机械系统动力学答案2011版啊
合肥工业大学机械动力学基础试题(含部分答案)

②由动能定理可知: E = m1 x12
1 2
其中 x1 a , x2 b , 为杆转过的角度. J eq m1a 2 m2b2 再求等效刚度, keq x 2
1 2
1 2 1 2 2 kx2 kb keq kb2 2 2
④推导出用单元节点位移表示的单元应变、单元应力表达式,再利用虚功方程建立单元节 点力阵与节点位移列阵之间的关系,形成单元的刚度方程式。 ⑤根据系统的动能与势能,得到各单元的刚度矩阵和质量矩阵。 ⑥考虑整体结构的约束情况,修正整体刚度方程,求解单元节点的运动方程。 ⑦由单元节点的运动方程“装配”成为全系统的运动方程。 (6)简述机械系统的三要素及动力学模型。 (2012) 答:三要素:惯性、弹性、阻尼. 动力学模型:①集中参数模型,由惯性元件、弹性元件和阻尼元件等离散元件组成;②有 限单元模型,由有限个离散单元组成,每个单元则是连续的;③连续弹性体模型将实际结 构简化成质量和刚度均匀分布或按简单规律分布的弹性体. 3. 试求图示振动系统的运动微分方程和固有频率。 (图 3、图 5 作纯滚动)
不作用外载荷时的力矩平衡可列为: ∴系统固有频率为:
M J
eq
keq 0
keq J eq
kb 2 . m1a 2 m2b 2
③由于 m作纯滚动,则运动微分方程可表示为: J kx r 0 ,其中 J 为 m相对于接地 点的转动惯量, J
kk mx kx 0 ,即: mx 1 2 k3 cos 2 x 0 k1 k2
∴系统固有频率为:n
k m
k1k2 k3 cos 2 k k k (k k 2 ) cos 2 k1 k 2 . = 1 2 3 1 m m(k1 k 2 )
第11章机械系统动力学

第十一章机械系统动力学11-1填充题(1) _____________________________ 机器速度波动的类型有______________________________ 和两种。
前者一般采用的调节方法是_______ ,后者一般采用的调节方法是_________ 。
(2)用飞轮进行调速时,若苴它条件不变,则要求的速度不均匀系数越小,飞轮的转动惯量将越—。
在满足同样的速度不均匀系数条件下,为了减小飞轮的转动惯量,应将飞轮安装在___________ 轴上。
(3)___________________________________________________ 最大盈亏功是指机械系统在一个运动循环中的与 _________________________________________________ 之差的最大值。
(4) ____________________________________________________________________________ 某机械主轴实际转速在其平均转速的±3%范围内变化,则其速度不均匀系数忌___________________________ 。
(5)某机器的主轴平均角速度^lOOrad/s,机器运转的速度不均匀系数飪0.05,则该机器的最大角速度如《等于_______ r ad/s,最小角速度轴加等于 ________ rad/s。
11-2选择题(1)_______________________________________________________________________________________ 在周期性速度波动中,一个周期内等效驱动力做功瞅1与等效阻力做功M的疑值关系是__________________A.Wd>Wr;B.恥<昭;C. WWr:D.肌=%(2)在机械系统的启动阶段,系统的动能______ ,并且 _____ 。
第2章 两自由度机械系统动力学

代入虚功 方程
W Fk rk 0(3-3)
k
22
得:
n rk W Fk rk Fk q qi k k i 1 i n rk Fk q qi i 1 k i
125
欲实施有效控制,特征 根不能为正值,所以 b0 a g (1 )
126
3.6 二自由度机械手动力学问题
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
本章总结
了解牛顿力学的不足;
掌握广义坐标和广义力的计算方法; 掌握拉格郎日方程的建立方法; 简单的力学应用。
2 1 2 2 2 1
51
52
53
54
例:用拉格朗日方程建立单摆运动方程。
55
(1)确定广义坐标 q (2)计算动能与势能 1 2 1 2 2 mv ml 2 2 V m gl(1 cos ) E (3)计算广义力 V Q m glsin
5
6
7
8
本章采用的方法:拉格郎日方程(重点) 二自由度机械系统动力学不采用等效 力学模型法,一般采用拉格郎日方程来建 模。 在学习拉格郎日方程之前,必须掌握 一些重要的概念,如广义坐标、广义力、 虚位移等。首先了解一些科学史观,培养 科学精神。
9
3.2 自由度与广义坐标
广义坐标:
能够完全确定系统状态的一组坐标叫做广义 坐标。 自由度(DOF): 能够完全确定系统状态的一组坐标的数量叫 自由度。 一般情况下广义坐标数量等于自由度数。
《机械系统动力学》课件

数值模拟法的缺点是计算量大,计算时间长,且需要较高的数学建模 和数值计算能力。
解析法
01 02 03 04
解析法是通过数学解析的方法来求解机械系统动力学问题的方法。
解析法需要建立系统的数学模型,利用数学解析的方法求解模型的微 分方程或差分方程,以获得系统的解析解。
解析法的优点是能够获得系统的精确解,具有较高的理论价值。
实验研究法的优点是能够直接获取系统的实际动 力学行为,具有较高的真实性和可靠性。
数值模拟法
01
数值模拟法是通过计算机数值计算来模拟机械系统的动态行为的方法 。
02
数值模拟法需要建立系统的数学模型,利用数值计算方法求解模型的 微分方程或差分方程,以获得系统的动态响应。
03
数值模拟法的优点是能够模拟复杂系统的动态行为,具有较高的灵活 性和可重复性。
动能定理
总结词
描述物体动能变化的定理
详细描述
动能定理指出,一个物体动能的改变等于作用力对物体所做的功。这个定理是能 量守恒定律在动力学中的表现,是分析机械系统运动状态的重要工具。
势能定理
总结词
描述物体势能变化的定理
详细描述
势能定理指出,一个物体势能的改变等于作用力对物体所做的负功。这个定理可以帮助我们分析机械系统的运动 状态,特别是当物体受到重力的作用时。
CHAPTER 04
机械系统动力学的研究方法
实验研究法
实验研究法需要设计和搭建实验装置,对系统 施加激励并采集响应数据,通过分析数据来揭
示系统的动态特性。
实验研究法的缺点是实验成本较高,实验条件难以控 制,且实验结果可能受到实验误差和环境因素的影响
。
实验研究法是通过实验测试和观察机械系统的 动态行为,以获取系统的动力学特性和性能参 数的方法。
第11章 机械系统动力学

l ——外力矩M L作用构件的角速度;
u xp、u yp、ul ——相应类速度。
3. 动力学方程
在不考虑系统势能变化的情况下(对于刚体机械系统,一般情 况下,构件重量产生的势能 构件动能,可以略去),将 E 1 J e1q12微分,得 2 E J e1q1 q
E 1 2 dJ e1 q1 q1 2 d q1
凯思方程:
是将主动力和惯性力都转化到广义坐标中,它们在广义
坐标中也同样应用达朗贝尔原理,表达式为:
( r ) M *(r ) FP Fm 0
P P 1 m 1
M个惯性力对第r个广义坐标的广义惯性力之和
P个主动力对第r个广义坐标的广义力之和
11-2 刚性机械系统动力学
系统的简化:
1. 系统的动能: 设系统有m个活动构件,则系统的总动能E:
1 m 2 2 E mi xsi ysi J sii2 2 i 1
“.”表示对时间的导数
由于xsi、ysi、i 都是广义坐标q1的函数,即 xsi xsi (q1 ) ysi ysi (q1 ) (q ) i 1 i 所以
H 13
(2)求等效转动惯量J e 根据动能等效原则,得:
1 1 2 2 2 J e12 J112 J 22 J H H m2vO2 2 2
2 2
2
vO2 2 H Je J 1 J2 J H m2 1 1 1 2 H 2 z3 2 H 由i23 1 3 2 3 H H z2 H 1 2 H 1 1 2 又 1 4
机械原理与机械设计 (上册) 第4版 第11章 机械系统动力学

k
qi
δW Fe1δq1 Fe2δq2
P Fe1q1 Fe2q2
(i 1,2)
3. 动力学方程
J11q1
J12q2
1 2
J11 q1
q12
J11 q2
q1q 2
J12 q2
1 2
J 22 q1
q22
Fe1
J 12 q1
J 22q2
J12 q1
1 2
J11 q2
q12
J 22 q1
q1q 2
dt
等效驱动力矩
等效阻力矩
若 me 与 Je 为常数,则
Fed Fer M ed M er
me Je
dv dt
d
dt
能量形式(积分形式)
s2 s1
Fedds
s2 s1
Ferds
1 2
me 2 v22
1 2
me1v12
阻抗功
损耗功
总耗功
输入功
Wd (Wr Wf ) Wd Wc E2 E1
终止动能
起始动能
第二节 多自由度机械系统的动力学分析(简介)
机械系统的动力学方程:外力与运动参数(位移、速度等)之间的函数关系式
一、拉格朗日方程
动能
势能
自由度
d dt
E qi
E qi
U qi
Fei
(i 1,2,, N)
J1 1
m2 vc2 Jc2 2
m3v3
d
1 2
J112
1 2
m2vc22
1 2
J
2
c2 2
1 2
m3v32
(M11
P3v3
)dt
第14章知识资料机械系统动力学(1)

2
m m (vv ) 等效质量:
n
e i 1
J
si
(i
v
)2
n
i 1
i
si
F F v 等效力:
n
e i 1
M(i vi )
(
iห้องสมุดไป่ตู้
si
v
)
c
osi
机械系统运动方程式的建立
等效构件为回转件时机械系统的运动方程简化式为:
经过推导,可得M以ed微 分 M形e式dt表示d的J e机2 械2 系统运动方程式为:
Wm a x
m2 J
20 π 202 0.3
0.52
max
m
(1
) 2
25.2
rad/s
m in
m (1
)
2
14.8
rad/s
ωmax发生在 32处;
ωmin 发生在
处。
五、试题自测及答案(1 、2、3、4)
1.一重力G1=450N的飞轮支承在轴径直径d=80 mm的轴
承 上 , 在 轴 承 中 摩 擦 阻 力 矩 作 用 下 , 飞 轮 转 速 在 14s 内 从 200 r/min 均匀地下降到150 r/min。若在飞轮轴上再装上
以积分方式表示的机械系统运动方程式为:
F s
s0
e
ds
s s0
(Fd
Fr
)ds
1 2
mv2
1 2
m0v02
以上两个公式在具体应用时要看使用哪个方程更简单。
机器运转的速度波动
机器速度波动的原因是其驱动功与阻抗功并不时时相 等。或者说,其等效驱动力矩与等效阻力矩并不时时相等, 其转动惯量也不能随等效力矩作相应的变化,致使机器出 现盈功或亏功,产生速度的波动。
多自由度机械系统动力学

Chapter4多自由度机械系统动力学
机械动力学
Chapter4
多自由度机械系统动力学
2021年6月18日
机械动力学
Chapter4多自由度机械系统动力学
本章解决的主要问题及内容
解决的问题: 解决两自由度机械系统的动力学问题。采 用方法为拉格朗日方程的分析方法。
主要的内容:
一、拉格朗日方程;
工程中的非自由质点系,受到的约束大多是稳定的完整 约束(约束方程仅与质点系的位置有关)。
确定一个受完整约束的质点系的位置所需的独立坐标的数 目,称为该质点系的自由度的数目,简称为自由度数。
对一个非自由质点系,受s个完整约束,(3n-s )个独
立坐标。其自由度 为 N=3n-s 。
机械动力学
Chapter4多自由度机械系统动力学
机械动力学
Chapter4多自由度机械系统动力学
例:铅直平面内摆动的双摆。
▼确定A、B两点位置(平面问题) 需四个独立坐标 ▼系统受两个完整约束,其约束方程:
x12 y12 a2 , (x2 x1)2 ( y2 y1)2 b2
▼系统的自由度:N=2n-s=4-2=2
★两个自由度, 取广义坐标,
Qk 0 (k 1,2,, N )
机械动力学
Chapter4多自由度机械系统动力学
以广义坐标 表示的质点系的平衡条件:
Qk
n
(Xi
i 1
xi qk
Yi
yi qk
Zi
zi ) 0 qk
(k 1,2,, N)
解决质点系的平衡问题的关键是如何计算广义力
※广义力的计算
方法1:计算广义力 Qk 的步骤
N
xi
机械系统动力学

t
J
0
M()
t0
当 M ()ab 时,可解出t的值
t
t0
Jln ab b ab0
第十四章 机械系统动力学
HIGH EDUCATION PRESS
3.等效转动惯量是常数、等效力矩为等效构件速度函数的运动 方程的求解
将 d d 代入 dt d
J d M()
dt
得:Jdd M()
d J d M()
第十四章 机械系统动力学
HIGH EDUCATION PRESS
三、等效参量的计算
1. 作定轴转动的等效构件的等效参量的计算 2. 作直线移动的等效构件的等效参量的计算
第十四章 机械系统动力学
HIGH EDUCATION PRESS
1.作定轴转动的等效构件的等效参量的计算
等效转动惯量的计算:
动能:
1
A
Mi2 Fi2 G2
CF
曲柄压力机的受力分析
第十四章 机械系统动力学
HIGH EDUCATION PRESS
二、等效构件
名词术语: 1. 等效转动惯量 2. 等效质量 3. 等效力矩 4. 等效力
第十四章 机械系统动力学
HIGH EDUCATION PRESS
二、等效构件
等效构件示意图
第十四章 机械系统动力学
第十四章 机械系统动力学
HIGH EDUCATION PRESS
2.作用在机械上的驱动力
(1)驱动力为常量 (2)驱动力是位移的函数 (3)驱动力是速度的函数
第十四章 机械系统动力学
HIGH EDUCATION PRESS
解析法研究异步电动机驱动力矩特性
M
d
0 tan
机械系统动力学第二章 机械系统运动微分方程的建立

式中:
第二章 机械系统运动微分方程的建立
为第i个质点的质量,
为第i质点到转动中心c的距离。
三、基本动力元件与特性 1、质量和转动惯量 构件的质量是构件惯性的一种度量,可用符号m表示,
2-3 机械系统运动微分方程的建立 2-3-2 单自由度系统 单自由度多刚体系统 4.根据质点系动能定理
dT W
系统的动能:
T T1 T2 T3 1 1 1 1 2 2 2 2 J A1 ( J 22 m2vC 2 ) m3vC 3 2 2 2 2 1 v v 1 2 2 [ J A J 2 ( 2 ) 2 m2 ( C 2 ) 2 m3 ( C 3 )]1 J e1 2 1 1 1 2
2-3 机械系统运动微分方程的建立 2-3-2 单自由度系统 单自由度多刚体系统 等效模型的物理意义参见图2-17 用等效模型表示的系 统运动微分方程
d 1 2 ( J e1 ) M e1 dt 2
即等效转动惯量 等效力矩:
j 2 vcj 2 J e [ J j ( ) mi ( ) ] j 1 1 1
me [ J j (
j 1
n
j
vc3
) mj (
2
vcj vc3
p
)2 ]
Fe M j
j 1
m
j
vc3
Fj
j 1
vj vc3
2-3 机械系统运动微分方程的建立 2-3-2多自由度系统 多自由度系统的运动微分方程的建立,相对复杂,其结 果常用矩阵形式表示比较方便。常用的方法主要有刚度 法、柔度法和Lagrange方程法。前两者基于振动系统 的影响系数,只适合应用于线性系统,后者则基于系统 的能量,既可应用于线性系统,也可应用于非线性系统。 1.刚度法 刚度法引入系统刚度系数的概念,利用达朗贝尔原理和 叠加原理,根据每个质点的动力平衡条件建立其动力平 衡方程。
作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩

作业(二)单自由度机械系统动力学等效转动惯量等效力矩1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩.图1答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度.②根据等效转动惯量,等效力矩的公式求出.做出机构的位置图,用图解法进行运动分析.V C =V B =ω1×l AB ω2=0V D =V C =ω1×l AB 且ω3=V C /l CD =ω1V F =V D =ω1×l AB (方向水平向右) ω4=0由等效转动惯量的公式:e J =m 5(V F /ω1)2=20kg ×(ω1×l AB /ω1)2=0.2kgm 2由等效力矩的定义: e M =500×ω1×l AB ×cos180o/ω1=-50Nm (因为VF 的方向与P方向相反,所以α=180o )2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩.图2答案:该轮系为定轴轮系.i 12=ω1/ω2=(-1)1z 2/z 1∴ ω2=-ω1/2=-0.5×ω1ω2’=ω2=-0.5×ω1i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1根据等效转动惯量公式e J = J 1×(ω1/ω1)2+J 2×(ω2/ω1)2+J 2’×(ω2’/ω1)2+J 3×(ω3/ω1)2 ∑=+=n i i Si Si i e J v m J 12121]()([ωωω∑=±=n i i i i i i e M v F M 111)]()(cos [ωωωα∑=+=n i i Si Si i e J v m J 12121]()([ωωω=J 1+J 2/4+J 2’/4 +J 3/16=0.01+0.04/4+0.01/4+0.04/16=0.025 kg ·m 2根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴Ⅰ为等效构件时,该机构的等效转动惯量J 和M 3的等效阻力矩M r .图3答案:i 12=ω1/ω2=z 2/z 1 ω2=ω1/2 ω3=ω2=ω1/2 i 34=ω3/ω4=z 4/z 3ω4=ω1/4等效转动惯量:J=J 1(ω1/ω1)2+J 2(ω2/ω1)2+J 3(ω3/ω1)2+J 4(ω4/ω1)2=0.042+0.16×(1/2)2+0.04×(1/2)2+0.16×(1/4)2=0.04+0.04+0.01+0.01=0.1 kg ·m 2等效阻力矩:M r =M 3×ω4/ω1=100/4=25(N ·m)4.题图4所示为一简易机床的主传动系统,由一级带传动和两级齿轮传动组成.已知直流电动机的转速n 0=1500r/min ,小带轮直径d =100mm ,转动惯量J d =0.1kg ·m 2,大带轮直径D =200mm ,转动惯量J D =0.3kg ·m 2.各齿轮的齿数和转动惯量分别为:z 1=32,J 1=0.1kg ·m 2,z 2=56,J 2=0.2kg ·m 2,z 2’=32,J 2’=0.4kg ·m 2,z 3=56,J 3=0.25kg ·m 2. 要求在切断电源后2秒,利用装在轴上的制动器将整个传动系统制动住.求所需的制动力矩M 1.图4∑=±=n i i i i i i e M v F M 111()(cos [ωωωα答案:电机的转速n0=1500r/min其角速度ω0=2π×1500/60=50π(rad/s)三根轴的转速分别为:ω1=d×ω0/D=25π(rad/s)ω2=z1×ω1/z2=32×25π/56=1429π(rad/s)ω3=z2’×ω2/z3=32×1429π/56=816π(rad/s)轴的等效转动惯量:J V=J d×(ω0/ω1)2+J D×(ω1/ω1)2+J1×(ω1/ω1)2+J2×(ω2/ω1)2+ J2’×(ω2/ω1)2+ J3×(ω3/ω1)2∴J V=0.1×(50π/25π)2+0.3×12+0.1×12+(0.2+0.1)×(14.29π/25π)2+0.25×(8.16π/25π)2=0.4+0.4+0.098+0.027=0.925 (kg·m2)轴制动前的初始角速度ω1=25π,制动阶段做减速运动,即可求出制动时的角加速度∴ωt=ω0-εt即0=25π-2εε=12.5π则在2秒内制动,其制动力矩M为:M=J V×ε=0.925×12.5=36.31 (kg·m)5.在题图5所示定轴轮系中,已知各轮齿数为:z1=z2’=20,z2=z3=40;各轮对其轮心的转动惯量分别为J1=J2’=0.01kg·m2,J2=J3=0.04kg·m2;作用在轮1上的驱动力矩M d=60N·m,作用在轮3上的阻力矩M r=120N·m.设该轮系原来静止,试求在M d和M r作用下,运转到t=15s时,轮1的角速度ω1和角加速度α1.图5答案:i12=ω1/ω2=(-1)1×z2/z1 ω2=-ω1/2i13=ω1/ω3=(-1)2×z2×z3/z1×z2’ω3=20×20×ω1/40×40=ω1/4轮1的等效力矩M为:M=M d×ω1/ω1+M r×ω3/ω1 =60×1-120/4=30 N·m轮1的等效转动惯量J为:J=J1(ω1/ω1)2+(J2’+J2)(ω2/ω1)2+J3(ω3/ω1)2=0.01×1+(0.01+0.04)/4+0.04/16=0.025 (kg·m2)∵M=J ×ε∴角加速度ε=M/J=1200 (rad/s2)初始角速度ω0=0 ∴ω1=ω0+ε×tω=1200×1.5=1800(rad/s)。
机械系统动力学 第三章 机械系统运动微分方程的求解2

3-3机械系统的运动方程求解方法-半解析数值法
解: 2)求 与 t之间的关系
图3-3-9 等效力矩与时间的关系 图3-3-8 等效转动惯量的导数的变化规律
3-3机械系统的运动方程求解方法-半解析数值法
图3-3-10 曲柄角速度与时间的关系
3-3机械系统的运动方程求解方法-半解析数值法
二、等效力矩是等效构件和角速度的函数 Me Me ,
3-2机械系统的运动方程求解方法-数值法
3-2-1 欧拉法
对于常微分方程的定解问题,形如
y f (x, y)
y(x0 )
y0
3-2-1
所谓数值解法, 就是寻求解 y(x) 在一系列离散节点
x1 x2 xn xn1 上的近似值 y1, y2 , , yn , yn1 。
相邻两个节点的间距 hn xn1 xn
一、等效力矩是等效构件转角的函数时,即 M e M e
对上式积分:
ห้องสมุดไป่ตู้ 1
2
J e
2
1 2
J e0 02
0
Me
d
W
J e0 0 2 2W Je
3-3机械系统的运动方程求解方法-半解析数值法
由 d dt d
dt
t t0
d 0
例3-3-1:对于3-2-1所示的偏置曲柄滑块机构,若已
2!
3! t
3-2机械系统的运动方程求解方法-数值法
3-2-2 Newmark- 法
x(t t) x(t) x(t)t x(t) t2 x (t) t3 o(t4)
2!
3!
线性加速度法的迭代公式 1
大致具有3阶精度,将上式的最后一项中
即为Newmark- 法。其迭代公式为
西安交大《机械设计基础》课后习题答案综合版

机械设计基础复习大纲2011、4、3第1章绪论掌握:机器的特征:人为的实物组合、各实物间具有确定的相对运动、有机械能参与或作机械功机器的组成:驱动部分+传动部分+执行部分了解:机器、机构、机械、常用机构、通用零件、标准件、专用零件和部件的概念课程内容、性质、特点和任务第2章机械设计概述了解:与机械设计有关的一些基础理论与技术,机器的功能分析、功能原理设计,机械设计的基本要求和一般程序、机械运动系统方案设计的基本要求和一般程序、机械零件设计的基本要求和一般程序,机械设计的类型和常用的设计方法第3章机械运动设计与分析基础知识掌握:构件的定义(运动单元体)、分类(机架、主动件、从动件)构件与零件(加工、制造单元体)的区别平面运动副的定义、分类(低幅:转动副、移动副;高副:平面滚滑副)各运动副的运动特征、几何特征、表示符号及位置机构运动简图的画法(注意标出比例尺、主动件、机架和必要的尺寸)机构自由度的定义(具有独立运动的数目)平面运动副引入的约束数(低幅:引入2个约束;高副:引入1个约束)平面机构自由度计算(F=3n-2P5-P4)应用自由度计算公式时的注意事项(复合铰链、局部自由度、虚约束、公共约束)机构具有确定运动的条件(机构主动件数等于机构的自由度)速度瞬心定义(绝对速度相等的瞬时重合点)瞬心分类:绝对瞬心(绝对速度相等且为零的瞬时重合点,位于绝对速度的垂线上)相对瞬心(绝对速度相等但不为零的瞬时重合点,位于相对速度的垂线上)速度瞬心的数目:K=N(N—1)/2速度瞬心的求法:观察法:转动副位于转动中心;移动副位于垂直于导轨的无穷远;高副位于过接触点的公法线上三心定理:互作平面平行运动的三个构件共有三个瞬心,且位于同一直线上用速度瞬心求解构件的速度(关键找到三个速度瞬心,建立同速点方程,然后求解)了解:运动链的定义及其分类(闭式链:单环链、多环链;开式链)运动链成为机构的条件(具有一个机架、具有足够的主动件)机动示意图(不按比例)与机构运动简图的区别第6章平面连杆机构掌握:平面连杆机构组成(构件+低副;各构件互作平行平面运动)──低副机构平面连杆的基本型式(平面四杆机构)、平面四杆机构的基本型式(铰链四杆机构)铰链四杆机构组成(四构件+四转动副)铰链四杆机构各构件名称(机架、连杆、连架杆、曲柄、摇杆、固定铰链、活动铰链)铰链四杆机构的分类:曲柄摇杆机构、双曲柄机构、双摇杆机构铰链四杆机构的变异方法:改变构件长度、改变机架(倒置)铰链四杆机构的运动特性:曲柄存在条件:①最长杆长度+最短杆长度≤其余两杆长度之和②连架杆与机架中有一杆为四杆中之最短杆曲柄摇杆机构的极限位置(曲柄与连杆共线位置)曲柄摇杆机构的极位夹角θ(两极限位置时曲柄所夹锐角)曲柄摇杆机构的急回特性及行程速比系数平面四杆机构的运动连续性铰链四杆机构的传力特性:压力角α:不计摩擦、重力、惯性力时从动件受力方向与受力点速度方向间所夹锐角传动角γ:压力角的余角许用压力角[]︒=40α~︒50、许用传动角[]︒=50γ~︒40曲柄摇杆机构最小传动角位置(曲柄与机架共线的两位置中的一个)死点位置:传动角为零的位置(︒=0γ)实现给定连杆二个或三个位置的设计实现给定行程速比系数的四杆机构设计:曲柄摇杆、曲柄滑块和摆动导杆机构了解:连杆机构的特点、铰链四杆机构以及变异后机构的特点及应用、死点(止点)位置的应用和渡过 基本设计命题:实现给定的运动要求:连杆有限位置、连架杆对应角位移、轨迹满足各种附加要求:曲柄存在条件、运动连续条件、传力及其他条件实验法设计实现给定连杆轨迹的四杆机构,解析法设计实现给定两连架杆对应位置的四杆机构第7章 凸轮机构掌握:凸轮机构的组成(凸轮+从动件+机架)──高副机构凸轮机构的分类:按凸轮分类:平面凸轮(盘形凸轮、移动凸轮),空间凸轮按从动件分类:端部形状:尖端、滚子、平底、曲面运动形式:移动、摆动安装方式:对心、偏置按锁合方式分类:力锁合、形锁合基圆(理论廓线上最小向径所作的圆)、理论廓线、实际廓线、行程从动件运动规律(升程、回程、远休止、近休止)刚性冲击(硬冲:速度突变,加速度无穷大)、柔性冲击(软冲:加速度突变)运动规律特点:等速运动规律:速度为常数、始末两点存在硬冲、用于低速等加速等减速:加速度为常数、始末中三点存在软冲、不宜用于高速余弦加速度:停─升─停型:始末两点存在软冲、不宜用于高速升─降─升型:无冲击、可用于高速正弦加速度:无冲击、可用于高速反转法绘制凸轮廓线的方法:对心或偏置尖端移动从动件,对心或偏置滚子移动从动件滚子半径的选择、基圆半径的确定、运动失真及其解决的方法了解:凸轮机构的特点、凸轮机构的应用、凸轮机构的一般命名原则四种运动规律的推导方法和位移曲线的画法运动规律的基本形式:停─升─停;停─升─降─停;升─降─升运动规律的选择原则,平底从动件凸轮廓线的绘制方法及运动失真的解决方法机构自锁、偏置对压力角的影响,压力角α、许用压力角[]α、临界压力角c α三者关系:[]c ααα<≤max第8章 齿轮传动掌握:齿轮机构的组成(主动齿轮+从动齿轮+机架)──高副机构圆形齿轮机构分类:平行轴:直齿圆柱齿轮机构(外啮合、内啮合、齿轮齿条)斜齿圆柱齿轮机构(外啮合、内啮合、齿轮齿条)人字齿轮机构相交轴:圆锥齿轮机构(直齿、斜齿、曲齿)相错轴:螺旋齿轮机构、蜗轮蜗杆机构齿廓啮合基本定律(两轮的传动比等于公法线割连心线线段长度之反比)定传动比条件、节点、节圆、共轭齿廓渐开线的形成、特点及方程一对渐开线齿廓啮合特性:定传动比特性、啮合角和啮合线保持不变、可分性渐开线齿轮各部分名称:齿数、模数、压力角、顶隙、分度圆、基圆、齿顶圆、齿根圆齿顶高、齿根高、齿全高、齿距(周节)、齿厚、齿槽宽标准直齿圆柱齿轮的基本参数:齿数z 、模数m 、压力角α(︒20)齿顶高系数*a h (1.0、0.8)、顶隙系数*c (0。
机械系统动力学试题a2008答案

机械系统动力学试题A平分标准1 填空(20)(每空2分)离散线性系统的数学模型可用线性常微分方程描述。
LTI系统为线性时不变系统。
静态设计主要考虑静态载荷作用,动态设计主要考虑振动与动态载荷作用。
系统有离散系统和连续系统。
确定性系统在随机激励下,响应是随机的。
重力场的势函数为-mgy 。
广义坐标为完全决定系统状态的独立参数。
牛顿力学的主要不便是处理约束反力不方便。
连续系统的自由度数为无穷多。
2 用拉格朗日方程建立单摆运动方程(20)。
解:3 写出建立拉格朗日方程的步骤(20)。
解:(1)确定系统自由度数,选取广义坐标(5);(2)计算系统动能E(5);(3)计算系统的广义力Q(5);(4)将动能和广义力代入格郎日方程,得系统运动微分方程(5)。
4如图,推导杆的纵向振动微分方程(20)。
解:微元所受的合力为:dx x F F T ∂∂=(2) 因为 xu AE A F T ∂∂==σ(3) 所以 dx xu AE dx x F F T 22∂∂=∂∂=(5) 微元的质量为:dx A M ρ=(2)代入牛顿定律得:dx tu A dx x u AE 2222∂∂=∂∂ρ(3) 222221t u c x u ∂∂=∂∂即(4) ρE c =2其中(1)5 等效力学模型微分方程中,已知等效转动惯量为常数,等效力矩为)(ϖe e M M =,0=t 时,0=ϖ,求时间和角速度的关系(20)。
解:等效力学模型微分方程为:e e e M dt d d dJ dt d J =⎪⎭⎫ ⎝⎛+22221ϕϕϕ(5) 因等效转动惯量为常数,故有:e e M dtd J =22ϕ(2) 即:e e M dtd J =ω,)(ϖe e M M =(3) 分离变量得:)(ϖωe e M d J dt =(5) 积分并应用初始条件,得:⎰=ωϖω0)(e e M d J t (5)。
机械系统动力学第四章 固有频率的实用计算方法

代入式4-2-7进行试算
若取
1 u 若取 2 1
2 k k 1 { 1 2 } T k k 2 2 { u } K { u } k k 2 1 1 = 0 . 2 2 2 n 1 T m 0 1 9 { u } M { u } m m 1 1 { 12 } 2 0 2 m
U 带入公式 T m a x m a x 得:
T { u } K{ui } 2 i ni {ui }T M {ui }
4-2-7
利用4-2-7精确计算多自由度振动系统的固有频率,前 提条件是需要已知系统的振型,这是无法做到的。但 振动系统的一阶振型的近似值一般可以预测,大都数 情况下与其静载荷作用下产生的静变形十分接近。 例如例4-2-1所给出的振动问题,若取 u 1 1 1 代入式4-2-7进行试算:
第4章 固有频率的实用计算方法
4-2 多自由度系统 4-2-1求特征值法 例4-2-1:2个自由度振动系统,其运动微分方程为:
x x m0 2 k k 0 1 1 x x 02 m k k 0 2 2
即Dunkenley法计算自由度的振动系统一阶固有频 率的计算公式。 用Dunkenley法求解上例
2 k k 11 1 K k k k 12
1
1
1 1 2 5 m m m =m 2 m 1 1 1 2 2 2 k k k 1
2 2 J k a c l o
k a c l 0 即 J o
2 2
《机械动力学答案》

A、急停阶段 B、启动阶段 C、稳定运转阶段 D、停车阶段 72、在动力分析中,主要涉及的力是( ) 。 A、驱动力 B、重力 C、摩擦力 D、生产阻力 73、以下选项中,与等效力有关的是( ) 。 A、外力 B、传动比 C、ωj/v D、vk/v 74、以下选项中,与等效力矩有关的是( ) 。 A、外力据 B、传动比 C、ωj/ω D、vk/ω 75、以下选项中,可归为阻尼的有( ) 。 A、物体的内力 B、物体表面间的摩擦力 C、周围介质的阻力 D、材料的内摩擦 四、填空题(每空 2 分,共 30 空,共 60 分) 76、从惯性载荷被平衡的程度看,平衡可分为 、 和 。 77、机械动力学的分析方法按功能分类可分为 和 。 78、动力学的分析方法按水平分类,可分为 、 、 和 。 79、用质量再分配实现摆动力的完全平衡,其分析方法主要有 、 、 和 。 80、机械系统运转的全过程可分为 、 和 这几个阶段。 81、机器人动力学是机器人 、 和 的基础。 82、工业机器人通常由 、 、 和 组成。 83、二自由度系统的等效转动惯量是系统的 、 、 和 的函数。 84、实现摆动力完全平衡的方法有 、 和 。 76、部分平衡、完全平衡、优化综合平衡 77、动力学反问题、动力学正问题 78、静力分析、动态静力分析、动态分析、弹性动态分析 79、广义质量代换法、线性独立矢量法、质量矩替代法、有限位置法 80、启动阶段、稳定运转阶段、停车阶段 81、操作机设计、控制器设计、动态性能分析 82、执行机构、驱动装置、控制系统、传感系统 83、时间、惯性参数、几何参数、广义坐标 84、加配重、合理布置机构、设置附加机构 五、计算题(第 85、86 题各 30 分,第 87 题 10 分,第 88 题 20 分,共 90 分) 85、如图所示为一对心曲柄滑块机构。曲柄以转速度 ω1 作等速回转运动,曲柄与水平方 向夹角为 θ1 ,曲柄长度为 r ,质心与其回转中心 A 重合。连杆长度 l ,连杆与水平方向夹 角为 θ 2 ,连杆质心 S2 到铰链 B 的距离 BS 2 = L ,连杆质量 m 2 ,对其质心的转动惯量 J 2 。 滑 块质量 m3 ,其质心与铰链 C 重合。1)画出曲柄、连杆和滑块的受力分析图;2)写出曲 柄、连杆和滑块的平衡方程。
第2章 刚性构件组成的单自由度机械系统动力学

第二章刚性构件组成的单自由度机械系统动力学§2.1 引言本章和第三章首先研究忽略构件弹性变形的理想机械系统的动力学问题。
即在研究时,近似认为组成这类理想机械系统的构件都是刚体,并忽略运动副中间隙的影响,运动副中的摩擦在通常情况也是被忽略的。
作出上述简化的目的是为了能够忽略一些次要因素,以突出问题的主要方面。
当机械中各构件的刚度较大且运转速度不是很高时,作出这些简化是合理的,所得到的结果有很好的实用价值。
本章将研究单自由度机械系统的动力学问题。
目前单自由度机械应用最为广泛,然而由于各种自动机和机器人的出现,刚性构件组成的多自由度机械系统动力学的研究也变得越来越重要,所以在下一章还要进一步研究二自由度机械系统动力学问题。
考虑构件弹性变形时的动力学问题将在后续章节中研究。
本章主要介绍用等效力学模型进行研究的方法,该方法适用于单自由度系统的研究,目前在工程上被广泛应用。
在研究时,首先把实际机械系统简化成等效的单构件力学模型,并根据该模型列出运动方程式,然后对运动微分方程式进行求解和讨论。
§2.2 驱动力和工作阻力除重力、摩擦力之外,作用在机械上的力主要还有工作阻力和驱动力,它们随着机械工作情况及使用的原动机的不同而多种多样。
为了研究在力作用下机械的运动,可将作用力按机械特性进行分类。
所谓机械特性是指力(或力矩)和运动学参数(位移、速度、时间等)之间的关系。
本书中,所有的外力都假设为是预先已知的,即假设发动机和工作机的机械特性是预先给定的。
在工作机械中,按机械特性来分,常见的工作阻力有以下几种:1)工作阻力是常数。
如起重机的有效工作负荷为起吊重量(为常数),机床的制动力矩,通常也可简化为常数。
2)工作阻力随位移而变化。
如往复式压缩机中活塞上作用的阻力,曲柄压力机滑块上受到的阻力等。
3)工作阻力随速度而变化。
如鼓风机、离心泵的工作阻力。
4)工作阻力随时间而变化。
如揉面机的工作阻力。
在发动机中,按其机械特性进行分类,常见的驱动力有以下几种:1)驱动力是常数。
(完整word版)西北工业大学机械系统动力学试题(含答案)(word文档良心出品)

考试科目: 机械系统动力学 课程编号:056022 开课学期: 2014-2015学年第二学期 考试时间:2015/07/08 说 明:所有答案必须写在答题册上,否则无效。
共6 页 第 1页1. 用加速度计测出某结构按频率82 Hz 简谐振动时的最大加速度为50g (2/980s cm g =). 求该振动的振幅及最大速度.解答: 已知振动频率 82f Hz =,最大加速度max 50a g =,振动角频率2164f ωππ==rad/s将简谐振动表述为正弦函数 sin()x A t ωϕ=+ ,则其速度为 cos()x A t ωωϕ=+ ,加速度为 2sin()x A t ωωϕ=-+振幅 m a x 22509.80.185(164)a A cm ωπ⨯=== 最大速度 max 1.8516495.1/v A cm s ωπ==⨯=2. 一个机器内某零件的振动规律为0.4sin 0.3cos x t t ωω=+,x 的单位是cm ,10/s ωπ=。
这个振动是否简谐振动? 求出它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
解答:频率相同的简谐振动合成的振动仍是简谐振动,显然该振动为简谐振动。
0.4sin 0.3cos sin()x t t A t ωωωϕ=+=+其中,振幅 0.5A == ,相角为 10.3370.4tg ϕ-==︒ 最大速度 max 0.5105v A ωππ==⨯=最大加速度 22max 0.5(10)500a A ωπ==⨯=振幅、最大速度和最大加速度之间的旋量关系可表示为图0 所示:图0 振幅、最大速度和最大加速度间的旋量关系表示3. 将图1所示的锯齿波展为富里叶级数, 并画出频谱图.考试科目: 机械系统动力学 课程编号:056022 开课学期: 2014-2015学年第二学期 考试时间:2015/07/08 说 明:所有答案必须写在答题册上,否则无效。
第7章 机械系统动力学(第二版)

Q θ θ
F21= N21
= ( / sinθ)Q = oQ
N 21 2
②
N① 21 2
o─当量摩擦系数。
F21= o N21
ቤተ መጻሕፍቲ ባይዱ
─ 通式,适用于移动副、滑动高副、滑动轴承。
F21= o N21
根据运动副元素的几何形状,采用当量摩擦系数计算摩擦力, 为运动副元素是复杂曲面的摩擦力的计算提供了方便。
(6)利用力平衡条件确定构件的作用力;
二力平衡,三力汇交一点,力偶矩平衡 (7)选择合适的力比例尺 F(Nmm),列出力平衡矢量方程, 并根据该方程作构件受力的力封闭多边形,确定未知力的大小和 方向。
二、机械的效率与自锁
由于运动副中摩擦的存在,输入功的有效利用程度降低。
克服工作阻力所作的有益功与输入功的比值称为机械效率。 机械效率衡量机器对机械能量有效利用的程度。
c R43 b v34 R23 Fr
选力比例尺F(Nmm)作图
Fb R12
a
B 21 2
23
A
1
14
4
C
C
3
Fr R32
3
R43
Fr
R23
(5) 1构件受力分析 列力平衡矢量方程 R21 R41 Fb0 大小 √ ? ? 方向 √ √ √
d
R41
c R43 b
Fb R21 R23 a
问题: 当原动件2转到2象限、3象限、4象限时,连杆的受力又如何?
(2)止推轴颈的摩擦 轴上承受轴向载荷的部分称为轴端。 如图示,轴1的轴端和承受轴向载荷的止推轴承2构成一转 动副。当轴转动时.轴的端面将产生摩擦力矩Mf。 止推轴颈的摩擦计算自学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械系统动力学2011版
1.如图所示的扭转摆,弹簧杆的刚度系数为K,圆盘的转动惯量为J,试求系统的固有圆频率。
(15分)
图1
解:如图建立坐标系
设定坐标轴Z与摆线重合,初始时在重力作用下平衡,给圆盘一个相对于Z 轴的微小扭转角Ф,使之做自由扭转震动,该系统的扭转振动的微分方程为:
将上式化简后得:
系统的固有频率:
2.系统如图所示,其滑轮质量为M。
忽略绳的弹性和M的转动(只考虑M 的上下振动),试利用能量法确定系统的固有频率。
(15分)
机械系统动力学2011版
图2
解:如图建立坐标系:
方法一:通过微分方程求出固有频率 物体平衡时,弹簧变形为:
以物体平衡位置为原点,建立图示X 坐标系,物块分力如图所示,其运动微分方程:
对于m 物块
对于M 物块
整理可得:
系统的固有频率:
方法二:利用能量法确定系统的固有频率 以系统平衡时重物的位置为原点。
δ x
机械系统动力学2011版
系统的动能
系统的势能
由于d(U+T)/dt=0
所以可得:
其中
可得系统的固有频率:
或可表示为:
设系统运动方程为
若以平衡位置为势能零点,则系统势能
系统的动能
由于机械能守恒定律,即T+U=常数,则
得
可得系统的固有频率:
3. 某振动系统如图3所示,试用拉个朗日法写出系统的动能、势能和能量散失函数。
(10分)
图3
机械系统动力学2011版
系统有两个质量块,设各质量块的位移x 1(t), x 2(t)为广义坐标,并设x 1(t)>x 2(t),系统地动能为
系统的势能
4. 图4所示的系统,物体质量为1m ,滑轮质量为2m ,半径为R ,试求系统的振动微分方程。
(15分)
图4
以平衡位置为坐标原点,设小车偏离平衡位置x ,弹簧K1对小车力为F K1,弹簧K2 对滑轮力为F K2,小车对滑轮的力为F 12,滑轮对小车的反作用力为F 21 对于小车可列微分方程
对于滑块可列微分方程
其中
整理方程组可得系统振动微分方程:
方法二: 利用能量法确定系统的振动微分方程
机械系统动力学2011版
以系统平衡时重物的位置为原点, 设小车偏离平衡位置x ,滑轮偏转 系统的动能
系统的势能
由于d(U+T)/dt=0 所以可得:
整理方程组可得系统振动微分方程:
5. 如图5所示的单摆,其质量为m ,摆杆是无质量的刚性杆,长为l 。
它在粘性阻尼系数为r 的液体中摆动,悬挂点O 的运动为t A t x ωsin )(=。
试写出单摆微幅摆动的微分方程式。
(15分)
图5
根据动力学方程可得:
整理可得动力学方程
6. 如图6所示的提升机,通过刚度系数m N K /1057823⨯=的钢丝绳和天轮
机械系统动力学2011版
(定滑轮)提升货载。
货载重量N
.0
=的速度等速下降。
025
m
W147000
=,以s
v/
求提升机突然制动时的钢丝绳最大张力。
(15分)
解:物体等速度下降时,弹簧的变形为
以平衡点为原点建立x坐标,建立其微分方程是
代入化简后可得
系统的固有频率
当重物突然停止时刻,取时间t=0,作为振动的起点。
则运动的初始条件为:
初位移
初始速度
代入公式可得起振幅及初相位
则物体的运动方程
其最大张力= 294 186N。