+y+1|=3,当且仅当x∈[0,1],y∈[−1,1]等号成立.故选:C.10.【答案】B解:设x=2cosθ,y=sinθ,θ∈[0,2π).∴|x+2y−4|+|3−x−y|=|2cosθ+2sinθ−4|+|3−2cosθ−sinθ|=4−2cosθ−2sinθ+3−2cosθ−sinθ=7−4cosθ−3sinθ=7−5sin(θ+α),∴|x+2y−4|+|3−x−y|的最大值为12,故选:B.设x=2cosθ,y=sinθ,θ∈[0,2π),|x+2y−4|+|3−x−y|=|2cosθ+2sinθ−4|+ |3−2cosθ−sinθ|=4−2cosθ−2sinθ+3−2cosθ−sinθ=7−4cosθ−3sinθ=7−5sin(θ+α),即可得出结论.11.【答案】1解:化简得:|x−a|+|x−3|≥|(x−a)−(x−3)|=|a−3|≥2a,当a−3>0,即a>3时,上式化为a−3≥2a,解得a≤−3,所以实数a无解;当a−3≤0,即a≤3时,上式化为3−a≥2a,解得3a≤3,解得a≤1,综上,实数a的范围为a≤1,则实数a的最大值为1.故答案为1.12.【答案】(2,4)解:∵x∈R,不等式|x−3|<1,∴−1<x−3<1,解得2<x<4.∴不等式|x−3|<1的解集为(2,4).故答案为:(2,4).由含绝对值的性质得−1<x−3<1,由此能求出不等式|x−3|<1的解集.本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.13.【答案】(−∞,92]解:由题可知|x +4x −a|+a ≤5,即|x +4x −a|≤5−a ,所以a ≤5,又因为|x +4x −a|≤5−a ,所以a −5≤x +4x −a ≤5−a ,所以2a −5≤x +4x ≤5, 又因为1≤x ≤4,4≤x +4x ≤5,所以2a −5≤4,解得a ≤92,故答案为:(−∞,92].14.【答案】[−1,12]解:|2x −1|+|x +2|={−3x −1,x <−2−x +3,−2≤x ≤123x +1,x >12,∴x =12时,|2x −1|+|x +2|的最小值为52,∵不等式|2x −1|+|x +2|≥a 2+12a +2对任意实数x 恒成立, ∴a 2+12a +2≤52,∴a 2+12a −12≤0,∴−1≤a ≤12, ∴实数a 的取值范围是[−1,12].故答案为:[−1,12].15.【答案】解:(1)当a =2时,f(x)=|x +1|+|x −2|>5,当x ≥2时,x +1+x −2>5,可得x >3; 当−1≤x <2时,x +1−x +2>5,解得x ∈⌀; 当x <−1时,−x −1−x +2>5,解得x <−2; 综上x ∈(−∞,−2)∪(3,+∞). (2)|x +1|+|x −a|≥|a +1|,对任意实数x ,都有f(x)≥3恒成立,∴|a +1|≥3,解得a ≥2或a ≤−4.16.【答案】解:(1)当m =−2时,f(x)=|2x|+|2x +3|+m ={4x +1,x ≥01,−32<x <0−4x −5,x ≤−32, 当{4x +1≤3x ≥0,解得0≤x ≤12; 当−32<x <0,1≤3恒成立;当{−4x −5≤3x ≤−32解得−2≤x ≤−32;所以此不等式的解集为[−2,12];(2)当x ∈(−∞,0)时,f(x)=|2x|+|2x +3|+m ={3+m,(−32<x <0)−4x −3+m,(x ≤−32), 当−32<x <0时,不等式化为3+m ≥x +2x ; 由x +2x=−[(−x)+(−2x)]≤−2√(−x)(−2x)=−2√2,当且仅当−x =−2x 即x =−√2时等号成立,∴m +3≥−2√2,∴m ≥−3−2√2, 当x ≤−32时,不等式化为−4x −3+m ≥x +2x ,∴m ≥5x +2x +3, 令y =5x +2x +3,x ∈(−∞,−32],0'/>在x ∈(−∞,−32]恒成立,∴y =5x +2x+3在(−∞,−32]上是增函数,∴当x =−32时,y =5x +2x +3取到最大值为−356,∴m ≥−356, 综上m 的取值范围是[−3−2√2,+∞).。

人教版高考文科数学一轮复习资料选修-不等式的证明

人教版高考文科数学一轮复习资料选修-不等式的证明

第2讲 不等式的证明一、知识梳理 1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 常用结论基本不等式及其推广1.a 2≥0(a ∈R ).2.(a -b )2≥0(a ,b ∈R ),其变形有a 2+b 2≥2ab ,⎝⎛⎭⎫a +b 22≥ab ,a 2+b 2≥12(a +b )2.3.若a ,b 为正实数,则a +b 2≥ab .特别地,b a +ab ≥2.4.a 2+b 2+c 2≥ab +bc +ca . 二、教材衍化 求证:3+7<2+ 6. 证明:3+7<2+6 ⇐(3+7)2<(2+6)2 ⇐10+221<10+46⇐21<26⇐21<24.故原不等式成立.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)使用反证法时,“反设”不能作为推理的条件应用.( ) 答案:(1)× (2)√ (3)× 二、易错纠偏常见误区不等式放缩不当致错.已知三个互不相等的正数a ,b ,c 满足abc =1.试证明: a +b +c <1a +1b +1c.证明:因为a ,b ,c >0,且互不相等,abc =1,所以a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c.用综合法、分析法证明不等式(师生共研)(2019·高考全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c ≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c.当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3 =3(a +b )(b +c )(a +c ) ≥3×(2ab )×(2bc )×(2ac )=24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.充分利用这一辩证关系,可以增加解题思路,开阔视野.1.若a ,b ∈R ,ab >0,a 2+b 2=1.求证:a 3b +b 3a≥1. 证明:a 3b +b 3a =a 4+b 4ab =(a 2+b 2)2-2a 2b 2ab =1ab -2ab .因为a 2+b 2=1≥2ab ,当且仅当a =b 时等号成立, 所以0<ab ≤12.令h (t )=1t -2t ,0<t ≤12,则h (t )在(0,12]上递减,所以h (t )≥h (12)=1.所以当0<ab ≤12时,1ab -2ab ≥1.所以a 3b +b 3a≥1.2.(一题多解)(2020·宿州市质量检测)已知不等式|2x +1|+|2x -1|<4的解集为M . (1)求集合M ;(2)设实数a ∈M ,b ∉M ,证明:|ab |+1≤|a |+|b |.解:(1)当x <-12时,不等式化为-2x -1+1-2x <4,即x >-1,所以-1<x <-12;当-12≤x ≤12时,不等式化为2x +1-2x +1<4,即2<4, 所以-12≤x ≤12;当x >12时,不等式化为2x +1+2x -1<4,即x <1,所以12<x <1.综上可知,M ={x |-1<x <1}.(2)法一:因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1. 而|ab |+1-(|a |+|b |) =|ab |+1-|a |-|b | =(|a |-1)(|b |-1)≤0, 所以|ab |+1≤|a |+|b |. 法二:要证|ab |+1≤|a |+|b |, 只需证|a ||b |+1-|a |-|b |≤0, 只需证(|a |-1)(|b |-1)≤0,因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1, 所以(|a |-1)(|b |-1)≤0成立. 所以|ab |+1≤|a |+|b |成立.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1上面不等式中k ∈N +,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m ”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0, 所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2. 3.(2020·蚌埠一模)已知函数f (x )=|x |+|x -3|. (1)解关于x 的不等式f (x )-5≥x ;(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解:(1)f (x )=|x |+|x -3|=⎩⎪⎨⎪⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎪⎨⎪⎧x <0,3-2x ≥x +5或⎩⎪⎨⎪⎧0≤x ≤3,3≥x +5或⎩⎪⎨⎪⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8.所以不等式的解集为⎝⎛⎦⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ). 且m ≥3,n ≥3,所以m -2>0,2-n <0, 即(m -2)(2-n )<0, 所以2(m +n )<mn +4.4.(2020·开封市定位考试)已知函数f (x )=|x -1|+|x -m |(m >1),若f (x )>4的解集是{x |x <0或x >4}.(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c =m3,求证:a +2b +3c ≥9.解:(1)因为m >1,所以f (x )=⎩⎪⎨⎪⎧-2x +m +1,x <1m -1,1≤x ≤m 2x -m -1,x >m ,作出函数f (x )的图象如图所示,由f (x )>4的解集及函数f (x )的图象得⎩⎪⎨⎪⎧-2×0+m +1=42×4-m -1=4,得m =3.(2)由(1)知m =3,从而1a +12b +13c=1,a +2b +3c =(1a +12b +13c )(a +2b +3c )=3+(a 2b +2b a )+(a 3c +3c a )+(2b 3c +3c2b )≥9,当且仅当a =3,b =32,c =1时“=”成立.5.(2020·原创冲刺卷)已知定义在R 上的函数f (x )=|x +1|+|x -2|+(x -1)2的最小值为s .(1)试求s 的值;(2)若a ,b ,c ∈R +,且a +b +c =s ,求证:a 2+b 2+c 2≥3.解:(1)f (x )=|x +1|+|x -2|+(x -1)2≥|x +1|+|2-x |≥|(x +1)+(2-x )|=3,即f (x )≥3. 当且仅当x =1,且(x +1)(2-x )≥0,即x =1时,等号成立,所以f (x )的最小值为3,所以s =3.(2)证明:由(1)知a +b +c =3.故a 2+b 2+c 2=(a 2+12)+(b 2+12)+(c 2+12)-3 ≥2a +2b +2c -3=2(a +b +c )-3=3(当且仅当a =b =c =1时,等号成立). 6.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.(2020·江西八所重点中学联考)已知不等式|ax -1|≤|x +3|的解集为{x |x ≥-1}. (1)求实数a 的值;(2)求12-at +4+t 的最大值.解:(1)|ax -1|≤|x +3|的解集为{x |x ≥-1},即(1-a 2)x 2+(2a +6)x +8≥0的解集为{x |x ≥-1}.当1-a 2≠0时,不符合题意, 舍去.当1-a 2=0,即a =±1时,x =-1为方程(2a +6)x +8=0的一解,经检验a =-1不符合题意,舍去, a =1符合题意. 综上,a =1.(2)(12-t +4+t )2=16+2(12-t )(4+t )=16+2-t 2+8t +48,当t =82=4时,(12-t +4+t )2有最大值,为32.又12-t +4+t ≥0,所以12-t +4+t 的最大值为4 2. 2.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)] ≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2], 故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23. 由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

高考数学必考知识点不等式

高考数学必考知识点不等式

高考数学必考知识点不等式:不等式导语:高考数学中,不等式是必考的重要知识点之一,掌握不等式的基本性质和解题方法对提高数学成绩至关重要。

本文将重点介绍不等式的基本概念、性质和解题方法。

一、不等式的基本概念不等式是数学中比较两个数大小关系的一种符号表示法。

常见的不等式符号包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。

二、不等式的性质1. 传递性:若a>b,b>c,则a>c。

即不等式大小关系具有传递性的特点。

2. 加减性质:若a>b,则a+c>b+c;若a>b,c>0,则ac>bc。

即不等式两边同时加上或减去相同的数,不等式的大小关系不变;不等式两边同时乘以一个正数(或除以一个正数),大小关系不变;不等式两边同时乘以一个负数(或除以一个负数),不等式的大小关系发生改变。

3. 倒置性质:若a>b,则-b>-a;若a>b,c<0,则ac<bc。

即不等式两边同时乘以-1,不等式的大小关系发生倒置。

4. 倒数性质:若a>b,c>d且c>0,d>0,则1/a<1/b;若a>b,c>d且c<0,d<0,则1/a>1/b。

5. 平方性质:对于正实数a和b,若a>b,则a²>b²;若a=b,则a²=b²;若a<0,b<0,则a²>b²。

即不等式两边同时平方,不等式的大小关系不变。

三、不等式的解题方法1. 直接比较法:通过观察和比较不等式中数的大小关系,直接求解不等式。

例题1:解不等式3x+5>2x-1。

解:首先将不等式移到等式两边,得3x-2x>-1-5,即x>-6。

例题2:解不等式(x+1)(x-2)<0。

解:使用区间法解不等式,首先找出等式的零点x=-1和x=2,然后根据零点将数轴划分为三个区间:(-∞,-1),(-1,2)和(2,+∞)。

高考数学选修不等式知识点

高考数学选修不等式知识点

高考数学选修不等式知识点在高考数学中,不等式是一个重要的考点,也是考验考生逻辑思维和解题能力的一个重要方面。

不等式知识点的掌握不仅对高考数学考试有帮助,而且在解决实际问题中也有着广泛的应用。

本文将深入探讨高考数学选修中的不等式知识点,包括基本不等式、加减乘除初等函数不等式、绝对值不等式以及一元二次不等式。

一、基本不等式基本不等式是数学中常用的不等式之一,它是指对于任意实数x和y,有x>y,则必有x+y>x-y。

这个不等式在数论证明和数学推导中被广泛应用。

在高考数学考试中,基本不等式常用于解决简单的数学问题,如求解不等式的解集。

二、加减乘除初等函数不等式加减乘除初等函数不等式是指在函数的加减乘除运算过程中,产生的不等式。

该类不等式在高考数学中经常出现,涉及到常见的初等函数,如线性函数、二次函数、指数函数、对数函数以及分式函数等。

线性函数不等式是初等函数不等式的一种常见形式。

考生需要掌握线性函数的性质,如定义域、增减性、图像等,以便求解线性函数不等式。

此外,考生还需要灵活运用绝对值不等式、分式不等式等变形求解技巧,提高解题效率。

三、绝对值不等式绝对值不等式是一类常见的不等式形式,也是考验考生运用绝对值性质解决问题的关键点。

在高考数学中,绝对值不等式的解法多种多样,常见的解法有分情况讨论法、化简法、代换法等。

分情况讨论法是解决绝对值不等式常用的一种解法。

通过将绝对值表达式拆分成正负两种情况进行讨论,从而得到不等式的解集。

在使用分情况讨论法时,考生需要灵活应用数学推理和逻辑思维,一步步推导出解集。

化简法是另一种常见的解绝对值不等式的方法。

通过对绝对值式子进行开平方、求导等操作,将绝对值不等式转化为等价的无绝对值的不等式。

通过这种转化,考生可以更简洁地求解不等式的解。

四、一元二次不等式一元二次不等式是指二次函数的解集构成的不等式。

这类不等式在高考数学考试中经常出现,需要考生掌握基本的二次函数知识和不等式求解技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选修 不等式课 题: 第01课时 不等式的基本性质 一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢”、“电灯挂在写字台上方怎样的高度最亮”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab即可。

怎么证呢二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

(对称性)②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。

③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。

推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d . ④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc . ⑤、如果a>b >0,那么nn b a >(n ∈N ,且n>1)⑥、如果a>b >0,那么nn b a > (n ∈N ,且n>1)。

三、典型例题:例1、已知a>b ,c<d ,求证:a-c>b-d . 例2已知a>b>0,c<0,求证:bc a c >。

选修4_5 不等式选讲课 题: 第02课时 含有绝对值的不等式的解法 一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。

在此基础上,本节讨论含有绝对值的不等式。

关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

下面分别就这两类问题展开探讨。

1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。

主要的依据是绝对值的意义.请同学们回忆一下绝对值的意义。

在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。

即⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。

2、含有绝对值的不等式有两种基本的类型。

第一种类型。

设a 为正数。

根据绝对值的意义,不等式a x <的解集是 }|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示。

a - 图1-1 a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。

第二种类型。

设a 为正数。

根据绝对值的意义,不等式a x >的解集是 {|x a x >或a x -<}它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集。

如图1-2所示。

–a a 图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。

二、典型例题:例1、解不等式213+<-x x 。

例2、解不等式x x ->-213。

方法1:分域讨论★方法2:依题意,x x ->-213或213-<-x x ,(为什么可以这么解) 例3、解不等式52312≥-++x x 。

例4、解不等式512≥-+-x x 。

解 本题可以按照例3的方法解,但更简单的解法是利用几何意义。

原不等式即数轴上的点x 到1,2的距离的和大于等于5。

因为1,2的距离为1,所以x 在2的右边,与2的距离大于等于2(=(5-1))2÷;或者x 在1的左边,与1的距离大于等于2。

这就是说,4≥x 或.1-≤x例5、不等式 31++-x x >a ,对一切实数x 都成立,求实数a 的取值范围。

四、练习:解不等式1、 .1122>-x2、01314<--x3、 423+≤-x x .4、 x x -≥+21.5、 1422<--x x6、 212+>-x x .7、 42≥-+x x8、 .631≥++-x x9、 21<++x x 10、 .24>--x x选修4_5 不等式选讲课 题: 第02课时 含有绝对值的不等式的证明 一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)b a b a +≥+ (2)b a b a +≤-(3)b a b a ⋅=⋅ (4))0(≠=b baba 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理 实际上,性质b a b a ⋅=⋅和)0(≠=b baba 可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。

因此,只要能够证明b a b a +≥+对于任意实数都成立即可。

我们将在下面的例题中研究它的证明。

现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。

在0<a 时,等号不成立)。

同样,.a a -≥当且仅当0≤a 时,等号成立。

含有绝对值的不等式的证明中,常常利用a a +≥、a a -≥及绝对值的和的性质。

二、典型例题:例1、证明 (1)b a b a +≥+, (2)b a b a -≥+。

证明(1)如果,0≥+b a 那么.b a b a +=+所以.b a b a b a +=+≥+如果,0<+b a 那么).(b a b a +-=+所以b a b a b a b a +=+-=-+-≥+)()( (2)根据(1)的结果,有b b a b b a -+≥-++,就是,a b b a ≥++。

所以,b a b a -≥+。

例2、证明 b a b a b a +≤-≤-。

例3、证明 c b c a b a -+-≤-。

思考:如何利用数轴给出例3的几何解释(设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。

这就是上面的例3。

特别的,取c =0(即C 为原点),就得到例2的后半部分。

)探究:试利用绝对值的几何意义,给出不等式b a b a +≥+的几何解释含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。

例4、已知 2,2cb yc a x <-<-,求证 .)()(c b a y x <+-+ 证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤ (1)2,2c b y c a x <-<-Θ, ∴c cc b y a x =+<-+-22 (2)由(1),(2)得:c b a y x <+-+)()(例5、已知.6,4ay a x <<求证:a y x <-32。

证明 6,4a y a x <<Θ,∴23,22ay a x <<,由例1及上式,a aa y x y x =+<+≤-223232。

注意: 在推理比较简单时,我们常常将几个不等式连在一起写。

但这种写法,只能用于不等号方向相同的不等式。

四、练习:1、已知.2,2cb Bc a A <-<-求证:c b a B A <---)()(。

2、已知.6,4cb yc a x <-<-求证:c b a y x <+--3232。

链接:不等式的图形借助图形的直观性来研究不等式的问题,是学习不等式的一个重要方法,特别是利用绝对值和绝对值不等式的几何意义来解不等式或者证明不等式,往往能使问题变得直观明了,帮助我们迅速而准确地寻找到问题的答案。

关键是在遇到相关问题时,能否准确地把握不等式的图形,从而有效地解决问题。

我们再来通过几个具体问题体会不等式图形的作用。

1.解不等式121+≤-+-x x x 。

题意即是在数轴上找出到11=ξ与22=ξ的距离之和不大于到点13-=ξ的距离的所有流动点x 。

首先在数轴上找到点11=ξ,22=ξ,13-=ξ(如图)。

3ξ 1x 1ξ 2ξ 2x x -1 0 1 2 3从图上判断,在1ξ与2ξ之间的一切点显示都合乎要求。

事实上,这种点到1ξ与2ξ的距离和正好是1,而到3ξ的距离是)21(1)1(2≤≤+=-+x x x 。

现在让流动点x 由点1ξ向左移动,这样它到点3ξ的距离变,而到点1ξ与2ξ的距离增大,显然,合乎要求的点只能是介于13-=ξ与11=ξ之间的某一个点1x 。

由),1()2()1(111--≤-+-x x x 可得.321≥x 再让流动点x 由点2ξ向右移动,虽然这种点到1ξ与2ξ的距离的和及到3ξ的距离和都在增加,但两相比较,到1ξ与2ξ的距离的和增加的要快。

所以,要使这种点合乎要求,也只能流动到某一点2x 而止。

由),1()2()1(222--≤-+-x x x 可得.42≤x 从而不等式的解为.432≤≤x 2.画出不等式1≤+y x 的图形,并指出其解的范围。

相关文档
最新文档