通信类外文文献翻译蜂窝网络中的全双工通信设备
通信技术中的全双工通信的原理和实际应用
通信技术中的全双工通信的原理和实际应用全双工通信是一种在通信系统中允许数据同时进行双向传输的技术。
它允许发送方和接收方可以同时发送和接收信息,这样能够提高通信效率和传输速度。
本文将介绍全双工通信的原理和实际应用。
首先,让我们来了解全双工通信的原理。
全双工通信是通过使用两个独立的信道来实现的,一个用于发送数据,另一个用于接收数据。
这两个信道在物理上是分离的,因此可以同时进行数据的发送和接收。
通常,全双工通信中使用的信道可以是光纤、电缆、无线电波等。
实现全双工通信的一个重要组成部分是双工器。
双工器是一种用于在同一信道上实现双向通信的设备。
它可以分离发送和接收信号,使它们能够同时进行。
双工器可以将发送方的信号分离出来,然后将其传输到接收方,同时将接收方的信号分离出来,然后将其传输到发送方。
这样,发送方和接收方就可以在同一信道上同时进行通信。
全双工通信的实际应用非常广泛。
在电话系统中,全双工通信被广泛应用。
例如,当两个人进行电话对话时,每个人都可以同时说话和听对方说话,而不需要等待对方完成。
这样可以实现更加流畅和自然的对话。
另一个实际应用是在计算机网络中。
在局域网、广域网和互联网中,全双工通信被广泛用于数据的传输。
例如,在一个局域网中,当一个计算机发送数据给另一个计算机时,它可以同时接收来自另一个计算机的数据,而不需要等待。
这样可以提高数据传输的效率和速度。
此外,全双工通信还在无线通信中得到了广泛应用。
例如,在无线电对讲机中,全双工通信允许用户同时发送和接收语音信息。
这样可以实现快速和高效的信息交流。
总结一下,全双工通信是一种能够同时进行双向数据传输的通信技术。
它通过使用两个独立的信道和双工器来实现。
全双工通信的实际应用非常广泛,在电话系统、计算机网络和无线通信中都有所应用。
通过使用全双工通信,可以提高通信的效率和传输速度,实现更加流畅和高效的数据传输。
本科毕业论文中英文翻译--Wireless-Communications无线通信【范本模板】
Wireless Communications*byJoshua S。
Gans,Stephen P。
King and Julian Wright1. IntroductionIn 1895, Guglielmo Marconi opened the way for modern wireless communications by transmitting the three—dot Morse code for the letter ‘S’ over a distance of th ree kilometers using electromagnetic waves。
From this beginning,wireless communications has developed into a key element of modern society. From satellite transmission, radio and television broadcasting to the now ubiquitous mobile telephone,wireless communications has revolutionized the way societies function.This chapter surveys the economics literature on wireless communications。
Wireless communications and the economic goods and services that utilise it have some special characteristics that have motivated specialised studies。
First, wireless communications relies on a scarce resource –namely,radio spectrum –the property rights for which were traditionally vested with the state. In order to foster the development of wireless communications (including telephony and broadcasting)those assets were privatised。
通信工程专业英语文献翻译
Multi-Code TDMA (MC-TDMA) for Multimedia Satellite Communications用于多媒体卫星通信的MC--TDMA(多码时分多址复用)R. Di Girolamo and T. Le-NgocDepartment ofa Electricl and Computer Engineering - Concordia University1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada, H3G 1M8 ABSTRACT摘要In this paper, we propose a multiple access scheme basedon a hybrid combination of TDMA and CDMA,在这篇文章中,我们提出一种基于把时分多址复用和码分多址复用集合的多址接入方案。
referred toas multi-code TDMA (MC-TDMA). 称作多码—时分多址复用The underlying TDMAframe structure allows for the transmission of variable bitrate (VBR) information,以TDMA技术为基础的帧结构允许传输可变比特率的信息while the CDMA provides inherentstatistical multiplexing.和CDMA提供固有的统计特性多路复用技术The system is studied for a multimediasatellite environment with long-range dependentdata traffic,and VBR real-time voice and video traffic研究这个系统是为了在远程环境下依赖数据传输和可变比特率的语音和视频传输的多媒体卫星通信系统 . Simulationresults show that with MC-TDMA, the data packetdelay and the probability of real-time packet loss can bemaintained low. 仿真结果表明:采用MC-TDMA的多媒体卫星通信,数据包延时和实时数据丢失的可能性可以保持很低。
5G无线通信网络中英文对照外文翻译文献
5G无线通信网络中英文对照外文翻译文献(文档含英文原文和中文翻译)翻译:5G无线通信网络的蜂窝结构和关键技术摘要第四代无线通信系统已经或者即将在许多国家部署。
然而,随着无线移动设备和服务的激增,仍然有一些挑战尤其是4G所不能容纳的,例如像频谱危机和高能量消耗。
无线系统设计师们面临着满足新型无线应用对高数据速率和机动性要求的持续性增长的需求,因此他们已经开始研究被期望于2020年后就能部署的第五代无线系统。
在这篇文章里面,我们提出一个有内门和外门情景之分的潜在的蜂窝结构,并且讨论了多种可行性关于5G无线通信系统的技术,比如大量的MIMO技术,节能通信,认知的广播网络和可见光通信。
面临潜在技术的未知挑战也被讨论了。
介绍信息通信技术(ICT)创新合理的使用对世界经济的提高变得越来越重要。
无线通信网络在全球ICT战略中也许是最挑剔的元素,并且支撑着很多其他的行业,它是世界上成长最快最有活力的行业之一。
欧洲移动天文台(EMO)报道2010年移动通信业总计税收1740亿欧元,从而超过了航空航天业和制药业。
无线技术的发展大大提高了人们在商业运作和社交功能方面通信和生活的能力无线移动通信的显著成就表现在技术创新的快速步伐。
从1991年二代移动通信系统(2G)的初次登场到2001年三代系统(3G)的首次起飞,无线移动网络已经实现了从一个纯粹的技术系统到一个能承载大量多媒体内容网络的转变。
4G无线系统被设计出来用来满足IMT-A技术使用IP面向所有服务的需求。
在4G系统中,先进的无线接口被用于正交频分复用技术(OFDM),多输入多输出系统(MIMO)和链路自适应技术。
4G无线网络可支持数据速率可达1Gb/s的低流度,比如流动局域无线访问,还有速率高达100M/s的高流速,例如像移动访问。
LTE系统和它的延伸系统LTE-A,作为实用的4G系统已经在全球于最近期或不久的将来部署。
然而,每年仍然有戏剧性增长数量的用户支持移动宽频带系统。
通信工程专业英语
通信工程专业英语Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better一、汉译英1、时分多址:TDMA Time Division Multiple Address/ Time Division Multiple Access2、通用无线分组业务:GPRSGeneral Packet Radio Service3、国际电报电话咨询委员会:CCITT4、同步数字体系:SDH Synchronous Digital Hierarchy 同步数字序列5、跳频扩频:FHSS frequency hopping spread spectrum6、同步转移模块:STM synchronous transfer module7、综合业务数字网:ISDNIntegrated Services Digital Network 8、城域网:MAN Metropolitan Area Network9、传输控制协议/互联网协议:TCP/IP Transmission ControlProtocol/Internet Protocol10、服务质量:QOS Quality of Service11、中继线:trunk line12、传输速率:transmission rate13、网络管理:network management14、帧结构:frame structure15、移动手机:Mobile Phone 手机Handset16、蜂窝交换机:Cellular switches 电池开关cell switchcell 蜂房17、天线:Antenna18、微处理器:microprocessor19、国际漫游:International roaming20、短消息:short message21、信噪比:SNRSignal to Noise Ratio22、数字通信:Digital communication23、系统容量:system capacity24、蜂窝网:cell networkcellular network Honeycomb nets 25、越区切换:Handover26、互联网:internet27、调制解调器:modem28、频谱:spectrum29、鼠标:Mouse30、电子邮件:electronic mail E-mail31、子网:subnet32、软件无线电:software defined radios33、网络资源:network resources二、英译汉1、mobile communication:移动通信2、Computer user:计算机用户3、Frame format:帧格式4、WLAN:wireless local area network 无线局域网络5、Communication protocol:通信协议6、Transmission quality:传输质量7、Remote terminal:远程终端8、International standard:国际标准9、GSM:全球移动通信系统Global System for Mobile Communications10、CDMA:码分多址Code Division Multiple Access11、ITU:国际电信联盟International Telecommunication Union12、PCM:pulse code modulation 脉冲编码调制13、WDM:波分复用Wavelength Division Multiplex14、FCC:联邦通信委员会Federal communications commission 15、PSTN:公用电话交换网Public Switched Telephone Network 16、NNI:网络节点借口Network Node Interface17、:万维网World Wide Web18、VOD:视频点播Video-On-Demand19、VLR:访问位置寄存器Visitor Location Register20、MSC:移动交换中心Mobile Switching Centre21、HLR:原籍位置寄存器Home Location Register22、VLSI:超大规模集成电路Very Large Scale Integrated Circuits23、Bluetooth technology:蓝牙技术24、Matched filter:匹配滤波器25、ADSL:非对称数字用户环路Asymmetrical Digital Subscriber Loop 非对称数字用户线路Asymmetric Digital Subscriber Line26、GPS:全球定位系统Global Position System27、ATM:异步传输模式Asynchronous Transfer Mode三、汉译英1、脉冲编码调制PCM依赖于三个独立的操作:抽样、量化和编码;PCM is dependent on three separate operations: sampling, quantizing and coding;2、像TCP和IP那样的协议已经被设计出来,当然,它们还需要被更新和维持;Protocols like TCP and IP have already been designed,of course,but they need to beupdated and maintained;3、码分多址是一种前景广阔的宽带数字工作系统;One form of digital wide band operation which has good future potential is CDMA;4、互联网是可提供很多网络资源的最大的信息库;The internet is the largest repository of information which can provide very largenetwork resources.5、开发蜂窝式移动电话系统并将其在许多城市中推广应用的原因之一是传统的移动电话系统存在容量有限、服务性能差、频谱利用率低的缺点;One of many reasons for developing a cellular mobile telephone system and deploying it in many cities is the operational limitations of conventional mobile telephone system;limited servile capability,poor service performance,and inefficient frequency spectrum utilization.6、来自发端借口不见的定时新号被加到数据调制解调器上,以使计算机与数传机同步;在接收端,从数据流中取出同步脉冲式计算机同步;Timing signals from the interface assembly at the transmitter are applied to the data modem to synchronize the computer and the data set. At the receivers synchronizationpulses are derived from the data stream to synchronize the computer.7、我们正处于通信网络革命的开始,越来越大的容量需求,各种各样的应用,以及服务质量正在对光网络提出巨大的需求;We are at the beginning of a revolution in communications networks, where increasing capacity, variety of applications, and quality of service are placing enormous demands on the optical network.8、目前在欧洲正在开发第三代移动通信系统,其目的是要综合第二代系统的所有不同业务并覆盖更广泛的业务话音、数据、视频、多媒体范围,而且还要与固定电话网络的技术发展保持一致和兼容;The third generation mobile communication system currently being developed in Europe, intended to integrate all the different services of the second generation system andcover a much wider range of broadband services Voice、data、video、multimediaconsistent and compatible with technology developments taking place within the fixed telecommunication networks.9、在现代对多媒体的描述中,我们所具有的技术已开始向人类具有的能力迈进;通过使用计算机技术、软件和其他技术,如CD-ROM;不仅能将视频图像和音频综合在一起,而且可以与其他计算机用户进行交互工作;In the modern presentation multimedia we now have the technology that can begin to move towards an ability already held by the human beings in that by using computer, technology, software and other technology, such as CD-ROM not only can we bring together audio and visual images but interactive with other computer users.10、为弥补这些问题,要在基本结构中加入大量的高效中继线;高效中继线用于直接连接有大量的节点间通信业务量的各交换中心;通信量常常是通过网络中可用的最低层次传送的;To compensate for these problems, a large number of high usage trunks augment the basic architecture. High-usage trunks are used for direct connection between switching centers with high volumes of internodes traffic. Traffic is always routed through the lowest available level of the work.11、光纤网络的革命刚刚开始,并正快速向未来的带宽无线、可靠和低费用的在线世界发展;The revolution of optical network is just beginning, and is advancing very swiftly towarda future online world in which bandwidth is essentially unlimited、reliable and low-cost.12、实际设备通常使用8kHz的采样速率,而如果每个样值用8位码的话,则话路是由一个重复速率64kHz的脉冲流来表示;Practical equipments, however, normally use a sampling rate of 8 kHz, and if 8 digits per sample value are used the voice channel becomes represented by a stream of pulses with a repetition rate of 64 kHz.13、是由于SDH设备在这些方面的标准化,才提供了网络运营者所期望的灵活性,从而能低价高效地应付带宽方面的增长并为后十年中出现的新的用户业务作好准备;It is the standardization of these aspects of SDH equipment that will deliver the flexibility required by network operators to cost effectively manage the growth in bandwidth and provisioning of new customer services expected in the net decade.四、英译汉1、The cellular concept is defined by two features, frequency reuse and cell splitting. Frequency reuse comes into play by using radio channels on the same frequency in coverage areas that are far enough apart not to cause co-channel interference. This allows handling of simultaneous calls that exceed the theoretical spectral capacity. Cell splitting is necessary when the traffic demand on a cell has reached the maximum=m and the cell is then divided into a micro-cellular system. The shape of cell in a cellular system is always depicted as a hexagon and the cluster size can be seven, nine or twelve. 蜂窝的概念由两个特点决定,频率复用和小区分割;在相邻覆盖区域足够远的而不至于引起共用信道干扰的,通过使用同一频率的无线信道,频率再利用才起作用;这样可以出来同时出现的呼叫并超出理论频谱容量;当小区的业务需求增到最大时,就要被划分,小区就要被划分成更小的蜂窝系统区域,蜂窝系统的小区形状常被描述成六边形,一群小区数量可以是9个或12个;2、Before you can use the Internet, you must choose a way to move data between the Internet and your PC. This link may be a high-speed data communication circuits, a local area network LAN, a telephone line or a radio channel. Most likely, you will use a Modem attached to your telephone line to talk to the Internet. Naturally, the quality of your Internet connection and service, like many other things in life, is dictated by the amount of money you are willing to spend.Although all these services can well satisfy the needs of the users for information exchange, a definite requirement is needed for the users. Not only should the users know where the resources locate, but also he should know some operating commands concerned.在使用Internet之前,必须使用一种方法在呢的PC机和Internet之间传递数据,这种连接的链路可以是高速数据通道电路,局域网,电话线路或无线信道;最有可能的是,你使用Modem连到电话线上与Internet对话;当然像生活中许多其他事物一样,与Internet连接服务和质量是由你花钱的数量来决定的;虽然这些所有的服务可以很好满足用户交换信息需要,但用户仍旧需要具有特定的先决条件,用户不但要知道信息资源的位置而且要知道一些有关的操作命令;3、Packet switching achieves the benefits discussed so far and offers added features. It provides the full advantage of the dynamic allocation of the bandwidth, even when messages are long. Indeed, with packer switching, many packets of the same message may be in transmission simultaneously over consecutive links of a path from source to destination, thus achieving a ‘pipelining’ effect and reducing considerably the overall transmission delay of the message as compared to message switching. It lends to require smaller storage allocation at the intermediate switches. It also has better error characteristics and leads to more efficient error recovery procedures, as it deals with smaller entities. Needless to say, packer switching presents design problems of its own, such as the need to reorder packets of a given message that may arrive at the destination node out of sequence.分组交换除具有以上讨论的有点之外,还具有一些特点;它提供带宽动态分配的全部优势,甚至当报文很长时依然如此,由于有分组交换,一个报文的多个分组确定可以通过原点到终点通路中多个链路同时传送,因而道道“管道”传送的效应,与报文交换相比,他大大的减少了报文整体传送时延;在中间交换设备中这种方式只需要较小的存储分配区域;分组交换的误码特性较好,由于它只涉及很短的长度,因而导致更高效的纠错方式;当然,分组交换也有自身设计上的麻烦,例如,当报文无序到达目的节点时,需要重新对该报文进行分组排序;4、As more and more systems join the Internet, and as more and more forms of information can be converted to digital form, the amount of stuff available to Internet userscontinues to grow. At some points very soon after the nationwide Internet started to grow, people began to treat the Net as a community, with its own tradition and customs.随着越来越多的系统连接到互联网,越来越多的信息被转化为数字形式,互联网用户可利用的资料持续增长,在不久的将来当国内互联网的规模增加到一定程度时,人们开始把互联网当做社区对待,并且拥有自己的传统和习惯;5、Three components are involved in a basic optical fiber system: the light source, the photo detector, and the optical transmission line. The optical light source generates the optical energy which serves as the information carrier, similar to a radio wave source supplying electromagnetic energy at radio wave wavelengths as the information carrier.The optical photo detector detects the optical energy and converts it into an electrical form. The optical fiber transmission line is the equivalent of copper wires and functionas the conductor of optical energy.基本的光纤系统涉及到3个部分:光源、光检测器和光缆;光源产生的能力作为信息的载体,类似于具有电磁能的无线电波用波长作为信息载体,光检测器检测光能并将其转化为电能的形式,光缆等效于铜线具有传导光能的作用;6、The fixed telephone service is global and the interconnection varies from coaxialcable to optical fiber and satellite. The national standards are different, but with common interfaces and interface conversion, interconnection can take place. For mobilethe problem is far more complex, with the need to roam creating a need for complex networks and system. Thus in mobile the question of standards is far more crucial to success than fixed systems.The GSM system is based on a cellular communications principle which was first proposedas a concept in the 1940s by Bell System engineers in the U.S. The idea came out of the need to increase network capacity and got round the face that broadcast mobile networks, operating in densely populated areas, could be jammed by a very small number of simultaneous calls. The power of the cellular system was that it allowed frequency reuse.全球范围内的固定电话通过同轴电缆、光缆和卫星相连;尽管各国的通信标准不同,但是由于有共同的接口和接口转换设备,互连问题得以解决;对于移动通信存在漫游问题,网络和系统就比较复杂,所以移动通信的标准问题就更关键;1940年有美国贝尔系统工程师提出的蜂窝通信原理是GSM系统的基础,其思路是在人口密集的区域由于一些同时发起的呼叫导致网络拥塞,采用蜂窝系统可以增加系统的容量,蜂窝系统的优点在于频率的重复利用;7、The advantage of SDH are mainly reflected in the following:1Lower network element costs: With a common standard, compatible equipment will be available from many vendors.In a highly competitive market prices will be vary attractive. 2 Better network management: With better network management, operators will be able to mote efficientlyuse the network and provide better service. The concept of TMNTelecommunication Management Networksis under study by CCITT. Some TMN standards defining management system interfaces already Faster provisioning: If new circuits can be software defined to use existing spare bandwidth then provisioning will be mush faster. The only new connection needed will be from the customer’s premises to the nearest network access node.SDH的优点是:1、较低的网络成本:由于具有共同的标准,许多供应商提供的设备可以兼容,激烈的时长竞争可以降低成本,2、更好的网络管理:运营商有能力提供更有效的业务,电信网管标准正在由CCITT指定,定义管理接口的相关标准已经出台;3、快速准备:如果新的电路可被软件来定义,利用现有的空闲频段从用户到最近的网络节点,接入的准备工作将更快;8、If we consider binary transmission, the complete information about a particular message will always be obtained by simply detection the presence or absence of the pulse. By comparison, most other forms of transmission systems convey the message information using the shape, or level of the transmitted signal; parameters that are most easily affected by the noise and attenuation introduced by the transmission path. Consequentlythere is an inherent advantage for overcoming noisy environments by choosing digital transmission.Noise can be introduced into transmission path in many different ways; perhaps via a nearby lightning strike, the parking of a car ignition system, or the thermal low-level noise within the communication equipment itself. It is the relationship of the truesignal to the noise signal, known as the signal-to-noise ratio, which is of most interest to the communication engineer.如果进行二进制传输,通过检测脉冲的有无就可获得报文的全部信息,相比之下,其他传输系统携带信息是通过波形和信号电平,这些参数容量收到噪声和传输信道衰减的影响,因此数字通信具有克服噪声环境的内在优势;噪声可能通过不同的方式进入传输信道,附近的闪电、汽车点火系统或者通信设备内部的热噪声,通信工程师最感兴趣的是信噪比;9、Most of the subscribers on the network ate telephones. The telephone contains a transmitter and receiver for converting back and forth between analog voice and analog electrical signals. With the introduction of the digital data system, some subscribers that transmit digital signals have been incorporated into the network.网络中大多数用户都是电话机;电话机包括一个送话器和一个受话器,用料在模拟话音和模拟电信号之间进行变换;随着数字、数据系统的引入,有些传输数字信号的用户已经并入该网;。
通信工程外文文献翻译
毕业设计(论文)的外文文献翻译原始资料的题目/来源:Fundamentals of wireless communications by David Tse翻译后的中文题目:无线通信基础专业通信工程学生王晓宇学号110240318班号1102403指导教师杨洪娟翻译日期2015年6月15日外文文献的中文翻译7.mimo:空间多路复用与信道建模本书我们已经看到多天线在无线通信中的几种不同应用。
在第3章中,多天线用于提供分集增益,增益无线链路的可靠性,并同时研究了接受分解和发射分解,而且,接受天线还能提供功率增益。
在第5章中,我们看到了如果发射机已知信道,那么多采用多幅发射天线通过发射波束成形还可以提供功率增益。
在第6章中,多副发射天线用于生产信道波动,满足机会通信技术的需要,改方案可以解释为机会波束成形,同时也能够提供功率增益。
章以及接下来的几章将研究一种利用多天线的新方法。
我们将会看到在合适的信道衰落条件下,同时采用多幅发射天线和多幅接收天线可以提供用于通信的额外的空间维数并产生自由度增益,利用这些额外的自由度可以将若干数据流在空间上多路复用至MIMO信道中,从而带来容量的增加:采用n副发射天线和接受天线的这类MIMO 信道的容量正比于n。
过去一度认为在基站采用多幅天线的多址接入系统允许若干个用户同时与基站通信,多幅天线可以实现不同用户信号的空间隔离。
20世纪90年代中期,研究人员发现采用多幅发射天线和接收天线的点对点信道也会出现类似的效应,即使当发射天线相距不远时也是如此。
只要散射环境足够丰富,使得接受天线能够将来自不同发射天线的信号分离开,该结论就成立。
我们已经了解到了机会通信技术如何利用信道衰落,本章还会看到信道衰落对通信有益的另一例子。
将机会通信与MIMO技术提供的性能增益的本质进行比较和对比是非常的有远见的。
机会通信技术主要提供功率增益,改功率增益在功率受限系统的低信噪比情况下相当明显,但在宽带受限系统的高信噪比情况下则很不明显。
课文参考译文 (6)-信息科学与电子工程专业英语(第2版)-吴雅婷-清华大学出版社
Unit 6 移动通信Unit 6-1第一部分:移动通信一个移动通信系统是指用户在这个系统中可以一边和别人互相通信,一边在物理位置上进行移动。
例如:传呼机、蜂窝电话和无绳电话。
移动性使得射频通信功能强大而且广为流行。
用户所持的收发器叫移动单元、终端或手持单元。
无线基础设施的复杂性往往要求移动单元只通过一些固定的、较昂贵的称为基站的设备进行通信。
每个移动单元通过两个射频信道接收来自基站的信息并向基站发射信息,这两个信道分别称为前向信道或下行链路,以及逆向信道或上行链路。
我们大多数讨论的是移动单元,因为和基站相比,手持单元构成市场极大的一块,它们的设计更接近于其他射频系统。
蜂窝系统对于一个有限的可用频谱(例如:900MHz附近的一个25MHz的频谱),数十万人如何在拥挤的城区里相互通信?为了回答这个问题,首先考虑一种较简单的情况:几千个FM电台可利用88-108MHz的频带在一个国家里广播。
这是可能的,因为在物理位置上相隔足够远的电台可使用同一载波频率(频率重用),而相互干扰可以忽略。
两个电台的中间位置除外,这里接收到的两个电台信号强度相近。
两个可以使用相同载波频率的电台的最小距离是由每个电台发射的信号功率所决定的。
在移动通信系统中,用蜂窝结构来实现频率重用概念,其中每一个蜂窝是六边形的,其周围环绕着6个其它的蜂窝,如图6.1(a)所示。
频率重用概念是:如果位于中央的蜂窝使用频率f1进行通信,那么与其相邻的6个蜂窝就不能使用这个频率,但外面不直接相邻的蜂窝可再次使用这个频率。
实际上,更有效的频率分配方式是如图6.1(b)所示的“7蜂窝”重用模式。
注意:实际上每个蜂窝是使用了一组频率。
图6.1(b)中的每一个蜂窝中的移动单元都有一个基站提供服务,而所有的基站则有一个移动电话交换机构(MTSO)来控制。
同信道干扰在蜂窝系统中,一个重要的问题是两个使用同一频率的单元之间的干扰有多大。
这种干扰叫做同信道干扰,这一效应依赖于两个同信道单元之间的距离与单元半径之比,而与发射功率无关。
蜂窝网络中全双工D2D通信功率控制
蜂窝网络中全双工D2D通信功率控制赵季红;何强;曲桦;栾智荣【摘要】在蜂窝网络中,采用全双工传输的设备直通(D2D)通信可以共享蜂窝通信的信道资源,提升频谱利用率和系统吞吐量.针对单对全双工D2D用户复用单个蜂窝用户的上行信道资源时,用户之间会产生同频干扰的问题,提出了一种低复杂度的功率控制算法.该算法在保证全双工D2D用户和蜂窝用户(CU)的服务质量(QoS)的前提下,最大化全双工D2D链路的吞吐量.仿真结果表明,该算法能够提高全双工D2D链路的吞吐量;全双工D2D链路吞吐量取决于蜂窝用户的QoS要求、相对距离以及自干扰消除数量的限制.%Device-to-device (D2D) communications that based on the wireless full-duplex transmission mode can not only reuse the cellular users' spectrum resource,but also significantly improve the spectral efficiency and the system throughout in wireless cellular networks.However,full-duplex D2D communications may generate same frequency interference to the reused cellular user (CU) while full-duplexD2D users share the same resources as CU in uplink.A low-complexity power control algorithm was proposed to maximize the full-duplex D2D links throughput while guaranteeing the quality of service(QoS) requirements for full-duplex D2D users and CU.Numerical results show that the proposed algorithm can improve the full-duplex D2D links throughput.Moreover,the performance of full-duplex D2D communications depend on the QoS requirements of CU,the distance of D2D pair and self-interference cancelation amounts.【期刊名称】《电信科学》【年(卷),期】2017(033)003【总页数】7页(P1-7)【关键词】设备直通通信;全双工;功率控制【作者】赵季红;何强;曲桦;栾智荣【作者单位】西安邮电大学通信与信息工程学院,陕西西安710061;西安交通大学电子与信息工程学院,陕西西安710049;西安邮电大学通信与信息工程学院,陕西西安710061;西安交通大学电子与信息工程学院,陕西西安710049;西安交通大学电子与信息工程学院,陕西西安710049【正文语种】中文【中图分类】TN929随着局域应用和智能终端的不断涌现,近距离移动数据业务迅速增多,两种作为未来5G无线网络[1,2]中潜在的关键技术,即基于近距离传输的D2D(device-to-device,设备直通)通信技术[3]和无线全双工(full-duplex,FD)传输技术[4,5]被广泛讨论和研究。
具有蜂窝和WiFi双天线系统的移动无线通信设备[发明专利]
专利名称:具有蜂窝和WiFi双天线系统的移动无线通信设备专利类型:发明专利
发明人:满英彤,齐亦红
申请号:CN200710138611.2
申请日:20070724
公开号:CN101137153A
公开日:
20080305
专利内容由知识产权出版社提供
摘要:一种移动无线通信设备,包括外壳和由外壳承载的电路板。
射频(RF)电路安装在该电路板上。
第一天线由外壳内的电路板支撑,并与RF电路在操作上连接,并配置用于蜂窝电话通信。
第二天线由外壳内的电路板支撑,并在操作上与RF电路相连,并配置用于WiFi通信。
第二天线包括倒F或单极天线,该天线具有远离第一天线的开口间隙。
申请人:捷讯研究有限公司
地址:加拿大安大略省沃特卢市
国籍:CA
代理机构:中科专利商标代理有限责任公司
代理人:王玮
更多信息请下载全文后查看。
单工 半双工和全双工实际应用例子
单工半双工和全双工实际应用例子单工、半双工和全双工是在通信领域中常用的术语,用来描述数据传输的方式。
下面列举了10个实际应用例子,以便更好地理解这些概念。
1. 单工通信在广播电台中的应用:广播电台向广播接收器发送信号,接收器只能接收信号,不能向电台发送信号。
因此,广播电台是单工通信的典型实例。
2. 半双工通信在对讲机中的应用:对讲机允许两个人进行通信,但在同一时间内只能有一个人讲话,另一个人只能听。
这种情况下,对讲机是半双工通信的例子。
3. 全双工通信在手机通话中的应用:当两个人进行手机通话时,两个人可以同时说话和听对方说话。
这种情况下,手机通话是全双工通信的例子。
4. 单工通信在电视传输中的应用:电视信号通过广播或有线电视传输到电视机,电视机只能接收信号,不能向广播站或有线电视传输信号。
5. 半双工通信在无线电对讲机中的应用:无线电对讲机允许多个用户进行通信,但在同一时间内只能有一个人说话,其他人只能听。
6. 全双工通信在网络视频会议中的应用:在网络视频会议中,多个参与者可以同时说话和听对方说话,实现实时的双向通信。
7. 单工通信在遥控器中的应用:遥控器通过无线或红外线发送信号给电视机或其他设备,但遥控器无法接收来自设备的信号。
8. 半双工通信在对讲机中的应用:对讲机允许多个用户进行通信,但在同一时间内只能有一个人说话,其他人只能听。
9. 全双工通信在网络电话中的应用:在网络电话通话中,双方可以同时说话和听对方说话,实现实时的双向通信。
10. 单工通信在广播电视中的应用:广播电视通过广播或有线电视传输信号给接收器,接收器只能接收信号,不能向广播电视传输信号。
以上是单工、半双工和全双工在通信领域中的一些实际应用例子。
这些例子展示了不同通信方式在不同场景下的应用,帮助我们更好地理解这些概念及其在现实生活中的应用。
蜂窝网络技术如何实现多台设备同时连接(四)
蜂窝网络技术如何实现多台设备同时连接当今社会,人们对于互联网的需求越来越高。
在这个信息爆炸的时代,手机、平板电脑、智能手表以及智能家电等各类智能设备已经成为人们生活中必不可少的一部分。
而为了满足用户的需求,蜂窝网络技术应运而生。
在这篇文章中,我们将探讨蜂窝网络技术如何实现多台设备的同时连接。
蜂窝网络技术是一种无线通信技术,它通过将通信区域划分为一系列蜂窝状的小区域来传输数据。
每个蜂窝有一个基站,基站通过无线通信与用户的设备进行连接。
在传统的蜂窝网络中,每个用户设备连接到一个基站,并且基站之间之间的通信是相互独立的。
然而,随着智能设备的普及,用户需要同时连接多个设备,这就对蜂窝网络技术提出了新的挑战。
为了实现多台设备同时连接,蜂窝网络技术引入了一系列的改进措施。
首先,基站的覆盖范围被扩大,这样可以让更多的用户设备同时连接到同一个基站上。
其次,基站之间的通信也得到了改善,基站之间可以进行数据传输和协同工作,从而提高网络容量和覆盖范围。
第三,蜂窝网络技术还引入了更高频率的带宽,这样可以提高网络速度和数据传输率。
除了上述技术改进,蜂窝网络技术还使用了多种复用技术来实现多台设备的同时连接。
其中最常见的是时分复用和码分复用。
时分复用是指将时间划分为若干个时隙,不同的用户设备在不同的时隙进行通信,从而实现多台设备同时连接到同一个基站。
而码分复用则是通过不同的编码方式将数据分割为多个信道,不同的用户设备可以通过不同的信道进行通信。
除了以上技术,蜂窝网络技术还采用了多天线技术来提高网络吞吐量和覆盖范围。
多天线技术包括MIMO(多输入多输出)和波束赋形技术。
MIMO技术通过在基站和用户设备之间使用多个天线,实现多个数据流的同时传输,从而提高网络的吞吐量。
而波束赋形技术则是通过控制天线的辐射方向和功率分配,来实现信号的聚焦和增强,从而提高覆盖范围和信号质量。
总结起来,蜂窝网络技术通过一系列技术改进和复用技术的应用,实现了多台设备的同时连接。
认知网络中D2D全双工通信的速率最大化功率分配算法
认知网络中D2D全双工通信的速率最大化功率分配算法谢显中;田瑜;姚鑫凌;雷维嘉【摘要】In the cognitive D2D (Device-to-Device) full-duplex communication network, there is the interference problem when D2D UsErs (DUEs) share the same spectrum with Cellular UsErs (CUEs) in the uplink, a power allocation scheme is proposed to maximize transmission rate. In the scheme, firstly, the cognitive D2D full-duplex communication model is described. Meanwhile, the uplink interference and the corresponding transmission rates at the base station and DUEs are analyzed. Secondly, a power allocation algorithm is proposed to maximize the DUEs' transmission rate in cognitive radio system. Simulation results show that the proposed algorithm can improve the spectrum efficiency and the overall transmission rate of the system in the uplink of the cognitive D2D full-duplex communication network.%针对认知D2D(Device-to-Device)全双工通信网络中,D2D用户共享蜂窝用户上行链路的频谱资源而带来的复杂干扰问题,该文给出了系统传输速率最大化的功率分配方案.该方案首先给出了认知D2D全双工通信模型,并分析了上行链路中基站和D2D用户所受到的干扰以及对应的链路传输速率.其次,提出了一种基于认知无线电系统中最大化D2D用户传输速率的功率分配算法.仿真结果表明,所提算法提高了认知D2D全双工通信网络中上行链路的频谱效率和系统整体传输速率.【期刊名称】《电子与信息学报》【年(卷),期】2017(039)004【总页数】5页(P1002-1006)【关键词】D2D通信;认知无线电;全双工通信;功率分配;传输速率最大化【作者】谢显中;田瑜;姚鑫凌;雷维嘉【作者单位】重庆邮电大学宽带接入网络研究所重庆 400065;重庆邮电大学宽带接入网络研究所重庆 400065;重庆邮电大学宽带接入网络研究所重庆 400065;重庆邮电大学宽带接入网络研究所重庆 400065【正文语种】中文【中图分类】TN929.53随着移动通信网络朝着更高的速率、更大的系统容量发展,移动数据业务的本地化特征越来越明显,传统的以基站为中心的通信模式往往缺乏足够的灵活性,难以完全满足不同业务在实时性和可靠性方面的独特需求[1,2]。
对抗全双工主动窃听的安全高效D2D_通信策略
1110 2024RadioEngineeringVol 54No 5doi:10.3969/j.issn.1003-3106.2024.05.007引用格式:胡阳,杨爽,张明,等.对抗全双工主动窃听的安全高效D2D通信策略[J].无线电工程,2024,54(5):1110-1122.[HUYang,YANGShuang,ZHANGMing,etal.SecureandEfficientD2DCommunicationStrategyAgainstFull duplexActiveEavesdropping[J].RadioEngineering,2024,54(5):1110-1122.]对抗全双工主动窃听的安全高效D2D通信策略胡 阳1,2,杨 爽1,2,张 明1,2,韦 存3,王 磊3,江 雪4(1.国网电力科学研究院有限公司,江苏南京210003;2.南京南瑞信息通信科技有限公司,江苏南京210003;3.南京邮电大学通信与信息工程学院,江苏南京210003;4.南京邮电大学物联网学院,江苏南京210003)摘 要:第5代(TheFifth generation,5G)移动通信网络技术飞速发展,同频双工技术是其中一项关键技术。
将这项技术运用到设备到设备(DevicetoDevice,D2D)通信系统中,不仅可以提高资源利用率,还能提高系统通信的安全性。
然而,非法用户运用全双工技术将对系统的安全性产生巨大的威胁。
因此,针对D2D通信系统中存在全双工主动窃听者恶意干扰D2D用户的问题,主要研究基于Stackelberg博弈的对抗全双工恶意窃听者的安全高效功率分配方案。
由于合法用户和主动窃听者的行为相互影响、相互干扰,在保证保密速率要求的情况下,分别考虑单链路与多链路的场景,研究以最小化D2D用户消耗功率和最大化窃听效用为目标的最佳功率分配策略。
由于D2D用户和恶意窃听者的优化问题不能分开解决,通过将它们之间的交互构建成Stackelberg博弈模型,并基于二分法算法和模拟退火算法进行求解。
电子信息 外文文献译文
XXXX学院毕业设计(论文)外文参考文献译文本2012届原文出处A Novel Cross-layer Quality-of-service ModelFor Mobile AD hoc Network毕业设计(论文)题目基于COMNETIII的局域网的规划与设计院(系)电气与电子信息学院专业名称电子信息工程学生姓名学生学号指导教师A Novel Cross-layer Quality-of-service ModelFor Mobile AD hoc NetworkLeichun Wang, Shihong Chen, Kun Xiao, Ruimin Hu National Engineering Research Center of Multimedia Software, Wuhan UniversityWuhan 430072, Hubei, chinaEmail:******************Abstract:The divided-layer protocol architecture for Mobile ad hoc Networks (simply MANETs) can only provide partial stack. This leads to treat difficulties in QoS guarantee of multimedia information transmission in MANETs, this paper proposes Across-layers QoS Model for MANETs, CQMM. In CQMM, a core component was added network status repository (NSR), which was the center of information exchange and share among different protocol layers in the stack. At the same time, CQMM carried out all kinds of unified QoS controls. It is advantageous that CQMM avoids redundancy functions among the different protocol layers in the stack and performs effective QoS controls and overall improvements on the network performances.Keyword: Cross-layers QoS Model, Mobile Ad hoc Networks (MANETs), Network Status Repository (NSR), QoS Controls.1 introductionWith the rapid development of multimedia technologies and the great increase of his bandwidth for personal communication, video and video services begin to be deployed in MANETs. Different from static networks and Internet, multimedia communications in MANETs such as V oice and Video services require strict QoS guarantee, especially the delay guarantee. In addition, communication among different users can be integrated services with different QoS requirements. These lead to great challenges in QoS guarantee of multimedia communication in MANETs. There are two main reasons in these: 1) MANETs runs in atypical wireless environment with time-varying and unreliable physical link, broadcast channel, and dynamic and limited bandwidth and so forth. Therefore, it can only provide limited capability for differentiated services with strict QoS requirements [1].2) It is difficult that traditional flow project and access control mechanism are implemented because of mobility, multiple hops and self-organization of MANETs.At present, most researches on QoS based on traditional divided-layer protocol architecture for MANETs focus on MAC protocol supporting QoS [2], QoS routingprotocol [3] and adaptive application layer protocol with QoS support [4], and so on. It is avoid less that there will be some redundancies on functions among the different protocol layers in the stack. This will increase the complexity of QoS implementation and cause some difficulties in overall improvement on the network performances. Therefore, it is not suitable for MANETs with low processing abilityIn recent years, the cross-layers design based on the partial protocol layers in MANETs was put forward.[1] proposed the mechanism with QoS guarantee for heterogeneous flow MAC layer.[5,6,7,8] did some researches on implementing video communication with QoS guarantee by exchange and cooperation of information among a few layers in MANETs. These can improve QoS in MANETs’communication to some extent. However, MANETs is much more complex than wired system and static network, and improvements on QoS guarantee depend on full cooperation among all layers in the protocol stack. Therefore, it is difficult for the design to provide efficient QoS guarantee for communication and overall improvements on the network performances in MANETs.To make good use of limited resources and optimize overall performances in MANETs, this paper proposes a novel cross-layer QoS model, CQMM, where different layers can exchange information fully and unified QoS managements and controls can be performed.The rest of the paper is organized as follows. CQMM is described in section 2 in detail. In section 3, we analyze CQMM by the comparison with DQMM.The section 4 concludes the paper.2. A CROSS-LAYER QOS MODEL FOR MANETS-CQMM2.1 Architecture of CQMMIn MANETs, present researches on QoS are mostly based on traditional divided-layer protocol architecture, where signals and algorithms supporting QoS are designed and implemented in different layers respectively, such as MAC protocol supporting QoS in data link layer [9], routing protocol with QoS support in network layer[10.11],and so forth. It can be summarized as A Divided-layer QoS Model for MANETs, DQMM (see fig.1).In DQMM, different layers in the protocol stack are designed and work independently; there are only static interfaces between different layers that are neighboring in logic; and each protocol layer has some QoS controls such as error control in logic link layer, congestion control in network, etc. On the one hand, DQMM can simplify the design of MANETs greatly and gain the protocols with high reliability and extensibility. On the other one, DQMM also has some shortcomings: 1) due to the independent design among he different protocol layers, there are some redundancy functions among the different protocollayers in the stack, 2) it is difficult that information is exchanged among different layers that are not neighboring in logic, which leads to some problems in unified managements, QoS controls and overall improvements on the network performances.Fig.1Therefore, it is necessary that more attention are focused on the cooperation among physical layer data link layer, network layer and higher when attempting to optimize performances of each of layer in MANETs. For this reason, we combine parameters dispersed in different layers and design a novel cross-layer QoS model, CQMM, to improve the QoS guarantee and the overall network performances. The architecture of CQMM is provided in fig 2From fig.2, it can be seen that CQMM keeps the core functions and relative independence of each protocol layer in the stack and allows direct information exchange between two neighboring layers in logics to maintain advantages of the modular architecture .On the basic of these, a core component is added in CQMM, Network Status Repository (simply NSR).NSR is the center, by which different layers can exchange and share information fully. On the one hand, each protocol layer can read the status information of other protocol layers from NSR to determine its functions and implementation mechanisms. On the other one, each protocol layer can write its status information to NSR that can be provided with other layers in the protocol stack. In CQMM, the protocol layers that are neighboring in logics can exchange information directly orindirectly by NSR, and the protocol layers that are not neighboring in logics can exchange information using cross-layer ways via NSR. Therefore, information exchange is flexible in CQMM.All kinds of QoS controls in CQMM such as management and scheduling of network resources, network lifetime, error control, and congestion control and performance optimization and so on are not carried out independently. On the contrary, CQMM is in charge of the unified management and all QoS controls by the cooperation among different protocol layers in the stack. Each QoS control in MANETs is related to all layers in the protocol stack, and also constrained by all layers in the stack. The results of all QoS operations and managements are fed back to the different layers and written back to NSR, which will become the parameters of all kinds of QoS controls in MANETs.2.2 protocol design in CQMMIn CQMM, the protocol designs aims at the full and free information exchange and cooperation among different protocol layers to avoid possible redundancy functions when maintaining the relative independence among different layers and the advantages of the modular architecture.Physical layer: Physical layer is responsible for modulation, transmission and receiving of data, and also the key to the size, the cost and the energy consumption of each node in MANETs. In CQMM, the design of physical layer is to choose the transmission media, the frequency range and the modulation algorithm wit the low cost, power and complexity, big channel capability and so on, according to the cost of implementation, energy constraint, and capability and QoS requirements from high layer.Data link layer: The layer is low layer in the protocol stack and can be divided into two sub-layers: logic link sub-layer and MAC sub-layer. Compared with high layers, data link layer can sense network status in MANETs earlier such as the change of channel quality, the network congestion and so on. Therefore, on the one hand data link layer can perform the basic QoS controls such as error control and management of communication channel. On the other one, the layer can be combined with high layers to establish, choose and maintain the routing faster, prevent the congestion of the network earlier, and choose appropriate transport mechanisms and control strategies for transport layer.Network layer: The design and implementation of network layer protocol in CQMM is to establish, choose and maintain appropriate routings by taking into consideration the power, the cache, the reliability of each node in a routing. QoS requirements of services from high layer such as the bandwidth and the delay, and implementation strategies oferror control in logic link sub-layer and the way of the channel management in MAC sub-layer.Transport layer: In CQMM, the protocol design of transport layer needs to be aware of both functions and implementation mechanism of lower layers such as the way of error control in data link layer, the means to establish, choose and maintain routing in the network layer, and QoS requirements from the application layer, to determine corresponding transmission strategies. In addition, the transport layer also needs to analyze all kinds of events from low layers such as the interrupt and change of the routing and the network congestion, and then respond properly to avoid useless sending data.Application layer: There are two different strategies in the design of the application layer: 1) differentiated services. According to the functions provided by the low layers applications are classed as the different ones with different priority levels. 2) Application-aware design. Analyze specific requirements of different applications such as the bandwidth, the delay and the delay twitter and so on, and then assign and implement the functions for each layer in the protocol stack according to the requirements.2.3 QoS Cooperation and Management in CQMMIn CQM, the core of QoS cooperation and management is that NSR acts as the exchange and share center of status information in protocol stack, and by the full exchange and share of network status among different protocol layers the management and scheduling of the network resources and the overall optimization of the network performances can be implemented effectively. The management and scheduling of the network resources, the cross-layer QoS cooperation and the overall optimization of the network performances.Management and scheduling of network resources: Network resources include all kinds of resources such as the cache, the energy and the queue in each node, and the communication channel among nodes and so froth. In CQMM, the management and scheduling of the network resources are not to the unified management and scheduling of the network resources and full utilization of limited resources in order to increase the QoS of all kinds of communication.QoS cooperation and control: In CQMM, all kinds of QoS controls and cooperation such as the rate adaptation, the delay guarantee and the congestion control and so on, are not implemented by each layer alone, but completed through the operation of all layers in the protocol stack. For example, the congestion in MANETs can be earlier prevented and controlled by the cooperation among different layers such as ACK from MAC sub-layer,the routing information and the loss rate and delay of package from network layer, and the information of rate adaptation in transport layer and so on.Performances Optimization: In CQMM, the optimization of the network performances aims to establish a network optimization model constrained by all layers in the protocol architecture and finds the “best”ways according to the model in order to improve the overall performances in MANETs.3. ANALYSIS OF CQMMPresent QoS models for MANETs can mainly be classed as a QoS model based on traditional divided-layer architecture DQMM and a cross-layer QoS model proposed by this paper CQMM. QoS model used by [1, 5-8] is to some extent extended on the basis of DQMM in nature. Here, we only compare CQMM with DQMM3.1 Information ExchangeDifferent protocol architecture and principle between CQMM lead to great differences in the means, the frequency, the time and the requirement of the information exchange, (see table 1)From Table 1, it can be seen that compared wit DQMM CQMM has some advantages: 1) more flexible information exchange. Neighboring layers can information by the interfaces between layers or NSR, and crossing layers may exchange information through NSR; 2) simpler transform in information format. Different layers can exchange information by NSR, so these layers only need to deal with the format transform between the layers and NSR;3)lower requirements. The protocol layers can read them in proper time Information from different protocol layers temporarily stored in NSR, so the layers exchanging information are not required to be synchronous in time;4) more accurate control. NSR in CQMM can store information of some time from the different layers, which is advantageous to master the network status and manage the network more accurately. However, these require higher information exchange frequencies among the different layers,, more processing time of each node, and more communication among them.。
移动通信术语中英文对照
移动通信术语中英文对照移动通信术语中英文对照一、通信网络1、移动通信网络(Mobile communication network)- 移动方式网络(Mobile telephone network)- 蜂窝网络(Cellular network)2、无线局域网(Wireless LAN)- Wi-Fi3、无线电接入网络(Wireless access network)- 码分多址接入(Code Division Multiple Access,CDMA) - 资源分配接入(Time Division Multiple Access,TDMA) - 正交分频多址接入(Orthogonal Frequency Division Multiple Access,OFDMA)4、固定通信网络(Fixed communication network)- PSTN(Public Switched Telephone Network)二、通信设备1、移动方式(Mobile phone)- 智能方式(Smartphone)- 方式卡(SIM Card)- 按键方式(Feature phone)- 通信基带芯片(Baseband chipset)2、无线路由器(Wireless router)3、通信基站(Base station)- 室内基站(Indoor base station)- 室外基站(Outdoor base station)- 微基站(Micro base station)- 宏基站(Macro base station)三、通信协议及技术1、移动通信协议(Mobile communication protocol)- GSM(Global System for Mobile Communications) - WCDMA(Wideband Code Division Multiple Access) - CDMA2000- LTE(Long-Term Evolution)- 5G2、数据通信标准(Data communication standard)- GPRS(General Packet Radio Service)- EDGE(Enhanced Data Rates for GSM Evolution) - HSPA(High-Speed Packet Access)- HSDPA(High-Speed Downlink Packet Access)- HSUPA(High-Speed Uplink Packet Access)3、无线通信技术(Wireless communication technology) - 蓝牙(Bluetooth)- NFC(Near Field Communication)- IR(Infrared)- GPS(Global Positioning System)四、通信服务与功能1、方式(Telephone)- 打方式(Make a call)- 接方式(Receive a call)2、短信(Short Message Service,SMS)- 发送短信(Send a message)- 收到短信(Receive a message)3、彩信(Multimedia Message Service,MMS) - 发送彩信(Send a MMS)- 收到彩信(Receive a MMS)4、上网(Mobile Internet)- 浏览网页(Browse the web)- 文件(Download files)- 视频通话(Video call)5、社交媒体(Social media)- 微博(Microblogging)- (WeChat)-6、移动支付(Mobile payment)- (Alipay)- 支付(WeChat Pay)7、应用软件(Mobile applications)- 游戏(Games)- 音乐(Music)- 视频(Videos)附件:无法律名词及注释:1、通信网络:指移动通信所依托的网络基础设施,用来实现移动方式通信、上网等功能。
通信工程外文文献
外文资料与中文翻译外文资料:Review of UMTS1.1 UMTS Network ArchitectureThe European/Japanese 3G standard is referred to as UMTS. UMTS is one of a number of standards ratified by the ITU-T under the umbrella of IMT-2000. It is currently the dominant standard, with the US CDMA2000 standard gaining ground, particularly with operators that have deployed cdmaOne as their 2G technology. At time of writing,Japan is the most advanced in terms of 3G network deployment. The three incumbent operators there have implemented three different technologies: J-Phone is using UMTS,KDDI has a CDMA2000 network, and the largest operator NTT DoCoMo is using a system branded as FOMA (Freedom of Multimedia Access). FOMA is based on the original UMTS proposal, prior to its harmonization and standardization.The UMTS standard is specified as a migration from the second generation GSM standard to UMTS via the General Packet Radio System (GPRS) and Enhanced Data for Global Evolution (EDGE), as shown in Figure. This is a sound rationale since as of April 2003, there were over 847 Million GSM subscribers worldwide1, accounting for68% of the global cellular subscriber figures. The emphasis is on keeping as much ofthe GSM network as possible to operate with the new system.We are now well on the road towards Third Generation (3G), where the network will support all traffic types: voice, video and data, and we should see an eventual explosion in the services available on the mobile device. The driving technology for this is the IP protocol. Many cellular operators are now at a position referred to as 2.5G, with the deployment of GPRS, which introduces an IP backbone into the mobile core network.The diagram below, Figure 2, shows an overview of the key components in a GPRS network, and how it fits into the existing GSM infrastructure.The interface between the SGSN and GGSN is known as the Gn interface and uses the GPRS tunneling protocol (GTP, discussed later). The primaryreason for the introduction of this infrastructure is to offer connections to external packet networks, such as the Internet or a corporate Intranet.This brings the IP protocol into the network as a transport between the SGSN and GGSN. This allows data services such as email or web browsing on the mobile device,with users being charged based on volume of data rather than time connected.The dominant standard for delivery of 3G networks and services is the Universal Mobile Telecommunications System, or UMTS. The first deployment of UMTS is the Release ’99 architecture, shown below in F igure 3.In this network, the major change is in the radio access network (RAN) with the introduction of CDMA technology for the air interface, and ATM as a transport in the transmission part. These changes have been introduced principally to support the transport of voice, video and data services on the same network. The core network remains relatively unchanged, with primarily software upgrades. However, the IP protocol pushes further into the network with the RNC now communicating with the 3G SGSN using IP.The next evolution step is the Release 4 architecture, Figure 4. Here, the GSM core is replaced with an IP network infrastructure based around Voice over IP technology.The MSC evolves into two separate components: a Media Gateway (MGW) and an MSC Server (MSS). This essentially breaks apart the roles of connection and connection control. An MSS can handle multiple MGWs, making the network more scaleable.Since there are now a number of IP clouds in the 3G network, it makes sense to merge these together into one IP or IP/ATM backbone (it is likely both options will be available to operators.) This extends IP right across the whole network, all the way to the BTS.This is referred to as the All-IP network, or the Release 5 architecture, as shown in Figure 5. The HLR/VLR/EIR are generalised and referred to as the HLR Subsystem(HSS).Now the last remnants of traditional telecommunications switching are removed, leaving a network operating completely on the IP protocol, and generalised for the transport of many service types. Real-time services are supported through the introduction of a new network domain, the IP Multimedia Subsystem (IMS).Currently the 3GPP are working on Release 6, which purports to cover all aspects not addressed in frozen releases. Some call UMTS Release 6 4G and it includes such issues as interworking of hot spot radio access technologies such as wireless LAN.1.2 UMTS FDD and TDDLike any CDMA system, UMTS needs a wide frequency band in which to operate to effectively spread signals. The defining characteristic of the system is the chip rate, where a chip is the width of one symbol of the CDMA code. UMTS uses a chip rate of 3.84Mchips/s and this converts to a required spectrum carrier of 5MHz wide. Since this is wider than the 1.25MHz needed for the existing cdmaOne system, the UMTS air interface is termed ‘wideband’ CDMA.There are actually two radio technologies under the UMTS umbrella: UMTS FDD and TDD. FDD stands for Frequency Division Duplex, and like GSM, separates traffic in the uplink and downlink by placing them at different frequency channels. Therefore an operator must have a pair of frequencies allocated to allow them to run a network, hence the term ‘paired spectrum’. TDD or Time Division Duplex requires only one frequency channel, and uplink and downlink traffic are separated by sending them at different times. The ITU-T spectrum usage, as shown in Figure 6, for FDD is 1920- 980MHz for uplink traffic, and 2110-2170MHz for downlink. The minimum allocation an operator needs is two paired 5MHz channels, one for uplink and one for downlink, at a separation of 190MHz. However, to provide comprehensive coverage and services, it is recommended that an operator be given three channels. Considering the spectrum allocation, there are 12 paired channels available, and many countries have now completed the licencing process for this spectrum, allocating between two and four channels per licence. This has tended to work out a costly process for operators, since the regulatory authorities in some countries, notably in Europe, have auctioned these licences to the highest bidder. This has resulted in spectrum fees as high as tens of billions of dollars in some countries.The Time Division Duplex (TDD) system, which needs only one 5MHz band in which to operate, often referred to as unpaired spectrum. The differences between UMTS FDD and TDD are only evident at the lower layers, particularly on the radio interface. At higher layers, the bulk of the operation of the two systems is the same. As the name suggests, the TDD system separates uplink and downlink traffic by placing them in different time slots. As will be seen later, UMTS uses a 10ms frame structure which is divided into 15 equal timeslots. TDD can allocate these to be either uplink or downlink,with one or more breakpoints between the two in a frame defined. In this way, it is well suited to packet traffic, since this allows great flexibility in dynamically dimensioning for asymmetry in traffic flow.The TDD system should not really be considered as an independent network,but rather as a supplement for an FDD system to provide hotspot coverage at higher data rates. It is rather unsuitable for large scale deployment due to interference between sites, since a BTS may be trying to detect a weak signal from a UE, which is blocked out by a relatively strong signal at the same frequency from a nearby BTS. TDD is ideal for indoor coverage over small areas.Since FDD is the main access technology being developed currently, the explanations presented here will focus purely on this system.1.3 UMTS Bearer ModelThe procedures of a mobile device connecting to a UMTS network can be split into two areas: the access stratum (AS) and the non-access stratum (NAS). The access stratum involves all the layers and subsystems that offer general services to the non-access stratum. In UMTS, the access stratum consists of all of the elements in the radio access network, including the underlying ATM transport network, and the various mechanisms such as those to provide reliable information exchange. All of the non-access stratum functions are those between the mobile device and the core network, for example, mobility management. Figure 7 shows the architecture model. The AS interacts with the NAS through the use of service access points (SAPs).UMTS radio access network (UTRAN) provides this separation of NAS and AS functions, and allows for AS functions to be fully controlled and implemented within the UTRAN. The two major UTRAN interfaces are the Uu, which is the interface between the mobile device, or User Equipment (UE) and the UTRAN, and the Iu, which is the interface between the UTRAN and the core network. Both of these interfaces can be divided into control and user planes each with appropriate protocol functions.A Bearer Service is a link between two points, which is defined by a certain set of characteristics. In the case of UMTS, the bearer service is delivered using radio access bearers.A Radio access bearer (RAB) is defined as the service that the access stratum (i.e.UTRAN) provides to the non-access stratum for transfer of user data between the User Equipment and Core Network. A RAB can consist of a number of subflows, which are data streams to the core network within the RAB that have different QoS characteristics,such as different reliabilities. A common example of this is different classes of bits with different bit error rates can be realised as different RAB subflows. RAB subflows are established and released at the time the RAB is established and released, and are delivered together over the same transport bearer.A Radio Link is defined as a logical association between a single User Equipment (UE) and a single UTRAN access point, such as an RNC. It is physically comprised of one or more radio bearers and should not be confused with radio access bearer.Looking within the UTRAN, the general architecture model is as shown in Figure 8 below. Now shown are the Node B or Base Station (BTS) and Radio Network Controller (RNC) components, and their respective internal interfaces. The UTRAN is subdivided into blocks referred to as Radio Network Subsystems (RNS), where each RNS consists of one controlling RNC (CRNC) and all the BTSs under its control. Unique to UMTS is the interface between RNSs, the Iur interface, which plays a key role in handover procedures. The interface between the BTS and RNC is the Iub interface.All the ‘I’ interfaces: Iu, Iur and Iub, currently3 use ATM as a transport layer. In the context of ATM, the BTS is seen as a host accessing an ATM network, within which the RNC is an ATM switch. Therefore, the Iub is a UNI interface, whereas the Iu and Iur interfaces are considered to be NNI, as illustrated in Figure 9.This distinction is because the BTS to RNC link is a point-to-point connection in that a BTS or RNC will only communicate with the RNC or BTS directly connected to it, and will not require communication beyond that element to another network element.For each user connection to the core network, there is only one RNC, which maintains the link between the UE and core network domain, as highlighted in Figure 10. This RNC is referred to as the serving RNC or SRNC. That SRNC plus the BTSs under its control is then referred to as the SRNS. This is a logical definition with reference to that UE only. In an RNS, the RNC that controls a BTS is known as the controlling RNC or CRNC. This is with reference to the BTS, cells under its control and all the common and shared channels within.As the UE moves, it may perform a soft or hard handover to another cell. In the case of a soft handover, the SRNC will activate the new connection to the new BTS. Should the new BTS be under the control of another RNC, the SRNC will also alert this new RNC to activate a connection along the Iur interface. The UE now has two links, one directly to the SRNC, and the second, through the new RNC along the Iur interface. In this case, this new RNC is logically referred to as a drift RNC or DRNC, see Figure 10. It is not involved in any processing of the call and merely relays it to the SRNC for connection to the core. In summary, SRNC and DRNC are usually associated with the UE and the CRNC is associated with the BTS. Since these are logical functions it is normal practicethat a single RNC is capable of dealing with all these functions.A situation may arise where a UE is connected to a BTS for which the SRNC is not the CRNC for that BTS. In that situation, the network may invoke the Serving RNC Relocation procedure to move the core network connection. This process is described inSection 3.中文翻译:通用移动通信系统的回顾1.1 UMTS网络架构欧洲/日本的3G标准,被称为UMTS。
蜂窝网络技术如何实现多台设备同时连接(九)
蜂窝网络技术如何实现多台设备同时连接1.引言在当今数字化时代,人们对互联网的依赖越来越重要,多台设备的同时连接已经成为了日常生活中的基本需求之一。
而蜂窝网络技术就是实现这一需求的重要工具之一。
本文将探讨蜂窝网络技术如何实现多台设备同时连接的原理和实现方式。
2.蜂窝网络的基本原理蜂窝网络是一种基于移动通信的无线通信技术,它将通信范围分割成覆盖区域,每个覆盖区域内有一个或多个基站,通过这些基站可以实现多台设备的同时连接。
蜂窝网络中使用的关键技术是频分复用和时分复用。
3.频分复用技术频分复用是蜂窝网络实现多台设备同时连接的关键技术之一。
蜂窝网络将可用的频谱分成多个不重叠的信道,每个信道可以同时传输多个设备的数据。
当多台设备同时连接蜂窝网络时,它们会被分配到不同的信道上进行通信,从而避免了信道的冲突和干扰。
4.时分复用技术时分复用也是实现多台设备同时连接的重要技术。
蜂窝网络将连接蜂窝网络的设备分成时间片段,每个时间片段分配给一个设备使用,这样不同的设备在不同的时间段内进行通信,从而实现多台设备之间的分时复用。
5.蜂窝网络的资源管理为了实现多台设备的同时连接,蜂窝网络需要进行有效的资源管理。
蜂窝网络通过调度算法来分配信道和时间片段,使得不同设备之间的通信不会发生冲突。
同时,蜂窝网络还可以根据设备的实时需求来调整资源分配,以提供更好的连接质量和带宽。
6.设备间的协作和共享在蜂窝网络中,不同设备之间可以通过协作和共享来实现更好的连接效果。
例如,当一个设备信号较强时,它可以与邻近信号较弱的设备共享信道或时间片段,以提高整体的网络性能。
这种协作和共享可以实现更好的资源利用和连接质量。
7.蜂窝网络的发展趋势随着移动设备的普及和互联网的快速发展,蜂窝网络技术也在不断进步。
未来的蜂窝网络将更加智能化和高效,能够更好地适应多台设备同时连接的需求。
同时,蜂窝网络也将和其他无线通信技术进行融合,实现更广泛的网络覆盖和更高的数据传输速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蜂窝网络中的全双工通信设备Sanghoon Kim和韦恩·斯塔克密歇根州大学,安阿伯,MI48109kimsangh@/ stark@摘要——在本文中,我们研究了单波段全双工通信设备的性能改进,它可以发送和接收蜂窝网络同一频率的波段。
在蜂窝网络中,两个不同的频率能够同时发送和接收半双工无线电。
最近,全双工无线电允许无线节点同时发送和接收同一个频段。
这表明,对于短距离通信,它是有作用的。
同样,全双工通信是适合设备到设备(D2D )通信的,D2D通信通常是一个短距离通信。
(D2D)通信是蜂窝网络中的垫片方案,使对等网络对主蜂窝网络产生有限的影响。
当用户设备更靠近其他用户设备,而不是基站时,D2D通信会提高使用者之间通信的带宽效率。
当全双工通信用于D2D通信时,本地用户之间的双向通信就只需要一个频段。
全双工通信提高了D2D通信的带宽效率。
我们提出了一个简单的全双工D2D通信协议,并对比传统蜂窝通信方案来分析该协议的带宽增益。
I.简介无线网络经常在带宽效率或能量效率中受到限制。
蜂窝网络通常依靠两个使用者之间的通信并利用大量基础设施来检查基站。
如果两个使用者无限接近,那么频谱和能量的利用就不够有效,若此次通信包含大量信息,那么效率会更低。
D2D通信直接发生在两个设备间,而不需通过一些基础设施,当D2D通信是适合的,协议的设计也是适合的,那么D2D通信就有了决定性的挑战。
设备到设备的通信已包含在诸如IEEE802.11分布式标准中。
在IEEE 802.11网络中,无线节点感知到信道,并决定它是否可以发送一个分组。
在分布式无线网络中,节点采用了碰撞避免机制,例如CSMA / CA或RTS/ CTS协议。
当一个接入点(AP)通常用于IEEE802.11 网络时,AP不直接控制任何的信道访问或资源分配。
然而,设备到设备的通信没有被应用在蜂窝网络中。
在蜂窝网络中,信息通过基站发送到目标用户设备(UE)。
基站一般控制信道访问和分配资源,即使该通信发生在同一单元的用户设备中。
图片1:双工通信系统图片2:全双工D2D和基础设施通信的比较结合D2D 通信和蜂窝通信,可提高蜂窝网络的效率。
当用户设备之间的距离近于到基站的距离,D2D 通信相对于通过基站的通信,能源和带宽效率更高。
图2是D2D 通信效率更高的一个实例。
因为信道访问与资源都受基站控制,所以蜂窝网络中的D2D 通信也应该由基站控制。
因此,基站只允许在同一单元的本地用户设备之间使用D2D 通信,前提是它必须比通过基站的传统通信更有效率。
用户设备节点比较靠近时,使用D2D 通信是合适的。
随着用户设备节点的增加, D2D 通信吞吐量会急剧下降[1]。
因为距离较短, D2D 通信比正常的蜂窝通信需要更少的资源,这就提高了总电池容量[2]。
为D2D 通信管理干扰的协调资源分配被提议出来[3]。
我们将D2D 通信模型以无线通信的形式来支持位于邻近的设备的应用服务。
适用于全双工D2D 通信的一个例子是,移动用户与此区的其他移动用户一起玩流行游戏,邻近用户设备之间的文件,图像,视频可以共享也是一个这样的例子。
随着社会服务越来越多,通过移动设备邻近用户设备服务也变得可以利用,对D2D 通信的需求也会变得越多。
全双工通信的应用通常依靠频分复用或时分复用。
应用D2D 通信需要无线电能够在单个频率上发送和接收信息。
发射天线的发送给同时接受的接收天线带来了强大的自我干扰,D2D 通信应用因此受到挑战。
模拟和数字干扰抵消的结合可以抑制自干扰[4]和[5]。
有两个天线的全双工无线电已经应用,并已证明比处于低发射功率水平的半双工2×2MIMO 通信[5]具有更好的性能。
在[6]和[7],采用全双工通信的MAC 协议是在ad-hoc 网络的背景下提出来的。
蜂窝通信采用的全双工通信已被考虑在[8]中的基于通信的基础设施。
全双工通信的特点与D2D 通信配合良好。
D2D 通信适用于近距离,全双工通信 在较短的距离内表现更好。
在更短的距离内,全双工通信的自干扰会减少,因为发射功率会变低。
在本文中,我们提出了一个完整的蜂窝网络D2D 双工通信协议。
我们还分析了单频D2D 通信协议的带宽效率,并将它与传统蜂窝通信方案进行比较。
这表明了单一频率D2D 通信提高了小区带宽效率。
这篇文章的要点如下。
在第二节,我们会介绍系统模型。
在第三节中,我们会分析单一频率的D2D 通信的性能。
在第四节,我们提出了单频通信的资源分配协议和性能分析。
结论会在第五节给出。
II. 系统模型我们假设D2D 通信和初级(移动台对基站和基站对移动台)蜂窝网络共享整个相同的频带。
我们假设网络以10 MHz 频段运行,并基于正交频分多址(OFDMA )。
A. 信道模型我们假设独立等分布(IID )Rayleigh 衰落是在带宽的不同部分(在不同的时间间隔)。
此外,有一个距离相关的路径损耗。
假设在一个特定频率下所发送的信号功率是Pt ,在距离为d1是接收到的信号功率是:21P |h |t r P d α= (1) 其中h 是Rayleigh 衰落,2|h |1E ⎡⎤=⎣⎦,α是路径损耗指数。
使用MIMO 时,在发射器和接收器天线元件之间,该信道在一个特定的频率h 衰弱被替换成衰落矩阵H 。
可用于任何类型通信的带宽相对相干带宽是足够大的,所以衰落是独立的。
B. 无线电模型我们假设无线电配备两个天线,D2D 模式传输天线用于传输,而另一个天线用于接收。
我们考虑的情况是,用户可以在一个天线传输同时在第二天线接收,如图1所示,然而,一个节点的发射天线所发送的信号会干扰到在同一节点中的接收天线所接收的信号。
模拟和数字干扰抵消只能部分取消自干扰。
另外,自干扰是不可能被完全地取消的。
当一个节点是发射功率Pt ,残留的自干扰功率KPt 量中K 是自干扰消除因子。
随着传输信号功率的增加,残留的自干扰也会增加。
当两个用户之间的信道是独立同分布的快衰落与距离相关的路径损耗,完整的双工通信的SINR 可以表示为20t tP d SINR N W KP α=+ (2) t P 是D2D 通信的发射功率,2d 是两个节点之间的距离。
C. D2D 通信模型我们假设D2D 通信只用于同一单元中的用户设备,因为D2D 通信被基站控制,不同单元的设备可能不能够直接通信,否则将是低效的。
D2D 通信的带宽分配将在下一章介绍。
要建立D2D 通信,两个步骤是必需的。
第一步骤是发现。
发现是用来寻找邻近区域的可用服务。
当D2D 通信支持用户移动设备的应用程序, D2D 通信的可能性就能被确定下来。
用户设备需要确定其它装置是否处于同一单元的邻近区域,是否具备D2D 通信能力。
这还存在服务发现协议,如Flashlinq[9] 和Wi-Fi Direct[10]。
Flashlinq 支持蜂窝网络中的服务发现。
第二个步骤是D2D 通信设置。
用户设备要求D2D 通信到基站和基站确定这两个通信方案(D2D 和正常通信)哪个更高效。
当确定D2D 通信比通过基站的通信更有效率,D2D 通信就会被允许的,相关资源会得到分配。
在本文中,我们假设第一个步骤是成功的,只考虑第二个步骤和实际的D2D 通信。
我们假定用户清楚该信道状态,例如路径损耗和用户设备与D2D 通信之间的衰弱。
在如 Flashlinq[9]的协议中,一种特殊类型的信标被用于广播或发现服务,用户设备通过听信标来估计到其他用户设备的信道。
因为全双工通信可以在同一频带中传输和接收信息,它可以提高一个单元的带宽效率。
当D2D 通信用于同一单元两个用户设备之间的通信时,它用的带宽是基于基础设施的通信(FDD )的一半。
全双工D2D 通信和基于基础设施的通信区别如图2所示。
当用户设备与基站通信,它使用半双工模式的两个天线。
当用户设备采用的是D2D 通信,它会采用全双工通信,各个方向使用天线1。
D. 基于基础设施的通信模型我们假设基于频分双工的蜂窝通信在蜂窝网络中应用。
基于基础设施的通信会出现两种情况。
第一种情况是同一单元的用户设备间的通信。
在协议中,当用户设备与同一单元的其他用户设备通信时,用户设备需要进行D2D 通信。
当基站确定现有的蜂窝通信比D2D 通信更高效,两个用户设备则通过基站进行通信。
在这种情况下,需要双频段来进行通信。
每频段分配给每个用户设备来与该基站进行通信。
用于用户设备和基站的通信,使用FDD 。
我们假设有一半分配的带宽被用于上行链路,而另一半用于下行链路。
对于D2D 通信的带宽分配将在下一章介绍。
第二种情况是用户设备连接到一个单元外的实体。
实体可以是互联网上的服务器或在另一个单元的另一个用户设备。
对于这两种情况,我们只考虑用户设备和基站之间的开销。
第二种情况,是不能被D2D 通信所取代的,并且与传统的蜂窝通信相同。
与D2D 通信相比,我们关心基于基础设施的通信的带宽效率。
我们假定2×2的MIMO 通信投入使用,在接收器处的信道状态信息中通信实现2×2的MIMO 信道容量。
然后,容量为[11]221log det(I )2H HH C E N *⨯⎡⎤=+⎢⎥⎣⎦ (3) 2×2的MIMO 通信中,N 为噪声方差,H 是信道矩阵。
实际的蜂窝通信系统中存在开销传输,例如控制或信令信息,需要在使用者与基站之间进行交换。
然而,在本文中,我们只考虑实际的数据包传输,因为D2D 通信和蜂窝通信需要的开销具有可比性。
III. 全双工D2D 通信协议A. D2D 通信设置在本节中,我们描述了D2D 通讯设置协议。
一个用户设备请求与另一用户设备通过基站进行D2D 通信,请求中包括D2D 信道状态信息。
当D2D 通信比蜂窝通信更高效时,基站会为D2D 通信分配一个频带。
图3说明了一个具有D2D 通信功能的单元。
我们假设用户设备和基站之间的信道状态通过蜂窝通信中的参考信号[12] 对基站而言是已知的。
当基站发现的基础设施通信比提出的D2D 通信更高效时,它通过基站为通信分配资源。
当D2D 通信完成时,该装置通知基站信息以重新分配资源。
图片3:全双工通信系统B. D2D 通信标准用给定的信道状态信息时,基站决定D2D 通讯是否比通过基站的通信更高效。
hD2D 代表D2D 通信中1x1的信道状态,Hb ,i 是用户i 和基站之间的2x2信道状态。
当两个用户设备要发送给彼此包括M 位的数据包时,我们假设D2D 通信具有信道相互性。
随后采用全双工D2D 通信传输两方数据包时间消耗为2222log (1|h |SINR)D D D D M T WE =⎡⎤+⎣⎦(4) 其中SINR 在(2)中已给出。
同一单元使用基于基础设施的通信的两方数据传输时间消耗为inf inf 222,1,11inf 222,2,222log det(I )222log det(I )22b b O b b O MT P W E H H N W d M P W E H H N W d αα*⨯*⨯=⎡⎤+⎢⎥⎣⎦+⎡⎤+⎢⎥⎣⎦(5) 其中d1和 d2为用户设备和基站之间的距离,Pinf 是基于基础设施通信的传输信号功率。