等差数列求和练习题

合集下载

等差数列求和基础题

等差数列求和基础题

等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S = A.16 B.24 C.36 D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时,n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于 A.3 B.5 C.8 D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29C.-3D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为 A. 90 B. 45 C. 30 D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为 A.10 B.20 C.25 D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于 A.6 B. 7 C.8 D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于 A.10 B.12 C.15 D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S = A.138 B.135 C.95 D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d = A.2 B.3 C.6 D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 = A.5:9 B.9:5 C.3:5 D.5:3 13. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为 A.33-=n a n B.n a n 3= C.2+=n a n D.1+=n a n 14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于 A.3 B.4 C.5 D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n = A.9 B.10 C.11 D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S == A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d = A.23-B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为 A.48 B.54 C.60 D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于 A.22 B.21 C.19 D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是 A.23 B.24 C.25 D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于 A.18 B.27 C.36 D.45 22. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4= A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为 A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于 A.66 B.99 C.144 D.297 25. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为 A.95 B.100 C.115 D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 A.80- B.76- C.75- D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于 A.144 B.72 C.54 D.36 30. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是 A.S 1 B.S 9 C.S 17 D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差 数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则 A.S 4<S 3 B.S 4==S 2 C.S 6<S 3 D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为 A.第6项 B.第7项 C.第8项 D.第9项 34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为 A.130 B.260 C.156 D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于 A.297 B.144 C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为 A. 2 B. 4 C. 6 D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为 A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-== A.18 B.36 C.54 D.72 42. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2 B. 2 C.2 D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于 A.810 B.840 C.870 D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 A.1 B.2 C.4 D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为 A.50 B.45 C.40 D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n = A.9 B.10 C.11 D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T =A.21n+ B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—251. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S SA.310 B.13 C.81 D.9153. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为 A.18 B.17 C.16 D.15 54. 若等差数列{}n a 的前5项和525S =,且23a =,则7a = A.12 B.13 C.14 D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于 A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nnb a 为整数的正整数n 的个数是 A.3 B.4 C.5 D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和=a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 A.14 B.16 C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.20 62. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16B.24C.36D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.2007 65. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是 A.15 B.30 C.31 D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn nx a x a x a a x x x ++++=++++++ 若 ++21a an a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.10 70. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是A.2B.3C.4D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则 A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.1373. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是 A.10S B.11S C.20S D.21S 75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为 A.20 B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C .120 D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为 A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是 A.15S B.17S C.8S D.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12B.24C.36D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是 A.5 B.6 C.7 D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是 A.55 B.95 C.100 D.不能确定 82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是 A.S 21B.S 20C.S 11D.S 1083. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S等于 A.1 B.-1 C.2D.2184. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为 A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是 A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S = A.100 B.210 C.380 D.400 87. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为 A.5 B.6 C.7 D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.201 90. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为 A.25 B.50 C.100 D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是 A.S 17 B.S 15 C.S 8 D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为 A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是 A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是 A .7 B .8 C .9 D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75,a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是 A .递增数列 B . 递减数列 C .常数列 D . 摆动数列 98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S等于 A.-1 B.21C.1D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于 A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于 A.7B.9C.17D.19参考答案(仅供参考) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 D C A B A D A C C B C B D A B 16 17 18 19 20 21 22 23 24 25 26 27 2829 30C D B D B C D A B C A C BB D3132 33 34 35 36 37 38 39 40 41 42 43 44 45 AB C C A C C A D D D B B B B 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 B B B D A B A D B B B B B C C 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 C D C A A C B B C D A C A C C 76 77 78 79 80 81 82 83 84 85 86 87 8889 90 A B A B B B B A A B B A BA A 919293949596979899100B C C C C A C C A C。

(完整版)等差数列求和练习题.doc

(完整版)等差数列求和练习题.doc

入:
1、有一个数列, 4、10、 16、22 ⋯⋯ 52,个数列有多少?
2、一个等差数列,首是3,公差是 2,数是 10。

它的末是多
少?
3、求等差数列 1、
4、7、10 ⋯⋯,个等差数列的第30 是多少?
4、6 +7 +8+9+⋯⋯+ 74+75 =()
5、2 +6 +10+14+⋯⋯+122 +126 =()
6、已知数列 2、5、8、11、14 ⋯⋯,47 是其中的第几?
7、有一个数列: 6、10、 14、18、22 ⋯⋯,个数列前 100 的和是多少?:
1、3 个整数的和是120,求 3 个数。

2、4 个整数的和是94,求 4 个数。

3、在 6 个偶数中,第一个数和最后一个数的和是78,求 6 个偶数各是多少?
4、学英,第一天学会了 6 个,以后每天都比前一天多学会1 个,最后一天学会了 16 个。

在些天中共学会了多少个?
5、有 80 把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
6、某班有 51 个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了多少次手?。

等差数列求和及练习题(整理).doc

等差数列求和及练习题(整理).doc

等差数列求和引例:计算 1+2+3+4++97+98+99+100一、有关概念 :像1、2、3、4、5、6、7、8、9、这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。

这个固定的数就叫做“公差”。

二、有关公式:和 =(首项 +末项)×项数÷ 2末项 =首项 +公差×(项数 -1)公差 =(末项 -首项)÷(项数 -1)项数 =(末项 -首项)÷公差 +1三、典型例题:例 1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。

判断首项末项公差项数(1) 1、2、4、8、16、 32.()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()练习1、填空:数列首项末项公差项数2、5、8、 11、140、4、8、 12、163、15、27、39、511、2、3、 4、5、、 48、49、 502、4、6、 8、、 96、 98、100例 2、已知等差数列 1,8,15, , 78.共 12 项,和是多少?(博易 P27例 2)(看 ppt,推出公式)例 3、计算 1+3+5+7++35+37+39练习 2:计算下列各题(1)6+10+14+18+22+26+30 (3)1+3+5+7++95+97+99(2)3+15+27+39+51+63(4)2+4+6+8++96+98+100(3)已知一列数 4,6,8,10 ,,64,共有 31 个数,这个数列的和是多少?例 5、有一堆圆木堆成一堆,从上到下,上面一层有 10 根,每向下一层增加一根,共堆了 10 层。

数列求和练习题等差数列的应用

数列求和练习题等差数列的应用

数列求和练习题等差数列的应用数列求和练习题-等差数列的应用在数学中,数列是一组按照一定规律排列的数。

等差数列是一种常见的数列,其特点是相邻两项之间的差都是相等的。

本文将通过一些练习题来探讨等差数列的应用,并讨论如何求解数列的和。

练习题一:求等差数列的第n项已知等差数列的首项为a₁,公差为d,请问如何求解等差数列的第n项aₙ?解答:根据等差数列的定义,我们知道每一项之间的差都是相等的。

所以,第n项与首项之间的差可以表示为(n-1)d。

因此,可以得到等差数列的通项公式:aₙ = a₁ + (n-1)d练习题二:求等差数列的前n项和已知等差数列的首项为a₁,公差为d,请问如何求解等差数列的前n项和Sₙ?解答:我们可以通过求和公式来求解等差数列的前n项和。

根据等差数列的性质,我们知道首项和末项的和等于次末项和倒数第二项的和,以此类推。

所以,可以得到等差数列的前n项和公式:Sₙ = (a₁ + aₙ) * n / 2练习题三:求等差数列的部分项和已知等差数列的首项为a₁,公差为d,请问如何求解等差数列的第m项到第n项的和Smn?解答:我们可以利用等差数列的前n项和公式来求解等差数列的部分项和。

根据等差数列的性质,第m项到第n项的和等于第n项的总和减去第m-1项的总和。

所以,可以得到等差数列的部分项和公式:Smn = Sₙ - Sₙ₋₁通过以上练习题的解答,我们对等差数列的应用有了更深入的理解。

总结:等差数列是一种常见的数列,通过求解等差数列的第n项和前n项和,我们可以应用于各种数学问题中,如数学建模、物理问题中的位移、速度等。

而等差数列的求和公式则是我们处理等差数列问题的重要工具。

在实际应用中,我们可以根据已知条件,利用等差数列的性质和公式,快速求解问题,提高解题效率。

希望通过本文的讲解,读者可以更好地理解等差数列的应用,并能够灵活运用相关知识解决各种问题。

同时,也希望读者能够在数学学习中保持积极的态度,善于思考,勇于探索,不断提升自己的数学水平。

等差数列求和练习题

等差数列求和练习题

等差数列求和练习题介绍本文档提供一些等差数列求和的练题,旨在帮助读者巩固和提升对等差数列求和的理解和运用。

练题练题1已知等差数列的公差为2,首项为1,求前10项的和。

解答:我们可以使用等差数列求和公式来解答这个问题。

等差数列求和公式如下:S = (n/2)(a + l)其中,S表示前n项和,n表示项数,a表示首项,l表示末项。

代入已知条件,我们有:S = (10/2)(1 + (1 + (10 - 1) * 2))= 5(1 + 19)= 5 * 20= 100所以,前10项的和为100。

练题2已知等差数列的公差为3,首项为4,求前12项的和。

解答:使用等差数列求和公式,代入已知条件:S = (12/2)(4 + (4 + (12 - 1) * 3))= 6(4 + 37)= 6 * 41= 246所以,前12项的和为246。

练题3已知等差数列的公差为-1,首项为10,求前15项的和。

解答:使用等差数列求和公式,代入已知条件:S = (15/2)(10 + (10 + (15 - 1) * -1))= 7.5(10 + -4)= 7.5 * 6= 45所以,前15项的和为45。

总结通过以上练题,我们可以巩固等差数列求和的方法和公式。

只需要知道等差数列的公差和首项,我们就能轻松求得前n项的和。

等差数列求和的公式为:S = (n/2)(a + l),其中S为前n项的和,n 为项数,a为首项,l为末项。

以上是关于等差数列求和练习题的文档,希望能帮助您更好地理解和运用等差数列求和的方法和公式。

等差数列的前n项和公式专项练习

等差数列的前n项和公式专项练习

等差数列求和练习[A 组 基础巩固]1.等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-1解析:由题意,得⎩⎪⎨⎪⎧ a n =11,S n =35,即⎩⎨⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35.解得⎩⎪⎨⎪⎧ n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1.答案:D2.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( )A .7B .6C .3D .2 解析:由S 2=4,S 4=20,得2a 1+d =4,4a 1+6d =20,解得d =3.答案:C3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10,可知d =3,a 1=-4.∴S 10=-40+10×92×3=95. 答案:C4.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .15解析:由S 5=5a 3=25,∴a 3=5.∴d =a 3-a 2=5-3=2.∴a 7=a 2+5d =3+10=13.答案:B5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6解析:当n =1时,a 1=S 1=-8;当n ≥2时,a n =S n -S n -1=(n 2-9n )-[(n -1) 2-9(n -1)]=2n -10.综上可得数列{a n }的通项公式a n =2n -10.所以a k =2k -10.令5<2k -10<8,解得k =8.答案:B6.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 解析:∵n ≥2时,a n =a n -1+12,且a 1=1,所以数列{a n }是以1为首项,以12为公差的等差数列,所以S 9=9×1+9×82×12=9+18=27. 答案:277.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n =________.解析:⎩⎪⎨⎪⎧a 1+9d =10a 1+18d =100,∴d =10,a 1=-80. ∴S n =-80n +n (n -1)2×10=0, ∴-80n +5n (n -1)=0,n =17.答案:178.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13=13(a 1+a 13)2=13×8=104. 答案:1049.在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .解析:(1)由已知条件得⎩⎪⎨⎪⎧ a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4. ∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210. (2)S 7=7(a 1+a 7)2=7a 4=42, ∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510. ∴n =20.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15,(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.解析:(1)设{a n }的首项,公差分别为a 1,d . 则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d =-15, 解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n (a 1+a n )2=12(3n 2-21n ) =32⎝⎛⎭⎫n -722-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.[B 组 能力提升]1.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( )A .S 17B .S 15C .S 13D .S 7 解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数.答案:C2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:a m =S m -S m -1=2,a m +1=S m +1-S m =3,∴d =a m +1-a m =1,由S m =(a 1+a m )m 2=0, 知a 1=-a m =-2,a m =-2+(m -1)=2,解得m =5.答案:C3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于________. 解析:由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59, ∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. 答案:14.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项和为180,S n =324(n >6),则数列的项数n =________,a 9+a 10=________.解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n -1+a n -2+…+a n -5=180 ②,由①+②,得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36.又S n =n (a 1+a n )2=324,∴18n =324,∴n =18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36. 答案:18 365.等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 解析:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=-32n 2+2052n -⎣⎡ -32(n -1)2+ ⎦⎤2052(n -1)=-3n +104,a 1=S 1=101也适合上式,所以a n =-3n +104,令a n =0,n =3423,故n ≥35时,a n <0,n ≤34时,a n >0,所以对数列{|a n |},n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-32n 2+2052n ,当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =32n 2-2052n +3 502, 所以T n=⎩⎨⎧ -32n 2+2052n (n ≤34),32n 2-2052n +3 502(n ≥35).6.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解析:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧ a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n ·(n -1)2×12=14n 2-94n .。

数列求和专项练习(含答案)

数列求和专项练习(含答案)

数列求和专项练习1.在等差数列{}n a 中,已知34151296=+++a a a a ,求前20项之和。

2.已知等差数列{}n a 的公差是正数,且,4,126473-=+-=a a a a 求它的前20项之和。

3.等差数列{}n a 的前n 项和S n =m ,前m 项和S m =n (m>n ),求前m+n 项和S n+m4.设y x ≠,且两数列y a a a x ,,,,321和4321b y b b x b ,,,,,均为等差数列,求1243a a b b --5.在等差数列{}n a 中,前n 项和S n ,前m 项和为S m ,且S m =S n , n m ≠,求S n+m6.在等差数列{}n a 中,已知1791,25S S a ==,问数列前多少项为最大,并求出最大值。

7.求数列的通项公式:(1){}n a 中,23,211+==+n n a a a(2){}n a 中,023,5,21221=+-==++n n n a a a a a9.求证:对于等比数列前n 项和S n 有)(32222n n n n n S S S S S +=+10. 已知数列{}n a 中,前n 项和为S n ,并且有1),(241*1=∈+=+a N n a S n n (1)设),(2*1N n a a b n n n ∈-=+求证{}n b 是等比数列;(2)设),(2*N n a c nn ∈=求证{}n b 是等差数列;11.设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n 项和.【规范解答】(Ⅰ)由已知,当时,而,满足上述公式,所以的通项公式为. (Ⅱ)由可知,①从而 ②①②得{}n a 12a ={}n a n n b na ={}n b n S 1n ≥[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=12a ={}n a 212n n a -=212n n n b na n -==•35211222322n n n s -=•+•+•++•23572121222322n n n s +=•+•+•++•-3521212(12)22222n n n n s -+-=++++-•即 12.已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-13.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;211(31)229n n S n +⎡⎤=-+⎣⎦(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n qa a . (Ⅰ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .14. 设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】所以,13,1,3,1,n n n a n -=⎧=⎨>⎩1363623n n +=-⨯ ,又1T 适合此式.13631243nnn T +=-⨯ 15.知等差数列满足:,,的前n 项和为.(1)求及;(2)令(n N *),求数列的前n 项和. 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列的公差为d ,因为,,所以有,解得, 所以;==. (2)由(1)知,所以b n ===, 所以==,即数列的前n 项和=.{}n a 37a =5726a a +={}n a n S n a n S n b =211n a -∈{}n b n T n a nS n b {}n a 37a =5726a a +=112721026a d a d +=⎧⎨+=⎩13,2a d ==321)=2n+1n a n =+-(n S n(n-1)3n+22⨯2n +2n 2n+1n a =211n a -21=2n+1)1-(114n(n+1)⋅111(-)4n n+1⋅n T 111111(1-+++-)4223n n+1⋅-11(1-)=4n+1⋅n4(n+1){}n b n T n4(n+1)。

等差数列求和基础题

等差数列求和基础题

等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S =A.16B.24C.36D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时, n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于A.3B.5C.8D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29 C.-3 D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为A. 90B. 45C. 30D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为A.10B.20C.25D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于A.6B. 7C.8D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于A.10B.12C.15D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =A.138B.135C.95D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =A.2B.3C.6D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 =A.5:9B.9:5C.3:5D.5:313. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为A.33-=n a nB.n a n 3=C.2+=n a nD.1+=n a n14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于A.3B.4C.5D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S ==A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =A.23- B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为A.48B.54C.60D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于A.22B.21C.19D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是A.23B.24C.25D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于A.18B.27C.36D.4522. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于A.66B.99C.144D.29725. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为A.95B.100C.115D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 txjyA.80-B.76-C.75-D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于A.144B.72C.54D.3630. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是A.S 1B.S 9C.S 17D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则A.S 4<S 3B.S 4==S 2C.S 6<S 3D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为A.第6项B.第7项C.第8项D.第9项34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为A.130B.260C.156D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于A.297B.144C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为A. 2B. 4C. 6D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-==A.18B.36C.54D.7242. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2B. 2C.2D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于A.810B.840C.870D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为A.1B.2C.4D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为A.50B.45C.40D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T = A.21n + B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—2 51. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S S A.310 B.13 C.81 D.91 53. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为A.18B.17C.16D.1554. 若等差数列{}n a 的前5项和525S =,且23a =,则7a =A.12B.13C.14D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nn b a 为整数的正整数n 的个数是A.3B.4C.5D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和 =a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为A.14B.16C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.2062. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16 B.24 C.36 D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为A.128B.80C.64D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.200765. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是A.15B.30C.31D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn n x a x a x a a x x x ++++=++++++ 若 ++21a a n a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.1070. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是 A.2 B.3 C.4 D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.13 73. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是A.10SB.11SC.20SD.21S75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为A.20B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C.120D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是A.15SB.17SC.8SD.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12 B.24 C.36 D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是A.5B.6C.7D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是A.55B.95C.100D.不能确定82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是A.S 21B.S 20C.S 11D.S 10 83. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S 等于 A.1 B.-1 C.2 D.21 84. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S =A.100B.210C.380D.40087. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为A.5B.6C.7D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.20190. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为A.25B.50C.100D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是A.S 17B.S 15C.S 8D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是A .7B .8C .9D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75, a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于245D. C.12 445B. 6.A 97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是A .递增数列B . 递减数列C .常数列D . 摆动数列98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S 等于txjy A.-1 B. 21 C.1 D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于A.7B.9C.17D.19参考答案(仅供参考)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15D C A B A D A C C B C B D A B16 17 18 19 20 21 22 23 24 25 26 27 28 29 30C D B D B C D A B C A C B B D31 32 33 34 35 36 37 38 39 40 41 42 43 44 45A B C C A C C A D D D B B B B46 47 48 49 50 51 52 53 54 55 56 57 58 59 60B B B D A B A D B B B B BC C61 62 63 64 65 66 67 68 69 70 71 72 73 74 75C D C A A C B B C D A C A C C76 77 78 79 80 81 82 83 84 85 86 87 88 89 90A B A B B B B A A B B A B A A91 92 93 94 95 96 97 98 99 100B C C C C A C C A C欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

等差数列(巧妙求和)

等差数列(巧妙求和)

等差数列(巧妙求和)若干个数排成一列,称为数列..。

数列中的每一个数称为一项.,其中第一项称为首项..,最后一项称为末项..。

数列中数的个数称为项数..。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)÷项数÷21.有一个数列,4、10、16、22……52,这个数列共有多少项?2.等差数列中,首项=1,末项=39,公差=2。

这个等差数列共有多少项?3.有一个等差数列:2、5、8、11……101,这个等差数列共有多少项?4.已知等差数列11、21、26……1001,问这个数列共有多少项?5.有一等差数列:3、7、11、15……这个等差数列的第100项是多少?6.等差数列中,首项=3,公差=2,项数=10。

它的末项是多少?7.求等差数列1、4、7、10……这个等差数列的第30项?8.求等差数列2、6、10、14……这个等差数列的第100项?9.有这样的一列数,1、2、3、4……99、100。

请你求出这列数各项相加的和。

10.计算下面各题(1)、1+2+3+4+……+49+50(2)、4+5+6+7+8+9+……+73+74(3)、100+99+98+……+61+6011.求等差数列2、4、6……48、50的和。

12.计算下面各题(1)2+6+10+14+18+22(2)5+10+15+20+……+95+100(3)9+18+29+36+……+261+27013.※※计算(2+4+6+......+100)-(1+3+5+ (99)14.※※用简便方法计算下面各题。

(1)(2+4+6+......+200)-(1+3+5+ (199)(2)1+2-3+4+5-6+7+8-9+……+58+59-60内容:巧妙求和(中间数×项数)①、21+22+23+24+25+26+27+28+29=()②、197+198+199+200+201+202+203=()③、76+77+78+79+80+81+82+83+84=()④、14+16+18+20+22+24+26=()⑤、45+50+55+60+65+70+75=()⑥、1+2+3+4+……+97+98+99=()。

三年级奥数等差数列求和习题及答案

三年级奥数等差数列求和习题及答案

23498991001009998973212101101101101101101101+++++++=+++++++=+++++++ 和=1+和倍和 即,和 (1001)1002 101505050=+´¸=´=。

四、中项定理:对于任意一个项数为奇数的等差数列,对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

以项数。

譬如:① 48123236436922091800+++++=+´¸=´= (), 题中的等差数列有9项,中间一项即第5项的值是2020,,而和恰等于209´; ② 65636153116533233331089++++++=+´¸=´= (), 题中的等差数列有33项,中间一项即第17项的值是3333,而和恰等于,而和恰等于3333´。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = 1+2+3+4+5+6 = ((2)1+4+7+11+13= (3)1+4+7+11+131+4+7+11+13+…++…+85= 分析:分析:弄清楚一个数列的首项,弄清楚一个数列的首项,弄清楚一个数列的首项,末项和公差,末项和公差,末项和公差,从而先根据项数公式求项数,从而先根据项数公式求项数,从而先根据项数公式求项数,再根据求和公式再根据求和公式求和。

求和。

例如(例如(例如(33)式项数)式项数==(85-185-1)÷)÷)÷3+1=29 3+1=29和=(1+851+85)×)×)×292929÷÷2=1247答案:(1)21 21 ((2)36 36 ((3)1247例2:求下列各等差数列的和。

等差数列求和例题

等差数列求和例题

等差数列求和例题问题描述我们来看一个求和问题。

假设我们有一个等差数列,其中首项为 a,公差为 d,一共有 n 项。

我们需要求出这个数列的和。

解决方案求解等差数列的和的方法是利用数列的性质。

根据等差数列的性质,我们知道:第一项为 a第二项为 a + d第三项为 a + 2d第 n 项为 a + (n - 1)d我们可以将这些项相加来求解数列的和。

公式推导我们将等差数列的前 n ___表示为 S。

根据上面的性质,我们可以写出下面的等式:S = a + (a + d) + (a + 2d) +。

+ (a + (n - 1)d)现在我们将这个等式从左到右和从右到左分别相加,得到:2S = (a + a + (n - 1)d) + ((a + d) + (a + (n - 2)d)) +。

+ ((a + (n - 1)d) + a)将右边的每对括号中的项相加,得到:2S = n(a + (a + (n - 1)d))化___:2S = n(2a + (n - 1)d)最后解出 S 即可。

解题步骤解决这类求和问题,我们可以按照以下步骤进行:1.确定数列的首项 a、公差 d 和项数 n。

2.使用上面推导的公式计算数列的和 S。

示例假设我们要求解等差数列的和,其中首项为 2,公差为 3,一共有 5 项。

我们可以按照以下步骤进行计算:1.首先,根据题目给出的信息,我们得知 a = 2,d = 3,n = 5.2.使用上面推导的公式计算数列的和:2S = 5(2 + (2 + (5 - 1)3))化简得到:2S = 5(2 + 2 + 12)2S = 5(16)2S = 80S = 40所以,给定的等差数列的和为 40.总结通过上述的解题步骤,我们可以求解等差数列的和。

通过利用等差数列的性质,我们可以将问题转化为一个简单的求和问题,并应用推导出的公式进行计算。

等差数列求和练习题

等差数列求和练习题

等差数列求和练习题一、基础练习题1. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)2. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)二、练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n = 5解答:代入求和公式得:S₅ = 5/2 * (3 + 3 + (5-1)*2) = 5/2 * (6 + 8) = 5/2 * 14 = 35(2)首项a₁ = -2,公差d = 3,项数n = 8解答:代入求和公式得:S₈ = 8/2 * (-2 + (-2) + (8-1)*3) = 8/2 * (-4 + 21) = 8/2 * 17 = 68(3)首项a₁ = 1,公差d = 0,项数n = 10解答:代入求和公式得:S₁₀ = 10/2 * (1 + 1 + (10-1)*0) = 10/2 * (2 + 0) = 10/2 * 2 = 102. 求解下列等差数列的前n项和:(1)首项a₁ = 2,公差d = 4,项数n = 6解答:代入求和公式得:S₆ = 6/2 * (2 + 2 + (6-1)*4) = 6/2 * (4 + 20) = 6/2 * 24 = 72(2)首项a₁ = 0,公差d = -3,项数n = 7解答:代入求和公式得:S₇ = 7/2 * (0 + 0 + (7-1)*(-3)) = 7/2 * (0 - 18) = 7/2 * (-18) = -63(3)首项a₁ = 1,公差d = 1,项数n = 100解答:代入求和公式得:S₁₀₀ = 100/2 * (1 + 1 + (100-1)*1) = 100/2 * (2 + 99) = 100/2 * 101 = 5050三、进阶练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n为首项的二倍解答:由题可知n = a₁ * 2 = 3 * 2 = 6,代入求和公式得:S₆ = 6/2 * (3 + 3 + (6-1)*2) = 6/2 * (6 + 10) = 6/2 * 16 = 48(2)首项a₁ = -2,公差d = 3,项数n为首项的三倍解答:由题可知n = a₁ * 3 = -2 * 3 = -6,代入求和公式得:S₋₆ = -6/2 * (-2 + (-2) + (-6-1)*3) = -6/2 * (-4 + (-21)) = -6/2 * (-25) = 752. 求解下列等差数列的前n项和:(1)首项a₁ = 2,项数n为公差的四倍,公差d = 3解答:由题可知n = d * 4 = 3 * 4 = 12,代入求和公式得:S₁₂ = 12/2 * (2 + 2 + (12-1)*3) = 12/2 * (4 + 33) = 12/2 * 37 = 222(2)首项a₁ = 0,项数n为公差的五倍,公差d = -2解答:由题可知n = d * 5 = -2 * 5 = -10,代入求和公式得:S₋₁₀ = -10/2 * (0 + 0 + (-10-1)*(-2)) = -10/2 * (0 - 18) = -10/2 * (-18) = 90综上所述,通过练习题的求解,我们熟悉了等差数列的求和公式,并能够灵活运用求和公式解决不同条件下的等差数列求和问题。

等差数列与等比数列的求和问题综合练习题

等差数列与等比数列的求和问题综合练习题

等差数列与等比数列的求和问题综合练习题数列是数学中常见的一个概念,它包含了一系列按照某种规律排列的数字。

在数列中,等差数列和等比数列是两种常见的类型,它们之间存在着不同的求和方法。

本文将通过综合练习题的方式,详细探讨等差数列与等比数列的求和问题。

一、等差数列求和等差数列是指数列中相邻两项之间的差值保持恒定的数列。

首先,我们来看一个等差数列求和的例子。

例题1:已知等差数列的首项a1为3,公差d为4,求前10项的和S10。

解题思路:利用等差数列通项公式an = a1 + (n-1)d,其中an代表数列的第n 项。

首先计算出第10项的值a10 = a1 + (10-1)d = 3 + (10-1)4 = 3 + 9*4 = 3 + 36 = 39。

其次计算出前10项的和S10 = (a1 + a10) * n / 2 = (3 + 39) * 10 / 2= 42 * 10 / 2 = 210。

答案:前10项的和S10为210。

二、等比数列求和等比数列是指数列中相邻两项之间的比值保持恒定的数列。

下面我们来看一个等比数列求和的例子。

例题2:已知等比数列的首项a1为3,公比q为2,求前5项的和S5。

解题思路:利用等比数列通项公式an = a1 * q^(n-1),其中an代表数列的第n 项。

首先计算出第5项的值a5 = a1 * q^(5-1) = 3 * 2^(5-1) = 3 * 2^4 = 3 * 16 = 48。

其次计算出前5项的和S5 = a1 * (1 - q^n) / (1 - q) = 3 * (1 - 2^5) / (1 - 2) = 3 * (1 - 32) / (1 - 2) = 3 * (-31) / (-1) = 93。

答案:前5项的和S5为93。

三、综合练习题接下来,我将给出一些综合训练题,涵盖了等差数列与等比数列的求和问题。

请你根据题意,独立思考并计算出答案。

练习题1:已知等差数列的首项a1为2,公差d为3,求前20项的和S20。

等差数列求和

等差数列求和

巧妙求和专题要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

等差数列总和=(首项+末项)×项数÷2通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1精讲精练【例题1】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

练习1计算下面各题(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60【例题2】求等差数列2,4,6,…,48,50的和。

练习2:计算下面各题。

(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270【例题3】计算(2+4+6+...+100)-(1+3+5+ (99)练习3:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)(3)(1+3+5+...+1999)-(2+4+6+ (1998)【例题4】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习4:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?【例题5】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习5:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求1.4,7,10……这个等差数列的第30项。

等差数列的求和公式及应用练习题

等差数列的求和公式及应用练习题

等差数列的求和公式及应用练习题等差数列是数学中重要的概念,它在数学和其他科学领域的应用非常广泛。

本文将详细介绍等差数列的求和公式以及一些相关的应用练习题。

一、等差数列的定义和性质等差数列是指数列中任意两个相邻元素之间的差值都相等的数列。

设等差数列的首项为a,公差为d,则该数列可以写成如下形式:a,a+d,a+2d,a+3d,...等差数列的求和公式是指数列前n项和的表达式。

下面推导等差数列求和公式的过程:设等差数列的首项为a,公差为d,数列的前n项和为S。

首项a、末项a+(n-1)d之和为:a+a+(n-1)d = 2a+(n-1)d令项数乘以和数(第一次 + 第二次 = 第一次到第二次):n * S = a + a + (a + 2d) + ... + [a + (n-3)d + a + (n-2)d] + [a + (n-2)d + a + (n-1)d]共有n项,则等式右边的式子可以重排为:n * S = n * a + [1 + 2 + 3 + ... + n-3 + n-2 + n-2 + n-1] * d即:n * S = n * a + n(n-1)/2 * d两边同时除以n,得到:S = a + (n-1)/2 * d这就是等差数列前n项和的求和公式。

二、等差数列求和公式的应用练习题1. 求等差数列1,3,5,7,9的前10项和。

根据等差数列求和公式,首项a = 1,公差d = 3-1 = 2,项数n = 10。

代入公式,可得:S = 1 + (10-1)/2 * 2 = 1 + 9 * 2 = 1 + 18 = 19。

所以,等差数列1,3,5,7,9的前10项和为19。

2. 某等差数列的首项为-5,公差为3,若数列的前n项和为123,请求n的值。

根据等差数列求和公式,首项a = -5,公差d = 3,项数n为待求。

代入公式,可得:123 = -5 + (n-1)/2 * 3化简得:123 = -5 + 1.5n -1.5移项得:129 = 1.5n解方程可得:n = 86所以,该等差数列的前n项和为123时,n的值为86。

三年级奥数等差数列求和

三年级奥数等差数列求和

等差数列求和数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

一、公差为1例1:1+2+3+4+5+6+7+8+9+10例2:1+2+3+4+5+……+20练习1:1+2+3+4+……+99+100练习2:21+22+23+24+……+100二、公差不为1例1:21+23+25+27+29+31例2:312+315+318+321+324练习1:48+50+52+54+56+58+60+62练习2:108+128+148+168+188三、等差数列的项数、末项例1:有一个等差数列 1,4,7,10,…,25,这个数列共有多少项?例2:在公差为5的等差数列中,最大的数是50,最小的数是20,那么这个等差数列有多少项?练习1:这个等差数列的首项是3,公差是4,末项是39,这个等差数列有多少项?练习2:有一个数列4,6,8,10…40,这个数列共有多少项?例3:这个等差数列的首项是1,公差是5,项数是 40,第40项是?例4:等差数列4,7,10,13,16,19…第30项是?练习3:等差数列3,5,7,9,…,第20项是?练习4:一组数:1,5,9,13,17,…,这个数列的第100个数是多少?四、等差数列应用题例1:计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81例2:计算1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1练习1:1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19练习2:2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16例3:有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,下面每层比上层多一根,这堆木材共有多少根?例4:体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,这个体育馆东区共有多少个座位?练习3:有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?练习4:有一堆粗细均匀的圆木,堆成如图的形状.已知最上面一层有6根,共堆了25层.请问:这堆圆木共有多少根?练习5:小青蛙沿着台阶往上跳,每跳一次都比上一次升高4厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[
入门题:
1、有一个数列,4、10、16、22 ……52,这个数列有多少项
2、一个等差数列,首项是3,公差是2,项数是10。

它的末项是多少
3、求等差数列1、
4、7、10 ……,这个等差数列的第30项是多少
4、6+7+8+9+……+74+75=
()
5、2+6+10+14+……+122+126=
()
6、已知数列2、5、8、11、14 ……,47应该是其中的第几项
7、有一个数列:6、10、14、18、22 ……,这个数列前100项的和是多少
*
练习题:
1、3个连续整数的和是120,求这3个数。

2、4个连续整数的和是94,求这4个数。

3、在6个连续偶数中,第一个数和最后一个数的和是78,求这6个连续偶数各是多少
4、丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。

丽丽在这些天中共学会了多少个单词
5、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次
6、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了多少次手。

相关文档
最新文档