八年级中位数与众数练习题含答案

合集下载

八年级数学上册《第六章 中位数与众数》练习题-带答案(北师大版)

八年级数学上册《第六章 中位数与众数》练习题-带答案(北师大版)

八年级数学上册《第六章中位数与众数》练习题-带答案(北师大版)一、选择题1.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是( )A.4B.6C.5D.4和62.某班七个兴趣小组人数分别为4,4,5,5,x,6,7.已知这组数据的平均数是5,则这组数据的众数和中位数分别是( )A.4,5B.4,4C.5,4D.5,53.根据PM2.5空气质量标准:24小时PM2.5均值在0~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是( )天数 3 1 1 1 1PM2.5 18 20 21 29 30立方米C.19微克/立方米D.18微克/立方米4.某校九年级(1)班全体学生体能测试成绩统计如下表(总分30分):24 25 26 27 28 29 30成绩(分)人数2 5 6 6 8 7 6(人)根据上表中的信息判断,下列结论中错误的是( )A.该班一共有40名同学B.成绩的众数是28分C.成绩的中位数是27分D.成绩的平均数是27.45分5.一组数据1,1,2,3,4,4,5,6的众数是( )A.1B.4C.1和4D.3.56.某班抽取期中考试中6名同学的数学成绩是80,90,50,70,60,80.则众数和中位数分别是( )A.80,80B.80,75C.80,70D.70,757.在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为( )A.81,82B.83,81C.81,81D.83,828.某校四个绿化小组一天植树的棵数如下:10,x,10,8.已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8B.9C.10D.12二、填空题9.数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是 .10.学校篮球集训队11名队员进行定点投篮训练,11名队员在1分钟内投进篮框的球数和人数如下表:球数/个 6 7 8 9 10 12人数 1 1 1 4 3 1则11名队员投进篮框的球数的中位数是个.11.若一组数据7,3,5,x,2,9的众数为7,则这组数据的中位数是.12.一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是 .13.某水晶商店一段时间内销售了各种不同价格的水晶项链75条,其价格和销售数量如下表:价格20 25 30 35 40 50 70 80 100 150(元)数量1 3 9 6 7 31 6 6 4 2(条)14.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的.(中位数,平均数,众数)三、解答题15.在某一中学田径运动会上,参加男子跳高的17名运动员的成绩如表所示:成绩 1.5 1.60 1.65 1.70 1.75 1.80 1.85 1.90(米) 0人数 2 3 2 3 4 1 1 1分别求这些运动员成绩的中位数和平均数(结果保留到小数点后第2位).16.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么?答(填“合适”或“不合适”):.②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.17.下表是初三某班女生的体重检查结果:体重34 35 38 40 42 45 50(kg)人数 1 2 5 5 4 2 1根据表中信息,回答下列问题:(1)该班女生体重的中位数是;(2)该班女生的平均体重是 kg;(3)根据上表中的数据补全条形统计图.18.某校教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了下表.零花钱数额/元 5 10 15 20学生人数10 15 20 5(1)求出这50名学生每人一周内的零花钱数额的平均数、众数和中位数;(2)你认为(1)中的哪个数据代表这50名学生每人一周零花钱数额的一般水平较为合适?简要说明理由.19.为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?20.某教育局为了解本地八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)α=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该地共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?参考答案1.C.2.A3.B4.C.5.C.6.B.7.C.8.C.9.答案为:5.10.答案为:9.11.答案为:612.答案为:213.答案为:5014.答案为:众数.15.解:本题中人数的总个数是17人,奇数,从小到大排列后第9名运动员的成绩是1.70(米);平均数是:(1.50×2+1.60×3+1.65×2+1.70×3+1.75×4+1.80+1.85+1.90)÷17=(3+4.8+3.3+5.1+7+1.8+1.85+1.9)÷17=28.75÷17≈1.69(米)答:这些运动员成绩的中位数是1.70米,平均数大约是1.69米.16.解:(1)这组数据的平均数==780(元);按照从小到大排列为540、640、640、680、780、1070、1110中位数为680元,众数为640元;故答案为:780,680,640;(2)①因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额所以去掉周六、日的营业额对平均数的影响较大故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合适;故答案为:不合适;②用该店本周一到周日的日均营业额估计当月营业额当月的营业额为30×780=23400(元).17.解:(1)首先确定人数,然后确定中位数的计算方法即可:∵共检查了1+2+5+5+4+2+1=20个人∴中位数是第10和第11人的平均数。

浙教版八年级下《3.2中位数和众数》同步练习含答案

浙教版八年级下《3.2中位数和众数》同步练习含答案
全班答题情况绘制成如图所示的条形统计图, 根据此图 可知,每位同学答对的题数所组成样本的中位数和众数
分别为 (
)
A .8, 8 B. 9,8 C.8, 9 D .9, 9 5.多多班长统计去年 1~8 月“书香校园”活动中
全班同学的课外阅读数量 (单位: 本 ),绘制了如 图所示的折线统计图,
下列说法正确的是 (
平”,所以方案 1 不适合作为最后得分的方案. 因为方案 4 中的众数有两个,众数失去了实际意义,所以方案
4 不适合作为
最后得分的方案.
9.如图是某市某景点 6 月份内 1~10 日每天的最高气温 折线统计图, 由图中信息可知该景点这 10 天的最高气Leabharlann 温的中位数是 ____℃ .
10.为了全面了解学生的学习、生活及家庭的基本情况, 加强学校、家庭的联系,梅灿中学积极组织全体教师 开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学
第三章数据分析初步 3.2 中位数和众数
1.在开展“爱心捐助雅安灾区”的活动中, 某团支部 8 名团员捐款的数额分别为 (单位:元) :
6, 5,3, 5, 6, 10, 5,5,这组数据的中位数 (
)
A .3 元
B.5 元
C. 6 元
D .10 元
2.在一次歌咏比赛中,某选手的得分情况如下:
92, 88, 95,93,96, 95, 94.这组数据的
(2)64 63 1
15、解: (1) 方案 1 最后得分为 10(3.2 +7.0 +7.8 + 3× 8+3×8.4 + 9.8) = 7.7 ;
1 方案 2 最后得分为 8(7.0 + 7.8 +3×8+3×8.4) = 8;

平罗县八中八年级数学下册 20.1.2 中位数和众数同步练习含解析新人教版

平罗县八中八年级数学下册 20.1.2 中位数和众数同步练习含解析新人教版

中位数和众数知识要点:1.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

2.众数:一组数据中出现次数最多的数据就是这组数据的众数一、单选题1.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、402.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数B.方差C.中位数D.极差3.某中学对该校九年级45名女学生进行了一次立定跳远测试,成绩如表:跳远成绩160 170 180 190 200 210人数 3 9 6 9 15 3这些立定跳远成绩的中位数和众数分别是()A.9,9 B.15,9 C.190,200 D.185,2004.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.7 B.8 C.9 D.105.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差6.为了增强学生体质,学校发起评选“健步达人”活动,某同学用计步器记录自己一周(七天)每天走的步数,统计如下表:这组数据的众数是()A.1.3 B.1.2 C.0.9 D.1.47.一组数据2,2,4,3,6,5,2的众数和中位数分别是()A.3,2 B.2,3 C.2,2 D.2,48.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,39.某校四个绿化小组某天的植树棵树如下:10,10,x,8.若这组数据的众数与平均数相等,那么这组数据的中位数是()A.9 B.10 C.11 D.1210.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数二、填空题11.5名同学每周在校锻炼的时间(单位:小时)分别为:7,5,8,6,9,这组数据的中位数是______.12.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是_____.13.“植树节”时,九(1)班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是____14.某住宅小区四月份1日至5日,每天用水量变化情况如图所示,那么这5天每天用水量的中位数是_____吨.三、解答题15.从某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下的不完整的条形统计图和扇形统计图.根据图中信息.(1)求共抽取多少名学生;(2)求抽取的所有学生成绩的众数,中位数;(3)求抽取的所有学生成绩的平均数.16.学校在八年级新生中举行了全员参加的数学应用能力大赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:人数60分人数70分人数80分人数90分人数100分人数班级1班0 1 6 2 12班 1 1 3 a 1分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(写两条支持你结论的理由).17.车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?18.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.答案 1.D 2.C 3.C 4.D 5.B 6.A 7.B 8.A 9.B 10.D 11.712.2.40,2.43. 13.5 14.3215.解:(1)依题意得,共抽取学生12÷30%=40(人)(2)由统计图可知:抽取的所有学生成绩的出现次数最多的是3分,因此众数是3分, 将成绩从从小到大排列后处在第20、21位两个数都是3分,因此中位数是3分, (3)3分的学生人数为40×42.5%=17人,2分的人数有40﹣3﹣17﹣12=8人, 抽取的所有学生成绩的平均数是:(1×3+2×8+3×17+4×12)÷40=2.95(分). 答:抽取的所有学生成绩的平均数为2.95分.16.(1)观察可知2班成绩为90分的有4人,故4a =,60170180490210028310b ⨯+⨯+⨯+⨯+⨯==,2班成绩从小到大排序:60,70,80,80,80, 90,90,90,90,100, 所以中位数8090852c +==, 2班成绩为90分的人数最多,所以众数90d =; (2)2班的成绩比较好.理由如下:通过对比,发现三个班平均分相同,但是2班的中位数要比1班和3班高,2班的众数也要比1班和3班大,所以2班的成绩比较好.17.解:(1()191101116124132152162191201=1320x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(个)答:这一天20名工人生产零件的平均个数为13个. (2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人的积极性. 当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性. 当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性. ∴当定额为11个时,有利于提高大多数工人的积极性. 18.(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人第十二章全等三角形12.3角的平分线的性质课时一角的平分线的性质【知识与技能】(1)掌握已知角的平分线的画法.(2)利用角的平分线的定义进行简单的证明与计算.(3)利用全等三角形证明角的平分线.(4)掌握角的平分线的性质.(5)了解角的平分线的性质在生活、生产中的应用.【过程与方法】经历角的平分线的画法和角的平分线的性质的探索过程,体会探索、研究问题的基本方法,培养学生的合作精神,体会转化的数学思想,感受数学来源于生活.【情感态度与价值观】在探究角的平分线的作法及性质的过程中,培养学生探究问题的兴趣,获得解决问题的成功体验,增强解决问题的信心.角的平分线的性质,能灵活运用角的平分线的性质解题.灵活运用角的平分线的性质解题.多媒体课件.复习引入教师提出问题:1.角的平分线的概念.2.点到直线(射线)的距离的概念.学生举手回答.探究1:角的平分线的画法教师引入:工人师傅常常用一种简易平分角的仪器(如图12-3-1),其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?学生分组讨论,说明简易平分角仪器的原理,并写出证明过程.(教师提示:用全等三角形的知识)教师:其实这种平分角的方法告诉了我们作已知角的平分线的一种方法.然后教师引导学生用尺规作图:已知:∠AOB.求作:∠AOB的平分线.先让学生讨论作法,再由教师总结作法,师生共同作图:2.以点O为圆心,适当长为半径画弧,分别交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求,如图12-3-2.教师紧接着提出问题:你们能说明OC为什么是∠AOB的平分线吗?学生进行交流,教师提示(可证明△MOC≌△NOC),然后让学生写出证明过程.教师巡示并指导.探究2:角的平分线的性质教师让学生完成以下活动:1.任意作一个∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB 的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?2.在OC上再取几个点试一试.3.通过以上测量,你发现了角的平分线的什么性质?学生动手操作,独立思考,然后举手回答自己的发现,学生互相补充,教师指导,一起概括出角的平分线的性质:角的平分线上的点到角的两边的距离相等.教师进一步提问:你们能通过严格的逻辑推理证明这个结论吗?教师首先引导学生分析命题的条件和结论.如果学生感到困难,可以让学生先将命题改写成“如果……那么……”的形式,再引导学生逐字分析结论,进而发现并找出结论中的隐含条件(垂直).最后让学生画出图形,用符号语言写出已知和求证,并独立完成证明过程.接着师生共同概括证明几何命题的一般步骤:一般情况下,我们要证明一个几何命题时,可以按照类似于以下的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.最后教师归纳:利用角的平分线的性质可直接推导出与角的平分线有关的两条线段相等,但在推导过程中,不要漏掉垂直关系的书写.以后涉及角的平分线上的点到角的两边的垂线段时,可直接得到其相等,不必再通过证两个三角形全等而走弯路.教师出示例题:例1如图12-3-3,在△ABC中,∠C=90°,AM平分∠CAB,BM=5.2 cm,点M到AB的距离为3 cm.求BC的长.师生共同分析:只需补出点M到AB的距离,利用角的平分线的性质得到CM=3 cm,从而求出BC的长.师生共同完成证明过程,教师板书:解:过点M作MN⊥AB于点N,∴MN=3 cm.∵AM平分∠CAB,∠C=90°,∴CM=MN=3 cm.又∵BM=5.2 cm,∴BC=CM+BM=3+5.2=8.2(cm).进而教师让学生独立完成:教材P50练习第2题(学生完成之后,教师点评).本节课我们学习了角的平分线的性质是由三个条件(一条角平分线,两条垂线段)得到一个结论(线段相等),角的平分线的性质可独立地作为证明两条线段相等的依据.一次函数的应用第一课时一次函数是刻画与研究现实世界数量关系的重要工具。

八年级中位数与众数练习题含答案

八年级中位数与众数练习题含答案

中位数与众数练习题一. 填空题1. 某班8名学生完成作业所需时间分别为:75,70,90,70,70,58,80,55(单位:分),则这组数据的众数为 , 中位数为 ,平均数为 .2. 已知一组数据103265--,,,,,,这组数据的中位数为 .3. 若数据10,12,9,-1,4,8,10,12,x 的众数是12,则x=__________.4. 数据3,4,6,8,x ,7的众数是7,则数据4,3,6,8,2,x 的中位数是 .5. 数据10,10,x ,8的中位数与平均数相等,这组数据的中位数是 .6. 把9个数按从小到大的顺序排列,其平均数是9,如果这组数中前5个数的平均数是8,后5个数的平均数是10, 则这9个数的中位数是_________. 二. 选择题7. 一组数据是23,27,20,18,12,x ,它的中位数是21,则数据x 是( ) A.23 B.21 C.不小于23数 D.以上都不是 8. 用中位数去估计总体时,其优越性是 ( )A. 运算简便B. 不受较大数据的影响C. 不受较小数据的影响D. 不受个别数据较大或较小的影响 9. 对于数据3,3,2,6,3,10,3,6,3,2.(1) 众数是3; (2) 众数与中位数的数值不等; (3) 中位数与平均数的数值相等; (4) 平均数与众数相等,其中正确的结论是 ( )A. (1)B. (1) (3)C. (2)D. (2) (4) 10. 已知一组数据从小到大依次为-1,0,4,x,6,15,其中位数为5,则其众数为 ( ) A. 4 B. 5 C. 5.5 D. 611. 某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这次规定满分为60分),你们这组数据的众数,中位数分别是 ( )A. 58, 57.5B. 57, 57.5C. 58, 58D. 58, 5712.某商店销售4种型号分别为A B C D 、、、的订书机,为了调查各种型号订书机的销售情况,商店统计了某天的销A. AB. BC . C D. D13.(2005,武汉市)某校在一次学生演讲比赛中,共有7个评委,•学生最后得分为去掉一个最高分和一个最低分后的平均分,某学生所得分数为:9.7,9.6,9.5,9.6,9.7,9.5,9.6,那么这组数据的众数及该学生最后得分分别为( ) A .9.6,9.6 B .9.5,9.6 C .9.6,9.58 D .9.6,9.7 三. 解答题14.某餐厅有7(1)试求餐厅所有员工工资的众数、中位数、平均数;型号(2)用平均数还是用中位数来描述该餐厅员工工资的一般水平比较恰当?(3)去掉经理的工资后,其他员工的平均工资是多少元是否也能反映该餐厅员工工资的一般水平?15.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表:(分数均为整数,满分为100分)请根据表中提供的信息,解答下列各题:(1)参加这次演讲比赛的同学共有人;(2)已知成绩91~100分的同学为优胜者,那么优胜率为;(3)所有参赛同学的平均得分M(分)在什么范围内?16.某商店有220L,215L,185L,182L四种型号的某种名牌电冰箱,在一周内分别销售了6台,30台,14台,8台.在研究电冰箱销售情况时,商店经理关心的应是哪些数据?哪些数据对于进货最有参考价值?17.我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成请根据以上信息解答下列问题:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2) 经竞赛组委会评定,竞赛成绩在60分以上(含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内?(4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.18.(2006,黄冈)某中学开展“八荣八耻”演讲比赛活动,九(1),九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图填写下表:(2(3)如果在每班参加复赛的选手中分别选出2人参加决赛,•你认为哪个班的实力更强.19.为了解中学生的体能情况,某校随机抽取了部分学生进行一分钟跳绳次数测试.某同学将所得的数据进行整理,列(2)一分钟跳绳次数小于100的学生人数占被测试学生总数的百分之几?(3)这次测试中,学生跳绳次数的中位数落在哪个范围内?并说明理由.答案:一:填空题1.70分,70分,71分2.0.53.124.55.9或106.9 第5题详解:平均数101082844x x ++++==. (1)当8x ≤时,四数从小到大排列为:81010x ,,,. ∴中位数810289.9824x x ++==∴==当时,满足8x ≤的条件.(2)当810x <≤时,四数从小到大排列为:81010x ,,,.∴中位数102x+=. 1028824x x x ++∴==当时,.不满足810x <≤的条件. (3)当10x >时,四数从小到大排列为:81010,,,x . ∴中位数1010102+==.2810124xx +∴==当,时满足10x >的条件.综合(1)、(3),x 的值为8或12,当8x =时,中位数为9;当12x =时,中位数为10.二:选择题7.D 8.D 9.A 10.D 11.C 12.C 13.A 三:解答题 14.解:(1)餐厅所有员工的平均工资x =(3000+700+500+450+360+340+320)÷7=810(元); (2)表中的数是按从大到小的顺序排列的,因而第四个数450(元)是中位数. (3)用中位数来描述该餐厅员工工资的一般水平比较恰当(4)去掉经理的工资后,其他员工的平均工资=(700+500+450+360+340+320)÷6=445(元). 能反映该餐厅员工工资的一般水平. 15.解:(1)20(2)20%(3)7786M ≤≤16.解:根据题意知:商店经理关心的是哪种型号的冰箱销售最多,从题可以知道215L 型号的电冰箱共销售了30台,是销售量最大的,它是这组数据的众数,所以进货最有参考价值的数据是众数.17.解:(1) 全市共有300名学生参加本次竞赛决赛,最低分在20-39之间,最高分在120-140之间 (2) 本次决赛共有195人获奖,获奖率为65% . (3) 决赛成绩的中位数落在60—79分数段内.(4) 如“120分以上有12人;60至79分数段的人数最多;……”等 18.解:(1)85,100(2)两个班平均数相同,九(1)班中位数高,所以九(1)班成绩好些. (3)九(2)班实力更强一些.19.解:(1)80.1650m =÷=. 3500.06n =÷=.(2)∵第一小组的频率为:2500.04÷=,∴一分钟跳绳次数小于100的学生人数占被测试学生总数的百分数为:0.040.10.1414%+==.(3)这次测试中,学生跳绳次数的中位数落在120140x <≤的范围内.∵本次测试共得到50个数据,将这些数据从小到大排列,中位数是第25,第26个数据的平均数.其中第一小组的频数为2,即有2个数据;第二小组的频数为0.1505⨯=,即有5个数据;第三个小组的频数为17,即有17个数据.前三个小组共有24个数据,第四小组的频数为0.35015⨯=,即有15个数据.∴第25,第26个数据落在第四个小组内.∴这次测试中,学生跳绳次数的中位数落在120140≤的范围内.x。

八年级数学北师大版上册课时练第6章《中位数与众数》(含答案解析)(1)

八年级数学北师大版上册课时练第6章《中位数与众数》(含答案解析)(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第6单元中位数与众数一、选择题1.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.92.已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4B.中位数是5,平均数是5C.中位数是5,众数是4D.中位数是4.5,平均数是53.孔晓东同学在“低碳黄冈绿色未来”演讲比赛中,6位评委给他的打分如下表:评委代号ⅠⅡⅢⅣⅤⅥ评分859080959090则他得分的中位数为()A.95B.90C.85D.804.中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。

第20章 专题2:中位数和众数-通用版八年级下册数学专题练

第20章 专题2:中位数和众数-通用版八年级下册数学专题练

第20章专题2:中位数和众数1.数据0,1,1,4,3,3的中位数和平均数分别是()A.2.5和2 B.2和2 C.2.5和2.4 D.2和2.4【答案】B2.以下是某校九年级10名同学参加学校演讲比赛的统计表.则这组数据的中位数和平均数分别为()成绩/分80 85 90 95人数/人 1 2 5 2.,.,.,.,【答案】B3.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.48【答案】C4.某班有6个学习小组,每个小组的人数分别为5,6,5,4,7,5,这组数据的中位数是()A.5 B.6 C.5.5 D.4.5【答案】A5.个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是()A.21 B.22 C.23 D.24【答案】D6.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:则这15名学生一周在校参加体育锻炼时间的中位数6h.锻炼时间/h 5 6 7 8人数 2 6 5 27.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B8.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.9【答案】B9.某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件【答案】C10.下面是扬帆中学九年八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是()家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A.5,6 B.3,4 C.3,5 D.4,6【答案】B11.为调査某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是()每天使用零花钱(单位:元) 5 10 15 20 25人数 2 5 8 x 6 A.15,15 B.20,17.5 C.20,20 D.20,15【答案】B12.某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别()年龄(岁)14 15 16 17 18人数(人) 1 4 3 2 2A.15,16 B.15,15 C.15,15.5 D.16,15【答案】A13.数据3,1,x,4,5,2的众数与平均数相等,则x的值是()A.2 B.3 C.4 D.5【答案】B14.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码37 38 39 40 41 42人数 3 4 4 7 1 1.和.和.和.和【答案】C15.有一组数据:-1,a,-2,3,4,2它们的中位数是1,则这组数据的平均数是__________。

八年级数学下册《第二十章 中位数和众数》练习题

八年级数学下册《第二十章 中位数和众数》练习题

八年级数学下册《第二十章中位数和众数》练习题(含答案解析)学校:___________姓名:___________班级:_______________一、单选题1.数据1,2,3,4,5,x存在唯一众数,且该组数据的平均数等于众数,则x的值为()A.2B.3C.4D.52.下列说法错误的是()A.了解市民知晓“礼让行人”交通新规的情况,适合抽样调查B.一组数据5,5,3,4,1的众数是5C.甲、乙两人跳高成绩的方差分别为S2甲=1.1,S2乙=2.5,则乙的成绩比甲稳定D.“经过有交通信号灯的路口,遇到红灯”是随机事件3.抢微信红包已成为中国传统节日人们最喜爱的祝福方式,今年端午节期间,某人在自己的微信群中发出红包,一共有10名好友抢到红包,抢到红包的金额情况如下表:则10名好友抢到金额的众数、中位数分别是()A.4.5,5B.4.5,6C.8,4.5D.5,4.5 4.射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是()A.平均数是9环B.中位数是9环C.众数是9环D.方差是0.85.如图,这是根据某班45名同学一周的体育锻炼时间绘制的条形图,根据统计图提供的信息可知,锻炼时间的众数和中位数分别是()A.8,8B.8,9C.18,8D.18,96.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①①①三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.①的收入所占比例前年的比去年的大C.去年①的收入为2.8万D.前年年收入不止①①①三种农作物的收入7.某村通过直播带货对产出的稻虾米进行线上销售,连续7天的销量(单位:袋)分别为:105,103,105,110,108,105,108,这组数据的众数和中位数分别是()A.105,108B.105,105C.108,105D.108,1088.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,其中中位数为22,则x为()A.21B.22C.20D.23二、填空题9.长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:这次调查中的众数和中位数分别是____,____.10.在2021年元旦汇演中,10位评委给八年级一班的参赛节目打分如表格:则这组数据的众数是_________ .11.______的计算要用到所有的数据,它能够充分利用数据提供的信息.但它受极端值的影响较大,任何一个数据的变动都会相应引起平均数的变动.______是当一组数据中某一数据多次重复出现时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势;缺点:是当众数有多个且众数的频数相对较小时可靠性小,局限性大._______的计算很少,仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.12.为了解七年级600名学生读书情况,随机调查了七年级50名学生读书册数,统计数据如下表所示.则这50个样本数据的众数为_______.13.体育承载着国家强盛,民族振兴的梦想,“双减”落地助力体育锻炼的升温,下面是某同学假期中间连续6天每天用于体育锻炼的时间(单位:分钟):40,50,x ,60,60,70.已知这组数据的平均数是50分钟,则这组数据的中位数是_____分钟.14.小聪同学在计算一组数据1、3、4、5、x 的方差时,写出的计算过程是:2222221(14)(34)(44)(54)(4)45S x ⎡⎤=-+-+-+-+-=⎣⎦,如果他的计算是正确的,你认为这组数据中的x 为________.15.数据2、3、x 、4的平均数是3,则这组数据的众数是______.三、解答题16.中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A:青年大学习;B:背年学党史;C:中国梦宣传教育;D:社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中,一共抽取了____________名学生;(2)补全条形统计图;(3)若该校共有学生1280名,请估计参加B项活动的学生数;(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率.17.为帮助学生养成热爱美、发现美的艺术素养,某校开展了“一人一艺”的艺术选修课活动.学生根据自己的喜好选择一门艺术项目(A:书法,B:绘画,C:摄影,D:泥塑,E:剪纸),张老师随机对该校部分学生的选课情况进行调查后,制成了两幅不完整的统计图(如图所示).(1)张老师调查的学生人数是______名.(2)现有4名学生,其中2人选修书法,1人选修绘画,1人选修摄影,张老师要从这4人中任选2人了解他们对艺术选修课的看法,请用画树状图或列表的方法,求所选2人都是选修书法的概率.18.2021年4月,教育部办公厅在《关于进一步加强中小学生体质健康管理工作的通知》中明确要求保障学生每天校内、校外各1小时体育活动时间.某校为了解本校学生校外体育活动情况,随机对本校100名学生某天的校外体育活动时间进行了调查,并按照体育活动时间分A,B,C,D四组整理如下:根据以上信息解答下列问题:(1)制作一个适当的统计图,表示各组人数占所调查人数的百分比;(2)小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图.请计算小明本周内平均每天的校外体育活动时间;(3)若该校共有1400名学生,请估计该校每天校外体育活动时间不少于1小时的学生人数.19.近日,某学校开展党史学习教育进校园系列活动,组织七、八年级1800名学生开展了“学党史、立志向、修品行、练本领”的网上知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了若干名学生的得分进行统计,制成如下的频数分布表和直方图.请你根据不完整的表格,回答下列问题:(1)请直接写出a,b的值,并补全频数分布直方图.(2)若得分等级为5060≤<的5名学生中,有3名男生和2名女生,现在要从5名学生中任选2名学生进行x再教育,请用树状图或列表法求被选中的两名学生恰好为同一性别的概率.20.有人得了某种疾病,想到甲医院或乙医院就诊.他了解到甲、乙两家医院短期内治愈患该疾病的病人的情况如下:(1)a的值为______,b的值为______.(2)结合上表说明“从不同角度看数据可能会得到不同的结论”.21.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分).(1)请你计算这两组数据的平均数、中位数.(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.参考答案与解析:1.B【分析】由题意知,该组数据的平均数为123451566x x++++++=,且3x +是6的倍数,然后根据题意求解即可.【详解】解:由题意知,该组数据的平均数为123451532666x x x+++++++==+,①3x +是6的倍数,且x 是1-5中的一个数, 解得3x =,则平均数是3. 故选B .【点睛】本题考查了平均数与众数.解题的关键在于熟练掌握众数与平均数的定义与求解. 2.C【分析】根据全面调查和抽样调查的特点,众数的定义,方差的意义,随机事件的定义分别进行判断即可. 【详解】解:A 、了解市民知晓“礼让行人”交通新规的情况,适合抽样调查,故A 说法正确,不符合题意; B 、一组数据5,5,3,4,1的众数是5,故B 选项说法正确,不符合题意;C 、甲、乙两人跳高成绩的方差分别为221.12.5S S ==乙甲,,说明甲的成绩比乙稳定,故C 说法错误,符合题意;D 、“经过有交通信号灯的路口,遇到红灯”是随机事件,故D 说法正确,不符合题意; 故选:C .【点睛】本题考查了全面调查和抽样调查的特点,众数的定义,方差的意义,随机事件的定义,解题关键是正确理解和应用相关的概念. 3.A【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解. 【详解】解:由表可知4.5元出现的次数最多, ①众数为4.5元, ①第5、6个数据为5,5, ①中位数为5元, 故选:A .【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 4.D【分析】分别求出平均数,中位数,众数以及方差即可求解【详解】解:根据题意得:10次射击成绩从小到大排列为8.4,8.6,8.8,9,9,9,9.2,9.2,9.4,9.4, A 、平均数是9.48.49.29.28.898.619199.094+++++++++环,故本选项正确,不符合题意;B 、中位数是9992+=环,故本选项正确,不符合题意; C 、9出现的次数最多,则众数是9环,故本选项正确,不符合题意; D 、方差是222222222218.498.698.899999999.299.299.499.490.09610,故本选项错误,符合题意; 故选:D【点睛】本题考查了折线统计图,平均数,中位数,众数以及方差,解答本题的关键是掌握相关统计量的求法. 5.A【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数. 【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,第23个数的平均数为8,由中位数的定义可知,这组数据的中位数是8.故选:A.【点睛】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.6.C【详解】A、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误;B、前年①的收入所占比例为360135117360--×100%=30%,去年①的收入所占比例为360126117360--×100%=32.5%,此选项错误;C、去年①的收入为80000×126360=28000=2.8(万元),此选项正确;D、前年年收入即为①①①三种农作物的收入,此选项错误,故选C.【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.7.B【分析】根据众数和中位数的定义求解即可.【详解】解:将这组数据重新排列为103,105,105,105,108,108,110,这组数据出现次数最多的是105,所以众数为105,最中间的数据是105,所以中位数是105,故选:B.【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.B【分析】根据中位数的定义得到x为中位数,即可求解.【详解】①一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,①中位数为x,则x=22,故选B.【点睛】此题主要考查中位数的定义,解题的关键是熟知中位数的性质.9.55【分析】根据中位数是按顺序排列的一组数据中居于中间位置的数,众数是在一组数据中出现次数最多的数据,求解即可.【详解】解:由图表可知这次调查中的众数是5,第50和51位数为5,5①这次调查中的中位数是5552+=,故答案为:5;5.【点睛】本题考查了中位数与众数.解题的关键在于熟练掌握中位数与众数的求解方法.10.96【分析】根据众数的意义求解即可.【详解】解:10位评委的打分,出现次数最多的是96分,共出现3次,因此打分的众数是96分,故答案为:96.【点睛】本题考查了众数的意义,理解概念并结合题目具体数字分析是做题的关.11.平均数众数中位数【解析】略12.3【分析】一组数据中出现次数最多的数是这组数据的众数,根据众数的定义求解.【详解】解:由题意得,读书册数为3的人数最多,即众数为3,故答案为:3.【点睛】本题主要考查众数的定义,解决本题的关键是要熟练掌握众数的定义.13.55【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【详解】根据平均数的定义可知:40+50+x+60+60+70=506,解得x =20. 把这组数据从小到大排序后为20,40,50,60,60,70,这组数据的中位数为:(50+60)÷2=55.故答案为:55.【点睛】本题考查了平均数的计算的实际应用,解题关键是要读懂题目的意思,根据题目给出条件,找出合适的等量关系列出方程,再求解.14.7【分析】先求出这组数据的平均数,进而利用平均数计算公式即可计算x 【详解】解:2222221(14)(34)(44)(54)(4)45S x ⎡⎤=-+-+-+-+-=⎣⎦,如果他的计算是正确的, ∴4x =, ∴()113+4+5+45x ⨯+=, 解得x =7,故答案为:7.【点睛】本题主要考查了平均数及方差,熟练掌握各知识点是解题的关键.15.3【分析】先根据条件求出x 的值,然后根据众数的定义就可解决问题.【详解】解:①数据2、3、x 、4的平均数是3,①2+3+x+4=3×4=12,解得x=3.其中3出现的次数最多,因而这组数据的众数是3.故答案为:3【点睛】本题主要考查了算术平均数、众数的定义等知识,熟悉相关知识是解决此类题目的关键.16.(1)200;(2)见解析;(3)估计参加B 项活动的学生数有512名;(4)画树状图见解析,他们参加同一项活动的概率为14.【分析】(1)根据D项活动所占圆心角度数和D项活动的人数计算即可;(2)根据总人数求出参加C项活动的人数,进而可补全条形统计图;(3)用该校总学生人数乘以抽查的学生中参加B项活动所占的比例即可;(4)画出树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,然后根据概率公式计算即可.(1)解:7240200360︒÷=︒(名),即在这次调查中,一共抽取了200名学生,故答案为:200;(2)参加C项活动的人数为:200-20-80-40=60(名),补全条形统计图如图:(3)801280512200⨯=(名),答:估计参加B项活动的学生数有512名;(4)画树状图如图:由树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,所以他们参加同一项活动的概率为41 164=.【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,列表法或树状图法求概率,能够从不同的统计图中获取有用信息是解题的关键.17.(1)50(2)1 6【分析】(1)由书法的人数除以所占百分比即可得出.(2)画树状图,共有12种等可能的结果,所选2人都是选修书法的结果有2种,最后根据概率公式即可得出.(1)解:张老师调查学生的人数为:1020%50÷=(名).答:张老师调查的学生人数是50名.(2)解:把2人选修书法的记为A、B,1人选修绘画的记为C,1人选修摄影的记为D,画树状图如图:共有12种等可能的结果,所选2人都是选修书法的结果有2种,①所选2人都是选修书法的概率为21 126=.答:所选2人都是选修书法的概率是16.【点睛】本题考查用列表法或画树状图法求概率,条形统计图和扇形统计图的理解与应用能力.涉及知识点:概率=所求情况数与中情况数之比.利用列表法或画树状图法以不错不漏地列出所有等可能的结果是解本题的关键.18.(1)见解析(2)64分钟(3)980名【分析】(1)用扇形统计图表示各组人数占所调查人数的百分比;(2)根据平均数的计算方法进行计算即可;(3)样本估计总体,求出样本中每天校外体育活动时间不少于1小时的学生所占的百分比即可.(1)解:由于各组人数占所调查人数的百分比,因此可以采用扇形统计图;(2) 解:556563577075637++++++=64(分), 答:小明本周内平均每天的校外体育活动时间为64分钟;(3) 1400×6010100+=980(名), 答:该校1400名学生中,每天校外体育活动时间不少于1小时的大约有980名.【点睛】本题考查统计图的选择,频数分布表以及平均数,掌握各种统计图的特点以及加权平均数的计算方法是正确解答的前提.19.(1)45,0.31a b ==,图见解析(2)图见解析,概率为25【分析】(1)先计算出抽样的总人数,再计算a ,b 的值即可;(2)先画出树状图,再跟据树状图分析即可.(1)解:5÷0.025=200,a =2000×0.225=45,b =62÷200=0.31,45,0.31a b ==.补全频数分布直方图如下:(2)画树状图如下:共有20种等可能的结果,被选中的两名学生恰好为同一性别的结果有8种,“被选中的两名学生恰好为同一性别的概率为82205=.【点睛】本题考查频数分布直方图,树状图计算相关概率,能够根据图表分析出关键数据是解决本题的关键.20.(1)64.2,50;(2)见详解【分析】(1)利用“治愈率=治愈人数总人数”解答即可; (2)结合统计表中的数据解答即可.(1)解:设看病的人数有x 人,根据题意得: 20%10%80%80%%100%64.2%x x a x⨯+⨯=⨯=, 即64.2a =;80%%20%95%100%59%x b x x⨯+⨯⨯=, 解得:b =50;故答案为:64.2,50;(2)解:从总治愈率来看,甲医院比乙医院高;从重症治愈率来看,乙医院比甲医院高得多.(答案不唯一).【点睛】本题考查了统计表,理清“治愈率=治愈人数总人数”是解答本题的关键. 21.(1)甲、乙两组数据的平均数都是85分,中位数分别为83分、84分;(2)派乙参赛更合适.理由见解析.【分析】(1)根据平均数、中位数的计算方法分别计算即可;(2)从平均数、中位数、方差以及数据的变化趋势分析.【详解】()1()19582888193798478858x =+++++++=甲(分), ()18375808090859295858x =+++++++=乙 将甲工人的测试成绩从小到大排序,处在第45、位的平均数为()8284283+÷=(分),因此甲工人测试成绩的中位数是83分,将乙工人的测试成绩从小到大排序,处在第45、位的平均数为()8385284+÷=(分),因此乙工人测试成绩的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.()2(答案不唯一,合理即可) ()()()2222195858285...788535.58S =-+-+⎤⎣⎦=⎡+-甲(分2) ()()()2222183857585...9585418S =-+-+-⎡⎤⎣⎦+=乙(分2) ①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为22S S <甲乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力.综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以派乙参赛更合适.【点睛】考查平均数、中位数、方差的意义及计算方法,从多角度分析数据的发展趋势是一项基本的能力.。

20.2.1 中位数和众数 初中数学华东师大版八年级下册同步课时练习(含答案)

20.2.1 中位数和众数 初中数学华东师大版八年级下册同步课时练习(含答案)

20.2.1 中位数和众数知识点1 中位数1.某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位: cm),将这些数据按从小到大的顺序排列为 ,因为数据的个数是奇数,所以这五名运动员身高的中位数是 .2.一组数据1,3,3,4,4,5的中位数是( )A.3B.3.5C.4和3D.43.学习全等三角形时,某班举行了以“生活中的全等”为主题的测试活动,全班学生的测试成绩统计如下表:得分(分)85899396100人数(人)4615132则这些学生得分的中位数是( )A.89分B.91分C.93分D.96分4.某中学八年级(2)班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个):35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A.42,42B.43,42C.43,43D.44,435.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持健康的状态.小明同学用手机软件记录了自己11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在小明每天所走的步数数据中,中位数是 万步.6.一名射击运动员在连续射靶时,2次射中10环,8次射中9环,7次射中8环,2次射中7环,1次射中6环,求这组成绩的平均数和中位数.知识点2 众数7.在某次体育测试中,八年级(1)班5名同学的立定跳远成绩(单位:m)分别为:1.81,1.98,2.10,2.30,2.10.在这组数据中, 出现2次,出现的次数最多,所以这组数据的众数为 .8. 据了解,某定点医院收治的7名新型冠状肺炎患者的新冠病毒潜伏期分别为2天、3天、3天、4天、4天、4天、7天,则这7名患者新冠病毒潜伏期的众数和中位数分别为( ) A.4天,4天B.3天,4天C.4天,3天D.3天,7天9. 在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位: km/h)为( )A.60B.50C.40D.1510.受央视《朗读者》节目的影响,某校八年级(2)班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示:每天阅读时间(h)0.511.52人数89103则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A.2 h,1 hB.1 h,1.5 hC.1 h,2 hD.1 h,1 h11.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为 .12.某校八年级(1)班全体学生2020年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断下列结论错误的是( )A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分13. 在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是( )A.96分,98分B.97分,98分C.98分,96分D.97分,96分14.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A.6B.6.5C.7D.815.已知一组数据4,3,2,m,n的众数为3,平均数为2,m>n,则n的值为 .16.已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,-3,a4,a5的平均数和中位数分别是 .17.某商场购进600箱苹果.在出售之前,先从中随机抽出10箱检查,称得10箱苹果的质量(单位:千克)如下:5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3.(1)请指出这10箱苹果质量的平均数、中位数和众数分别是多少;(2)请你根据上述结果估计600箱苹果的质量为多少千克.18.我国是世界上严重缺水的国家之一.为了倡导“节约用水,从我做起”,小刚从他所在班的50名同学中,随机调查了10名同学一年中的家庭月平均用水量(单位:t),并将调查结果绘成了条形统计图(1)求这10名同学的家庭月平均用水量的平均数、众数和中位数;(2)试估计小刚所在班的50名同学的家庭月平均用水量不超过7 t的有多少户.参考答案1.173,176,178,180,181 178 cm2.B [解析] 按从小到大的顺序排列此组数据为1,3,3,4,4,5,处于中间位置的数是3,4,所以这组数据的中位数是(3+4)÷2=3.5.故选B.3.C [解析] 处于中间位置的数为第20,21两个数,都为93分,所以中位数为93分.故选C.4.B [解析] 把这组数据按从小到大的顺序排列得35,38,40,42,44,45,45,47,则这组数据的中位数为=43.=(35+38+42+44+40+47+45+45)=42.故选B.5.1.3 [解析] ∵共有2+8+7+10+3=30(个)数据,∴这组数据的中位数是第15,16个数据的平均数,而第15,16个数据均为1.3万步,则中位数是1.3万步.故答案为1.3.6.解:这组成绩的平均数为(10×2+9×8+8×7+7×2+6×1)÷(2+8+7+2+1)=8.4(环),中位数为=8.5(环).7.2.10 2.108.A9.C [解析] 由条形图知,40出现的次数最多.故选C.10.B11.3 [解析] 根据题意知=3,解得x=3,则这组数据为1,2,2,3,3,3,7,所以众数为3.故答案为3.12.D13.A [解析] 由统计图可知:按从小到大的顺序排列,第13名同学的分数为96分,故中位数为96分,得分人数最多的是98分,共9人,故众数为98分.故选A.14.C [解析] 根据题意,得=7,解得x=8,∴这组数据的中位数是7.故选C.15.-2 [解析] ∵一组数据4,3,2,m,n的众数为3,平均数为2,m>n,∴m=3,∴4+3+2+3+n=2×5,解得n=-2.故答案为-2.16., [解析] ∵数据a1,a2,a3,a4,a5的平均数是m,∴a1+a2+a3+a4+a5=5m,∴数据a1,a2,a3,-3,a4,a5的平均数为(a1+a2+a3-3+a4+a5)÷6=.数据a1,a2,a3,-3,a4,a5按照从小到大的顺序排列为:-3,a5,a4,a3,a2,a1.处在第3,4位的数据的平均数为,∴数据a1,a2,a3,-3,a4,a5的中位数为.故答案为,.17.解:(1)平均数=(5.0+5.4+4.4+5.3+5.0+5.0+4.8+4.8+4.0+5.3)÷10=4.9(千克).因为5.0出现的次数最多,出现了3次,所以众数是5.0千克.将这10个数按从小到大的顺序排列为:4.0,4.4,4.8,4.8,5.0,5.0,5.0,5.3,5.3,5.4,因为第5个数与第6个数的平均数是5.0,所以这10箱苹果质量的中位数是5.0千克.(2)由(1)得平均每箱苹果的质量为4.9千克,所以估计600箱苹果的质量为4.9×600=2940(千克).18.解:(1)观察条形统计图,可知10名同学的家庭月平均用水量的平均数是(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8(t).∵在这组数据中,6.5 t出现了4次,出现的次数最多,∴这10名同学的家庭月平均用水量的众数是6.5 t.∵将这组数据按从小到大的顺序排列,其中处于中间位置的两个数都是6.5 t,则=6.5(t),∴这10名同学的家庭月平均用水量的中位数是6.5 t.(2)∵10名同学的家庭中月平均用水量不超过7 t的有7户,∴小刚所在班的50名同学的家庭月平均用水量不超过7 t的有50×=35(户).。

2020—2021年华东师大版八年级数学下册《中位数和众数》同步练习题及答案.docx

2020—2021年华东师大版八年级数学下册《中位数和众数》同步练习题及答案.docx

(新课标)2017-2018学年华东师大版八年级下册第二十章第二节20.2.1中位数和众数同步练习一、选择题1.我市电视台举办的歌手大奖赛上,八位评委给某位歌手的评分为:90,91,94,95,95,96,96,97,这组数据的众数是()A.95 B.96 C.2 D.95和96答案:D解答:出现次数最多的数据是95、96,它们都出现了两次,所以选D.分析:众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.2.甲乙丙丁四支足球队在全国甲级联赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.10 B.9 C.8 D.7答案:B解答:∵这组数据的众数与平均数恰好相等,∴9+9+x +7=9×4,∴x =11,又这组数据共有4个,∴中位数是按从小到大排列后的第2与第3个的平均数即9992+=,所以选B .分析:求中位数时一定要先拍好顺序,然后再根据数据个数的奇偶来确定中位数,如果数据有奇数个,则中间的数字即为所求,如果是偶数个则中间两个数的平均数是中位数.3.把5个整数从小到大排列,其中位数是4,如果这5个整数中的唯一众数是6,则这5个整数可能的最大的和是( )A .21B .22C .23D .24 答案:A解答:∵5个整数从小到大排列其中位数是4,又∵这5个整数中的唯一众数是6即前两个数不是众数,∴一定不是同一个数,∴前两位最大为2、3,后两位最大为6、6,∴这5个整数最大为2,3,4,6,6,∴这5个整数可能的最大的和是21,所以选A . 分析:本题目考查中位数与众数的概念.4.在下面一组数据7,9,6,8,10,12中,下面说法正确的是( )A .中位数等于平均数B .中位数大于平均数C .中位数小于平均数D .中位数是8答案:C 解答:平均数为796810122663+++++=,中位数为898.52+=,∴中位数小于平均数,所以选C .分析:分别求出中位数与平均数比较即可.5.已知一组数据x ,5,0,3,-1的平均数1x =,那么它的中位数是( )A .0B .2.5C .1D .0.5答案:A解答:依题意得:x =5×1-(5+0+3-1)=-2,∴所给数据按从小到大排列为-2,-1,0,3,5,∴这组数据的中位数是0,所以选A .分析:先根据平均数的定义求出x ,再按照中位数的定义求出中位数即可.6.已知一组数据23,27,20,18,x ,12,若它们的中位数是21,那么数据x 是( )A .23B .22C .21D .20答案:B解答:这一组数从小到大只能是12,18,20,x ,23,27,∴中位数为20212x +=,∴x =22,所以选B .分析:讨论x 的位置,根据中位数的定义求解.7.某青年排球队12名队员的年龄情况如下:则12名队员的年龄( )A .众数是20岁,中位数是19岁B .众数是19岁,中位数是19岁C .众数是19岁,中位数是20.5岁D .众数是19岁,中位数是20岁答案:D解答:这一组数据中19岁出现的次数最多,故19岁是众数;将这组数据按从小到大的顺序排列后,处于中间位置的数是20岁、20岁,故20岁是中位数,所以选D .分析:根据中位数与众数的定义即可解题.8.某男子篮球队在10场比赛中,投球所得的分数分别为:80,86,95,86,79,65,98,86,90,81.则该球队10场比赛得分数的众数与中位数分别为( )A .86,86B .86,81C .81,86D .81,81答案:A解答:这一组数据中86出现的次数最多,∴86是众数;将这组数据按照从小到大的顺序排列后,位于中间位置的数是86,86,∴中位数是86,所以选A .分析:根据中位数与众数的定义求解即可.9.一组数据:90,91,92,95,97,94,95,99的众数与中位数分别是( )A .94,95B .95,94C .95,94.5D .94.5,95答案:C解答:这一组数据中95出现的次数最多,∴95是众数;将这组数据按照从小到大的顺序排列后,位于中间位置的数是94,95,∴中位数是949594.52+=,所以选C .分析:根据中位数与众数的定义求解即可.10.一名战士在同样条件下射靶10次,命中环数分别是:6,9,9,8,7,9,8,7,10,6,则该战士射击坏数的众数与中位数分别是( )A.8,8 B.9,9C.8,9D.9,8答案:D解答:这一组数据中9出现的次数最多,∴9是众数;将这组数据按照从小到大的顺序排列后,位于中间位置的数是8,8,∴中位数是8,所以选D.分析:根据中位数与众数的定义求解即可.11.数据11,8,2,7,9,2,7,3,2,0,5的众数是()A.2 B.7C.3D.2与7答案:A解答:出现次数最多的数据是2,它出现了3次,所以选A.分析:众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.12.一个射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,那么这个射手每次射中环数的平均数、众数、中位数依次为()A.8环,8环,8环B.8.4环,8环,8环C.8.5环,8环,8环D.8.4环,8环,7环答案:B解答:平均数是2107988378.420⨯+⨯+⨯+⨯=(环);出现次数最多的是8环,故众数是8环;这组数据排列为3次7环,8次8环,7次9环,2次10环,所以最中间的两个数都是8环,故中位数是8环;所以选B .分析:本题主要考察平均数、众数、中位数的计算方法.13.在数据-1,0,4,5,8中插入一个数据x ,使得这组数据的中位数是3,那么x 为( )A .3B .2C .0D .9答案:B解答:数据-1,0,4,5,8中,处于中间位置的那个数是4,若插入一个数据x ,使得这组数据的中位数是3,那么有432x +=即x =2,所以选B .分析:求中位数之前需要先把所给数据进行按顺序重新排列.14.数据10,10,x ,8的众数与平均数相同,那么它们的中位数是( )A .10B .9C .8D .7答案:A解答:数据10,10,x,8的众数与平均数相同,∴众数与平均数都是10,∴10+10+x+8=40,∴x=12,根据中位数定义可求得中位数是10,所以选A.分析:众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.15.5个正整数从小到大排列,若这组数据的中位数是3,众数是7且唯一,则这5个正整数的和是()A.20 B.21 C.22 D.23答案:A解答:∵5个整数从小到大排列其中位数是3,又∵这5个整数中的唯一众数是7即前两个数不是众数,∴一定不是同一个数,∴前两位最大为1、2,后两位最大为7、7,∴这5个整数最大为1,2,3,7,7,∴这5个整数可能的最大的和是20,所以选A.分析:本题目考查中位数与众数的概念.二、填空题16.在一组数据中,出现次数最多的数据叫做这组数据的________.答案:众数解答:在一组数据中,出现次数最多的数据叫做这组数据的众数. 分析:本题目考查众数的概念.17.为了迎接2008年奥运会,某单位举办了英语培训班,100名职工在一个月内参加英语培训的次数如下图所示:这个月职工平均参加英语培训的次数是__________,这个月每名职工参加英语培训次数的众数为__________,中位数是__________.答案:6次|6次|6次 解答:中位数是1542053062071586100⨯+⨯+⨯+⨯+⨯=(次),6次出现的次数最多为30个即众数为6次,按从小到大的顺序排列后中间位置的是6次、6次,故中位数是6次.分析:根据平均数、中位数和众数的定义解题.18.在2002年世界杯足球赛第一轮的比赛中,某队上场队员的年龄情况如下表所示:那么这些队员年龄的平均数是,众数是.答案:27岁|26岁 解答:平均年龄是221231252263291312331277⨯+⨯+⨯+⨯+⨯+⨯+⨯=(岁);这组数据中26岁出现的次数最多,所以这组数据的众数是26岁.分析:当所给数据有单位时,所求得的平均数、众数、中位数与原数据的单位相同,不要漏掉单位.19.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:请根据上述数据填空:(1)该组数据的中位数是________;答案:22℃(2)该城市一年中日平均气温为26℃的约有_____天; 答案:73(3)若日平均气温在17℃~23℃为市民“满意温度”,则该城市一年中达到市民“满意温度”的约有________天.答案:146解答:(1)根据中位数的概念及图表信息可知中位数是22℃;(2)由图表信息可知每月平均气温26℃有6天,故一年中有6⨯=(天);(3)由图表信息可知每月“满意温度”有12 3657330天,故一年中有12365146⨯=(天).30分析:本题主要考察读图获取信息的能力及中位数的求法.20.2002年世界杯足球赛时,中国队首场比赛的首发阵容名单和他们的身高如下表所示:则这些动员员的身高的众数和中位数分别是__________.答案:1.83米|1.83米解答:∵这组数据重新排序后为1.76,1.80,1.81,1.82,1.82,1.83,1.83,1.83,1.83,1.85,1.98,∴这些动员员的身高的众数是1.83米,中位数是1.83米.分析:本题目考查众数的概念.三、解答题21.在一次科技知识竞赛中,两组学生的成绩统计如下:已经算得两组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中成绩哪一组好些,哪一组稍差,并说明理由.答案:解答:①从成绩的众数比较看,甲组成绩较好;②从中位数比较看,甲组成绩总体较好;③从高分段(90分以上)和满分的人数来看,乙组的成绩较好.分析:本题目考查中位数、众数的概念.22.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):(1)甲群游客的平均年龄是多少?中位数、众数呢? 答案:平均年龄是15岁,中位数是15岁,众数是15岁 解答:解:甲群平均年龄是13214154161721510⨯++⨯++⨯=(岁);按照从小到大的顺序排列后,中间位置的数据是15岁、15岁,所以中位数是15岁;15岁是这组数据中出现次数最多的数,所以众数是15岁.(2)乙群游客的平均年龄是多少?中位数、众数呢? 答案:平均年龄是15岁,中位数是5.5岁,众数是6岁 解答:乙群平均年龄是342526354571510+⨯+⨯+⨯++=(岁);按照从小到大的顺序排列后,中间位置的数据是5岁、6岁,所以中位数是5.5岁;6岁是这组数据中出现次数最多的数,所以众数是6岁.分析:根据平均数、中位数和众数的定义解题即可.23.在一次数学测验中,30名学生的成绩如下表所示:求这组数据的众数和中位数.答案:众数是92岁,中位数是92岁解答:解:92分是这组数据中出现次数最多的数,所以众数是92分;按照从小到大的顺序排列后,中间位置的数据是92分、92分,所以中位数是92分.分析:根据中位数和众数的定义解题即可.24.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售如下:(1)求这15位营销人员该月销售量的平均数、中位数和众数. 答案:平均数为320件,中位数是210件,众数是210件 解答:解:平均数是180015101250321051503120232015⨯+⨯+⨯+⨯+⨯+⨯=(件);按照从小到大的顺序排列后,中间位置的数据是210件,所以中位数是210件;210件是这组数据中出现次数最多的数,所以众数是210件.(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由.答案:不合理,理由:在15人中有13人销售到320件,定210件较为合理解答:不合理,理由:在15人中有13人销售到320件,定210件较为合理.分析:(1)根据平均数、中位数和众数的定义解题即可;(2)销售定额应根据众数来定比较合理.25.某中学为了了解全校的耗电情况,抽查了10天中全校每天的耗电量,数据如下表:(单位:kW ·h )(1)写出上表中数据的众数和平均数;答案:众数为113kW ·h ,平均数108kW ·h解答:解:由于113kW ·h 在10天中出现来3次,故众数是113kW ·h ;平均数是()1901931102211331141120210810⨯+⨯+⨯+⨯+⨯+⨯=kW ·h . (2)由上题获得的数据,估计该校某月的耗电量(按30天计); 答案:3240kW ·h解答:估计该校一个月的耗电量为30×108=3240(3240kW ·h ).分析:(1)根据平均数、众数的定义解题即可;(2)本题考查利用样本估计总体的能力.。

八年级数学上册 6.2 中位数与众数练习 试题

八年级数学上册 6.2 中位数与众数练习 试题
〔4〕从看,你认为成绩较好的是班.
3
1
这七人成绩的中位数是〔 〕Aຫໍສະໝຸດ 22B.89C.92
D.96
3在一次生田径运动会上,参加男子跳高的15名运发动的成绩如下表:这些运发动跳高成绩的中位数和众数分别是〔 〕
跳高成绩〔m〕
0
5
1.60
1.65
0
5
跳高人数
1
3
2
3
5
1
A.1.65,0
B.0,1.65
C.0,0
D.3,5
4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是〔单位:元〕:50,20,50,30,50,25,135.这组数据的众数和中位数分别是.
轧东卡州北占业市传业学校 中位数与众数
1.在樱桃采摘园,五位游客每人各采摘了一袋樱桃,质量分别为〔单位:千克〕:5,2,3,5,5,那么这组数据的平均数和中位数分别为〔 〕
A.4,3
B.3,5
C.4,5
D.5,5
2.在一次数学测验中,一学习小组七人的成绩如表所示:
成绩〔分〕
78
89
96
100
人数
1
2
某校在一次考试中,甲乙两班学生的数学成绩统计如下:
分数
50
60
70
80
90
100
人数

1
6
12
11
15
5

3
5
15
3
13
11
请根据表格提供的信息答复以下问题:
〔1〕甲班众数为,乙班众数为.
〔2〕甲班的中位数是,乙班的中位数是.
〔3〕假设成绩在80分以上〔包括80分〕为优秀,那么甲班的优秀率为,乙班的优秀率为.

人教版八年级数学下册《20.1.2中位数和众数》同步测试题带答案

人教版八年级数学下册《20.1.2中位数和众数》同步测试题带答案

人教版八年级数学下册《20.1.2中位数和众数》同步测试题带答案【A层基础夯实】【知识点1】中位数、众数的求解及简单应用1.(2023·岳阳中考)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是( )A.180,182B.178,182C.180,180D.178,1802.(2023·枣庄中考)4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如表所示:人数 6 7 10 7阅读课外书数量(本) 6 7 9 12则阅读课外书数量的中位数和众数分别是( )A.8,9B.10,9C.7,12D.9,93.(2023·沈阳模拟)某男子足球队队员的年龄分布如图所示,这些队员年龄的众数和中位数是( )A.5岁和23岁B.24岁和24岁C.24岁和23岁D.24岁和23.5岁4.(2023·杭州期中)一组数据3,2,x,1,5的众数是5,则这组数据的中位数是. 【知识点2】中位数、众数的综合应用5.(2023·株洲中考)申报某个项目时,某7个区域提交的申报表数量的前5名的数据统计如图所示,则这7个区域提交该项目的申报表数量的中位数是( )A.8B.7C.6D.56.(2023·温州一模)一组数据:3,9,2,m,7,它的中位数是4,则这组数据的平均数是.7.一组数据为:1,1,x,4,4,7,7.已知这组数据的平均数为4,求这组数据的众数与中位数.8.已知一组数据按照从小到大的顺序排列为2,2,3,a,b,14,14,16,若这组数据的中位数为8,且b=3a,求a,b的值.【B层能力进阶】3,则该组数据的中位数为9.(2023·衡水模拟)若有一组有理数:-2,-5,3,0,-0.5,√8( )A.-0.5B.-0.25C.0D.110.(2023·成都期末)一组数据3,4,6,12,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是.{x-3≥1-x+4≥-111.(易错警示题)在5个正整数a,b,c,d,e中,中位数是4,唯一的众数是6,则这5个数的和的最大值是.12.已知4个数据:x,5,5,8.如果这组数据的众数与平均数相等,求这组数据的中位数.13.(2023·天津中考)为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动,该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为________,图①中m的值为________;(2)求统计的这组学生年龄数据的平均数、众数和中位数.【C层创新挑战】(选做)14.(教材再开发·P117例4拓展)(2023·新疆建设兵团中考)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:100 110 114 114 120 122 122 131 144 148152 155 156 165 165 165 165 174 188 190对这组数据进行整理和分析,结果如下:平均数众数中位数145 a b请根据以上信息解答下列问题:(1)填空:a=________,b=________;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,有多少名学生能达到优秀?(3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.参考答案【A层基础夯实】【知识点1】中位数、众数的求解及简单应用1.(2023·岳阳中考)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是(D)A.180,182B.178,182C.180,180D.178,1802.(2023·枣庄中考)4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如表所示:人数 6 7 10 7阅读课外书数量(本) 6 7 9 12则阅读课外书数量的中位数和众数分别是(D)A.8,9B.10,9C.7,12D.9,93.(2023·沈阳模拟)某男子足球队队员的年龄分布如图所示,这些队员年龄的众数和中位数是(D)A.5岁和23岁B.24岁和24岁C.24岁和23岁D.24岁和23.5岁4.(2023·杭州期中)一组数据3,2,x ,1,5的众数是5,则这组数据的中位数是 3 . 【知识点2】中位数、众数的综合应用5.(2023·株洲中考)申报某个项目时,某7个区域提交的申报表数量的前5名的数据统计如图所示,则这7个区域提交该项目的申报表数量的中位数是 (C)A.8B.7C.6D .56.(2023·温州一模)一组数据:3,9,2,m ,7,它的中位数是4,则这组数据的平均数是5 .7.一组数据为:1,1,x ,4,4,7,7.已知这组数据的平均数为4,求这组数据的众数与中位数.【解析】根据平均数的含义得:17×(1+1+x +4+4+7+7)=4,所以x =4;将这组数据按照从小到大的顺序排列:1,1,4,4,4,7,7,处于中间位置的数是4,那么这组数据的中位数是4;在这一组数据中4是出现次数最多的,故众数是4.8.已知一组数据按照从小到大的顺序排列为2,2,3,a ,b ,14,14,16,若这组数据的中位数为8,且b =3a ,求a ,b 的值. 【解析】根据题意得,{a+b2=8b =3a,解得{a =4b =12,答:a 的值是4,b 的值是12.【B层能力进阶】3,则该组数据的中位数为(B)9.(2023·衡水模拟)若有一组有理数:-2,-5,3,0,-0.5,√8A.-0.5B.-0.25C.0D.110.(2023·成都期末)一组数据3,4,6,12,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是6或5.8.{x-3≥1-x+4≥-111.(易错警示题)在5个正整数a,b,c,d,e中,中位数是4,唯一的众数是6,则这5个数的和的最大值是21.12.已知4个数据:x,5,5,8.如果这组数据的众数与平均数相等,求这组数据的中位数.【解析】在这一组数据中5是出现次数最多的,故众数是5;根据题意得x+5+5+8=5,解得x=2.4而将这组数据按照从小到大的顺序排列:2,5,5,8,处于中间位置的那两个数都是5,那么由中位数的定义可知,这组数据的中位数是5.13.(2023·天津中考)为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动,该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为________,图①中m的值为________;(2)求统计的这组学生年龄数据的平均数、众数和中位数.【解析】(1)a=5+6+13+16=40;∵m%=100%-12.5%-40%-32.5%=15%,∴m=15.答案:4015=14;(2)平均数为12×5+13×6+14×13+15×165+6+13+16∵15岁的学生最多,∴众数为15;∵一共调查了40名学生,12岁的有5人,13岁的有6人,14岁的有13人,∴中位数为14.【C层创新挑战】(选做)14.(教材再开发·P117例4拓展)(2023·新疆建设兵团中考)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:100 110 114 114 120 122 122 131 144 148152 155 156 165 165 165 165 174 188 190对这组数据进行整理和分析,结果如下:平均数众数中位数145 a b请根据以上信息解答下列问题:(1)填空:a=________,b=________;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,有多少名学生能达到优秀?(3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.【解析】(1)在被抽取20名七年级学生的1分钟跳绳测试成绩中,165出现的次数最多,故众数a=165;把被抽取20名七年级学生的1分钟跳绳测试成绩从小到大排列,排在中间的两个数分别是148,152,故中位数b=148+152=150.2答案:165150(2)240×7=84(名),20答:估计七年级240名学生中,有84名学生能达到优秀;(3)超过年级一半的学生,理由如下:∵152>150,∴推测该同学的1分钟跳绳次数超过年级一半的学生.。

初中数学北师大版八年级上册第六章 数据的分析2 中位数与众数-章节测试习题(14)

初中数学北师大版八年级上册第六章 数据的分析2 中位数与众数-章节测试习题(14)

章节测试题1.【答题】在一次定位投篮比赛中,数学组老师投进的球数如下:1人投进6个,2人投进4个,1人投进5个3人投进3个,3人投进2个那么,数学组老师投进球数的众数是______,中位数为______,平均数为______.【答案】3个和2个 3个3.4个【分析】【解答】2.【题文】某商场一天中售出某品牌运动鞋16双,其中各种尺码的鞋的销售量如下表:鞋的尺码23.5 24 24.5 25 26销售量/双 1 3 4 6 2(1)这16双鞋的尺码组成的一组数据中,众数和中位数各是多少?(2)如果该商场10天进一次该品牌以上尺码的运动鞋,则最好怎么进货?请说明理由.【答案】解:(1)数据25出现的次数最多,∴众数是25cm.排序后第8,9个数据的平均数是24.75,∴中位数是24.75cm.(2)多进尺码为25cm的鞋,少进尺码为23.5cm的鞋.原因:尺码为23.5cm的鞋销售量最少,尺码为25cm的鞋销售量最多.【分析】【解答】3.【答题】某校环保小组的学生到某居民小区随机调查了20户居民一天丢弃的废塑料袋的情况,统计结果如下表:每户居民一天丢弃塑料袋的个数2 3 4 5户数8 6 4 2请根据表中提供的信息回答:(1)该居民小区这20户居民一天丢弃的废塑料袋的众数是______个,中位数是______个,平均数是______个;(2)若该居民小区共有500户,试估计该居民小区一个月(按30天计算)丢弃的废塑料袋的总个数.【答案】解:(1)2 3 3(2)如果共有居民500户,那么一个月共丢弃废塑料袋(个).【分析】【解答】4.【题文】上周五某校开展了赈灾捐款活动,其中八年级(2)班全体同学的捐款情况如下表:捐款金额 5元 10元 15元 20元 50元捐款人数 7人 18人12人 3人由于填表的同学不小心把墨水滴在表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合以上信息回答下列问题:(1)八年级(2)班共有多少人?(2)学生捐款金额的众数和中位数分别为多少元?【答案】解:(1)∵(人),∴八年级(2)班共有50人.(2)∵捐15元的同学人数为,∴学生捐款的众数为10元.又∵第25个数为10,第26个数为15,∴中位数为(元).【分析】【解答】5.【题文】某养鸡场有2500只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:)绘制出如下统计图.请根据相关信息解答下列问题:(1)求统计的这组数据的平均数、中位数;(2)根据样本数据,估计这2500只鸡中质量为的约有多少只.【答案】解:(1)观察条形统计图,,所以这组数据的平均数是1.52.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,所以这组数据的中位数是1.5.(2)在所抽取的样本中,质量为2.0kg的数量有4只,,所以由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.(只).故质量为2.0kg的约有200只.【分析】【解答】6.【题文】今年天气干旱,为宣传节约用水,张华随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)张华一共调查了______户家庭,所调查家庭5月份用水量的众数是______;(2)求所调查家庭5月份用水量的平均数;(3)若该小区有300户居民,请你估计这个小区5月份的用水量【答案】解:(1)张华一共调查的家庭数:,有6户家庭每月用水量为4吨,出现次数最多,∴所调查家庭5月份用水量的众数是4吨.(2)所调查家庭5月份用水量的平均数.(3)(吨).答:5月份300户居民的用水量为1350吨.【分析】【解答】7.【答题】某校开展了主题为“青春·梦想”的艺术作品征集活动从八年级五个班收集到的作品数量(单位:件)分别为42,50,45,46,50,则这组数据的中位数是()A. 42件B. 45件C. 46件D. 50件【答案】C【解答】8.【答题】某中学为积极响应全民阅读的号召,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表,则在本次调查中,学生阅读时间的中位数是______.时间/时0.5 1 1.5 2 2.5人数12 22 10 5 3【答案】1【分析】【解答】9.【答题】据调查,某班30位同学所穿鞋子的尺码如下表,则该班这30位同学所穿鞋子尺码的众数是()码号/码33 34 35 36 37人数 3 6 8 8 5A. 8B. 35C. 36D. 35和36【答案】D【分析】【解答】10.【答题】如果一组数据6,7,,10,5的众数是7,那么这组数据的平均数为______.【分析】【解答】11.【答题】(2020独家原创试题)全民健身活动越来越受人们的关注,某小区四位仰卧起坐爱好者在进行比赛时所做的仰卧起坐的个数从高到低排列依次为20,17,12,12,则这组数据的中位数是()A. 17B. 12C. 14.5D. 15.5【答案】C【分析】【解答】这组数据的中位数是,选C.12.【答题】一组数据3、-5、0、1、4的中位数是()A. 0B. 1C. -2D. 4【答案】B【分析】【解答】将这组数据从小到大排序为-5,0,1,3,4,则中位数为1,选B.13.【答题】某校在“爱护地球,绿化祖国”的活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:植树棵数 4 5 6 8 10人数30 22 25 15 8则这100名学生植树棵数的中位数为()A. 4B. 5C. 5.5D. 6【答案】B【分析】【解答】把100个数从小到大排序,最中间的两个数是5,5,所以中位数是.14.【答题】(2020重庆江北十八中校级月考)数据3、4、6、7、x的平均数是5,则这组数据的中位数是()A. 4B. 4.5C. 5D. 6【答案】C【分析】【解答】∵数据3、4、6、7、x的平均数是5,,解得x=5,把这组数据从小到大排序为3、4、5、6、7,最中间的数是5,∴这组数据的中位数是5,选C.15.【答题】将一组正整数从小到大排序为2,4,5,x,已知这组数据的中位数和平均数相等,那么x的值是______.【答案】7【分析】【解答】∵这组数据的中位数和平均数相等,,解得x=7.16.【答题】数据7,8,5,8,6,8,7的众数和中位数是()A. 8,7B. 8,5C. 7,8D. 7,5【答案】A【分析】【解答】在这组数据中出现次数最多的是8,即众数是8,把这组数据按照从小到大的顺序排列为5,6,7,7,8,8,8,最中间的数是7,∴中位数为7.选A.17.【答题】一组数据3,4,x,6,8的平均数是5,则这组数据的众数是()A. 3B. 4C. 6D. 8【答案】B【分析】【解答】根据题意,得,解得x=4,则这组数据为3,4,4,6,8,因为4出现的次数最多,所以这组数据的众数是4.选B.18.【答题】(2020独家原创试题)据统计,感染冠状病毒病的人数持续上升,正确佩戴口罩和护目镜能有效预防冠状病毒病,小明一共购买了四袋口罩,其中口罩的数量分别是10,10,x,9.已知这组数据的众数和平均数相等,则这组数据中x 的值为()A. 9B. 10C. 11D. 12【答案】C【分析】【解答】①当x=9时,众数为9或10,平均数,或10,∴此种情况不合题意,舍去;②当时,众数为10,,解得x=11.选C.19.【答题】(2020山东东营垦利六校期中)某市4月份某一周的最高气温统计如下:最高气温28 29 30 31(℃)天数 1 1 3 2则这周最高气温的众数与中位数分别是______.【答案】30℃和30℃【分析】【解答】由题表中的数据可知,30出现的次数最多,所以众数为30℃;将题表中的数据按从小到大的顺序排列,排在最中间的数是30,所以中位数为30℃.20.【答题】5名学生在一周内的做家务时间统计如下:3小时有1人,3个半小时有1人,4小时有2人,4个半小时有1人,则关于这组“做家务时间”的数据分析正确的是()A. 中位数是4小时,平均数是3.75小时B. 中位数是4小时,平均数是3.8小时C. 众数是4小时,平均数是3.75小时D. 众数是2小时,平均数是3.8小时【答案】B【分析】【解答】把这5名学生的做家务时间(单位:小时)从小到大排序为3,3,5,4,4,4.5,最中间的数是4,因此中位数是4小时,小时,选B.。

初二数学平均数,众数,中位数的区别及相关练习题(含答案)

初二数学平均数,众数,中位数的区别及相关练习题(含答案)

平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。

平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

即x=(x1+x2+……+xn)÷n 中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。

众数:在一组数据中出现次数最多的数叫做这组数据的众数。

平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。

平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。

反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。

平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。

平均数易受极端数据的影响,从而使人对平均数产生怀疑。

中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。

中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。

简单明了,很少受一组数据的极端值的影响。

中位数的缺点。

中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。

当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。

众数:一组数据中出现次数最多的那个数据。

集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。

众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。

八年级数学 平均数、中位数、众数的应用专项练习题(含解析)

八年级数学 平均数、中位数、众数的应用专项练习题(含解析)

八年级数学平均数、中位数、众数的应用专项练习题经典题1.已知一组数据为20,30,40,50,50,50,60,70,80,其中平均数、中位数和众数的大小关系是()A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位教=平均数分析:众数、中位数和平均数从不同的角度描述一组数据的集中趋势.对于不同的数据三者之间的大小关系也不同,这里可具体计算出来后再比较.答案:解答本题,需求出平均数、众数和中位数众数:50,中位数:50,故选D.2.七(1)班四个绿化小组植树的棵树如下:10,10,x,8,已知这组数据的众数和平均数相等,那么这组数据的中位数是_______棵.分析:分析条件知众数是10,因此1010x8104+++=,解得x=12,因此中位数是10。

答案:103.某个体餐馆今年5月份工资表如下:人员经理厨师甲厨师乙会计服务员甲服务员乙服务员丙金额(元) 4000 800 500 500 450 400 350 (1)该月以上人员工资的平均数是______元,中位数是______元,众数是______元;(2)该月能用平均数来表示他们工资的集中趋势吗?你有什么建议?分析:本题共两问,主要涉及平均数计算和中位数、众数的查找,并利用数的特征提出合理的建议.答案:(1)根据表格信息可得工资的平均数1000元,,中位数为500元,众数为500元. (2)一组数据中含有极端值时,利用平均数反映整体的集中趋势不合理.可考虑从中位数或众数的灵活应用。

由于经理和其他员工的工资的差别较大,所以不能用平均数来表示他们工资的集中趋势.建议:a..用众数来表示工资的集中趋势;b.用中位数来表示工资的集中趋势;c.若去掉经理的工资,用6人工资的平均数表示集中趋势4.年某校为选拔参加2018年全国初中数学竞赛的选手,进行了集体培训,在集训期间进行了10次测试,假设其中两位同学的测试成绩如下面的图表所示.平均数众数中位数信息类型甲93 95乙90 90(2)这两位同学的测试成绩各有什么特点(从不同的角度分别说出一条即可)?(3)为了使参赛选手取得好成绩,应选谁参加比赛?为什么?分析:本题是一道统计图与统计表综合型创新题.要会正确分析图表中所提供的数据信息,并且,从平均数、中位数、众数三个不同特殊的量作为出发点分析数据可能得到不同的评价结论.在评价时应注意三者的综合应用.答案:(1)将甲组数据按由小到大的顺序排列,可得处于最中间的两个数据是94和95,所以甲的中位数是94.5,从统计表可知乙组数据中99出现了三次,所以乙的众数是99.(2)从平均数来看,甲的平均数比乙的平均数高,但乙更有潜力,因为乙的最好成绩比甲的最好成绩高.甲的中位数比乙的中位数高,而乙的众数比甲的众数大.甲的成绩比较均匀,而乙的成绩高分较高,但成绩不稳.(3)10次测验,甲有8次不少于92分,而乙仅有6次,若想获奖可能性大,可以选甲参赛;若想拿到更好的名次可选乙,因为乙有4次在99分以上.5. 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图,教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对这两名运动员体能测试结果进行判断:①依据平均数和成绩合格的次数比较甲和乙,_____的体能测试成绩较好; ②依据平均数和中位数比较甲和乙,_____的体能测试成绩较好.(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.分析:本题是一道集识图、计算、说理于一题的优秀的综合型试题,解决问题需要从统计图中获得正确的数据信息,正确理解平均数、中位数的概念及特征.平均数 中位数 体能测试成绩合格次数甲 65 乙60答案:(1)(见表格)(2)①依据平均数和成绩合格的次数比较甲和乙,乙的体能测试成绩较好;②依据平均数和中位数比较甲和乙,甲__的体能测试成绩较好;(3)从折线图上看,两名运动员成绩呈上升趋势,但是乙的增长速度比甲快,并且后一阶段乙的成绩合格次数比甲多,所以乙训练效果较好.6.某电脑公司的经理对2019年4月份电脑的销售情况做了调查,情况如下表:为,中位数为,本月平均每天销售台(4月份为30天).(2)如果你是该商场的经理,根据以上信息,应该如何组织货源.分析:本题是求平均数以及利用众数进行说理的实际问题,解题时应注意理解题意,电脑价格的平均数与销量无关,所以(1)平均数为(6000+4500+3800+3000)÷4=4325(元);中位数为(3800+4500)÷2=4150(元),本月平均每天销售(20+40+60+30)÷30=5(台).(2)从销售的数量来看价格为3800元的电脑的售量最大,说明比较畅销,应适当多进货.在商品的销售中,经理最关心的是销售的众数,所以用众数说明此类问题比较合适.7.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.分析:问题(1)是希望用三项分数的平均数来评估甲、乙、丙三位候选人能力,问题(2)是根据实际需要的权重求出加权平均数来评估甲、乙、丙三位候选人能力。

初中数学浙教版八年级下册第3章 数据分析初步3.2 中位数和众数-章节测试习题(8)

初中数学浙教版八年级下册第3章 数据分析初步3.2 中位数和众数-章节测试习题(8)

章节测试题1.【答题】某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A. 6,6B. 7,6C. 7,8D. 6,8【答案】B【分析】首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.【解答】把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.选B.2.【答题】某篮球队员12名队员的年龄情况统计如下表:则这12名队员的众数和中位数分别是()A. 23岁,21岁B. 23岁,22岁C. 21岁,22岁D. 21岁,23岁【答案】C【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据、定义即可求解.【解答】21出现的次数最多,因而众数是:21岁;12个数,处于中间位置的是21和23,因而中位数是:22岁.选C.3.【答题】某班5位同学参加“改革开放30周年”系列活动的次数依次为:1、2、3、3、3,则这组数据的众数和中位数分别是()A. 2;2B. 2.4;3C. 3;2D. 3;3【答案】D【分析】众数是一组数据中出现次数最多的数,在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是3,那么由中位数的定义可知,这组数据的中位数是3.【解答】在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是3,那么由中位数的定义可知,这组数据的中位数是3.选D.4.【答题】某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:这组同学引体向上个数的众数与中位数依次是()A. 9和10B. 9.5和10C. 10和9D. 10和9.5【答案】D【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】在这一组数据中10是出现次数最多的,故众数是10;处于这组数据中间位置的那个数是9、10,那么由中位数的定义可知,这组数据的中位数是(9+10)÷2=9.5.∴这组同学引体向上个数的众数与中位数依次是10和9.5.选D.5.【答题】已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a,中位数为b,则a______b.A. >B. <C. =【答案】C【分析】根据中位数和众数的定义分别求出a,b即可.【解答】在这一组数据中15是出现次数最多的,故a=15;而将这组数据从小到大的顺序排列(11,12,13,15,15,15,15,16),处于中间位置的数是15、15,那么由中位数的定义可知,这组数据的中位数是b=(15+15)÷2=15.∴a=b.故选C.6.【答题】某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A. 18,19B. 19,19C. 18,19.5D. 19,19.5【答案】A【分析】根据众数及平均数的概念求解.【解答】年龄为18岁的队员人数最多,众数是18;平均数==19.选A.7.【答题】在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为()A. 44、45B. 45、45C. 44、46D. 45、46【答案】B【分析】根据平均数的定义计算这组数据的平均数,由于数据中45出现了4次,出现次数最多,则可根据众数的定义得到这组数据的众数为45.【解答】解:数据的平均数=(45+44+45+42+45+46+48+45)=45,数据中45出现了4次,出现次数最多,∴这组数据的众数为45.选B.8.【答题】七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A. 0.4和0.34B. 0.4和0.3C. 0.25和0.34D. 0.25和0.3 【答案】A【分析】根据众数及平均数的定义,结合表格信息即可得出答案.【解答】解:将数据按从大到小的顺序排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则众数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.选A.9.【答题】某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为()A. 13,14B. 14,13.5C. 14,13D. 14,13.6【分析】观察这组数据发现14出现的次数最多,进而得到这组数据的众数为14,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了2次,15出现了1次,∴这组数据的众数为14,∵这组数据分别为:12、13、14、15、14,∴这组数据的平均数x==13.6.选D.10.【答题】某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则这10听罐头质量的平均数及众数为()A. 454,454B. 455,454C. 454,459D. 455,0【答案】B【分析】首先求得-10,+5,0,+5,0,0,-5,0,+5,+10这10个数的平均数以及众数,然后分别加上454克,即可求解.【解答】解:平均数是:454+(-10+5+0+5+0+0-5+0+5+10)=454+1=455克,-10,+5,0,+5,0,0,-5,0,+5,+10的众数是0,因而这10听罐头的质量的众数是:454+0=454克.11.【答题】某课外学习小组有5人,在一次数学测验中的成绩分别是:120,100,135,100,125,则他们的成绩的平均数和众数分别是()A. 116和100B. 116和125C. 106和120D. 106和135【答案】A【分析】众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.【解答】在这一组数据中100是出现次数最多的,故众数是100;他们的成绩的平均数为:(120+100+135+100+125)÷5=116.选A.12.【答题】某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周大约花钱数额进行了统计,如下表:根据这个统计可知,该班学生一周花钱数额的众数、平均数是()A. 15,14B. 18,14C. 25,12D. 15,12【答案】A【分析】根据众数、平均数的概念求得结果,判定正确选项.【解答】∵众数是数据中出现次数最多的数,∴该班学生一周花钱数额的众数为15;∵平均数是指在一组数据中所有数据之和再除以数据的个数,∴该班学生一周花钱数额的平均数=(5×7+10×12+15×18+20×10+25×3)÷50=14.选A.13.【答题】某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9.这组数据的平均数和众数分别是()A. 7,7B. 6,8C. 6,7D. 7,2【答案】A【分析】根据平均数和众数的概念直接求解,再判定正确选项.【解答】平均数=(7+5+6+8+7+9)÷6=7;数据7出现了2次,次数最多,∴众数是7.选A.14.【答题】王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是()A. 2.4,2.5B. 2.4,2C. 2.5,2.5D. 2.5,2【答案】A【分析】根据平均数的定义,以及众数的定义就可以解决.【解答】解:∵这10名学生每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5,则根据平均数的计算公式可得:=2.4.这组数据中,2.5出现了4次,是出现次数最多的,即这组数据的众数是2.5.选A.15.【答题】益阳市某年6月上旬的最高气温如下表所示:日期 1 2 3 4 5 6 7 8 9 10最高气温30 28 30 32 34 32 26 30 33 35(℃)那么这10天的最高气温的平均数和众数分别是()A. 32,30B. 31,30C. 32,32D. 30,30【答案】B【分析】根据众数,平均数的定义就可以解答.【解答】平均数是:(30+28+30+32+34+32+26+30+33+35)÷10=31;30出现3次是最多的数,∴众数为30.选B.16.【答题】为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人【答案】D【分析】此题根据众数,中位数,平均数的定义解答.【解答】由图可知,锻炼9小时的有18人,∴9在这组数中出现18次为最多,∴众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,∴中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,∴平均数是9.由以上可知A、B、C都对,故D错.选D.17.【答题】已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13B. a<13,b<13C. a>13,b<13D. a>13,b=13 【答案】A【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;选A.18.【答题】某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁)12 13 14 15人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是()A. 13.5,13.5B. 13.5,13C. 13,13.5D. 13,14【答案】A【分析】根据中位数及平均数的定义求解即可.【解答】将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.选A.19.【答题】在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A. 7B. 8C. 9D. 10【答案】B【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.选B.20.【答题】为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.选B.。

人教八年级数学下册- 中位数和众数(附习题)

人教八年级数学下册- 中位数和众数(附习题)

2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
练习
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
它的意义是:23.5cm的鞋销量最大.因此可以 建议鞋店多进23.5cm的鞋.
练习
1. 下面的扇形图描述了某种运动服的S号,M 号,L号,XL号,XXL号在一家商场的销售情况. 请你为这家商场提出进货建议. 解:由扇形图可以看出,在某种运 动服大小型号组成的一组数据当中, M号最多为30%.因此可以建议这家 商场多进M号的运动服.
2.在一次女子体操比赛中,八名运动员的年
龄(单位:岁)分别为:12、14、12、15、14、14、 16、15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.

北师大版初中八年级数学上册第6章2中位数与众数练习含答案

北师大版初中八年级数学上册第6章2中位数与众数练习含答案

2中位数与众数知能提升训练1.(2021沈阳)信息技术课上,在老师的指导下,小好同学训练打字速度(单位:字/min),数据整理如下:15,17,23,15,17,17,19,21,21,18,对于这组数据,下列说法正确的是().A.众数是17B.众数是15C.中位数是17D.中位数是182.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据的平均数和众数分别是().A.3.75 h,4 hB.3.75 h,2 hC.3.8 h,4 hD.3.8 h,4.5 h3.某数学兴趣小组调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是().A.2,1B.1.25,1.5C.1,1.5D.1,24.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是().A.6B.5C.4.5D.3.55.若数据8,4,x,2的平均数是4,则这组数据的中位数为.6.下表是某校八年级(1)班43名学生右眼视力的检查结果.(1)该班学生右眼视力的平均数是(结果保留一位小数).(2)该班学生右眼视力的中位数是.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.2中位数与众数【知能·提升训练】1.A2.C3.C4.C5.36.解:(1)该班学生右眼视力的平均数是1×(4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6)≈4.6. 43(2)由于共有43个数据,故中位数为第22个数据,即中位数为4.7.(3)不能.因为小鸣同学右眼视力是4.5,小于中位数4.7,所以不能说小鸣同学的右眼视力处于全班同学的中上水平.。

八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)

八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)

八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校在五个班级中对认识伦敦奥运会吉祥物的人数进行了调查,统计结果为(单位:人):30,31,27,26,31.这组数据的中位数是A.27 B.29C.30 D.31【答案】C【解析】将数据由小到大排列得:26,27,30,31,31.所以中位数为30.故选C.2.一组数据:85,88,73,88,79,85,其众数是A.88 B.73C.88,85 D.85【答案】C【解析】数据85,88,73,88,79,85有两个众数,它们是88,85.故选C.3.某班一次英语测验的成绩如下,得98分的7人,90分的4人,80分的17人,70分的8人,60分的3人,50分的1人,这里80分是A.是平均数B.只是众数C.只是中位数D.既是众数又是中位数【答案】D【解析】∵80分出现了17次,出现的次数最多,∴80分是众数.∵共有40个数,中位数是第20、21个数的平均数,∴这组数据的中位数是80.故选D.4.某青年排球队12名队员的年龄情况如下:则12名队员的年龄A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选D.5.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的A.中位数B.平均数C.众数D.方差【答案】A【解析】11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选A.6.10个商店某天销售同一品牌的电脑,销售的件数是16、14、15、12、17、14、17、10、15、17,设其平均数为a,中位数为b,众数为c,则有A.a>b>c B.b>c>dC.c>a>b D.c>b>a【答案】D【解析】∵16、14、15、12、17、14、17、10、15、17,设其平均数为a=(16+14+15+12+17+14+17+10+15+17)÷10=14.7,10个数据从小大大排列:10,12,14,14,15,15,16,17,17,17,中位数为b是最中间两数的平均数,即:b=(15+15)÷2=15;众数为c,即c=17.∴a<b<c.故选D.二、填空题:请将答案填在题中横线上.7.一组数据3,4,x,5,8的平均数是6,则该组数据的中位数是__________.【答案】5【解析】根据题意可得:345865x++++=,解得:x=10,这组数据按照从小到大的顺序排列为:3,4,5,8,10,则中位数为:5.故答案为:5.8.某巴蜀中学组织数学速算比赛,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数是__________.【答案】15【解析】把这组数据从小到大排列:13、13、15、15、20,最中间的数是15,则这组数据的中位数是15,故答案为:15.9.已知一组数据:x,10,12,6的中位数与平均数相等,则x的值是__________.【答案】4或8或16【解析】(1)将这组数据从大到小的顺序排列为12,10,x,6,处于中间位置的数是10,x,那么由中位数的定义可知,这组数据的中位数是(10+x)÷2,平均数为(12+10+x+6)÷4,∵数据12,10,x,6,的中位数与平均数相等,∴(10+x)÷2=(12+10+x+6)÷4,解得x=8,大小位置与8对调,不影响结果,符合题意.(2)将这组数据从大到小的顺序排列后12,10,6,x,中位数是(10+6)÷2=8,此时平均数是(12+10+x+6)÷4=8,解得x=4,符合排列顺序.(3)将这组数据从大到小的顺序排列后x,12,10,6,中位数是(12+10)÷2=11,平均数(x+12+10+6)÷4=11,解得x=16,符合排列顺序.∴x的值为4、8或16.故答案为:4或8或16.10.自然数4,5,5,x,y从小到大排列后,其中位数是4,如果这组数据唯一的众数是5,那么所有满的最大值是__________.足条件的x,y中,x y【答案】5【解析】∵这组数据的中位数为4,∴x≤4,y≤4,∵这组数据唯一的众数是5,∴x≠4且y≠4,要求x+y的最大值,∴x=2,y=3,或x=3,y=2,即x+y的最大值=2+3=5,故答案为:5.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.小明最近6次测验的成绩依次为90分、85分、70分、65分、85分、75分。

浙教版八年级数学下册《3.2中位数和众数》同步练习(含答案)

浙教版八年级数学下册《3.2中位数和众数》同步练习(含答案)

3.2中位数和众数A练就好基础基础达标1.一组数据:5,4,6,5,6,6,3,这组数据的众数是(A)A.6B.5C.4D.32.2018·温州某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(C)A.9分B.8分C.7分D.6分3.2018·宁波若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为(C) A.7 B.5 C.4 D.34.某学习小组9那么这9A.90分,90分B.90分,85分C.90分,87.5分D.85分,85分5.某校共有40名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这40名学生年龄的中位数是(C)某校40名学生年龄统计图A.12岁B.13岁C.14岁D.15岁6.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得了116分.这说明本次考试分数的中位数是(C)A.21分B.103分C.116分D.121分7.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__中位数__.(填“平均数”“众数”或“中位数”)8.已知一组数据0,2,x,4,5的众数是4,那么这组数据的中位数是__4__.9.在一次数学测验中,12名学生的成绩如下(单位:分):60,95,80,75,80,85,60,55,90,55,80,70.分别求出这次数学测验成绩的众数、中位数与平均数.【答案】这次数学测验成绩的众数是80分,中位数是77.5分,平均数是73.75分.B更上一层楼能力提升10A.平均数是4.6吨B.中位数是4吨C.众数是5吨D.调查了10户家庭的月用水量11.下列说法中错误的是(C)A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个12.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为__b >a >c __.13.为了给车间18名工人确定生产任务,某厂对上月生产情况进行了统计,结果如下表所示:(1)(2)以平均数作为月生产任务合理吗?为什么?你认为把月生产任务定为多少比较合理?解:(1)x =1×40+1×30+5×10+8×9+3×81+1+5+8+3=12(件).众数为9件,中位数为9件.(2)用平均数作为月生产任务不合理,因为18个人中只有2人能完成任务,应定为9件(即众数或中位数)较为合理.C 开拓新思路 拓展创新14.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( A )A .a <13,b =13B .a <13,b <13C .a >13,b <13D .a >13,b =1315.国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作了如下统计图(不完整).其中分组情况如下:A 组,时间小于0.5小时;B 组,时间大于等于0.5小时且小于1小时;C 组,时间大于等于1小时且小于1.5小时;D 组,时间大于等于1.5小时.某地区中学生每天在校体育锻炼时间情况条形统计图某地区中学生每天在校体育煅炼时间根据以上信息,回答下列问题:(1)A 组有________人,并补全条形统计图;(2)本次调查数据的中位数落在________组;(3)根据统计数据估计该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少?解:(1)由统计图可得,A组人数为60÷24%-60-120-20=50.故答案为50,补全的条形统计图如右图所示.(2)由补全的条形统计图可得,中位数落在C组.故答案为C.(3)由题意可得,该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有25 000×(48%+8%)=14 000.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级中位数与众数练习题含答案
中位数与众数练习题
一. 填空题
1. 某班8名学生完成作业所需时间分别为:75,70,90,70,70,58,80,55(单位:分),则这组数据的众数为,中位数为,平均数为.
2. 已知一组数据103265
,,,,,,这组数据的中位数为.
--
3. 若数据10,12,9,-1,4,8,10,12,x的众数是12,则x=__________.
4. 数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是.
5. 数据10,10,x,8的中位数与平均数相等,这组数据的中位数是.
6. 把9个数按从小到大的顺序排列,其平均数是9,如果这组数中前5个数的平均数是8,后5个数的平均数是10, 则这9个数的中位数是_________.
二. 选择题
7. 一组数据是23,27,20,18,12,x,它的中位数是21,则数据x是()
A.23 B.21 C.不小于23数D.以上都不是
8. 用中位数去估计总体时,其优越性是 ( )
A. 运算简便
B. 不受较大数据的影响
C. 不受较小数据的影响
D. 不受个别数据较
大或较小的影响
9. 对于数据3,3,2,6,3,10,3,6,3,2.
(1) 众数是3; (2) 众数与中位数的数值不等; (3) 中位
数与平均数的数值相等; (4) 平均数与众数相等,其中正确
的结论是 ( )
A. (1)
B. (1) (3)
C. (2)
D. (2) (4)
10. 已知一组数据从小到大依次为-1,0,4,x,6,15,其中位数
为5,则其众数为 ( )
A. 4
B. 5
C. 5.5
D. 6
11. 某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这次规定满分
为60分),你们这组数据的众数,中位数分别是 ( )
A. 58, 57.5
B. 57, 57.5
C. 58, 58
D. 58, 57
12.某商店销售4种型号分别为A B C D
、、、
制了如图的条形统计图,
机?( )
A B C D 型号
A.A
B. B
C . C D. D
13.(2005,武汉市)某校在一次学生演讲比赛中,共有7个评委,•学生最后得分为去掉一个最高分和一个最低分后的平均分,某学生所得分数为:9.7,9.6,9.5,9.6,9.7,9.5,9.6,那么这组数据的众数及该学生最后得分分别为()A.9.6,9.6 B.9.5,9.6 C.9.6,9.58 D.9.6,
9.7
三. 解答题
14.某餐厅有7名员工,所有员工的工资情况如下表所示:
(1)试求餐厅所有员工工资的众数、中位数、平均数;
(2)用平均数还是用中位数来描述该餐厅员工工资的一般水
平比较恰当?
(3)去掉经理的工资后,其他员工的平均工资是多少元是否也能反映该餐厅员工工资的一般水平?
15.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表:(分数均为整数,满分为100分)
请根据表中提供的信息,解答下列各题:
(1)参加这次演讲比赛的同学共有人;
(2)已知成绩91~100分的同学为优胜者,那么优胜率为;
(3)所有参赛同学的平均得分M(分)在什么范围内?
16.某商店有220L,215L,185L,182L四种型号的某种名牌电冰箱,在一周内分别销售了6台,30台,14台,8台.
在研究电冰箱销售情况时,商店经理关心的应是哪些数据?哪些数据对于进货最有参考价值?
17.我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成
绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:
请根据以上信息解答下列问题:
(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?
(2) 经竞赛组委会评定,竞赛成绩在60分以上(含60分)
的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;
(3) 决赛成绩分数的中位数落在哪个分数段内?
(4) 上表还提供了其他信息,例如:“没获奖的人数为105
人”等等. 请你再写出两条此表提供的信息.
18.(2006,黄冈)某中学开展“八荣八耻”演讲比赛活动,九(1),九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据图填写下表:
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.
(3)如果在每班参加复赛的选手中分别选出2人参加决赛,•你认为哪个班的实力更强.
19.为了解中学生的体能情况,某校随机抽取了部分学生进行一
分钟跳绳次数测试.某同学将所得的数据进行整理,列出下表(未完成):
(1)求出上表中m n,的值;
(2)一分钟跳绳次数小于100的学生人数占被测试学生总数的百分之几?
(3)这次测试中,学生跳绳次数的中位数落在哪个范围内?并说明理由.
答案:
一:填空题
1.70分,70分,71分
2.0.5
3.12
4.5
5.9或10
6.9
第5题详解:平均数
101082844x x
++++==. (1)当8x ≤时,四数从小到大排列为:81010x ,,,.
∴中位数810289.98
24
x x ++==∴==当时,满足8x ≤的条件.
(2)当810x <
≤时,四数从小到
大排列为:81010x ,,,.
∴中位数102
x
+=. 1028824x x
x ++∴==当时,.
不满足810x <≤的条件. (3)当10x >时,四数从小到大排
列为:81010,,,
x . ∴中位数1010102
+==.
2810124
x
x +∴=
=当,时满
足10x >的条件.
综合(1)、(3),x 的值为8或12,当8x =时,中位数为9;当12x =时,中位数为10.
二:选择题
7.D 8.D 9.A 10.D 11.C 12.C 13.A 三:解答题
14.解:(1)餐厅所有员工的平均工资x =
(3000+700+500+450+360+340+320)÷7=810(元); (2)表中的数是按从大到小的顺序排列的,因而第四个数450(元)是中位数.
(3)用中位数来描述该餐厅员工工资的一般水平比较恰当 (4)去掉经理的工资后,其他员工的平均工资=(700+500+450+360+340+320)÷6=445(元).
能反映该餐厅员工工资的一般水平.
15.解:(1)20(2)20%(3)7786
≤≤
M
16.解:根据题意知:商店经理关心的是哪种型号的冰箱销售最多,
从题可以知道215L型号的电冰箱共销售了30台,是销售量最大的,它是这组数据的众数,所以进货最有参考价值的数据是众数.
17.解:(1) 全市共有300名学生参加本次竞赛决赛,最低分在20-39之间,最高分在120-140之间
(2) 本次决赛共有195人获奖,获奖率为65%.
(3) 决赛成绩的中位数落在60—79分数段内.
(4) 如“120分以上有12人;60至79分数段的人数最多;……”等
18.解:(1)85,100
(2)两个班平均数相同,九(1)班中位数高,所以九(1)班成绩好些.
(3)九(2)班实力更强一些.
19.解:(1)80.1650
m=÷=.
n=÷=.
3500.06
(2)∵第一小组的频率为:2500.04
÷=,
∴一分钟跳绳次数小于100的学生人数占被测试学生总数的百分数为:
+==.
0.040.10.1414%
(3)这次测试中,学生跳绳次数的中位数落在120140
≤的范
x<
围内.
∵本次测试共得到50个数据,将这些数据从小到大排列,中位数是第25,第26个数据的平均数.其中第一小组的频数为
2,即有2个数据;第二小组的频数为0.1505
⨯=,即有5个数据;第三个小组的频数为17,即有17个数据.前三个小组共有24
个数据,第四小组的频数为0.35015
⨯=,即有15个数据.∴第25,第26个数据落在第四个小组内.
∴这次测试中,学生跳绳次数的中位数落在120140
≤的范围
x<
内.。

相关文档
最新文档