(完整word)八年级下册数学不等式专题.doc
八年级下册数学不等式专题
八年级下册数学不等式专题一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2(B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b |(D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <05. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交元.一张彩色底片元,扩印一张相片元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).(A)11(B)8 (C)7 (D)5 8. 若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2(B)k ≥2 (C)k <1 (D)1≤k <2 9. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b ,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y .12. 若x 是非负数,则5231x -≤-的解集是______.13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页设以后几天里每天要读x 页,列出的不等式为______.17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1. 二、解下列不等式18. 2(2x -3)<5(x -1). 10-3(x +6)≤1.19. ⋅-->+22531x x ⋅-≥--+612131y y y20. ).1(32)]1(21[21-<---x x x x ⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组21. ⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x 22. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习23. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .24. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.25. 已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.26. 适当选择a 的取值范围,使<x <a 的整数解: (1) x 只有一个整数解;(2) x 一个整数解也没有.27. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.28. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.29. (类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.30. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.31. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.32. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.33. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于1034. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.35. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题36. 一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方37. 某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾38.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人宿舍有几间39.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件40.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠41.2008年5月12日,汶川发生了里氏级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1) 二班与三班的捐款金额各是多少元(2) 一班的学生人数是多少42. 某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1) 若学校单独租用这两种客车各需多少钱(2) 若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.43. 在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000m 2的任务.某灾民安置点计划用该企业生产的这批板材搭建A ,B 两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:问:这400间板房最多能安置多少灾民(1)若不等式组⎩⎨⎧≥>a x x 2的解集是2>x ,则a 的取值范围为 (2)若不等式组⎩⎨⎧≥≤a x x 2的解集时2≤≤x a ,则a 的取值范围为 (3)若不等式组⎩⎨⎧≥≤a x x 2无解,则a 的取值范围为2.若不等式组⎩⎨⎧≤>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式1:若不等式组⎩⎨⎧<>ax x 0只含有三个整数1、2和3,则a 的取值范围为 ;变式2:关于x 的不等式组010x a x ->⎧⎨->⎩,只有3个整数解,则a 的取值范围是 ;3.若不等式组12x x m<≤⎧⎨>⎩有解,则m 的取值范围是( ).A .m<2 B .m≥2 C.m<1 D .1≤m<24. 不等式a ≤x ≤3只有5个整数解,则a 的范围是5、已知a b <<0,那么下列不等式组中有解的是 ( )A .⎩⎨⎧<>b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧>-<bx a x6、已知不等式组⎩⎨⎧<>a x x 1无解,则a 的取值范围是( )A.a ≤1 B.a ≥1 C. a <1 D.a >1 7、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有5个,求a 的取值范围。
(完整word版)均值不等式专题20道-带答案
均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。
八年级数学下册类比归纳专题:不等式(组)中参数的确定
类比归纳专题:不等式(组)中参数的确定◆类型一根据不等式(组)的解集求参数1.若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0的解为( ) A.y=-1 B.y=1 C.y=-2 D.y=22.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a的值为________.3.已知关于x的不等式3x+mx>-5的解集如图所示,则m的值为________.4.(2018·景德镇期中)已知不等式组x+a≥-1,b-x≥0的解集为-2≤x≤3,则b-a的值为多少?◆类型二利用整数解求值5.(2019·石城县期末)若关于x的不等式2x-m≤0的正整数解只有4个,则m的取值范围是( )A.8<m<10 B.8≤m<10C.8≤m≤10 D.4≤m<56.若关于x的不等式组x+152>x-3①,2x+23<x+a②只有4个整数解,求a的取值范围.◆类型三根据不等式(组)解集的情况确定参数的取值范围7.已知关于x的不等式(1-a)x>3的解集为x<31-a,则a的取值范围是( ) A.a>1 B.a<1 C.a<0 D.a>08.(2017·金华中考)若关于x的一元一次不等式组x<m,2x-1>3(x-2)的解集是x<5,则m的取值范围是【易错6】( ) A.m≥5 B.m>5 C.m≤5 D.m<59.若关于x的不等式组x-m<0,3x-1>2(x-1)无解,则m的取值范围是【易错6】( )A.m≤-1 B.m<-1C.-1<m≤0 D.-1≤m<010.★已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2◆类型四方程组与不等式(组)结合求参数11.在关于x,y的方程组2x+y=m+7,x+2y=8-m中,x,y满足x≥0,y>0,则m的取值范围在数轴上应表示为( )12.已知实数x,y满足2x-3y=4,且x≥-1,y<2,现有k=x-y,则k的取值范围是____________.13.已知关于x,y的方程组x+y=m,5x+3y=31的解是非负数,求整数m的值.参考答案与解析1.D 2.723.-124.解:解不等式x+a≥-1,得x≥-a-1,解不等式b-x≥0,得x≤b.∵不等式组的解集为-2≤x≤3,∴-a-1=-2,即a=1,b=3,则b-a=3-1=1 3 .5.B6.解:解不等式①得x<21,解不等式②得x>2-3a,∴不等式组的4个整数解为20,19,18,17.∵不等式组只有4个整数解,∴16≤2-3a<17,解得-5<a≤-14 3 .7.A 8.A9.A 解析:解不等式x-m<0,得x<m,解不等式3x-1>2(x-1),得x>-1.∵不等式组无解,∴m≤-1,故选A.10.C 解析:∵x=2是不等式(x-5)(ax-3a+2)≤0的解,∴(2-5)(2a-3a+2)≤0,解得a≤2.∵x=1不是这个不等式的解,∴(1-5)(a-3a+2)>0,解得a>1,∴1<a≤2.11.C 解析:解方程组2x+y=m+7,x+2y=8-m得x=m+2,y=3-m.根据题意得m+2≥0,3-m>0,解得-2≤m<3.故选C.12.1≤k<3解析:联立2x-3y=4,x-y=k,解得x=3k-4,y=2k-4.由x≥-1,y<2可得3k-4≥-1,2k-4<2,解得1≤k<3.13.解:解方程组可得x=31-3m2,y=-31+5m2.∵x≥0,y≥0,∴31-3m2≥0,5m-312≥0,解得315≤m≤313.∵m为整数,∴m=7,8,9,10.。
北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)
第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。
北师大版初中数学八年级下册《不等式的基本性质》
若a>b,用不等号填空 (1)a-3_>___b-3 (2)2a__>__2b (3)-a_<___-b
编辑ppt
无论绳长L取何值,圆的面积 总大于正方形的面积,即
l2
4
> l2 16
你能用不等式基本性质解释 这一结论吗?
例:将下列不等式化成
X >a或 x<a的形式
(1) x-5 >-1 X >4 (2) -2x >3 x <-1.5 (3) 7x <6x -6 x <-6
编辑ppt
不等式基本性质2:不等式的两边都乘以 (或除以)同一个正数,不等号的方向 不变。
如果a<b,且c>0,那么ac<bc 如果a>b,且c>0,那么ac>bc
不等式基本性质1:不等式的两边都乘以 (或除以)同一个负数,不等号的方向 改变。
如果a<b,且c<0,那么ac>bc
如果a>b,且c<0,那么ac<bc
随堂练习:
例 下列各题是否正确?请说明理由 (1)如果a>b,那么ac>bc
(2)如果a>b,那么ac2 >bc2 (3)如果ac2>bc2,那么a>b (4)如果a>b,那么a-b>0 (5)如果ax>b且a≠0,那么x>b/a
试一试:比较大小 (1)2a和a
编辑ppt
编辑ppt
等式基本性质2:等式的两边都乘以 (或除以)同一个不为0的数,等式 仍旧成立
如果a=b,那么ac=bc,a÷c=b÷c(c≠0)
不等式是否具有类似的性质呢? 由 13 >7
想 13 +5 >7+5 想 13 -5 > 7-5
总结规律?
不等式基本性质1:不等式的 两边都加上(或减去)同一个 整式,不等号的方向不变。
1.2 不等式的基本性质
八年级数学下册知识点清单
八年级数学下册知识点清单一、不等式专题1.不等式的概念及其性质(1)基本概念①定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.②不等式的解:能使不等式成立的未知数的值,叫做不等式的解.③解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.④解不等式:求不等式解集的过程叫做解不等式.(2)基本性质不等式的基本性质1 不等式的两边都加(或减)同一个整式,不等号的方向不变.不等式的基本性质2 不等式的两边都乘(或除以)同一个正数,不等号的方向不变.不等式的基本性质3 不等式的两边都乘(或除以)同一个负数,不等号的方向改变.2.一元一次不等式及其解法(1)一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.(2)解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、系数化为1(注意不等号方向是否改变).3.一元一次不等式组的定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.4.一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.5.解不等式组求不等式组解集的过程,叫做解不等式组.二、旋转专题1.旋转的定义在平面内,将一个图形绕一个定点按某个方向旋转一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.2.旋转图形的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.三、因式分解专题1.因式分解定义把一个多项式化成几个整式的积的形式,这种变形叫做因式分解。
2.公因式把多项式各项都含有的相同因式,叫做这个多项式各项的公因式.3.提公因式法如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.4.公式法根据因式分解和整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法.(1)两个数的平方差,等于这两个数的和与这两个数的差的积.a²-b²=(a+b)(a-b)(2)两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和或差)的平方.a²+2ab+b²=(a+b)²a²-2ab+b²=(a-b)²5.十字相乘法十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2.2 不等式的基本性质(课件)八年级数学下册(北师大版)
用字母表示为:
若a>b,且c<0,则a·
c<b·c, < ;若a<b,且c<0,则a·c>b·c, > .
二、自主合作,探究新知
跟踪练习
判定下列各命题是否正确?并说明理由.
(1)如果a>b,那么ac>bc;
( ×)
(2)如果a>b,那么ac2 >bc2;
( × )
(3)如果ac2>bc2,那么a>b;
4.用不等号填空:(1)若a>b,则 a
若3x-1<3y-1,则x >
b;(2)
y.
<
5.已知a>b,则− a+c
<
− b+c.(填“>”“<”或“=”)
6.实数a与b在数轴上所对应的点的位置如图所示,用“>”或“<”填空:
(1)a
< 0;
ab; (5)ab
>
(2)b
> 0;
b2; (6)a<2
<−
D.a-1<0
6.若a-b<0,则下列各式中一定成立的是( D )
A.a>b
B.ab>0
C.
<
D.-a>-b
三、即学即练,应用知识
7.已知x<y,用“<”或“>”填空。
(1)x+2 <
(2) x <
(3) -x
>
(4)x-m
<
y+2 (不等式的基本性质 1 )
(完整word版)不等式的基本性质__习题精选(一)
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a 〉b ,那么 a+c____b+c , a -c____b -c . 不等式的基本性质2:如果a 〉b,并且c 〉0,那么ac_____bc . 不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc . 2.设a 〈b ,用“〈"或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b 2.3.根据不等式的基本性质,用“<"或“〉"填空.(1)若a -1〉b -1,则a____b ;(2)若a+3〉b+3,则a____b ;(3)若2a>2b ,则a____b ; (4)若-2a>-2b ,则a___b .4.若a 〉b ,m<0,n>0,用“〉”或“〈"填空.(1)a+m____b+m;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ; 5.下列说法不正确的是( )A .若a 〉b,则ac 2>bc 2(c 0)B .若a 〉b ,则b 〈aC .若a>b ,则-a 〉-b D .若a>b ,b 〉c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x 〉a 或x>a 的形式: (1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x 〉4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A .bc 〉abB .ac>abC .bc 〈abD .c+b 〉a+b8.已知关于x的不等式(1-a)x〉2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是( ) A.3b〈p<3a B.a+2b〈p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m〉n,且am<an,则a的取值应满足条件( )A.a〉0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是( )A.由4x-1〉2,得4x>1 B.由5x〉3,得x〉35 C.由x2>0,得x〉2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a〉6a进行争论,甲说:“7a>6a正确",乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3〈k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x〉10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x〉4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x〉4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x〉a或x<a的形式:(1)1x2〉-3;(2)-2x〈6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的? [开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m〈n<0,那么下列结论中错误的是()A.m-9〈n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a〉b B.ab>0 C.ab〉0 D.-a〉-b[奥赛赏析]24.要使不等式…〈753246a<a<a<a<a<a<a〈…成立,有理数a的取值范围是()A.0〈a〈1 B.a〈-1 C.-1<a<0 D.a〉1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)〈3.(1)>(2)>(3)〉(4)<4.(1)>(2)〉(3)<(4)〉(5)〈(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3〉1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x〈32;(3)3x<1+2x,3x-2x〈1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x〉4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2〉bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a 为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a〉6a,②当a〈0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1〈x+y〈2点拨:两方程两边相加得3(x+y)=k.3<k〈6,即3<3(x+y)<6,∴1〈x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x〈4x-6,2x-4x<4x-6-4x,-2x〈-6,-2x-6>-2-2,x〉3.解法2:2x+5〈4x-1,2x+5-2x〈4x-1-2x,5+1〈2x-1+1,6<2x,62x<22,3〈x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c〉b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x〉10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1⨯0.85)≈28(本).30>28,故小明最多哥买30本.18.解:(1)a,b是有理数,若a〉b>0,则22a>b(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a〉0时,5a>4a〉0;当a=0时,5a=4a=0;当a<0时,5a〈4a〈0.20.解:这里的变形与方程中的“将未知数的系数化为1"相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b〈0时,a+b<a-b.22.C 23.D24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246a<a<a<0…,则这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
数学八年级下册∶不等式知识的探究与延伸
不等式知识的探究与延伸一、 不等式的一个重要性质设m ,n 为正整数,若m>n ,则m 1+≥n例1、己知正整数a ,b ,c ,d 满足a<2b ,3b<4c ,5c<6d ,7d<2003,则a 的最大值是解 a ,b ,c ,d 为正整数且a<2b ,3b<4c ,5c<6d ,7d<2003,∴286,200317≤≤+d d ∴d 的最大值为286.又∴≤≤+343,615c d c c 的最大值为343又b b c b ∴≤≤+457,413的最大值为457又a a b a ∴≤≤+913,21的最大值为913.二、 用不等式求最大值或最小值在不等式a x ≤中x=a 是最大值,在不等式x ≥b ,x=b ,是最小值例2、己知三个非负数a ,b ,c 满足3a 十2b 十c=5,2a 十b 一3c=1,若m=3a 十b 一7c 求m 的最大值和最小值解: 3a 十2b 十c=5,2a 十b 一3c=1∴3a 十2b=5-c(1),2a 十b =1+3c(2)(1)(2)式中消去含b 的项,得a=7c 一3(3)(1)(2)式中消去含a 的项,得b=7一11c (4)a ,b ,c 为非负数可得00117037≥≥-≥-c c c 解得11773≤≤c 由m=3c-2可得m 的最大值为111-最小值为75- 三、 双向不等式的简捷解法双向不等式a<y<b (y 是x 的一次函数)中关于x 的代数式的求解,是解不等式的一类常见的题型.一般方法是分解为y>a 且y<a 来处理,这样做的益处是思路清晰,但过程太长,这里介绍一种简捷的解法.若a<b ,a<y<b ,则(y-a )(y-b )<0,例3解不等式21423x --<<- 解:原不等式等价于212142033x x --⎛⎫⎛⎫++< ⎪⎪⎝⎭⎝⎭()()211250x x ∴++<根据积的符号法则有:(1)2110250x x +<⎧⎨+>⎩(2)2110250x x +>⎧⎨+<⎩不等式(1)无解. 不等式(2)的解集是11522x -<<- 故原不等式的解集是11522x -<<- 四、 最佳方案的决策方法我们知道运用数学知识解决实际问题的方法是:从实际问题中获取所需的信息---分析处理有关信息---将实际问题转化为数学问题---解答原实际问题.例4、某学校刻录一批教学用的VCD 光盘,若要电脑公司刻录,每张需9元,(包括空白VCD 光盘费),若学校自刻,除学校租用刻录机需120元外,每张还需成本4元,(VCD 光盘费)问刻录这批VCD 光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由?解:设需刻录x 张VCD 光盘,到电脑公司刻录需9x 元,则刻需(120十4x )元.当9x>120十4x 时,即x>24时,自刻费用省.当9x=120十4x 时,即x=24时,到电脑公司与自刻费用一样.当9x<120十4x 时即x<24时到电脑公司刻录费用省.。
八年级数学专题不等式
考点卡片1.代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.2.二元一次方程组的解(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.3.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.4.二元一次方程组的应用(一)、列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)、设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.5.不等式的性质(1)不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a>b,那么a±m>b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a>b,且m<0,那么am<bm或<;(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.6.不等式的解集(1)不等式的解的定义:使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.(3)解不等式的定义:求不等式的解集的过程叫做解不等式.(4)不等式的解和解集的区别和联系不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.7.在数轴上表示不等式的解集用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【规律方法】不等式解集的验证方法某不等式求得的解集为x>a,其验证方法可以先将a代入原不等式,则两边相等,其次在x>a的范围内取一个数代入原不等式,则原不等式成立.8.解一元一次不等式根据不等式的性质解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.9.一元一次不等式的整数解解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.10.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.11.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.一元一次不等式组的整数解(1)利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.(2)已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.13.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.。
八年级下册数学一元一次不等式与一元一次不等式组知识点总结
一元一次不等式与一元一次不等式组是初中数学中的一个重要知识点,以下是该知识点的主要内容以及学习方法和应用:
一、定义:
1. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,可以用不等号连接的整式方程。
2. 一元一次不等式组:由几个一元一次不等式组成的方程组。
二、解题步骤:
1. 分别解每个不等式;
2. 找出解集的规律;
3. 画出数轴;
4. 根据数轴写出不等式组的解集。
三、注意事项:
1. 解不等式时要根据不等式的性质,不能丢三落四;
2. 解不等式组时要根据同大取大、同小取小、大小小大中间找、大大小小找不到的原则。
四、应用:
不等式与不等式组可以应用于日常生活、工程问题、经济问题等领域,帮助我们解决实际问题。
例如,在购物时我们可以用不等式比较不同商品的价格,或者在工程问题中用不等式表示某些量的范围等。
五、练习方法:
1. 课本例题练习:通过解决课本例题来加深对一元一次不等式与一元一次不等式组的理解;
2. 课后习题练习:通过解决课后习题来巩固知识点;
3. 自测练习:自己出题并解答,以加深对知识点的掌握;
4. 专题练习:针对某一知识点进行专题练习,以加深对该知识点的理解和掌握。
六、总结:
一元一次不等式与一元一次不等式组是初中数学中的重要知识点,需要我们通过多练习来加深对知识点的理解和掌握。
同时,我们也要学会在实际问题中应
用这些知识点,以增强我们的数学应用能力。
八年级数学下册课件不等式的性质(3课时)
120<5x(5x>120)
当x取哪些值时,120<5x才成立呢?
x
5x
比较120与5Leabharlann 的大小 120<5x成立吗?21
105
120>5x
问题7:
车速可以是每小时85千米吗?每小 时82千米呢?每小时75.1千米呢?每小 时74千米呢?
不等式的解:
我们曾经学过使方程两边相等的未知数的 值就是方程的解,我们也可以把使不等式成立 的未知数的值叫做不等式的解.
问题8:
刚才同学们所说的这些数哪些是不等式 2 x >50 的 3
解呢?判断下列数中哪些是不等式 2 x >50 的解: 3
小时,如何表示这样的数量关系?
50 < 2 x3
问题4:
设车速是 x 千米/小时,从路程上看,汽车要在 12:00 之
2 前驶过 A 地,则以这个速度行驶 3 小时的路程要大于 50 千 米,如何表示这样的数量关系?
2 x >50 3
不等式的概念:
像
50 x
<
2 3
、
2 3
x
>50
这样用符号“<”或“>”表示
-2
-1
0
辩一辩:判断下列说法是否正确?
(1)y=5是y-1>6的解.
不正确
(2)x>4是不等式x+3>6的解集. 不正确
(3)x=4是不等式x+3>6的解.
正确
(4)不等式x+1<2的解集是x>1 不正确
x<-2
练一练: 1、下列数值哪些是不等式x+3>6的解?哪些不是?
八年级数学一元一次不等式
在数轴上标出关键点并判断范围
对于一元一次不等式,首先找出 不等式中的关键点,即不等号两
边的数值。
在数轴上标出这些关键点,然后 根据不等式的性质确定解的范围。
如果不等式是严格不等式(<或 >),则解的范围不包括关键点; 如果是不严格不等式(≤或≥),
则解的范围包括关键点。
用数轴表示不等式解集
在数轴上标出关键点后,根据不等式 的性质用不同颜色的线段或箭头表示 解集的范围。
若满足,则公共解集正确;若不满足 ,则需要重新检查计算过程和解集范 围。
04 一元一次不等式在数轴上 表示方法
数轴概念及性质回顾
数轴是一条直线,其上有正整数、 零和负整数的标记,每个数在数
轴上都有唯一确定的位置。
数轴上的数从左到右依次增大, 即右边的数总比左边的数大。
数轴上的任意两点之间的距离等 于这两点所表示的数的差的绝对
简化不等式
移动项后,简化不等式并 求解。
系数化为1法
确定系数
找到不等式中含有未知数 的项的系数。
化系数为1
通过除以系数的方式,将 含有未知数的项的系数化 为1。
注意事项
在化系数为1的过程中,要 确保不等号的方向不变, 并且当系数为负数时,不 等号的方向需要改变。
03 一元一次不等式组解法
确定各不等式解集
对于每个不等式,首 先确定未知数的系数 和常数项。
解出每个不等式的解 集,并用数轴表示。
根据未知数的系数正 负,确定不等式的解 集方向。
找出公共解集
01
观察数轴上各个不等式的解集, 找出它们的交集部分。
02
公共解集必须满足所有不等式的 条件,即同时满足所有不等式的 解集。
(完整word版)一元一次不等式习题课
(完整word版)一元一次不等式习题课一元一次不等式习题课【学习目标】1.会整理易错点,并能找到错误原因2.能灵活应用不等式的性质解决相关问题,会熟练准确地解一元一次不等式【错误展示】1.去括号时,错用乘法分配律解不等式3x+2(2-4x)<19.错解:去括号,得3x+4-4x<19,解得x>-15.诊断: 诊断: 错解在去括号时,括号前面的数 2 没有乘以括号内的每一项.正解: 正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3. 2.去括号时,2.去括号时,忽视括号前的负号解不等式5x-3(2x-1)>-6.错解:去括号,得5x-6x-3>-6,解得x<3.诊断:诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.3.移项时,不改变符号解不等式4x-5<2x-9.错解:移项,得4x+2x<-9-5,即6x<-14,所以x<-7/3诊断: 诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.4.去分母时,忽视分数线的括号作用解不等式3x-(2x-5)/2>7错解:去分母,得6x-2x-5>15 ,解得:x>19/4诊断:去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,x>9/45.不等式两边同除以负数,不改变方向解不等式3x-6<1+7x. 错解:移项,得3x-7x<1+6,即-4x <7,所以x<-7/4诊断:将不等式-4x<7 的系数化为1 时,不等式两边同除以-4 后,根据不等式的诊断基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以所以x>-7/46.去分母时,漏乘不含分母的项解不等式x-(x-1)/3>x/2+1 错解:去分母,得x-2(x-1)>3x+1,去括号,解得x<1/4诊断:去分母时,要用最简公分母去乘不等式两边的每一项.而错解只乘了含有分母的项,漏乘了不含有分母的项.正解: 去分母,得6x-2(x-1)>3x+6,去括号,得6x-2x+2>3x+6,解得x>4.7.忽视对有关概念的理解求不等式(3x+4)/2-3≤7的非负整数解错解:整理,得3x≤16,的非负整数解. 所以x≤16/3 故其非负整数的解是1,2,3,4正解:非负整数的解是0,1,2,3,4,58.在数轴上表示解集时出现错误解不等式:3(1-x)≥2(x+9),并把它的解集在数轴上表示出来.错解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图1 所示.诊断:本题求得的解集并没错,问题出在将解集在数轴上表示出来时出现了错误,即有两处错误:一是方向表示错误,不应该向右,而应该向左;二是不应用空心圆圈表示,而应用实心圆圈表示.正解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图2 所示.上述三例告诉我们解一元一次不等式时一定要认真分析题目的结构特征,灵活运用注:解一元一次不等式的步骤,正确理解有关概念,才能及时避开陷阱,准确、快速的求解. 【典型例题】例1.不等式基本性质的应用(比较大小)已知:a<b< p="">(1)a+1<b-c;<="" p="">(3)2a<2b: (4)-a/2 >-a/b;(5)3a-2<3b-2; (6)-a+c>-b+c例题2.求不等式2x-3≤5的正整数解例3.已知方程3x+y=2,当y取何值时,x<5?例4.解不等式:(x-2)/2 –(x-1)/3<1【巩固练习】一、不等式的解集1.不等式-3≤x<2的整数解是二、不等式的性质1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3,(2)2a ----- 2b,( 3 )- a /3 ----- -b /3 (4)4a-3---- 4b-3 (5)a-b --- 02、不等式ax>a 的解集为x>1,则a 的取值范围是()A. a>0B.a≥0C.a<0D.a≤03、不等式( a -3) x > 1 的解集是x < 3/a-1,则a的取值范围是4、若a > b ,则ac2 ____ bc2.(本组题独立完成后小组内正)三、解不等式,并把解集在数轴上表示出来(1)-3x/4<-2 (2)3x-1<5x+5(3)(2x-1)/3≤(1+x)/2 (4)(x-3)/4<6-(3-4x)/2(5) 2(x-1)/3≤(x+1/3)/5(由5 名同学板演,然后集体订正)四、列不等式并求出x的范围1、x 的1 与5 的差不小于32、代数式3x-5 的值大于5x+33、代数式(x+3)/2 –(x-1)/5<1的解是非负数(独立完成后,小组派代表讲解订正)五、不等式的综合应用1、求不等式x+1 < 3 的正整数解2、若不等式2x3、关于x 的方程3 x +k= 2 的解是非负数,求k 的取值范围4.3x+y= m+1,2x+y=m-1当m 为何值时,x>y?5.已知关于x,y的方程组x+2y=1,x-2y=m(1)求这个方程组的解;(2)当m取何值时,这个方程组的解x大于1,y不小于-1</b<>。
北师大版八年级数学下册不等式的基本性质课件
布置作业
1、课后习题写在作业本上 2、练习册完成
再 见!
复习回顾
1.什么是不等式?
一般地,用符号“<”(或”≤”),“>”(或”≥”) 连接的式子叫做不等式。
2.等式的基本性质是什么?
1.等式的两边同时加上(或减去)同一个 代数式,等式仍然成立。
2.等式的两边同时乘同一个数(或除以同 一个不为0的数),等式仍然成立。
不等式的基本性质1
等式的基本性质
基本性质1:等式的两边同时加上 (或减去)同一个代数式,等式仍 然成立。
不等式的基本性质
北师大版八年级下第二章第二节
学习目标
学习目标 1.能说出不等式的基本性质,知道等式与不等式性质 的区分与联系. 2.会运用不等式的基本性质把不等式化为“x>a”或 “x<a”的情势.
学习重点 掌握不等式的三条基本性质,尤其是不等式的基本性质
学习难点 正确应用不等式的三条基本性质进行不等式变形
等式的基本性质
基本性质1:等式的两边同时加上 (或减去)同一个代数式,等式仍 然成立。
基本性质2:等式的两边同时乘同 一个数(或除以同一个不为0的 数),等式仍然成立。
用字母表示为: 如果a b, c 0那么ac bc, a b .
cc 如果a b, c 0那么ac bc, a b .
cc
不等式的基本性质
基本性质1:不等式的两边同时加 上(或减去)同一个数(或整式), 不等号的方向不变。
基本性质2:不等式的两边同时乘 (或除以)同一个正数,不等号 的方向不变。
基本性质3:不等式的两侧同时乘 (或除以)同一个负数,不等号的 方向改变。
不等式的基本性质2和3
例2.将下列不等式化成“ x a”或“x a”的形式: (1)1 x 6; (2) 3x 9.
(完整word)专题:基本不等式常见题型归纳(学生版),推荐文档
专题:基本不等式基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号.(2)a ,b ∈R +,a +b ≥2,当且仅当a =b 时取等号.ab (3)a ,b ∈R ,≤()2,当且仅当a =b 时取等号.a 2+b 22a +b 2上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2(或ab ≤()2),当且仅当a =b 时ab a +b2取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.【题型一】利用拼凑法构造不等关系【典例1】已知且,则的最小值为 .1,,b a 7log 3log 2=+a b b a 112-+b a 练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 .2.若实数满足,则的最小值为 .,x y 133(02xy x x +=<<313x y +-3.已知,且,则的最小值为 .0,0,2a b c >>>2a b +=2ac c c b ab +-+【典例2】已知x ,y 为正实数,则+的最大值为.4x 4x +y y x +y 【典例3】若正数、满足,则的最小值为__________.a b 3ab a b =++a b +变式:1.若,且满足,则的最大值为_________.,a b R +∈22a b a b +=+a b +2.设,,则的最小值为_______0,0>>y x 822=++xy y x y x 2+3.设,,则的最大值为_________ R y x ∈,1422=++xy y x y x +24.已知正数,满足,则的最小值为 a b 195a b+=-ab【题型二】含条件的最值求法【典例4】已知正数满足,则的最小值为 y x ,1=+y x 1124+++y x 练习1.已知正数满足,则的最小值为 .y x ,111=+y x 1914-+-y y x x2.已知正数,x y 满足22x y +=,则8x y xy +的最小值为 .3.已知函数的图像经过点,如下图所示,(0)x y a b b =+>(1,3)P 则的最小值为 .411a b +-4.己知a ,b 为正数,且直线 60ax by +-=与直线 2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.5.常数a ,b 和正变量x ,y 满足ab =16,+=.若x +2y 的最小值为64,则a x 2b y 12a b =________.6.已知正实数满足,则的最大值为 .,a b ()()12122a b b b a a +=++ab【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知,,则的14ab =,(0,1)a b ∈1211a b +--最小值为 .练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .2.已知正实数x ,y 满足,则x + y 的最小值为 .3.已知正实数满足,则的最小值为 .,x y (1)(1)16x y -+=x y +4.若,且,则使得取得最小值的实数= 。
(完整word版)第11章一元一次不等式与一元一次不等式组教案及单元备课
4、议一议:
1. 讨论下列式子的正确与错误.
(1)如果 a<b,那么 a+c<b+c;
(2)如果 a<b,那么 a-c<b-c;
(3)如果 a<b,那么 ac<bc; 2.设 a>b,用“<”或“>”号填空.
(4)如果 a<b,且 c≠0,那么 a > b . cc
(1)a+1 b+1;
(2)a-3 b-3;
教学重点 掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
教学难点 一元一次不等式的解法。
教法、学法
分析
自主探究与小组合作交流相结合.
媒体使用 和选择
教学过程
二次备课
1、 创设情境,引入新课
(1) 不等式的三条基本性质是什么?
(2) 运用不等式基本性质把下列不等式化成 x>a 或 x<a 的形式。
(1)a-3 b-3; (2) a
b;
22
5b;
(5)当 a>0,b 0 时,ab>0;
(7)当 a<0,b 0 时,ab>0;
三、课堂小结:
(3)-4a -4b; (4)5a
(6)当 a>0,b (8)当 a<0,b
0 时,ab<0; 0 时,ab<0.
四、作业:
板书设计
2.不等式的基本性质
教学反思
(3)3a 3b;
(4) a
b;
4
4
(5)- a 7
- b ; (6)-a -b. 7
5、变式训练:
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3;
(2)6x<5x-1; (3) 1 x>5; 2
(4)-4x>3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学不等式专题一、选择题 1.如果 a 、 b 表示两个负数,且 a < b ,则 ( ).(A) a1(B) a< 1(C) 11 (D) ab < 1bbab2.a 、b 是有理数,下列各式中成立的是( ).(A) 若 a > b ,则 a 2> b 2 (B) 若 a 2> b 2 ,则 a > b(C) 若 a ≠ b ,则| a |≠ |b| (D) 若| a |≠ |b|,则 a ≠ b3.| a |+ a 的值一定是 ( ).(A) 大于零 (B) 小于零 (C)不大于零(D) 不小于零4.若由 x < y 可得到 ax > ay ,应满足的条件是 ().(A) a ≥ 0 (B) a ≤ 0 (C)a > 0(D) a < 05.若不等式 (a + 1)x >a + 1 的解集是 x <1,则 a 必满足 ().(A) a < 0(B) a >- 1(C)a <- 1(D) a < 16.九年级 (1) 班的几个同学,毕业前合影留念,每人交 0.70 元.一张彩色底片 0.68 元,扩印一张相片 0.50 元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有(). (A)2 人(B)3 人(C)4 人(D)5 人7.某市出租车的收费标准是:起步价7 元,超过 3km 时,每增加 1km 加收 2.4 元(不足 1km 按 1km 计 ).某人乘这种 出租车从甲地到乙地共支付车费 19 元,设此人从甲地到乙地经过的路程是xkm ,那么 x 的最大值是 () .(A)11(B)8 (C)7(D)58.1 x 2,有解,则 k 的取值范围是 (). 若不等式组kx(A) k < 2(B) k ≥ 2 (C)k < 1(D)1 ≤ k < 2 9.x 9 5x 1,).不等式组m1 的解集是 x > 2,则 m 的取值范围是 (x(A) m ≤ 2(B) m ≥ 2(C)m ≤ 1(D) m ≥ 110. 对于整数 a , b , c , d ,定义a b 1 b ,则 b + d 的值为 _________.dac bd ,已知 1d 3c411.如果 a 2x > a 2y(a ≠ 0).那么 x______y . 12. 若 x 是非负数,则1 3 2x的解集是 ______.513. 已知 (x - 2)2+| 2x - 3y - a |= 0,y 是正数,则 a 的取值范围是 ______ .14. 6 月 1 日起,某超市开始有偿 提供可重复使用的三种环保购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保..购物袋每只最多分别能装大米3 千克、 5 千克和 8 千克. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用 来装刚买的 20 千克散装大米,他们选购的 3 只环保购物袋至少 应付给超市 ______元...15. 若 m >5,试用 m 表示出不等式 (5- m)x > 1- m 的解集 ______.16. 乐天借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,那么以后几天里每天至少要读多少页 ?设以后几天里每天要读x 页,列出的不等式为 ______.x y 2k, 17. k 满足 ______时,方程组y 中的 x 大于 1, y 小于 1.x 4二、解下列不等式第 1 页 共 6 页18. 2(2x -3)< 5(x - 1).10- 3(x + 6)≤ 1.19. x x 2 y 1 y 1 y 1 153263220.1 12 0.4 x 0.90.03 0.02.xx 5 x[ x( x 1)]( x 1).0.0322230.5三、解不等式组3x 3 2x 1x 3 1 x, 2 3x, 5 x x 5 21.,12(x3)] 1.2[ xx2x422 4x 3x 7,22. 解不等式组 6x 3 5x 4,3x 7 2x 3.四、变式练习23. 若 m 、n 为有理数,解关于x 的不等式 (- m 2-1)x >n .3x 2 y p 1, 24. .已知关于 x , y 的方程组3y p 的解满足 x > y ,求 p 的取值范围.4x12x y 1 3m, 25. 已知方程组x 2 y 1 m① 的解满足 x + y <0,求 m 的取值范围. ②第 2 页 共 6 页26.适当选择 a 的取值范围,使 1.7< x< a 的整数解:(1)x 只有一个整数解;(2)x 一个整数解也没有.10 k k (x 5)27. 当2(k 3) 时,求关于 x 的不等式x k 的解集.3 428.已知 A= 2x2+3x+ 2, B= 2x2- 4x- 5,试比较 A 与 B 的大小.3x 5 y k ,29.(类型相同)当k 取何值时,方程组的解x,y都是负数.2x y 5x 2 y4k,30.(类型相同)已知中的x,y满足0<y-x<1,求k的取值范围.2x y 2k 13x 4a,31.已知a是自然数,关于x 的不等式组的解集是x>2,求a的值.x 20x a0,32.关于x的不等式组的整数解共有 5 个,求 a 的取值范围.3 2x 133.(类型相同)k 取哪些整数时,关于x 的方程 5x+ 4= 16k- x 的根大于2 且小于 10? 第 3 页共 6 页34. (类型相同)已知关于x y2m 7, m 的取值范围.x, y 的方程组y 4m的解为正数,求x 3x 15x 3,235. 若关于 x 的不等式组只有 4 个整数解,求a 的取值范围.2x 2 x a3五、解答题36. 一个工程队原定在 10 天内至少要挖掘 600m3的土方.在前两天共完成了120m3后,接到要求要提前 2 天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?37.某城市平均每天产生垃圾700 吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55 吨,需花费550 元;乙厂每小时处理45 吨,需花费495 元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150 元,问甲厂每天至少要处理多少吨垃圾?38.若干名学生,若干间宿舍,若每间住4 人将有 20 人无法安排住处;若每间住8 人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间 ?39.某零件制造车间有20 名工人,已知每名工人每天可制造甲种零件 6 个或乙种零件 5 个,且每制造一个甲种零件可获利 150 元,每制造一个乙种零件可获利260 元.在这 20 名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元 ),用 x 的代数式表示y.(2)若要使每天所获利润不低于24000 元,至少要派多少名工人去制造乙种零件?第 4 页共 6 页40.某单位要印刷一批宣传资料,在需要支付制版费600 元和每份资料0.3 元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000 份的,超过部分的印刷费可按9 折收费;乙印刷厂提出:凡印刷数量超过3000 份的,超过部分印刷费可按8 折收费.(1)若该单位要印刷2400 份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?41.2008 年 5 月 12 日,汶川发生了里氏 8.0 级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的 3 个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700 元;信息二:二班的捐款金额比三班的捐款金额多300 元;信息三:一班学生平均每人捐款的金额大于48 元,小于51 元.....请根据以上信息,帮助老师解决:(1) 二班与三班的捐款金额各是多少元?(2) 一班的学生人数是多少 ?42.某学校计划组织385 名师生租车旅游,现知道出租公司有42 座和 60 座客车, 42 座客车的租金为每辆320 元, 60座客车的租金为每辆460 元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8 辆(可以坐不满 ),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.43. 在“ 5· 12 大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建 A , B 两种型号的板房共400 间,在搭建过程中,按实际需要调运这两种板材.已知建一间 A 型板房和一间 B 型板房所需板材及能安置的人数如下表所示:板房型号甲种板材乙种板材安置人数A 型板房54 m2 26 m2 5B 型板房78 m2 41 m2 8问:这 400 间板房最多能安置多少灾民?x 2的解集是 x 2 ,则a的取值范围为x 22 ,则a( 1)若不等式组a (2)若不等式组的解集时 a xx x a 第 5 页共 6 页的取值范围为( 3)若不等式组x2x 无解,则 a 的取值范围为ax 0 1、 2 和 3,则 a 的取值范围为;2. 若不等式组只含有三个整数x ax 0 1、 2 和 3,则 a 的取值范围为;变式 1:若不等式组只含有三个整数x ax a,变式 2:关于 x 的不等式组;1 x 只有 3 个整数解,则 a 的取值范围是1 x 2). A . m<2 B . m ≥2 C . m<1 D . 1≤m<23.若不等式组有解,则 m 的取值范围是( x m4. 不等式 a ≤ x ≤ 3 只有 5 个整数解,则 a 的范围是x a5、已知 0b a ,那么下列不等式组中有解的是()A .B .x bx 16、已知不等式组无解,则 a 的取值范围是( ) A. a ≤ 1B .x axa x a x ax bC .bD .bxxa ≥1C.a <1D . a >17、已知关于 x 的不等式组x a >0 的整数解共有 5 个,求 a 的取值范围。
3 2x > 08. 已知关于 x 的不等式 x - 2a < 3 的最大整数解是- 5,求 a 的取值范围.9. 已知不等式ax1 的每一个解都是 x < 3 的解,求 a 的取值范围。
310.关于 x 的不等式组 (x+15)/2>x-3, (2x+2)/3<x+a只有 4 个整数解,则 a 的取值范围是?第 6 页 共 6 页。