高炉炼铁工艺介绍.ppt
合集下载
高炉炼铁知识 PPT
4、高炉结构及附属设备
受料斗------柱塞阀---上密-----放散----料罐----料流阀----下密 ----放散-----高炉炉体 布料器
料车上料45秒默认受 料斗料满----开放散12秒 放散完毕(使料罐压力大 气压强一致)--------开 上密----柱塞阀----料进 入料罐----关柱塞阀--关上密---均压放散完毕 (使料罐压力与炉内压力 一致均为197-200KPA之间) 在此期间探尺提起------开下密---料流法控制开 度(设定值)---布料器布 料(料罐伽马射线测空 值)-----关料流*--关下 密
炼铁厂受烧结产能限制,入炉料结构为烧结矿+球团 矿+块矿
冶炼1t生铁大约需要1.6~2.0t矿石,0.4~0.6t焦炭 (coke)。
高炉冶炼是连续生产过程,必须尽可能为其提供数量 充足、品位高、强度好、粒度均匀粉末少、有害杂质少及 性能稳定的原料。
2.铁矿石种类:
◆赤铁矿(Fe2O3),红色; ◆磁铁矿(Fe3O4),黑色,有磁性; ◆褐铁矿(Fe2O3·nH2O),含有结晶水; ◆菱铁矿(FeCO3)碳酸盐。 我厂使用最多的是赤铁矿
高炉炼铁知识
主要内容
一、高炉基本知识及工艺 二、炼铁工序 三、中间流程 四、炼铁生产成本构成
一、高炉基本知识及工艺
1、几个基本概念
◆什么叫生铁? 生铁是含碳(C)量在大于1.7%的铁碳合金。同时含
有一定数量的硅(Si)、锰(Mn)、磷(P)、硫(S)等 元素,主要由高炉生产。一般把含碳量小于0.2%的叫熟铁; 含碳量0.2—1.7%叫钢;含碳量1.7%以上的叫生铁。 ◆生铁有哪些种类?
4.2高炉辅助设备
4.2.1供料系统
◆高炉炉顶装料设备的作用是按冶炼要求,向 炉内合理布料,同时要严密封住炉内荒煤气不 逸出炉外。 ◆常用的炉顶装料设备主要有钟式炉顶和溜槽 式(亦称无钟式)炉顶。 ◆我厂为料车上料。
高炉炼铁基本原理及工艺(PPT36页)
7
3.高炉用燃料焦碳:
①主要作用: 作为高炉热量主要来源的60~80%,其它的由热风提供 提供还原剂C、CO 料柱骨架,保证透气性、透液性
②质量要求: 含炭量:C↑灰份↓→→渣量↓、强度↑、反应性↓ →→焦比↓ 含S量:生铁中[S]80%±来源于焦碳 强 度:M40、M10
③粒度组成: 焦丁的利用及混装过渡区的问题
6
(3)熔剂的质量要求
①碱性氧化物含量(CaO+MgO≥52%) 概念:石灰石有效熔剂性
CaO(有效)=CaO(石灰石)-R×SiO2(石灰石)
②S、P↓ S(0.01~0.08%),P(0.001~0.03%)
③减少CaCO3入炉: 原因:a. 高温分解吸热,是高炉炉温下降 b. CO2+C=2CO,消耗焦炭 c. CO2会冲淡CO浓度 造成焦比K增加。
(三)烧结过程的特点
1.燃料燃烧需空气过剩,过剩系数α=1.4~1.5(燃料分布较 稀疏)
2.一般情况下烧结保持弱氧化气氛(金属化烧结除外) 3.烧结过程存在自动蓄热作用(可以考虑采用上高下低的分
层配炭) 4.存在传热速度与燃烧速度的同步问题 5.存在如何减少“过湿”现象的问题 6.存在有害杂质S的去除问题(S由易去除S化物转化为硫酸
低水原则) 8.双层烧结:二次点火,设备复杂 9.料面插孔烧结:提高透气性
15
四、高炉冶炼基本原理
(一)高炉还原过程 (二)造渣与脱S (三)风口前C的燃烧 (四)炉料与煤气运动 (五)高炉能量利用
16
高炉的五大系统
17
高炉炉型
18
(一)高炉还原过程
1.高炉炉内状况
19
(1)块状带:矿焦保持装料时的分层状态,与布料形式及粒 度有关,占BF总体积60%±(200~1100℃)
3.高炉用燃料焦碳:
①主要作用: 作为高炉热量主要来源的60~80%,其它的由热风提供 提供还原剂C、CO 料柱骨架,保证透气性、透液性
②质量要求: 含炭量:C↑灰份↓→→渣量↓、强度↑、反应性↓ →→焦比↓ 含S量:生铁中[S]80%±来源于焦碳 强 度:M40、M10
③粒度组成: 焦丁的利用及混装过渡区的问题
6
(3)熔剂的质量要求
①碱性氧化物含量(CaO+MgO≥52%) 概念:石灰石有效熔剂性
CaO(有效)=CaO(石灰石)-R×SiO2(石灰石)
②S、P↓ S(0.01~0.08%),P(0.001~0.03%)
③减少CaCO3入炉: 原因:a. 高温分解吸热,是高炉炉温下降 b. CO2+C=2CO,消耗焦炭 c. CO2会冲淡CO浓度 造成焦比K增加。
(三)烧结过程的特点
1.燃料燃烧需空气过剩,过剩系数α=1.4~1.5(燃料分布较 稀疏)
2.一般情况下烧结保持弱氧化气氛(金属化烧结除外) 3.烧结过程存在自动蓄热作用(可以考虑采用上高下低的分
层配炭) 4.存在传热速度与燃烧速度的同步问题 5.存在如何减少“过湿”现象的问题 6.存在有害杂质S的去除问题(S由易去除S化物转化为硫酸
低水原则) 8.双层烧结:二次点火,设备复杂 9.料面插孔烧结:提高透气性
15
四、高炉冶炼基本原理
(一)高炉还原过程 (二)造渣与脱S (三)风口前C的燃烧 (四)炉料与煤气运动 (五)高炉能量利用
16
高炉的五大系统
17
高炉炉型
18
(一)高炉还原过程
1.高炉炉内状况
19
(1)块状带:矿焦保持装料时的分层状态,与布料形式及粒 度有关,占BF总体积60%±(200~1100℃)
高炉炼铁工艺流程(简介) PPT
C CC R GP
BB B PG R
CCC RGP
BB B PG R
C
A
B
H
C
A
B
H
C
A
B
H
C
A
B
H
燃
B
B
B
F
B
B
B
B
B
B
B
B
B
烧
a
室
n
蓄
1
热
混
F
室
风
a n
室
热
2
B
M
B
M
B
M
B
M
风
总
热管
风
S t
4H S
H
3H S
H
2H S
H
1H S
H
阀
a c
BF 空 CO G 气 G 冷风阀
k
W
.
SW
S
SW
S
SW
S
混合器
N2
加压、流化气
高炉概况和工艺流程
项目
DC 1VS 2VS
处理煤气量 (m3/h) 700000 700000 700000
进口粉尘浓度 (g/m3) 13.5
5
0.1
出口粉尘浓度 (mg/m3) 5000
100
<10
TRT是 炉煤气余压透平发电
高炉节能回收重要措施,工
是通过高炉的高压并带有预
THANK YOU
柱,能储存一定量的渣、铁。 ⑵适应炉料下降和煤气上升的规律,减少炉料下降和煤气上升的阻
力,为顺行创造条件,有效的利用煤气的热能化学能,降低燃耗。 ⑶易于生成保护性的渣皮,有利于延长炉衬的寿命。
高炉炼铁-工艺流程与主要设备1PPT培训课件
辅助设备
01
02
03
原料输送设备
包括矿石、燃料和辅助原 料的输送设备,如皮带机、 输送机等。
装料设备
用于将矿石、焦炭等原料 装入高炉炉口的设备,如 装载机、起重机等。
出铁和渣处理设备
包括出铁口挖掘设备、渣 车、水力冲渣等设备,用 于处理炼铁过程中产生的 渣和铁水。
检测与控制系统
温度检测
对高炉各部位的温度进行实时 监测,确保高炉的正常运行。
高炉炼铁的基本原理
化学反应
铁矿石在高温下与还原剂(通常是焦炭)发生化学反应,将铁氧化物还原成液 态生铁。
反应方程式
$Fe_{2}O_{3} + 3C = 2Fe + 3CO$
高炉炼铁的工艺流程概述
原料准备
01 将铁矿石、焦炭和熔剂等原料
进行破碎、筛分和混合,准备 送入高炉。
装料
02 将准备好的原料装入高炉炉顶
压力检测
检测高炉内的压力变化,预防 因压力异常导致的安全事故。
成分检测
对高炉产生的煤气、渣和铁水 等进行成分分析,以指导生产 过程的控制。
控制系统
采用自动化控制系统,对高炉 的各项工艺参数进行实时监测 和控制,确保高炉的稳定运行
。
04
高炉炼铁的未来发展与 挑战
高炉炼铁技术的发展趋势
高效化生产
通过改进工艺和设备,提 高高炉炼铁的生产效率和 产能,降低能耗和生产成 本。
人力资源管理
加强人力资源管理,提高员工技能和素质,为高 炉炼铁的可持续发展提供人才保障。
谢谢观看
03
高炉炼铁的主要设备介 绍
炼铁炉设备
炼铁炉类型
高炉炼铁主要使用的是竖炉,根 据其形状可分为圆形、方形和矩
高炉炼铁概述PPT课件
过程
①还原过程 实现矿石中金属元素(主要是Fe)和氧 元素的化学分离; ② 造渣过程 实现已还原的金属与脉石的熔融态机械 分离; ③ 传热及渣铁反应过程 实现成分及温度均合格的液态铁水。
23
1. 1高炉原料
高炉原料
—高炉炼铁—
铁矿石
熔剂
其它含铁代用品
天然块矿 人造富矿
烧结矿 球团矿
碱性熔剂―石灰, 石灰石,白云石 酸性熔剂― 硅石 特殊熔剂― 萤石
4
1.1钢铁工业概况
—高炉炼铁—
1.1.1国民经济中钢铁工业的地位
评价一个国家的工业发达程度
工业化水平
工业生产所占比重
工业机械化、 自动化程度
工业化水平的标志
劳动生产率↑ 需要大量机械设备
国民生活水准
交
市
民
生
通
政
用
活
工
设
住
用
具
施
宅
品
需要大量基础材料
钢铁产品
5
➢价格低廉有较高的强度和韧性 ➢易于加工制造 ➢所需原料资源丰富 ➢ 冶炼工艺成熟、效率高
13 、修风率
定义:高炉修风时间占规定作业时间的百分数。
14、炉龄
定义:从高炉点火开炉到停炉大修,或高炉相邻两次
的大修之间的冶炼时间。
34
第一章 思考题
—高炉炼铁—
1、试述3种钢铁生产工艺的特点。 2、简述高炉冶炼过程的特点及三大主要过程。 3、画出高炉本体图,并在其图上标明四大系统。 4、归纳高炉炼铁对铁矿石的质量要求。 5、试述焦炭在高炉炼铁中的三大作用及其质量要求。 6、试述高炉喷吹用煤粉的质量要求。 7、熟练掌握高炉冶炼主要技术经济指标的表达方式。
①还原过程 实现矿石中金属元素(主要是Fe)和氧 元素的化学分离; ② 造渣过程 实现已还原的金属与脉石的熔融态机械 分离; ③ 传热及渣铁反应过程 实现成分及温度均合格的液态铁水。
23
1. 1高炉原料
高炉原料
—高炉炼铁—
铁矿石
熔剂
其它含铁代用品
天然块矿 人造富矿
烧结矿 球团矿
碱性熔剂―石灰, 石灰石,白云石 酸性熔剂― 硅石 特殊熔剂― 萤石
4
1.1钢铁工业概况
—高炉炼铁—
1.1.1国民经济中钢铁工业的地位
评价一个国家的工业发达程度
工业化水平
工业生产所占比重
工业机械化、 自动化程度
工业化水平的标志
劳动生产率↑ 需要大量机械设备
国民生活水准
交
市
民
生
通
政
用
活
工
设
住
用
具
施
宅
品
需要大量基础材料
钢铁产品
5
➢价格低廉有较高的强度和韧性 ➢易于加工制造 ➢所需原料资源丰富 ➢ 冶炼工艺成熟、效率高
13 、修风率
定义:高炉修风时间占规定作业时间的百分数。
14、炉龄
定义:从高炉点火开炉到停炉大修,或高炉相邻两次
的大修之间的冶炼时间。
34
第一章 思考题
—高炉炼铁—
1、试述3种钢铁生产工艺的特点。 2、简述高炉冶炼过程的特点及三大主要过程。 3、画出高炉本体图,并在其图上标明四大系统。 4、归纳高炉炼铁对铁矿石的质量要求。 5、试述焦炭在高炉炼铁中的三大作用及其质量要求。 6、试述高炉喷吹用煤粉的质量要求。 7、熟练掌握高炉冶炼主要技术经济指标的表达方式。
高炉炼铁工艺.ppt
通常析碳反应量较少,对冶炼进程影响不大
锰的还原
Mn氧化物得还原顺序 MnO2 → Mn2O3 → Mn3O4 → MnO
MnO2,Mn2O3极不稳定,还原产物中H2O和CO2→100 %,Mn3O4很容易还原,平衡气相成份中CO<10% 这三类锰的氧化物在高炉上部就可全部转化为 MnO
还原皆为放热反应,热效应较大。其结果高温区 扩大,导致碳的气化反应过分发展,焦比升高
反应开始温度 Tb=1923K=1650℃ SiO2 (s)+C=SiO(g)+CO △G0 =159200-78.7T
反应开始温度 Tb=2022K=1749℃
高炉冶炼温度条件下,硅的还原很困难
推测:高炉风口带的高温区时,Si才能开始还原 事实:高炉解剖研究的结果说明,在软熔带下沿形成的液态铁 水中含[Si]、[S]量即已开始增高,下降到风口水平面时[Si]、 [S]含量达到最大值。尔后,在炉缸下部铁滴穿过渣层时,[Si] 、[S]又转移入渣,最后降低至出炉成份
增大硫的挥发量;很有限 加大渣量;意味着多消耗熔剂,降低生产率,而且
随焦比升高,入炉S增加。不希望,必要时可采用 增大硫的分配系数LS。提高渣底脱S能力,生产中达
到LS值一方面取决于该条件下炉渣去S反应热力学平 衡,另一方面动力学
炼铁与炼钢脱S条件比较
条件பைடு நூலகம்温度
R r’[s]
FeO Ls
(3)提高生铁[Si]量:可促使渣铁接触时,[Si] 氧化为(SiO2)发生相应的耦合反应,(MnO)下降
硅的还原
Si的还原历程
Si的氧化物有二种:SiO2,SiO(气) ,逐级转化 >1500℃ SiO2—4SiO(气)—4Si <1500℃ SiO2—Si SiO2(s)+2C=Si(s)+2CO △G0 =174300-90.6T
锰的还原
Mn氧化物得还原顺序 MnO2 → Mn2O3 → Mn3O4 → MnO
MnO2,Mn2O3极不稳定,还原产物中H2O和CO2→100 %,Mn3O4很容易还原,平衡气相成份中CO<10% 这三类锰的氧化物在高炉上部就可全部转化为 MnO
还原皆为放热反应,热效应较大。其结果高温区 扩大,导致碳的气化反应过分发展,焦比升高
反应开始温度 Tb=1923K=1650℃ SiO2 (s)+C=SiO(g)+CO △G0 =159200-78.7T
反应开始温度 Tb=2022K=1749℃
高炉冶炼温度条件下,硅的还原很困难
推测:高炉风口带的高温区时,Si才能开始还原 事实:高炉解剖研究的结果说明,在软熔带下沿形成的液态铁 水中含[Si]、[S]量即已开始增高,下降到风口水平面时[Si]、 [S]含量达到最大值。尔后,在炉缸下部铁滴穿过渣层时,[Si] 、[S]又转移入渣,最后降低至出炉成份
增大硫的挥发量;很有限 加大渣量;意味着多消耗熔剂,降低生产率,而且
随焦比升高,入炉S增加。不希望,必要时可采用 增大硫的分配系数LS。提高渣底脱S能力,生产中达
到LS值一方面取决于该条件下炉渣去S反应热力学平 衡,另一方面动力学
炼铁与炼钢脱S条件比较
条件பைடு நூலகம்温度
R r’[s]
FeO Ls
(3)提高生铁[Si]量:可促使渣铁接触时,[Si] 氧化为(SiO2)发生相应的耦合反应,(MnO)下降
硅的还原
Si的还原历程
Si的氧化物有二种:SiO2,SiO(气) ,逐级转化 >1500℃ SiO2—4SiO(气)—4Si <1500℃ SiO2—Si SiO2(s)+2C=Si(s)+2CO △G0 =174300-90.6T
炼铁工艺介绍PPT课件
炉喉
炉身
高炉有效高度 炉腰 炉腹
炉缸 死铁层
7
一、高炉炼铁基本原理
4、高炉内炉料的分布 按状态不同分为五个区域: 块状带、软熔带、滴落带、风口回旋区、渣铁贮存区。
❖ 高炉内炉料状态分布示意图 软熔带示意图
8
一、高炉炼铁基本原理
5、炉内各区域的反应及特征
块状带:炉料中水分蒸发及受 热分解,铁矿石还原,炉料与 煤气热交换;焦炭与矿石层状 交替分布,呈固体状态;以气 固相反应为主。 软熔带:炉料在该区域软化, 在下部边界开始熔融滴落;主 要进行直接还原反应,初渣形 成。 滴落带:滴落的液态渣铁与煤 气及固体碳之间进行多种复杂 的化学反应。 风口回旋区:焦炭及煤粉与鼓 入的热风发生燃烧反应,产生 高热煤气,是炉内温度最高的 区域。 渣铁贮存区:在渣铁层间的交 界面及铁滴穿过渣层时发生渣 金反应。
炉渣和生铁定期通过铁口外排。通过 炉前撇渣器进行渣铁分离,铁水 通过鱼雷罐运到炼钢或铸铁。炉 渣经过水淬后,输送到渣场。
高炉炼铁的主产品是生铁,副产品是 高炉煤气、水渣、炉尘。
3
一、高炉炼铁基本原理
2、高炉炼铁原、燃料 高炉炼铁主要原、燃料为铁矿石、燃料、熔剂。 ① 铁矿石 ◆ 铁矿石种类
铁矿石分为天然矿和人造富矿。 天然矿按铁氧化物的主要矿物形态,分为赤铁矿、磁铁矿、褐铁矿和菱 铁矿等。炼铁常用的天然矿有澳矿、印度矿等。锰矿一般在洗炉、生产 锰铁时才使用,在高炉开炉时为改善渣铁流动性,也加入一部分锰矿。 烧结矿和球团矿统称人造富矿,人造富矿的出现解决了精矿粉、富粉矿 的利用问题,同时用人工手段改变矿石的冶炼性能,所以人造富矿优于天 然矿。烧结矿一般为碱性,球团矿为酸性,通过烧结矿和球团矿搭配入 炉形成合适的炉渣碱度。 ◆ 铁矿石代用品 高炉炉尘、转炉炉尘、轧钢皮等,这些原料均要加入人造富矿原料中使 用。 ◆ 对铁矿石的质量要求 贯彻精料方针,可概括为:“高、熟、净、小、匀、稳”六个字。 炼铁工作者经过长期的生产实践总结出“七分原料三分操作”或“四分 原料三分设备三分操作”说明精料对高炉生产决定性影响。
高炉炼铁简述PPT课件.ppt
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
构建高效率、低消耗、低成本、低排放生产体系
LOREM
高效IPS低U耗M
DOLOR
LOREM
节IP能S减UM排
DOLOR
L循O环RE经M IPS济UM
DOLOR
低碳冶炼
2.高炉本体及主要构成
密闭的高炉本体是冶炼生铁的主 体设备。它是由耐火材料砌筑成 竖式圆筒形,外有钢板炉壳加固 密封,内嵌冷却设备保护。
高炉内部工作空间的形状称为高 炉内型从自上而下分为炉喉、炉 身、炉腰、炉腹、炉缸五个部分 。该容积总和为它的有效容积, 反应高炉多具备的生产能力。
5
hf
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
9/27/2024
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
4号高炉炉容4350 m3 在4号高炉的设计过程 中,采用了41项新技 术。主要有:紧凑的 总图布局、旋转布料 器加固定料罐的串罐 中心卸料式无料钟、 炉缸高挂渣性能的热 压小炭砖耐材、冷却 壁与冷却壁板结合的 全炉身冷却型式、国 内集成的喷煤技术、 新英巴法转鼓水渣处 理工艺、环缝洗涤煤 气统、平坦化出铁场
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
现代高炉炼铁工艺-PPT
1. 现代高炉炼铁工艺
1.1 高炉炼铁生产流程 1.2 高炉本体及主要构成 1.3 高炉冶炼产品 1.4 高炉技术经济指标
1
1.1 高炉炼铁工艺流程
1.1.1高炉冶炼工艺流程
1、工艺原理
高炉是一个密闭的连续的逆流反
应器。炉料充满整个高炉空间,形成
料柱.原燃料从炉顶装入,高温热空
气从下部鼓入;产生的高温还原性气
16
(3)冷却设备
炉衬的温度状态是决定其侵蚀速度的重要因素 之一,冷却设备保护耐火砖衬的工作表面温度低于 其允许的温度,使其不因受热变形而被坏。强大的 冷却还可在高炉下部形成渣皮,代替炉衬工作;
根据高炉各部位热负荷及结构的不同,高炉冷却 可采取多种形式和方法.
17
18
19
高炉安装的铜冷却壁
20
利用特殊矿或采用特殊的冶炼工艺,利用高炉
可以生产出含钛、钒的铁水,以及锰铁、硅铁等
铁合金。
78
2、高炉渣
炉渣主要成分有:CaO、SiO2、Al2O3、MgO。 其中炉渣碱度:CaO/SiO2 =1.05-1.25。
3、高炉煤气
每冶炼一吨铁产生1800m3左右的煤气,煤气 中含有CO20%~25%,是钢铁企业重要的二次能 源。
与湿式除尘技术相比,干式除尘具有以下优 点:
(1)提高煤气净化程度;
(2)降低新水消耗和动力消耗;
(3)由于煤气温度高不含水,可提高煤气余 压发电量(增加30% )和二次能源(煤气温度 高100℃)利用效率。
57
缺点: (1)对温度比较敏感,煤气温度过高,
过低都不行; (2)设备多,运行后维护量大,由十几
4、炉尘(又称瓦斯灰)
被煤气携带出炉外的粉状炉料,称为炉尘(约 20kg/t铁),可回收作为烧结原料。
1.1 高炉炼铁生产流程 1.2 高炉本体及主要构成 1.3 高炉冶炼产品 1.4 高炉技术经济指标
1
1.1 高炉炼铁工艺流程
1.1.1高炉冶炼工艺流程
1、工艺原理
高炉是一个密闭的连续的逆流反
应器。炉料充满整个高炉空间,形成
料柱.原燃料从炉顶装入,高温热空
气从下部鼓入;产生的高温还原性气
16
(3)冷却设备
炉衬的温度状态是决定其侵蚀速度的重要因素 之一,冷却设备保护耐火砖衬的工作表面温度低于 其允许的温度,使其不因受热变形而被坏。强大的 冷却还可在高炉下部形成渣皮,代替炉衬工作;
根据高炉各部位热负荷及结构的不同,高炉冷却 可采取多种形式和方法.
17
18
19
高炉安装的铜冷却壁
20
利用特殊矿或采用特殊的冶炼工艺,利用高炉
可以生产出含钛、钒的铁水,以及锰铁、硅铁等
铁合金。
78
2、高炉渣
炉渣主要成分有:CaO、SiO2、Al2O3、MgO。 其中炉渣碱度:CaO/SiO2 =1.05-1.25。
3、高炉煤气
每冶炼一吨铁产生1800m3左右的煤气,煤气 中含有CO20%~25%,是钢铁企业重要的二次能 源。
与湿式除尘技术相比,干式除尘具有以下优 点:
(1)提高煤气净化程度;
(2)降低新水消耗和动力消耗;
(3)由于煤气温度高不含水,可提高煤气余 压发电量(增加30% )和二次能源(煤气温度 高100℃)利用效率。
57
缺点: (1)对温度比较敏感,煤气温度过高,
过低都不行; (2)设备多,运行后维护量大,由十几
4、炉尘(又称瓦斯灰)
被煤气携带出炉外的粉状炉料,称为炉尘(约 20kg/t铁),可回收作为烧结原料。
高炉炼铁工艺资料课件
送风
向高炉内鼓入热风,提供 反应所需氧气。
高炉炼铁的工艺流程
01
02
燃烧
焦炭与氧气发生燃烧反应,产 生高温和还原性气体。
渣铁分离
高温下矿石熔化,渣铁分离, 生铁从炉缸排出。
03
排渣
将炉渣排出高炉。
04
回收利用
回收高温气体和余热,降低能 耗。
02
高炉设备与操作
高炉的结构与设计
要点一
和产 品质量有着重要影响。
高炉的操作与管理
总结词
高炉操作涉及众多工艺参数的调控,包括原料供应、送风、渣铁处理等,需要经验丰富 的操作人员。
详细描述
高炉操作的核心是控制好原料供应的配比和品质,以及送风的温度和压力。根据高炉的 工艺要求和产品需求,操作人员需不断调整各项参数,如焦炭加入量、矿石配比、送风 温度等,以保证高炉的稳定运行和高效生产。同时,渣铁处理也是高炉操作的重要环节
要点二
详细描述
高炉的结构通常包括炉缸、炉身、炉腹、炉腰和炉喉等部 分,各部分的设计需满足不同的工艺要求。炉缸是铁水的 产出地,要求有良好的保温性和耐火材料;炉身用于容纳 和加热铁矿石和焦炭,设计时应考虑传热效率和气体流动 ;炉腹、炉腰和炉喉则是根据不同冶炼阶段的需要,调整 矿石和焦炭的分布和加热方式。
高炉炼铁工艺资料课件
目录 Contents
• 高炉炼铁工艺简介 • 高炉设备与操作 • 原料与燃料 • 炼铁过程中的化学反应 • 环境保护与可持续发展
01
高炉炼铁工艺简介
高炉炼铁的定义与重要性
定义
高炉炼铁是一种将铁矿石还原成 液态生铁的工艺过程。
重要性
高炉炼铁是现代钢铁工业的基础 ,为各行业提供大量优质钢材。
高炉炼铁生产工艺 PPT
熔结层中砖与砖已烧结成一个整体,能抵抗铁水 的渗入,并且坑底面的铁水温度也较低,砖缝已 不再是铁水渗入的薄弱环节,这时炉衬损坏的主 要原因转化为铁水中的碳将砖中二氧化硅还原成 硅,并被铁水所吸收的化学侵蚀。 生产实践表明:采用炉底冷却的大高炉炉底侵蚀 深度约1~2m,而没有炉底冷却的高炉侵蚀深度 可达4~5m。 从炉底破损机理看出,影响炉底寿命的因素:首 先是它承受的高压,其次是高温,再次是铁水和 渣水在出铁时的流动对炉底的冲刷,炉底的砖衬 在加热过程中产生温度应力引起砖层开裂,此外 在高温下渣铁也对砖衬有化学侵蚀作用,特别是 渣液的侵蚀更为严重。
②软熔带: 炉料由开始软化到软化终了的区域。此区域是由 许多固态焦炭层和粘结在一起的半熔融的矿石层 组成,焦炭与矿石相间层次分明。由于矿石呈软 熔状透气性极差,上升的煤气流主要从像窗口一 样的焦炭层通过,因此又称其为“焦窗”。软熔 带的上缘是软化线,即矿石开始软化的温度;下 缘是熔化线,即矿石熔化的温度,它和矿石的软 熔温度区间相一致;其最高部位称为软熔带顶部, 其最低部位与炉墙相连接,称为软熔带的根部。 ③滴落带: 矿石熔化后呈液滴状滴落的区域,它位于软熔带 之下,矿石熔化后形成的渣铁像雨滴一样穿过固 态焦炭层而滴落进入炉缸。
五段式高炉内型如下图。
(2)高炉冶炼的基本过程 高炉生产过程就是将铁矿石在高温下冶炼成生铁 的过程。全过程是在炉料自上而下、煤气自下而 上的运动、相互接触过程中完成的。 高炉生产所用的原料是含铁的矿石包括烧结矿、 球团矿和天然富矿石;燃料主要是焦炭;辅助原 料为熔剂和洗炉剂等。通过上料系统和炉顶装料 系统按一定料批、装入顺序从炉顶装入炉内,从 风口鼓入经热风炉加热到1000~1300℃的热风, 炉料中的焦炭在风口前与鼓入热风中的氧发生燃 烧反应,产生高温和还原性气体,这些还原性气 体在上升过程中加热缓慢下行的炉料,并将铁矿 石中的铁氧化物还原成为金属铁
高炉炼铁工艺流程及主要设备简介 ppt课件
13
三、高炉冶炼主要设备简介
受料斗主 要包括: 受料斗篦 子、受料 斗衬板; 受料斗的 最大容积:
16m³
14
三、高炉冶炼主要设备简介
挡料阀
上密阀
料罐
挡料阀(瓜皮 阀):φ650; 料罐及上密封 阀:φ700, 料罐最大容积
16m³
15
三、高炉冶炼主要设备简介
节流阀(料流 阀:φ600 1、外径: Ф1200 mm 2、孔距: Ф1120mm 内径: Ф400mm
下密接近开关
16
三、高炉冶炼主要设备简介
气密箱(布料器) 喉管通径:
500mm; 倾 动速度:
0~8°/s; 溜槽旋转速度:
9.8r/min; 公称压力:
0.2MPa 正常控制温度:
≤70℃ 冷却水压力:
0.2MPa
17
三、高炉冶炼主要设备简介
溜槽:L=1600
18
三、高炉冶炼主要设备简介
19
4
一、高炉炼铁工艺流程详解
5
炼铁工艺流程图
烧结料 球团料 焦炭 杂品
上料皮带机 振筛
槽下振筛
中
料仓
皮带机
间 仓
铁包 铁路 炼钢
铁 水 沟
渣铁 分离器
铁水大沟
料车
高炉
渣 沟
冲渣水管道
渣沟
供回 水水 管管 道道
净环水泵房
冷却塔
鼓风机
热风炉
助燃风机
煤气外网管道
重力 除尘
布袋 除尘
调压阀组 TRT发电
渣池 水渣场
35
三、高炉冶炼主要设备简介
上图为槽下翻板 筛分合格的原料经皮带运输到翻板,经翻板中间仓下料口放料至 料车中。
三、高炉冶炼主要设备简介
受料斗主 要包括: 受料斗篦 子、受料 斗衬板; 受料斗的 最大容积:
16m³
14
三、高炉冶炼主要设备简介
挡料阀
上密阀
料罐
挡料阀(瓜皮 阀):φ650; 料罐及上密封 阀:φ700, 料罐最大容积
16m³
15
三、高炉冶炼主要设备简介
节流阀(料流 阀:φ600 1、外径: Ф1200 mm 2、孔距: Ф1120mm 内径: Ф400mm
下密接近开关
16
三、高炉冶炼主要设备简介
气密箱(布料器) 喉管通径:
500mm; 倾 动速度:
0~8°/s; 溜槽旋转速度:
9.8r/min; 公称压力:
0.2MPa 正常控制温度:
≤70℃ 冷却水压力:
0.2MPa
17
三、高炉冶炼主要设备简介
溜槽:L=1600
18
三、高炉冶炼主要设备简介
19
4
一、高炉炼铁工艺流程详解
5
炼铁工艺流程图
烧结料 球团料 焦炭 杂品
上料皮带机 振筛
槽下振筛
中
料仓
皮带机
间 仓
铁包 铁路 炼钢
铁 水 沟
渣铁 分离器
铁水大沟
料车
高炉
渣 沟
冲渣水管道
渣沟
供回 水水 管管 道道
净环水泵房
冷却塔
鼓风机
热风炉
助燃风机
煤气外网管道
重力 除尘
布袋 除尘
调压阀组 TRT发电
渣池 水渣场
35
三、高炉冶炼主要设备简介
上图为槽下翻板 筛分合格的原料经皮带运输到翻板,经翻板中间仓下料口放料至 料车中。
高炉炼铁工艺资料课件
VS
详细描述
高炉炼铁工艺中,生铁的形成是由焦炭、 矿石和熔剂在高炉内经过还原反应生成的 。生铁的质量主要受原材料成分、高炉操 作参数和炉料结构等因素的影响。
有害气体的排放与处理
总结词
有害气体的产生和处理方法
详细描述
高炉炼铁过程中会产生大量有害气体,如一 氧化碳、二氧化碳、二氧化硫等。这些气体 需要经过除尘、脱硫等处理后才能排放,以 减少对环境的影响。
煤气是在高炉炼铁过程中,由碳与氧 反应生成的混合气体。这个反应是放 热反应,可以提供高炉炼铁所需的热 量。
煤气形成的过程
在高炉炼铁过程中,铁矿石、焦炭和 熔剂在高炉内经过一系列的化学反应 和物理变化,生成了以一氧化碳为主 要成分的煤气。
热能利用的方式与效率
热能利用的方式
高炉炼铁过程中产生的热能主要用于 加热高炉内的反应和提供炼铁所需的 热量。这些热能可以通过各种方式进 行利用,如发电、供暖等。
THANKS
感谢观看
ERA
高炉炼铁的定义与重要性
定义高炉炼铁是Biblioteka 种将铁矿石还原成 液态生铁的工艺过程。
重要性
高炉炼铁是现代钢铁工业的基础 ,为各行业提供所需的生铁和钢 。
高炉炼铁的基本原理
化学反应
高炉炼铁主要依赖碳(C)与氧化铁(Fe2O3)之间的还原反应,生成液态生 铁和二氧化碳(CO2)。
反应方程式
Fe2O3 + 3C → 2Fe + 3CO2。
详细描述
例如采用低氮燃烧技术、煤气回收利用技术、余热回 收技术等,这些技术的应用能够有效降低能耗和减少 污染物排放,提高高炉炼铁的环保性能。
新材料与新工艺的研发
要点一
总结词
随着新材料和新工艺的不断涌现,高炉炼铁工艺也在不断 进行创新和改进。
宝钢高炉炼铁工艺介绍ppt课件
1 2 0 m /m i n
CC OO O
炉顶装料
BF
喷煤系统
重力 除尘器
热风
1VS 2VS
TRT
调压阀组
消音器
水封装置
冷风
HS HS
HS
HS
最高风温
1310℃
最高拱顶温度 1450℃
最高废气温度
350℃
混铁车
高炉脱硅装 置
2、高炉工艺流程介绍
高炉冶炼物流流程
原燃料 鼓风机
矿石 焦炭 辅料 煤粉
高温鼓风
1、行车、悬臂吊车等起重设备; 2、泥炮; 3、开口机; 4、移盖机; 5、摆动流嘴; 6、残铁开口机; 7、主沟、渣铁沟; 8、液压系统。
2.6高炉炉前工艺流程
2、高炉工艺流程介绍
2.7高炉炉渣处理流程
2、高炉工艺流程介绍
渣处理方式
水渣:熔渣经过冷却水急冷,产生细碎颗粒状水渣,用于制作水泥。 干渣:熔渣放入坑中,洒水冷却,冷却后挖掘清运出厂,用于铺路。
水渣处理工艺
LASA法:粗粒分离槽与脱水槽脱水;电消耗大,管道易磨损,占地大 。 INBA法:转鼓与成品槽脱水,水电消耗少,管道阀门寿命长,占地少。 新INBA法:较INBA法增加了蒸汽冷却装置,环保,耗电增多。
2.7高炉炉渣处理流程
压缩空气
烟囱
2、高炉工艺流程介绍
风扇
冷却 塔
炉渣
渣水槽
渣水沟
冲渣水
P 事故水
渣皮带
输送皮带
渣槽
转鼓
P
集水槽 温水槽
P
水渣
P
P
2.7高炉炉渣处理流程
2、高炉工艺流程介绍
2.8高炉除尘系统
高炉炼铁工艺课件
直接还原成大量碱蒸气,随煤气上升到低温区又被氧化成 碳酸盐沉积在炉料和炉墙上,部分随炉料下降,从而反复 循环积累。其危害主要为:与炉衬作用生成钾霞石
(K2O﹒Al2O3﹒2SiO2),体积膨胀40%而破坏炉衬;与 炉衬作用生成低熔点化合物,粘接在炉墙上,易导致结瘤; 与焦炭作用生成嵌入式化合物(CKCN),体积膨胀很大, 破坏焦炭高温强度,从而影响高炉下部料柱的透气性。 (6)铜。铜是贵重的有色金属,在钢中的含量不超过0.3% 时,能增强金属的抗腐蚀性能,但当含铜量超过0.3%时, 钢的焊接性能降低,并产生热脆。 2. 有益元素。许多铁矿石中常伴有锰、铬、钒、钛、镍等元 素,形成多种共生矿。这些金属能改善钢材的性能,是重 要的合金元素,故称之为有益元素。
菱
FeCO3
48.230~40 Nhomakorabea25
P,S↓熔 烧后易 还原
各类铁矿石图
磁铁矿 褐铁矿
赤铁矿
菱铁矿
2.1.2 高炉冶炼对铁矿石的要求
铁矿石是高炉冶炼的主要原料,决定铁矿石质量优劣 的主要因素是化学成分、物理性质及其冶金性能。高炉冶 炼对铁矿石的要求是:含铁量高,脉石少,有害杂质少, 化学成分稳定,粒度均匀,具有良好的还原性及一定的机 械强度等性能。 2.1.2.1 铁矿石品位 铁矿石的品位即指铁矿石的含铁量,以TFe%表示。品 位是评价铁矿石质量的主要指标。经验表明:铁矿石含铁 量每增加1%,焦比将降低2%,产量提高3%,因为随着矿 石品位的提高,脉石含量越少,溶剂用量和渣量减少,既 节省热量消耗,又有利于炉况顺行。一般实际含铁量大于 理论含铁量70%~90%时方可直接入炉,成为富矿 。贫矿必须经过选矿和造块才能入炉冶炼。
3、送风系统。包括鼓风机、热风炉、热风总管,送风支管。 本系统的任务是把从鼓风机房送出的冷风加热并送入高炉。 4、喷吹系统。包括磨煤机、集煤罐、储煤罐、喷煤罐、混 合器和喷枪。本系统的任务是磨制、收存和计量后把煤粉 从风口喷入高炉。 5、渣铁处理系统。包括出铁厂、泥炮、开口机、铁水罐、 水渣池等。本系统的任务是定期将炉内的渣铁出净,保证 高炉连续生产。 6、煤气处理系统。包括煤气上升管、下降管、重力除尘器、 布袋除尘器、静电除尘器。本系统的任务是将炉顶引出的 含尘很高的荒煤气净化成合乎要求的净煤气。
高炉炼铁生产工艺流程及主要设备(共7张PPT)
增长率(%)
炼焦企业分独立炼焦和钢厂联1合9焦7化5企-业2(产0能160/4)年。 中国焦炭产量及增长率
2010年亿吨,占世界68%。
炼焦企业分独立炼焦和钢厂联合焦化企业(产能6/4)。
截至到目前,统计在册炼焦企业997家,分布在29个省市,华北、华东和东北地区为主,占比超过70%
现货市场概况——三个“5第0一0”00
我原国料焦 :炭主逐焦年煤产为量主增+ 其长他情1煤况00种0(0如肥煤、瘦煤、气煤、1/3焦煤等)
0
世界第一生产大国:2009年亿吨,占世界60%左右。
0
-20
产量
增长率
炼焦企业分布区域化
截至到目前,统计在册炼焦企业997家, 分布在29个省市,华北、华东和东北地 区为主,占比超过70%
炼焦企业分独立炼焦和钢厂联合焦化企业 (产能6/4)。
美国, 3.30%
其他, 16%
1200万吨以上,约占世界贸易
量的%。
印度, 3.74%
国内贸易量,2009年独立焦
乌克兰,
化厂产量亿吨,商品化率62%。 4.50% 俄罗斯,
6.80%
日本, 9%
中国, 57%
我国焦炭逐年产量增长情况
产量(万吨) 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
2008年我国焦炭产量地区分布
排 名 地区 产量/万吨 占比 1 山西 8235.94 25.5% 2 河北 3923.5 12.1%
3 山东 2885.57 8.9%
100%
4 河南 2041.67 6.3%
炼焦企业分独立炼焦和钢厂联1合9焦7化5企-业2(产0能160/4)年。 中国焦炭产量及增长率
2010年亿吨,占世界68%。
炼焦企业分独立炼焦和钢厂联合焦化企业(产能6/4)。
截至到目前,统计在册炼焦企业997家,分布在29个省市,华北、华东和东北地区为主,占比超过70%
现货市场概况——三个“5第0一0”00
我原国料焦 :炭主逐焦年煤产为量主增+ 其长他情1煤况00种0(0如肥煤、瘦煤、气煤、1/3焦煤等)
0
世界第一生产大国:2009年亿吨,占世界60%左右。
0
-20
产量
增长率
炼焦企业分布区域化
截至到目前,统计在册炼焦企业997家, 分布在29个省市,华北、华东和东北地 区为主,占比超过70%
炼焦企业分独立炼焦和钢厂联合焦化企业 (产能6/4)。
美国, 3.30%
其他, 16%
1200万吨以上,约占世界贸易
量的%。
印度, 3.74%
国内贸易量,2009年独立焦
乌克兰,
化厂产量亿吨,商品化率62%。 4.50% 俄罗斯,
6.80%
日本, 9%
中国, 57%
我国焦炭逐年产量增长情况
产量(万吨) 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
2008年我国焦炭产量地区分布
排 名 地区 产量/万吨 占比 1 山西 8235.94 25.5% 2 河北 3923.5 12.1%
3 山东 2885.57 8.9%
100%
4 河南 2041.67 6.3%
高炉炼铁工艺课件
熔融还原技术
将部分碳素燃烧过程移至高炉外,降低高炉内的碳含量,提高生铁 质量。
高压操作技术
通过提高高炉内的压力,增加煤气在炉内的停留时间,提高生铁产 量和降低能耗。
谢谢聆听
布料规律
根据高炉的生产需求和原料特性,制定不同的布料方案,以实现煤气和铁水的均匀分布,提高高炉的 产量和效率。
风口、渣口和铁口的操作
风口
位于炉膛的底部,用于向炉内提供氧 气,助燃焦炭,并产生高温煤气。操 作人员需定期检查风口状态,保证其 通畅。
渣口
铁口
位于炉膛的另一侧,用于排放铁水。 铁口操作需注意控制铁水的流量和温 度,以保证高炉的正常运行和钢铁产 品的质量。
位于炉膛的一侧,用于排放高炉产ቤተ መጻሕፍቲ ባይዱ 的渣。渣口操作需注意控制渣的排出 量和成分,以降低对环境的污染。
04 高炉炼铁的环保与节能
高炉炼铁的排放与治理
排放物种类
高炉炼铁过程中会产生大量的废 气、废水和固体废弃物,如粉尘
、炉渣和瓦斯等。
排放物危害
这些排放物若未经处理直接排放, 会对环境造成严重污染,影响人类 健康和生态平衡。
铁氧化物的还原机理
Fe2O3→Fe3O4→FeO→Fe 铁氧化物还原过程中,低价氧化物更容易还原成金属铁。
碳的气化反应与燃烧反应
碳气化反应
C+CO2→2CO
碳燃烧反应
2C+O2→2CO
炉渣的形成与作用
炉渣的形成
高炉炼铁过程中,矿石中的脉石、焦 炭中的灰分等与熔融的炉渣相混而成 。
炉渣的作用
去除有害杂质、维持生铁质量、保持 高炉热平衡等。
治理措施
采取有效的治理措施,如安装除尘 器、建设污水处理设施和固体废弃 物处理设施等,以减少污染物排放 。
将部分碳素燃烧过程移至高炉外,降低高炉内的碳含量,提高生铁 质量。
高压操作技术
通过提高高炉内的压力,增加煤气在炉内的停留时间,提高生铁产 量和降低能耗。
谢谢聆听
布料规律
根据高炉的生产需求和原料特性,制定不同的布料方案,以实现煤气和铁水的均匀分布,提高高炉的 产量和效率。
风口、渣口和铁口的操作
风口
位于炉膛的底部,用于向炉内提供氧 气,助燃焦炭,并产生高温煤气。操 作人员需定期检查风口状态,保证其 通畅。
渣口
铁口
位于炉膛的另一侧,用于排放铁水。 铁口操作需注意控制铁水的流量和温 度,以保证高炉的正常运行和钢铁产 品的质量。
位于炉膛的一侧,用于排放高炉产ቤተ መጻሕፍቲ ባይዱ 的渣。渣口操作需注意控制渣的排出 量和成分,以降低对环境的污染。
04 高炉炼铁的环保与节能
高炉炼铁的排放与治理
排放物种类
高炉炼铁过程中会产生大量的废 气、废水和固体废弃物,如粉尘
、炉渣和瓦斯等。
排放物危害
这些排放物若未经处理直接排放, 会对环境造成严重污染,影响人类 健康和生态平衡。
铁氧化物的还原机理
Fe2O3→Fe3O4→FeO→Fe 铁氧化物还原过程中,低价氧化物更容易还原成金属铁。
碳的气化反应与燃烧反应
碳气化反应
C+CO2→2CO
碳燃烧反应
2C+O2→2CO
炉渣的形成与作用
炉渣的形成
高炉炼铁过程中,矿石中的脉石、焦 炭中的灰分等与熔融的炉渣相混而成 。
炉渣的作用
去除有害杂质、维持生铁质量、保持 高炉热平衡等。
治理措施
采取有效的治理措施,如安装除尘 器、建设污水处理设施和固体废弃 物处理设施等,以减少污染物排放 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
炉喉板等。 • ⑷ 造渣制度的调整: • 炉渣性能:流动性,熔化性(长渣和短渣),稳定性,脱硫能力等。 • 炉渣性能的调整:碱度(二元,三元,四元),加MgO(适应高AI2O3量),
低碱度排碱金属,提高脱硫能力等。
七、与高炉密切相关的几个系统
• 1、上料系统:包括料场、矿槽、振动筛、 称量漏斗、上料皮带机。本系统的任务是 将原、燃料运到炉顶按料单装入受料漏斗。
从出铁口放出,铁矿石中的脉石、焦炭 及喷吹物中的灰分与加入炉内的石灰石 等熔剂结合生成炉渣,从出铁口和出渣 口排出。
4、煤气从炉顶导出,经除尘后,作 为工业用煤气
二、高炉内型结构
1、炉喉
• 炉喉是炉料进高炉的装入口,也是煤气的 导出口,对炉料和煤气分布起控制和调节 作用
2、炉身
• 炉料在炉身预热和预还原,炉身直径自上 而下逐渐扩大以适应炉料受热膨胀和减少 炉料与炉强之间的摩擦力,
• (2)矿石的粒度。相同质量的矿石,粒度越小与煤气的接触面积则 越大,煤气的用程度越好。
• (3)煤气温度。随着温度升高不论是界面化学反应还是扩散速度均 是加快的,同时在高温下活化分子数目增加,促进还原反应进行。
• (4)煤气压力。提高煤气压力使气体密度加大,增加了单位时间内 与矿石表面碰撞的还原剂的分子数,从而加快还原反应。
2、上部装入的铁矿石、燃料和熔剂在重力作用下
向下运动,从高炉下部的风口吹进热风(1000~ 1300℃),喷入油、煤或天然气等燃料,燃料燃烧 产生大量高温还原性气体向上运动,炉料经过加热、
还原、熔化、造渣、渗碳、脱硫等一系列物理化学 过程,最后生成液态炉渣和生铁
3、还原反应生成的铁汇聚到炉缸定期
1、块状带
• 炉内料柱的上部,矿石与焦炭始终保持明 显的固态的层次缓慢下降,但层状逐渐趋 于水平,而且厚度也逐渐变薄
2、软熔带
• 由许多固态焦炭层和黏结在一起的半熔融 的矿石层组成,由于矿石呈软熔状,透气 性极差,煤气主要从焦炭层通过
3、滴落带
• 位于软熔带之下,熔化后的渣铁像雨滴一 样穿过固提高煤气中CO 和H2浓度,既可提高还原过程中的内、外扩散速度,又可提高化学反 应速度,从而可以加快铁矿石的还原速度。
• (6)煤气流速。
五、高炉炼铁的操作方针和任务
• 方针:高产、优质、低耗、长寿、安全 • 任务:在现有条件下,科学合理地充分利用一切
无料钟炉顶因其设备简单、密封性
能良好、布料手段灵活多样,近年
来已经逐步取代钟式炉顶
钟式炉顶
无料钟炉顶
图 6 并罐式无钟炉顶装置示意图 1—皮带运输机;2—受料漏斗;3—上闸门; 4—上密封阀;5—储料仓;6—下闸门; 7—下密封阀;8—叉型漏斗;9—中心喉管; 10—冷却气体充入管;11—传动齿轮机构; 12—探尺;13—旋转溜槽;14—炉喉煤气封盖;
4、风口回旋区
• 焦炭在风口前,由于鼓风动能的作用在剧 烈的回旋运动中燃烧,形成一个半空状态 的焦炭回旋区
5、渣铁贮存区
• 炉缸下部,主要是液态渣铁以及浸入其中 的焦炭,铁滴穿过渣层以及渣铁界面后最 终完成必要的渣铁反应,得到合格的生铁
四、影响铁矿石还原的因素
• (1)矿石的气孔度和矿物组成。气孔度大而分布均匀的矿石还原性 好(气孔度大,矿石与煤气的接触面积大,特别是微气孔率,可以改 善气体的内扩散条件,提高内扩散速度。
• 2、装料系统:包括受料漏斗、旋转布料器、 大小钟、探尺。本系统的任务是均匀地按 工艺要求将上料系统运来的炉料装入炉内。
• 3、送风系统:包括鼓风机、热风炉、热风 总管,送风支管。本系统的任务是把从鼓 风机房送出的冷风加热并送入高炉。
一、高炉炼铁工艺流程
炼铁工序在钢铁工业中有承上启 下的作用。钢铁工业生产的高物 耗,高能耗,高汚染主要是体现 在炼铁系统。其工序能耗占钢铁 联合企业总能耗的70%,汚染物 排放为三分二。
1、原燃料通过主皮带上至高炉炉顶 装料设备,通过大钟或布料溜槽均 匀分布到炉喉
• 炉顶装料设备分为钟 式炉顶和无料钟炉顶
5、炉缸
• 高炉燃料燃烧、渣铁反应和贮存及排放区 域,呈圆筒形。出铁口、渣口和风口都设 在炉缸部位,因此它也是承受高温煤气及 渣铁物理和化学侵蚀最剧烈的部位,对高 炉煤气的初始分布、热制度、生铁质量和 品种都有极重要的影响
三、从高炉解剖看铁矿石的还原
• 高炉冶炼是在高温条件下,充满着复杂的五里化 学反应,以及热量、质量传输过程等复杂现象, 这些现象直接关系到高炉内的还原反应,因为高 炉是一个密闭的连续的逆流反应器,对反应过程 的变化进行直接的观察测试都难以进行,通过解 剖能够对炉内的复杂反应有一个感性的认识。高 炉解剖是把正在正常冶炼中的高炉突然停止鼓风, 并且急速降温以尽可能保持炉内原状,然后将高 炉剖开,进行全过程的观察
操作手段来调整好高炉内煤气分布,炉料合理运 动,使炉缸热量充沛,渣铁流动性好,能量得到 科学利用等。实现高炉稳定顺行,高产低耗,长 寿环保;完成对炉料的加热,还原,熔化,造渣, 脱硫,渗碳,渣铁分离和顺畅流出高炉的任务。 同时要完成节约资源和能源,减少汚染物排放的 任务。
六、高炉炼铁的操作手段
• • ⑴ 送风制度的调整(又称下部调剂); • 包括:风量(反映在风压和压差),风温,富氧,脱湿鼓风,风速(风口
直径,长度,角度),鼓风动能。 • ⑵ 热制度的调整 • 调整焦炭负荷,风温,喷煤比。对冷却水进行调整(又称中部调剂)。 • ⑶ 装料制度的调整(又称上部调剂): • ·固定因素:炉喉直经和间隙,大钟傾角,行程,下降速度,炉身角。 • · 可调因素:料线,矿批重,装料顺序,布料器运行,无料钟布料,可调
3、炉腰
• 炉腰是高炉直径最大的部分,它使炉身和 炉腹得以合理过渡。由于在炉腰部位有炉 渣形成,并且粘稠的初成渣会使炉料透气 性恶化,为减小煤气流的阻力,在渣量大 时可适当扩大炉腰直径。
4、炉腹
• 高炉熔化和造渣的主要区段,呈倒锥台形。 为适应炉料熔化后体积收缩的特点,其直 径自上而下逐渐缩小,形成一定的炉腹角。 炉腹的存在,使燃烧带处于合适位置,有 利于煤气流均匀分布
低碱度排碱金属,提高脱硫能力等。
七、与高炉密切相关的几个系统
• 1、上料系统:包括料场、矿槽、振动筛、 称量漏斗、上料皮带机。本系统的任务是 将原、燃料运到炉顶按料单装入受料漏斗。
从出铁口放出,铁矿石中的脉石、焦炭 及喷吹物中的灰分与加入炉内的石灰石 等熔剂结合生成炉渣,从出铁口和出渣 口排出。
4、煤气从炉顶导出,经除尘后,作 为工业用煤气
二、高炉内型结构
1、炉喉
• 炉喉是炉料进高炉的装入口,也是煤气的 导出口,对炉料和煤气分布起控制和调节 作用
2、炉身
• 炉料在炉身预热和预还原,炉身直径自上 而下逐渐扩大以适应炉料受热膨胀和减少 炉料与炉强之间的摩擦力,
• (2)矿石的粒度。相同质量的矿石,粒度越小与煤气的接触面积则 越大,煤气的用程度越好。
• (3)煤气温度。随着温度升高不论是界面化学反应还是扩散速度均 是加快的,同时在高温下活化分子数目增加,促进还原反应进行。
• (4)煤气压力。提高煤气压力使气体密度加大,增加了单位时间内 与矿石表面碰撞的还原剂的分子数,从而加快还原反应。
2、上部装入的铁矿石、燃料和熔剂在重力作用下
向下运动,从高炉下部的风口吹进热风(1000~ 1300℃),喷入油、煤或天然气等燃料,燃料燃烧 产生大量高温还原性气体向上运动,炉料经过加热、
还原、熔化、造渣、渗碳、脱硫等一系列物理化学 过程,最后生成液态炉渣和生铁
3、还原反应生成的铁汇聚到炉缸定期
1、块状带
• 炉内料柱的上部,矿石与焦炭始终保持明 显的固态的层次缓慢下降,但层状逐渐趋 于水平,而且厚度也逐渐变薄
2、软熔带
• 由许多固态焦炭层和黏结在一起的半熔融 的矿石层组成,由于矿石呈软熔状,透气 性极差,煤气主要从焦炭层通过
3、滴落带
• 位于软熔带之下,熔化后的渣铁像雨滴一 样穿过固提高煤气中CO 和H2浓度,既可提高还原过程中的内、外扩散速度,又可提高化学反 应速度,从而可以加快铁矿石的还原速度。
• (6)煤气流速。
五、高炉炼铁的操作方针和任务
• 方针:高产、优质、低耗、长寿、安全 • 任务:在现有条件下,科学合理地充分利用一切
无料钟炉顶因其设备简单、密封性
能良好、布料手段灵活多样,近年
来已经逐步取代钟式炉顶
钟式炉顶
无料钟炉顶
图 6 并罐式无钟炉顶装置示意图 1—皮带运输机;2—受料漏斗;3—上闸门; 4—上密封阀;5—储料仓;6—下闸门; 7—下密封阀;8—叉型漏斗;9—中心喉管; 10—冷却气体充入管;11—传动齿轮机构; 12—探尺;13—旋转溜槽;14—炉喉煤气封盖;
4、风口回旋区
• 焦炭在风口前,由于鼓风动能的作用在剧 烈的回旋运动中燃烧,形成一个半空状态 的焦炭回旋区
5、渣铁贮存区
• 炉缸下部,主要是液态渣铁以及浸入其中 的焦炭,铁滴穿过渣层以及渣铁界面后最 终完成必要的渣铁反应,得到合格的生铁
四、影响铁矿石还原的因素
• (1)矿石的气孔度和矿物组成。气孔度大而分布均匀的矿石还原性 好(气孔度大,矿石与煤气的接触面积大,特别是微气孔率,可以改 善气体的内扩散条件,提高内扩散速度。
• 2、装料系统:包括受料漏斗、旋转布料器、 大小钟、探尺。本系统的任务是均匀地按 工艺要求将上料系统运来的炉料装入炉内。
• 3、送风系统:包括鼓风机、热风炉、热风 总管,送风支管。本系统的任务是把从鼓 风机房送出的冷风加热并送入高炉。
一、高炉炼铁工艺流程
炼铁工序在钢铁工业中有承上启 下的作用。钢铁工业生产的高物 耗,高能耗,高汚染主要是体现 在炼铁系统。其工序能耗占钢铁 联合企业总能耗的70%,汚染物 排放为三分二。
1、原燃料通过主皮带上至高炉炉顶 装料设备,通过大钟或布料溜槽均 匀分布到炉喉
• 炉顶装料设备分为钟 式炉顶和无料钟炉顶
5、炉缸
• 高炉燃料燃烧、渣铁反应和贮存及排放区 域,呈圆筒形。出铁口、渣口和风口都设 在炉缸部位,因此它也是承受高温煤气及 渣铁物理和化学侵蚀最剧烈的部位,对高 炉煤气的初始分布、热制度、生铁质量和 品种都有极重要的影响
三、从高炉解剖看铁矿石的还原
• 高炉冶炼是在高温条件下,充满着复杂的五里化 学反应,以及热量、质量传输过程等复杂现象, 这些现象直接关系到高炉内的还原反应,因为高 炉是一个密闭的连续的逆流反应器,对反应过程 的变化进行直接的观察测试都难以进行,通过解 剖能够对炉内的复杂反应有一个感性的认识。高 炉解剖是把正在正常冶炼中的高炉突然停止鼓风, 并且急速降温以尽可能保持炉内原状,然后将高 炉剖开,进行全过程的观察
操作手段来调整好高炉内煤气分布,炉料合理运 动,使炉缸热量充沛,渣铁流动性好,能量得到 科学利用等。实现高炉稳定顺行,高产低耗,长 寿环保;完成对炉料的加热,还原,熔化,造渣, 脱硫,渗碳,渣铁分离和顺畅流出高炉的任务。 同时要完成节约资源和能源,减少汚染物排放的 任务。
六、高炉炼铁的操作手段
• • ⑴ 送风制度的调整(又称下部调剂); • 包括:风量(反映在风压和压差),风温,富氧,脱湿鼓风,风速(风口
直径,长度,角度),鼓风动能。 • ⑵ 热制度的调整 • 调整焦炭负荷,风温,喷煤比。对冷却水进行调整(又称中部调剂)。 • ⑶ 装料制度的调整(又称上部调剂): • ·固定因素:炉喉直经和间隙,大钟傾角,行程,下降速度,炉身角。 • · 可调因素:料线,矿批重,装料顺序,布料器运行,无料钟布料,可调
3、炉腰
• 炉腰是高炉直径最大的部分,它使炉身和 炉腹得以合理过渡。由于在炉腰部位有炉 渣形成,并且粘稠的初成渣会使炉料透气 性恶化,为减小煤气流的阻力,在渣量大 时可适当扩大炉腰直径。
4、炉腹
• 高炉熔化和造渣的主要区段,呈倒锥台形。 为适应炉料熔化后体积收缩的特点,其直 径自上而下逐渐缩小,形成一定的炉腹角。 炉腹的存在,使燃烧带处于合适位置,有 利于煤气流均匀分布