电力系统谐振消除方法
电力系统谐振原因及处理措施分析
电力系统谐振原因及处理措施分析电力系统谐振是指在电力系统中,由于电感元件和电容元件之间的耦合作用,导致系统频率与其中一谐振频率非常接近或者相等,从而引发强烈的谐振现象。
电力系统谐振会导致系统的稳定性降低,甚至对设备造成损伤,因此需采取相应的处理措施。
1.线路参数不平衡:电力系统中,线路参数可能由于材料、施工等原因导致不平衡,使得电阻、电容、电感的数值存在差异,从而引发谐振问题。
2.寄生参数影响:由于电力系统中存在各种元件的寄生参数,如线路电容、变压器互感等,这些寄生参数也会产生谐振现象。
3.变压器的串联谐振:当变压器的电容和电抗连续串联时,会导致系统在谐振频率附近出现谐振现象。
4.电容补偿的谐振:电容补偿系统用来提高无功功率补偿能力,但若补偿容量选择不当,会形成与其他元件共振,引起谐振。
1.选择合适的线路参数:优化电力系统的线路参数,例如通过合理选择导线材料、提高线路间隙距离等措施,可以减小谐振的产生。
2.增加阻尼措施:在电力系统中增加合适的阻尼器,可以消耗谐振的能量,减轻谐振的影响,提高系统的稳定性。
3.采用合适的电容补偿:在进行电容补偿时,应合理选择补偿容量,避免与其他元件共振。
可以通过对电容器的串联电感进行合理设计,避免谐振的发生。
4.使用滤波器:适当地在系统中引入谐振滤波器,可以将谐振频率范围的干扰信号滤除,从而消除谐振现象。
5.加强监测与控制:对电力系统进行实时监测,发现谐振问题时及时采取控制措施,如调整电力系统的运行状态,避免谐振过程的加剧。
6.加强设备维护:定期检查和维护电力系统的设备,防止电容、电感元件损坏引发谐振。
总结起来,电力系统谐振的处理措施是多方面的,包括优化线路参数、增加阻尼措施、合理选择电容补偿、使用滤波器、加强监测与控制以及设备维护等。
通过采取这些措施,可以有效地预防和处理电力系统谐振问题,提高系统的稳定性和可靠性。
电力系统谐波治理的四种方法
谐波,这个新鲜的电力系统名词,在当今的电力行业中,已广为“传播”,几乎在电力行业工作,以及与电力行业有直接关系的人,都对这个名词不陌生,尤其是用电大户单位,谈之色变,一是“谐波”直接影响了工厂的正常工作,由于谐波的存在,工厂的负荷上不去,即便上去了,无功也特高,而传统的“无功补偿”又不能凑效。
而是即便无功补偿达到了要求,但谐波含量超标,管理部门不答应,自身的电费多交了不说,还讨不了好。
那么,是否拿“谐波”的肆虐就没有办法了,不!“办法总比问题多”,上海坤友电气有限公司集多年治理“谐波”的经验,针对不同的工况,总结了几种解决问题的方法,公布如下,与各位同仁共勉。
首先,我们讨论谐波的产生原因:近年来,电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS)、节能荧光灯系统等,这些非线性负载导致电网污染,电力品质下降,引起供、用电设备故障,甚至引发严重火灾事故等。
电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。
其次,我们讨论谐波的危害:电源污染会对用电设备造成严重危害,主要有:增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益:谐波电流使输电线路的电能损耗增加。
当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。
干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。
影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
引起电气自动装置误动作,甚至发生严重事故。
使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
造成灯光亮度的波动(闪变),影响工作效益。
导致供电系统功率损耗增加。
谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。
非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成谐波分量,进而导致与电网相联的其它负载产生更多的谐波电流。
浅谈电力系统中的铁磁谐振过电压及消除方法
浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。
关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。
这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。
2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。
铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。
铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。
当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。
电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。
在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。
35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。
据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。
铁磁谐振过电压导致故障的严重性可见一般。
铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。
谐波、谐振的危害及防治措施
谐波、谐振的危害及防治措施前言随着电气自动化的迅速发展,工业生产中对电能质量的要求更高,但由于电能的复杂性和不稳定性,电力企业和电力用户都会面临许多问题。
其中一个关键问题就是谐波和谐振的危害,它们会对电力系统带来很多问题,同时也会对设备和工作人员的安全产生影响。
因此,谐波和谐振的危害需要引起我们的重视,有必要采取相应的措施进行防治。
谐波的危害谐波是指频率为整数倍基波频率的倍频波,当电网中出现谐波时,会对电力系统造成很多负面影响,主要表现在以下几个方面:1. 降低电网功率因数谐波会对电力系统的功率因数产生影响,使功率因数降低。
功率因数越低,电子设备就越难以正常工作,同时还会导致电能损失和电费增加。
因此,谐波应尽量减小。
2. 损害设备大量谐波会给设备带来很大的损害,造成设备寿命减少,安全储备降低和可靠性下降,这对生产带来很大的风险和影响。
谐波带来的损害主要包括:•电机过热损坏•物理变形•变压器局部过热•电容器和电感器损坏3. 干扰通信系统谐波会引起通信系统(尤其是无线电通信系统)的干扰,影响通信质量。
这种干扰会干扰射频通信的接收机、起伏机、响应器、发射机以及其他电子部件,使通信信号受到严重干扰,从而影响通信过程的稳定性和可靠性。
谐振的危害谐振是指电力系统在特定频率下的共振现象。
虽然谐振一般在正常运行条件下不会出现,但当出现谐振时,会对电力系统造成很大的威胁,主要表现在以下几个方面:1. 破坏电力设备谐振波能量巨大,一旦出现谐振,就会对电力设备造成破坏,严重时甚至会导致设备停产,影响生产。
因此,谐振的出现需要引起注意。
2. 对安全产生威胁谐振波会对人员和设备的安全产生威胁,严重时会导致设备火灾、电击事故等。
电力系统中所有的设备,不仅要承受电压和电流的冲击,还要承受谐振波的冲击,如果谐振波过大,会对设备造成严重威胁。
3. 影响电网稳定性谐振波的存在会破坏电力系统的稳定性,使电网不稳定,从而引起负荷不均衡、跳闸等故障,进一步危及电网的供电能力和稳定性。
电力谐波治理的几种方法
电力谐波治理的几种方法
随着现代化程度的不断提高,电力谐波问题日益突出,给电力系统的安全稳定运行带来了极大的威胁。
为此,电力谐波治理成为了电力系统建设和运行中必不可少的一项工作。
电力谐波的治理主要有以下几种方法:
1. 滤波器法
采用电力滤波器对电力谐波进行滤波处理,以减小其对电力系统的干扰。
常见的电力滤波器包括L-C滤波器、谐振滤波器和有源滤波器等。
滤波器法具有费用低、性能稳定等优点,适用于小功率电器的电力谐波治理。
2. 变压器法
采用特殊结构的变压器进行电力谐波治理,包括隔离变压器、耦合变压器等。
变压器法可以有效地降低电力谐波对电力系统的影响,但需要投入较大的资金,适用于大功率电器的电力谐波治理。
3. 电容器法
通过电容器的串联或并联方式,对电力谐波进行电容滤波处理。
电容器法具有构造简单、成本低等优点,适用于小功率电器的电力谐波治理。
4. 谐波抑制器法
采用谐波抑制器对电力谐波进行抑制处理。
常见的谐波抑制器包括谐波电流抑制器、谐波电压抑制器等。
谐波抑制器法具有能够有效抑制电力谐波、无需改变电路结构等优点,适用于各类电器的电力谐
波治理。
在电力谐波治理中,需要综合考虑电力系统的实际情况和治理成本,选择合适的治理方法,并采取科学有效的措施加以实施,以确保电力系统的安全稳定运行。
电力系统谐振原因及处理措施分析
电力系统谐振原因及处理措施分析电力系统谐振是指电力系统中存在频率与系统其中一谐振频率相近的异常振动现象。
谐振会导致系统设备振幅增大、电流容量减小、电压稳定性下降,甚至会使系统设备损坏,严重时还会引发系统事故。
本文将详细分析电力系统谐振的原因,并给出相应的处理措施。
1.电抗器的并联谐振:电力系统中常见的电抗器有电动励磁容器、电抗器组等,在负载下和其中一种电抗器传输系统中,电源电抗器与传输线电感一起形成一个并联谐振回路。
当电抗器的谐振频率与线路电感谐振频率相近时,就会发生谐振。
2.传输线上的谐振:传输线上的谐振分为并列谐振和串联谐振两种。
并列谐振是指传输线电抗与负载电容并联形成的谐振回路,串联谐振则是指线路电感与负载电感串联形成的谐振回路。
这两种谐振都是传输线参数与负载特性相匹配时才会发生。
3.系统频率与负载谐振:电力系统的频率为50Hz,而一些设备的响应频率可能在50Hz附近,当系统频率正好与一些设备的谐振频率相符时,就会发生谐振。
常见的设备包括风电、光伏发电等新能源设备。
4.不平衡负荷引起的谐振:当电力系统中存在不平衡负荷时,系统各相之间的不均衡会导致谐振的发生。
针对以上原因,可以采取以下处理措施来避免和解决电力系统谐振问题:1.降低谐振频率:通过选择合适的电容、电感等元件参数,可以使谐振频率远离系统频率。
电容器、电抗器的接线和接地等方式可能会影响并联谐振频率的变化。
2.改变谐振回路的拓扑结构:对并联谐振回路来说,可以通过改变电源、电抗器、传输线等的连接方式来改变谐振回路的拓扑结构,从而避开谐振频率。
对串联谐振回路来说,可以通过改变传输线、负载之间的连接方式来改变谐振回路的拓扑结构。
3.使用谐振抑制装置:谐振抑制装置是一种专门用于抑制谐振的设备,可以通过在谐振回路中引入合适的电阻、电容、电感等元件来实现谐振的消除或抑制。
4.优化电力系统参数:通过优化电力系统的参数,如调整负荷分配、改变线路结构、提高系统稳定性等,来减小谐振的可能性。
电力系统谐振消除方法
电力系统谐振消除方法电力系统的谐振是指在电力系统中存在谐振回路或谐振点的现象。
谐振会导致系统的电压、电流、功率等出现异常,严重时会造成设备损坏甚至系统故障。
因此,消除电力系统的谐振对于保证系统正常运行具有重要意义。
1.变压器接地方式的改变:变压器的中性点接地方式会对谐振回路产生影响。
通过改变变压器接地方式,如从星形接地改为不接地或接到电抗器上,可以改变系统的谐振特性,减小谐振现象的发生。
2.谐振回路的拆除或阻断:通过拆除谐振回路中的谐振元件或增加必要的电抗器,使谐振回路的谐振频率与系统的工频产生较大的差异,从而消除谐振。
3.加装谐振阻抗:在谐振回路中加装适当的谐振阻抗,使其与系统的工频形成低阻抗,阻碍谐振电流的流动,从而减小谐振的影响。
4.变电站设备的调整或替换:根据谐振现象的具体情况,对变电站的设备进行调整或替换,如改变电容器的装设位置、改变断路器和隔离开关的参数等,以减小谐振现象的发生。
5.谐振抑制器的应用:谐振抑制器是专门用于消除电力系统谐振的装置。
它通过并联在谐振回路中,利用其特殊的电路结构和参数,改变回路的谐振特性,从而消除谐振。
6.系统参数的优化:通过对电力系统的参数进行优化,如变压器的变比、电缆的电容等,使系统不易形成谐振回路或降低其谐振频率,从而减小谐振的影响。
7.谐振抑制装置的研发与应用:通过引入新的谐振抑制装置,如谐振消除器、谐振合成器等,用于抑制系统中谐振的发生,提高电力系统的稳定性和可靠性。
需要注意的是,在进行谐振消除时,需要科学、合理地分析系统的谐振特性,并综合考虑各种因素的影响。
对于不同系统的谐振问题,需要采取相应的措施,以达到消除谐振、提高系统稳定性和可靠性的目的。
总之,电力系统谐振的消除是一个复杂且重要的问题,需要综合运用不同的方法和技术手段,并随着系统的需求和发展不断进行研究和优化。
只有在谐振消除的过程中做到科学合理、严谨细致,才能有效消除谐振现象,保证电力系统的正常运行。
试析电力系统谐振消除方法的分析
试析电力系统谐振消除方法的分析电力系统谐振是指电力系统中存在着频率等于或接近于系统固有频率的电路谐振现象。
谐振会引起系统的不稳定和损坏,因此谐振消除是电力系统中非常重要的问题。
本文将从谐振的危害、谐振消除的分类和方法、谐振消除方法的分析等方面进行探讨。
一、谐振的危害谐振会导致电力系统出现以下危害:1. 电力设备的热损坏,如变压器、电抗器等设备。
这是因为谐振会使系统产生很大的谐波电流,而谐波电流容易引起电力设备的热损坏。
2. 系统的不稳定。
当系统谐振时,会导致系统的电压、频率等参数的波动,从而影响系统的稳定性。
3. 系统电能质量下降。
当系统谐振时,会产生很多谐波,影响系统的电能质量。
二、谐振消除的分类和方法谐振消除的方法可以分为主动消除和被动消除两种。
1. 主动消除方法主动消除方法是通过改变电力系统的结构和参数,使得谐振频率发生变化或者消除谐振。
主动消除方法主要包括以下几种:(1)改变系统结构:例如增加或减少电缆、引入新的谐振回路等。
(2)改变系统参数:例如改变电抗器、电容器等的参数。
(3)控制技术:例如利用调节系统的控制参数来消除谐振。
2. 被动消除方法被动消除方法是将谐振引入到某个特定的电路或设备中,从而消除其他电路或设备上的谐振。
被动消除方法主要包括以下几种:(1)谐振回路:将控制的谐振电路接入电力系统中,从而消除其它谐振。
(2)继电器控制:利用继电器进行控制,以消除谐振。
(3)自动抑制器:将抑制器接入系统电路中,会自动检测并消除谐振。
三、谐振消除方法的分析谐振消除方法的选择需要根据实际情况进行分析,以下几个方面需考虑:1. 系统的特点:不同的系统具有不同的特点,需要根据不同的特点选择不同的谐振消除方法。
2. 技术难度:不同的谐振消除方法在技术上难度不同,需要选择技术难度适当的方法。
3. 经济成本:不同的谐振消除方法在经济成本上也有差异,需要根据实际情况选择经济成本适当的方法。
4. 可行性:不同的谐振消除方法在实际应用中的可行性也有差异,需选择可行性较高的方法。
电力系统谐振原因及处理措施分析
一、概述铁磁谐振就是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等与与系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类就是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类就是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统就是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
电力系统谐振原因及处理措施分析
一、概述铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线X围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,到达了谐振条件2、串联谐振产生的原因:进展刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的平安运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进展分析。
无功补偿技术对电力系统电容器谐振的解决方案
无功补偿技术对电力系统电容器谐振的解决方案电力系统中,电容器是一种常用的电力设备,用于提高系统的功率因数和电压质量。
然而,由于电容器具有谐振特性,其在运行过程中会引发电网谐振问题,给电力系统带来一系列的稳定性和安全性隐患。
为了解决这一问题,无功补偿技术被广泛应用于电力系统中。
本文将探讨无功补偿技术对电力系统电容器谐振问题的解决方案。
1. 无功补偿技术简介无功补偿技术是一种通过有源或无源装置来实现电力系统的无功功率控制的方法。
其主要包括静止无功补偿装置(SVC)和静止同步补偿装置(STATCOM)。
SVC通过变压器和可控电抗器来调节电网的无功功率,从而实现对电力系统电容器谐振的解决;STATCOM则利用可控器件来提供动态的无功功率支持,对电容器谐振问题起到很好的抑制作用。
2. 无功补偿技术对电容器谐振的解决方案2.1 电容器装置的优化设计为了减小电容器谐振引起的谐振问题,需要对电容器装置进行优化设计。
首先,应选择合适的电容器容量,并进行合理的布置和互连,以减小电容器的谐振响应。
其次,应对电容器进行适当的阻尼调节,以提高其阻尼能力,减少谐振产生的影响。
最后,通过有效的绝缘和接地措施,降低电容器装置的谐振风险。
2.2 无功补偿装置的使用无功补偿装置,特别是SVC和STATCOM,可以通过控制电网的无功功率来抑制电容器的谐振。
通过调节装置中的电抗器和电容器等元件,实现对电力系统无功功率的精确控制。
这种方法不仅可以有效地抑制谐振问题,还能提高电网的稳定性和功率因数。
2.3 高阻抗补偿技术的运用高阻抗补偿技术是一种抑制电容器谐振的有效手段。
通过在电容器前端串联阻抗元件,有效地降低了电容器的谐振风险。
这种方法具有简单可行、成本低廉等优点,广泛应用于电力系统中。
2.4 多电平换流器技术的引入多电平换流器技术是当前电力系统中的一种先进技术。
通过引入多电平换流器,可以有效地降低电容器谐振问题的发生。
多电平换流器在电力系统中的应用领域较为广泛,不仅能提高谐振抑制的效果,还能提高系统的整体性能。
电力系统中的谐振现象分析与抑制
电力系统中的谐振现象分析与抑制一、引言电力系统是现代社会中不可或缺的基础设施,它为各种用电设备提供稳定可靠的电能。
然而,在电力系统中常常会出现谐振现象,给系统运行带来了很多不利影响。
因此,对电力系统中的谐振现象进行分析与抑制具有重要的理论和实际意义。
二、谐振现象的产生机理谐振是指在外界作用力作用下,系统或器件在某一特定频率下出现的共振现象。
在电力系统中,谐振现象主要产生于电力设备与电力网络之间的相互作用过程中。
当电力设备的特定谐振频率与电力网络的特征频率相匹配时,谐振现象就会发生。
三、谐振现象的危害1. 降低系统的稳定性:谐振现象会导致电力系统的电压、电流的不稳定性,进而影响电力设备的正常工作。
2. 增大系统的损耗:谐振现象会引起电流的过大、频率的变化等问题,从而导致系统中的设备过载、电能损耗增加。
3. 破坏设备的安全性:谐振现象会引起设备内部的过电压现象,可能导致设备的烧毁、损坏。
四、谐振现象的分析方法1. 频率扫描方法:利用频率扫描仪和示波器等仪器,对电力系统的频率响应进行测试和分析,以确定谐振频率。
2. 波形分析方法:通过捕捉系统电压、电流的波形信息,进行波形分析,从中找出谐振的特征。
3. 参数计算方法:根据系统中的电感、电容等参数,利用计算公式计算出谐振频率和谐振峰值等。
五、谐振现象的抑制措施1. 调整电力设备参数:通过改变电力设备的电感、电容等参数,使其与电力网络的频率特性不再匹配,从而抑制谐振现象。
2. 增加阻尼:通过增加电力系统中的阻尼元件,如电阻、补偿电容等,来消耗能量,减小谐振幅值,达到抑制谐振现象的效果。
3. 采用滤波器:在电力系统中加入适当的滤波器,可以滤除谐振频率的分量,减小谐振现象的影响。
4. 加强系统的模型分析:通过建立合理的系统模型,利用计算机仿真软件进行仿真分析,可以预测和优化系统中的谐振现象。
六、实例分析以一个变电站为例,对其电力系统中的谐振现象进行分析。
首先采用频率扫描方法,测试得到系统的频率响应曲线。
供电系统谐波的产生原因和抑制方法
供电系统谐波的产生原因和抑制方法一、供电系统谐波的产生原因1.非线性负载:非线性负载是谐波产生的主要原因之一、当负载器件的电流与电压的关系远离线性特性时,会产生谐波。
2.整流装置:电力系统中使用的整流装置(如整流器、UPS电源等)都属于非线性负载,其波形形状和额定电压的频率和倍频数之间存在不同的谐波关系。
3.瞬时切换:当电力系统中出现瞬时的负载切换时,会产生谐波。
例如大功率电机启动时的电流冲击。
4.不良的电缆和变压器设计:电缆和变压器的设计不良也会导致谐波的产生。
比如电缆线的电感值较大或者变压器的饱和磁导率不合适等。
5.并联谐振:电力系统中存在并联谐振现象时,会导致谐波的产生。
并联谐振一般是由于电容负载和电感负载的阻抗匹配不良所致。
二、供电系统谐波的抑制方法1.使用线性负载:线性负载的电流和电压之间呈线性关系,因此能够减少谐波的产生。
选择和使用线性负载装置可以有效地降低谐波水平。
2.滤波器:在电力系统中加装滤波器是最常用的谐波抑制方法之一、滤波器可以根据谐波频率的不同,利用谐振电路的特性将谐波分量从电力系统中滤除。
3.调整负载的连接方式:调整负载的连接方式可以减少谐波的产生。
例如,将三相非线性负载从星形连接改为三角形连接,可以减小系统中的零序谐波。
4.限制电容补偿:电容补偿在电力系统中具有调节功率因数和稳定电压的作用,但同时也会引入谐波。
限制电容补偿的容量和位置,可以减少谐波的影响。
5.优化电力系统的设计:合理的电力系统设计可以减少谐波的产生。
例如,选择合适的电缆和变压器设计,提高设备的质量等。
6.使用谐波滤波器装置:谐波滤波器装置是专门用于抑制谐波的设备。
根据系统谐波的频率和倍频数,选择合适的谐波滤波器装置可以有效地消除谐波。
综上所述,供电系统谐波产生的原因主要包括非线性负载、整流装置、瞬时切换、不良设计以及并联谐振等。
要抑制谐波,可以采取使用线性负载、滤波器、调整负载的连接方式、限制电容补偿、优化电力系统设计以及使用谐波滤波器装置等方法。
电力系统产生铁磁谐振过电压的原因及消除方法
电力系统产生铁磁谐振过电压的原因及消除方法目前,我国的经济发展十分迅速,在电力系统中容易出现铁磁谐振过电压事故,严重威胁着人们的生命财产安全,需要引起高度的重视,有针对性采取解决措施,避免出现铁磁谐振过电压现象。
本文将简述铁磁谐振的危害性,并分析了其产生的原因与条件,最后提出了具体可行的预防对策。
标签:电力系统;铁磁谐振;消除方法引言电力系统内设置有众多的储能元件,在系统操作与出现故障以后,变压器、互感器等含铁芯元件的非线性电感元件和系统内电容串联将造成铁磁谐振现象,将严重威胁着电力系统运行的安全性与稳定性。
在出现铁磁谐振过电压以后,会让电压互感器一次熔丝熔断,并将电压互感器烧毁,严重时还会炸毁瓷绝缘子和避雷器,从而以引起系统停运。
且受到电源的作用,还会引起串联谐振的情况,让系统内发生严重的谐振过电压。
对此我们需要引起高度重视,消除铁磁谐振过电压势在必行。
1 电压互感器发生铁磁谐振的机理谐振是交流电路当中独有的一种现象,通常情况下,交流电路当中出现了电感以及电容的串联现象,会出现感抗等于容抗,从而造成谐振。
一般来说,电力系统当中,受到电容、电感等元件故障影响或者误操作时,就会产生以谐振为代表的震荡回路。
谐振所具有的串谐特征,还会对某些系统元件产生不可逆的破坏性影响,其中电压互感器在谐振影响下的表现十分明显,这是由于电压互感器作为铁芯元件,而铁芯在参与到回路当中所形成的饱和电路会表现为非线性的电感参数,从而造成其严重破坏。
就目前的电力系统谐振问题影响特征来看,谐振问题一般可以依据电网结构分为并联谐振以及串联谐振两种谐振类型,前者表现在小接地单流系统内部,并联状态下的铁磁谐振会使得电容互感器与电压互感器在一次中性接地点的非线性电感之上,构成谐振回路;而后者则是在大接地电流系统当中产生。
电磁式电压互感器会通过非线性电感与断路器断口的电容共同构成谐振回路。
而在众多谐振回路当中,铁磁电压谐振出现最为频繁,同时影响力也最大。
电力系统谐振产生原理及消除措施分析
电力系统谐振产生原理及消除措施分析摘要:本文介绍了电力系统铁磁谐振产生的原理,分析了磁谐振的若干特点,我们指出将互感器高压侧中性点经高阻抗接地,并接一个电阻 R消耗能量限制谐振,将电源变压器中性点经过消弧线圈接地等电力系统谐振消除策略。
关键词:电力系统;谐振产生;原理;消除措施1前言众所周知,电力系统内部的网络结构是很复杂的,系统内有许多电感与电容等电子元器件,使用时间长,不断会产生过电压现象。
产生这过电压原因有好多方面,比如谐振过电压,使用过程中若操作不注意就会产生故障。
尤其到了雨雪等天气或者是雷雨季会导致电力系统出现过电压情况。
据统计,电力系统谐振过电压发生的概率较大,这类问题会影响电气设备与电网安全,还会提高维修成本,一不小心会影响着大面积的停电,极大地影响百姓的生活与工业企业的经营,极大地阻碍着电力系统的未来发展。
因此,电力系统中的谐振影响非常大,作为电力工作者我们要积极关注这一课题。
2 电力系统铁磁谐振产生的原理图1 铁磁谐振产生的原理示意图如上图所示,电源变压器中性点是不接地设置,要达到监视绝缘之目的,电压互感器设备的一次绕组中性点需要设计成直接接地。
我们把励磁电感计为:La、Lb、Lc,和它相关意义的电容C0则表示的是母线以及相导线引起的对地电容。
励磁电感跟前文所述的C0并联,会有导纳,我们标示为:Ea、Eb、EC。
一般条件下,励磁电感La=Lb=Lc,Ea=Eb=Ec,可以计算出三相对地负载为平衡状态,变压器中性点电位是0。
如果电网内有冲击的波动发生,比如电源合闸到空母线时,影响着互感器一相、两相形成了一定的涌流情况,要么是线路瞬间单相弧光接地,或者是熄弧发生了,则健全相,或者说是故障相的电压就会一下子升高起来,这样的情况也会出现特别大的涌流,会导致这相互感器磁路的饱和,这样会影响励磁电感L 的减小,时间过去了,会影响三相对地负荷的平衡状态,导致中性点有位移电压出现。
经研究,我们可以发现:为母线电容三相励磁电感和发生并联形成的导纳;为三相电源电压;为中性点位移(对地)电压。
电力系统防止谐振的方法
电力系统防止谐振的方法电力系统中的谐振是由于电力负荷的变化、传输线路的参数以及系统的结构等因素引起的电压和电流谐振现象。
谐振会导致系统的不稳定和机电设备的损坏,因此需要采取相应的措施来防止谐振的发生。
下面就电力系统防止谐振的方法进行详细的介绍。
1.改变系统结构:改变电力系统的结构是防止谐振的重要手段之一。
可以通过增加自耦变压器、改变系统的接地方式、增加电力电容器等方式来改变系统的谐振特性,从而防止谐振的产生。
2.调整传输线参数:传输线参数包括线路的电感、电容和阻抗等,调整这些参数可以改变线路的谐振特性。
例如,增大线路的电感、降低线路的功率损耗等措施可以有效地防止谐振。
3.使用补偿装置:补偿装置是电力系统中常用的防止谐振的方法之一。
补偿装置可以通过调整电力系统中的无功功率来抑制谐振的发生。
常用的补偿装置有无功补偿装置、无功电容器、调压器等,通过这些装置可以在系统中实现对谐振的补偿或消除,从而防止谐振的产生。
4.控制电源和负荷:电力系统中,电源和负荷的变化会直接导致谐振的产生。
因此,通过控制电源和负荷的方式也可以防止谐振的发生。
例如,合理安排电源的运行状态、控制负荷的启动和停止时间等,都可以有效地防止谐振现象的出现。
5.使用谐波滤波器:谐波滤波器是一种专门用于消除系统谐振的装置。
它可以选择性地分离和消除系统中产生的谐波,从而防止谐振的发生。
谐波滤波器通常由谐波抑制器、电抗器和电容器等组成,通过调整这些元件的参数,可以有效地防止系统谐振。
6.合理设计电力系统:电力系统的合理设计也是防止谐振的关键因素之一。
在电力系统的设计中,应该充分考虑系统的安全性、稳定性和可靠性,合理选择系统的参数和配置,从而减少谐振的可能性。
同时,还需要合理安排各个电气设备的接线和布置,以提高系统的抗谐振能力。
综上所述,防止电力系统谐振的方法主要包括改变系统结构、调整传输线参数、使用补偿装置、控制电源和负荷、使用谐波滤波器以及合理设计电力系统等。
电力系统中的谐波分析及消除方法
电力系统中的谐波分析及消除方法摘要:本文针对电力系统中普遍存在的谐波问题进行了分析研究,首先概述了谐波的危害,然后介绍了三种谐波检测的方法,最后从改造谐波源的角度提出了几种谐波抑制方法。
关键词:电力谐波检测治理0 引言目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。
1 电力系统谐波危害1.1 谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。
大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。
1.2 谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。
1.3 谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。
1.4 谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。
1.5 谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。
1.6 谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。
1.7 谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。
1.8 谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
2 谐波检测方法2.1 模拟电路消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。
但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控制在10%以内,严重影响了有源滤波器的控制性能。
电力系统谐振消除方法
通过在系统中添加适当的电容,可以改变系统的阻抗特性,从而消除谐振。
应用滤波器
陷波滤波器
针对特定频率的谐振,可以使用陷波滤 波器来吸收或反射该频率的能量,从而 消除谐振。
VS
调谐滤波器
通过调整滤波器的频率响应,使其在特定 频率下具有高度的传输特性,从而消除该 频率的谐振。
03
电力系统谐振消除的实验方法
电力系统谐振消除方 法
汇报人: 日期:
目录
• 电力系统谐振概述 • 电力系统谐振消除方法 • 电力系统谐振消除的实验方法 • 电力系统谐振消除的工程应用 • 电力系统谐振消除的未来研究方向及展望
01
电力系统谐振概述
电力系统谐振的定义
电力系统中的谐振是指由于特定频率的电源或负荷阻抗与系 统阻抗发生共振,导致系统中的电流、电压或功率分量出现 异常波动的一种现象。
基于模型的实验方法
01
02
03
阻尼注入法
通过在系统中注入阻尼, 使谐振振荡受到抑制,从 而消除谐振。
频率响应法
通过对系统的频率响应进 行补偿,使谐振振荡被有 效抑制。
线性控制法
利用线性控制理论,设计 控制器使系统达到稳定, 从而消除谐振。
基于数据的实验方法
机器学习法
利用机器学习算法,通过 对历史数据进行学习,预 测并消除谐振。
优化控制策略
研究更优的控制系统设计和控制策略,以提高电力系统的稳定性和 可靠性。
多学科交叉融合的研究
电力系统与电力电子技术的融合
将电力电子技术应用于电力系统,以实现更高效、更灵活的电能变换和控制。
电力系统与数字信号处理技术的融合
利用数字信号处理技术对电力系统进行实时监测和控制,以提高电力系统的性能和稳定性 。
电力系统谐振消除方法研究
电力系统谐振消除方法研究
蓝必韬 广西赛 富电力勘察设计有限公司
因此 , 我们应积 极寻求 对策。 【 摘 蔓l随着电力的不 断发展 , 各种 电气设备和 电网对 电力系 统提 出 活带来很 多负面影响 。 4 . 1 防止谐 振的一般措 施 了 越 来越 高的要求。 然而, 铁磁谐振 现 象严重 阻碍 了 电网的正常运行, 尤其 为了避 免谐 振 现象 的发 生 , 首先 , 断路器在 工作 时最好能 保持同期 在中性点不接 地的高压 系统中的破 坏性更 为明显, 甚至即使 在中性 点直接 由于在 非全相 的条 件下运行 是导 致谐 振过 电压频 繁发 生的 主要原 接 地 的地 方也 时常会 出现 电力系统谐振 状况 。 本文着重分析 了 电力系统谐 性 。 因, 因此保持 断路 器工作 的高度同期性 , 避 免在非 全相的情 况下运 行, 振发生的原因并针对这・问题提 出了自己的看法和建议。 可以大 大降低谐 振过 电压发生 的可能性 。 其次 , 充分 发挥小 电抗会 串联 【 关键 词 l电力系 统; 铁磁谐振 ; 特点; 对策 谐振 的 阻碍 作用 , 把 小电抗安 装在并联 电抗器中, 防止其 在非全相 中运 行。 另外, 对 能够 产生 自 励 磁的 条件进行 积极 阻扰和 破坏 , 使 问路 参数 避 免电力系统谐 振现象 产生。 在 电力系统 中, 其网络 结构 非常的 复杂, 拥 有着 电感 和电容等 许多 大干谐 振范 围, 元件 , 经常会 出现 过 电压 的现 象 。 这 已经成为 一种非 常普遍 的现 象。 导 4 . 2 防止谐振的具体措 施 4 . 2 . 1 在系统的 中性点位 置安装 阻尼 电阻 致过 电压 的因素有很 多, 谐 振 过电压 , 操作不 当或者系统运 行时 出现 故 在P T中性 点与地面之 间, 串接 一个该 系统 的消谐 器, 因为P T中性 障, 甚至 由于 雨雪天气所产生 的雷 电等 有可能在 电力系统 中引发过 电压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统谐振消除方法
行,特别是对中性点不直接接地系统,铁磁谐振所占的比例较大,因此对此类铁磁谐振问题研究得较多。
本文针对电力系统谐振消除方法进行探讨和分析,并提出一些意见,为相关工作者提供参考。
电力系统中过电压现象较为普遍。
引起电网过电压的原因主要有谐振过电压、操作过电压、雷电过电压以及系统运行方式突变,负荷剧烈波动引起系统过电压等。
其中,谐振过电压出现频繁,其危害很大。
过电压一旦发生,往往造成系统电气设备的损坏和大面积停电事故发生。
据多年来电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数是由于谐振现象引起的。
日常工作中发现,在刮风、阴雨等特殊天气时,变电站35kV及以下系统发生间歇性接地的频率较高,当接地使得系统参数满足谐振条件时便会发生谐振,同时产生谐振过电压。
谐振会给电力系统造成破坏性的后果:谐振使电网中的元件产生大量附加的谐波损耗,降低发电、输电及用电设备的效率,影响各种电气设备的正常工作;导致继电保护和自动装置误动作,并会使电气测量仪表计量不准确;会对邻近的通信系统产生干扰,产生噪声,降低通信质量,甚至使通信系统无法正常工作。
1.谐振及铁磁谐振
谐振是一种稳态现象,因此,电力系统中的谐振过电压不仅会在操作或事故时的过渡过程中产生,而且还可能在过渡过程结束后较长时间
内稳定存在,直到发生新的操作谐振条件受到破坏为止。
所以谐振过电压的持续时间要比操作过电压长得多,这种过电压一旦发生,往往会造成严重后果。
运行经验表明,谐振过电压可在各种电压等级的网络中产生,尤其在35kV及以下的电网中,由谐振造成的事故较多,已成为系统内普遍关注的问题。
因此,必须在设计时事先进行必要的计算和安排,或者采取一定附加措施(如装设阻尼电阻等),避免形成不利的谐振回路,在日常工作中合理操作防止谐振的产生,降低谐振过电压幅值和及时消除谐振。
在6~35kV系统操作或故障情况下,系统振荡回路中往往由于变压器、电压互感器、消弧线圈等铁芯电感的磁路饱和作用而激发起持续性的较高幅值的铁磁谐振过电压。
铁磁谐振可以是基波谐振、高次谐波谐振、分次谐波谐振,其共同特征是系统电压升高,引起绝缘闪络或避雷器爆炸;或产生高值零序电压分量,出现虚幻接地现象和不正确的接地指示;或者在PT中出现过电流,引起熔断器熔断或互感器烧坏;母线PT的开口三角绕组出现较高电压,使母线绝缘监视信号动作。
各次谐波谐振不同特点主要在于:
①分次谐波谐振三相电压依次轮流升高,超过线电压,一般不超过2倍相电压,三相电压表指针在相同范围出现低频摆动。
②基波谐振时,两相电压升高,超过线电压,但一般不超过3倍相电压,一相电压降低但不等于零。
③高次谐波谐振时,三相电压同时升高或其中一相明显升高,超过线电压,但不超过3~3.5倍相电压。
2.实例分析
2.1事故前系统运行方式
事故前,某110kV变电站有110kV单母分段、35kV单母分段、10kV 单母分段运行,10kVI母接511所变、513负荷I线、514负荷II线、518电容器、519电容器运行;10kV母线II段接521电容器、522电容器,电压及负荷均正常;10kV母线II段PT运行。
2.2事故经过
2010年6月21日23时12分,监控语音报警此变电站10kV母线I 段接地、10kV母线II段接地信号,监控屏显示10kV母线II段电压值为:
Ua=6.21kV;Ub=7.03kV;
Uc=7.80kV;3Uo=64.11V。
23时14分,511所变发出开关分闸、511开关电流II段动作、复归、511站用保护测控装置告警、511开关过负荷告警、逆变电源交流失电复归信号。
511所变开关变为分位;同时513负荷I线、514负荷II线、518电容器、519电容器发出线路保护测控装置告警、PT断线信号;521电容器、522电容器发出保护装置告警、电容器PT断线等信号。
随后,
后台显示10kV母线II段电压值持续升高,23时15分升高为:
Ua=8.94kV;Ub=9.91kV;
Uc=12.00kV;3Uo=119.97V。
调度值班员于23时18分下令遥控断开514负荷II线开关,电压恢复正常。
22日01时50分,巡线人员汇报:514负荷II线机砖厂支线奶牛厂变压器引线熔断后搭在变压器外壳上,操作人员已将分支拉开。
故障排除后合上514负荷II线开关,送电正常,后未见异常情况。
2.3事故原因分析
实例中所涉及变电站的514负荷II线机砖厂支线奶牛厂变压器引线熔断后搭在变压器外壳上后,三相系统对称性被破坏,出现零序电流、中性点偏移和对地电位U0,即开口三角有了零序电压,零序电压叠加在二次侧三相电压上,就出现了二次侧三相电压不平衡现象。
事故起因:514负荷II线机砖厂支线奶牛厂变压器引线熔断后搭在变压器外壳上,然后10kV母线接地,系统参数发生变化满足谐振条件,谐振发生之后10kV母线II段三相电压及零序电压迅速升高,由电压波形及数值可知是发生高次谐波谐振(铁磁谐振)。
正是谐振导致继电保护和自动装置误动作发出一系列错误信号。
此状况下,需要仔细判断真假信号,以便很好地进行事故处理。
实例中的事故发生后,当班调度员作出了谐振的准确判断,并根据工作经验进行接地选线,迅速查找出故障线路,并将
其切除。
3.谐振事故解决方法
PT在正常工作时,铁芯磁通密度不高,不饱和;但如果在电压过零时突然合闸、分闸或单相接地消失,这时铁芯磁通就会达到稳态时的数倍,处于饱和状态,这时,某一相或两相的激磁电流大幅度增加,当感抗与容抗参数匹配恰当(满足谐振条件)时,即会发生谐振,即铁磁谐振。
发生谐振时,会在电感和电容两端产生2~3.5倍额定电压的过电压和几十倍额定电流的过电流,通过PT的电流远大于激磁电流,严重时会烧坏PT及其它设备。
3.1防止谐振过电压的一般措施
①提高断路器动作的同期性。
由于许多谐振过电压是在非全相运行条件下引起的,因此提高断路器动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。
②在并联高压电抗器中性点加装小电抗。
用这个措施可以阻断非全相运行时工频电压传递及串联谐振。
③破坏发电机产生自励磁的条件,防止参数谐振过电压。
3.2防止谐振过电压的具体措施
①35kV系统中性点经消弧线圈(加装消谐电阻)接地,并在过补
偿方式下运行,它的电压作用在零序回路中。
②尽量减少6~35kV系统并联运行的PT台数。
a.凡是6~35kV母线分段的变电所,若母线经常不分段运行,应将一组PT退出作为备用;
b.电力客户的6~10kVPT一次侧中性点一律为不接地运行③更换伏安特性不良的6~35kVPT。
④6~35kV一次侧中性点串联阻尼电阻或二次侧开口三角形绕组并联阻尼电阻或消振器。
⑤6~10kV母线装设一组Y形接线中性点接地的电容器组。
⑥在10kVPT高压侧中性点串联单相PT。
在实际工作中谐振的发生往往伴随着接地故障,很多时候甚至就是由接地引起的,消除谐振常常采取的有效方法是改变系统运行方式以改变系统参数,破坏谐振条件。
改变系统运行方式经常通过以下途径实现:
a.投退电容器。
b.增投线路。
c.若变电站有一台以上数目的主变,可视具体运行情况将原本并列(分列)运行的变压器分列(并列)。
d.母线并解列。
若上述方法不能消振,应采用寻找线路单相接地故障的方法进行选线,选出故障线路后,立即将其切除。
选线原则参照系统单相接地故障处理方法。
此方法是最有效最能解决问题的,但往往不一定能准确及时
判断出接地线路,以致延误消振时间,所以,工作中为及时消除谐振一般先考虑选择上述四种途径。
针对某110kV变电站谐振事故,利用谐振原理与知识,分析了此次事故发生的原因,并结合实际工作经验对谐振过电压给出了多种控制措施和方法,以便具体工作中借鉴和运用,有效提高系统运行稳定性,提高供电安全性和可靠性。