人教版九年级下中考分类集训1实数与代数式
精品课件:人教版九年级下册数学中考复习专题一:数与式(1)
例题学习
1.2008年5月27日,北京2008年奥运会火炬接力传递 活动在南京境内举行,火炬传递路线全程为12900m, 将12900用科学记数法表示应为( B ) A.0.129×104 B.1.29×104 C.12.9×103 D.129×102 2.填空: 4 6 . 3 10 (1)–0.00063用科学计数法表示为 ;
除以一个不为0的数,等于乘以它的倒数。
(5)实数的乘方:
的乘方,记作
n n个相同因数a相乘,即 a a a 叫做a
a
n
。
乘方的性质:
正数的任何次幂都是正数;
负数的奇次幂是负数,负数的偶次幂是正数;
0的任何正整数次幂都等于0。
(6)实数的开方:
根据平方根,算术平方根、立方根的定义,直接
当成有理数。
2 .数轴:规定了原点,正方向,单位长度 的直线叫数轴。 3 .相反数:实数 a 的相反数是 a,0的相 反数是0。
(1)a,b互为相反数 a+b=0。
(2)在数轴上表示相反数的两点关于原点对 称。
例题学习
1.实数在数轴上对应点的位置如图所示,则必 有( D ) A. a b 0 B. a b 0 C. ab 0
注意:
a
0 a
a
(a 0)
(a 0)
(a 0)
5 .倒数:乘积为1的两个数互为倒 数,0没有倒数. 即ab=1
a、b互为倒数。
例题学习
1.填空:
(1) 3 2 的绝对值是 2 3 ; (2)已知 x 1 3,则x的值为 4或–2 ;
3 1 的倒数与 的相反数的和等于 –1; (3) 4 3
人教版九年级数学下册:全册中考知识点梳理(共27讲)-精选试卷
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解一、知识清单梳理第3讲分式二、知识清单梳理第4讲二次根式三、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组) 四、知识清单梳理第6讲一元二次方程五、知识清单梳理第7讲分式方程六、知识清单梳理第8讲一元一次不等式(组)七、知识清单梳理知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲平面直角坐标系与函数八、知识清单梳理知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x 轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y)M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O九、知识清单梳理知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0 (1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x >4时,y的值为负数.7.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;一次函数本身并没有最值,但在实际问题中,自变量的取值y=k2x+b y=k1x+b(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质十、知识清单梳理知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围. 例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE >S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质十一、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7 .开口向上向下对称轴x=2ba-顶点坐标24,24b ac ba a⎛⎫--⎪⎝⎭增减性当x>2ba-时,y随x的增大而增大;当x<2ba-时,y随x的增大而减小.当x>2ba-时,y随x的增大而减小;当x<2ba-时,y随x的增大而增大.最值x=2ba-,y最小=244ac ba-. x=2ba-,y最大=244ac ba-.3.系数a、a决定抛物线的开口方当a>0时,抛物线开口向上;某些特殊形式代数式的符号:第13讲二次函数的应用十二、知识清单梳理第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线十三、知识清单梳理第15讲一般三角形及其性质十四、知识清单梳理知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角. 7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示 如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形十五、 知识清单梳理知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.21P COBAPCO BADABC abcDABC abc第17讲 相似三角形十六、 知识清单梳理知识点一:比例线段关键点拨与对应举例1. 比例 线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a cb d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理 (1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OB OD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. F E D CB A l 5l 4l 3l 2l 1ODCBAEDCBAFEDC BAFE DC B AFE DC B A6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形十七、知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;。
九年级数学 实数与代数式
中考集中营魔鬼训练(三) ——实数与代数式一 中考考点知识概括:实数涉及六个方面的内容:实数的有关概念和实数的分类;数轴、相反数与绝对值;近似数、有效数和科学记数法;实数的运算和实数大小的比较;数的开方;非负数的性质及其运用.对这些内容的考查主要以基础知识、基本技能的考查为主,将分类讨论思想,数形结合思想及字母表示数的思想贯穿于整章内容中.其中近似数、科学记数法、数轴、绝对值及实数的运算是每年中考的重点.代数式涉及如下内容:代数式与整式的概念;求代数式的值;去添括号法则;合并同类项;幂的运算;整式的乘法,整式的除法;零和负整数指数幂的运算;对这些内容以考查基本的运算为主.其中,求代数式的值,有关幂 的运算,乘法公式,合并同类项,整式的乘除法是初中考试的重点.二 中考考题类型解析例1.在实数722, 30sin ,12+,π2,()3,3-中,有理数的个数是( ). A .2B .3C .4D .5例2.实数a 、b 、c 在数轴上的位置如下图,化简a b b c c a -+-+-例3 下列各题中的数是由四舍五入得到的近似数,其中判断正确的是( ).A .43.8精确到个位,有3个有效数字B .0.0308精确到十万分位,有3个有效数字C .0.8514精确到千分位,有4个有效数字D .2.4万精确到千位,有2个有效数字例4.某商品原价为100元,现有下列四种调价方案,其中0n m <<,则调价后该商品价格最高的方案为( )A .先涨价m%,再降价n%B .先涨价n%,再降价m%C .先涨价%2m n +,再降价%2m n+ D例5 先化简,再求值:(1)()()22835232xy x xy xy x ----,其中1,x y ==(2)()()22213(2)2233a b a b a ab a b --+--+,其中a b ==.aboc考点速训(一)1.已知有下列各数:1415926.3,625-,010010001.0,⋅312.0,π,173,其中无理数的个数是( ). A .0 B .1 C .2 D .3 2.下列说法正确的是( ).A .两个无理数的和或积一定是无理数B .实数是正、负有理数和正、负无理数的统称C .无理数是开方开不尽的数D .无理数是除有理数外的所有实数3.如果将整数看作小数点后面是0的小数,对实数进行下面四种分类中,不正确的是( ).A .⎧⎨⎩有理数实数无理数B .⎧⎪⎨⎪⎩有限小数实数无限循环小数无限不循环小数C .⎧⎨⎩小数实数分数D .⎧⎪⎨⎪⎩正实数实数零负实数4.数轴上与原点距离为3的点表示的数是( ). A .3 B .-3 C .3± D .6 5.绝对值不大于2的整数共有( ). A .3个 B .4个 C .5个 D .6个 6.若0>>-y x ,则y x +等于( ). A .y x --B .y x +C .y x -D .x y -7.数a 在数轴上表示如图,则化简()221a a +-的结果为( ).A .-1B .a 21-C .1D .12-a 8.对于用四舍五入法得到的近似数51020.3⨯,下列说法正确的是( ).A .有3个有效数字,精确到百分位B .有6个有效数字,精确到个位C .有2个有效数字,精确到十万位D .有3个有效数字,精确到千位 9.地球上陆地的面积约为149000000平方千米,用科学记数法可表示为( ).A.610149⨯平方千米B.7109.14⨯平方千米C.81049.1⨯平方千米 D .101049.1⨯平方千米3.有资料表明:我国第五次全国人口普查总数约为12953330000人,用科学记数法表示,并精确到百万位的正确记法是( ). A .人81095.12⨯ B.910295.1⨯人 C.人810953.12⨯ D.人10102953.1⨯ 4.计算木星的质量得211064.1901⨯吨计算,用科学记数法表示它的近似值为 吨.(保留2个有效数字).考点速训(二)1.某商品的原定价为a 元,为促销,该商品在降价10%后又降价10%,结果销售额猛增,于是商家决定再提价20%出售,则提价后该商品的价格为( ) A .a 元 B .1.08a 元 C .0.972a 元 D .0.96a 元2.有一块长为a ,宽为b 的长方形铝片,四角各截去一个相同的边长为x 的正方形,折起来做成一个没有盖的盒子,由此盒子的容积V 的表达式应为( ) A .2()()V x a x b x =-- B .()()V x a x b x =-- C .1(2)(2)V x a x b x =-- D .(2)(2)V x a x b x =--a-1·3.A 、B 两地相距m 千米,甲每小时行走a 千米,乙的速度是甲的1.2倍,那么乙从A 地走到B 地需要的时间是( ) A .()1 1.2ma +小时B .1.2ma小时 C .1.2am小时 D .1.2ma小时 4.先化简,再求值(1)()()()22x y x y x y x ⎡⎤-++-÷⎣⎦,其中3, 1.5x y ==-;(2)22()2(1)a b a b a b b +-+-÷,其中1,22a b ==;5.若222()25x yx y a x y ++-++是完全平方式,求a 的值.6.(拓展题)已知,如图,现有,a a b b ⨯⨯的正方形纸片和a b ⨯的矩片各若干张,试选用这些纸片(每种纸片至少用一次)拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为22252a ab b ++,并标出此矩形的长和宽.ab独立训练姓名 完成时间 成绩1.在8,9-,π,⋅⋅2441.1,015015001500.0…各数中,有理数共有2.在等式32⨯-⨯口口=15的两个方格中分别填入一个数,使这两个数互为相反数且等式成立,则这两个方格内的数分别是 .3.若m ,n 互为相反数,则n m +-5= .4.已知()0341331212=+++-+-y x z y y x ,则=++z y x 22 . 5.若z y x ,,是实数,且32=++z y x ,4222=++z y x ,求代数式()20062z y x +-的值。
中考数学试题分类汇编 知识点01 实数的有关概念和性质-人教版初中九年级全册数学试题
实数的有关概念和性质一、选择题1.(2018某某某某,1题,3分)在-2,0,12,2四个数中,最小的是() A.-2 B.0 C.12【答案】A【解析】有理数比较大小,负数小于0,0小于正数,因为-2<0<21<2,故选A 【知识点】有理数比较大小2. (2018某某内江,1,3)-3的绝对值为() A .-3 B .3 C .-13 D .13【答案】B【解析】解:因为负数的绝对值等于它的相反数,所以-3的绝对值为3.故选择B .【知识点】绝对值;相反数3.(2018某某某某,第1题,3分)-3的相反数是()A .3B .-3C .13 D .13- 【答案】A.【解析】本题考查了相反数的定义,解题的关键掌握相反数的概念.∵-3的相反数是3,故选A.【知识点】相反数;4. (2018某某某某某某,1,3分)在0,1,12-,-1四个数中,最小的数是(). A . 0 B .1 C .12-D . -1 【答案】D .【解析】∵-1<12-<0<1,∴最小的数是-1,故选D .【知识点】有理数的大小比较5.(2018某某滨州,2,3分)若数轴上点A 、B 分别表示数2、-2,则A 、B 两点之间的距离可表示为()A .2+(-2)B .2-(-2)C .(-2)+2D .(-2)-2【答案】B【解析】在数轴上,两点之间的距离等于对应两数之差的绝对值,故A 、B 两点之间的距离可以表示为)()(2--22--2= 【知识点】距离的含义、绝对值的性质6.(2018某某省,1,4分)8-的绝对值是()A.8-B.8C.8±D.18- 【答案】B【解析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.根据负数的绝对值等于它的相反数可得答案.∵-8<0,∴|-8|=8.故选:B .【知识点】绝对值7.(2018某某某某,1,3) -2018的相反数是()A.-2018B.2018C. 12018-D. 12018 【答案】B.【解析】:-2018的相反数为2018. 即求一个实数的相反数就在它前面添一个“—”号。
【精品】【人教版】2019年春九年级数学下册:全册中考知识点梳理(共27讲)
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数一、知识清单梳理第3讲分式第4讲二次根式三、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组) x≥a x>a x≤a x<a第9讲平面直角坐标系与函数)M(a,b)到x轴,y轴的距离:到轴的距离为|b|;)到y第10讲一次函数第11讲反比例函数的图象和性质(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解..三个阴影部分的面积按从小到大的顺=S△OPE>S△BOD.第12讲二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质第16讲等腰、等边及直角三角形°)的三角形是等边三角形;第17讲相似三角形D cD c的比叫做黄金比.10cm的线段进行黄金分割,那么较长线段长为5(5-2.EC第18讲解直角三角形这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;或通过公共边相等,列方程求解.第五单元四边形第19讲多边形与平行四边形,每一个外角为例:如图四边形第20讲特殊的平行四边形如图,四边形(变式:如图④,四边形ABCD第六单元圆第21讲圆的基本性质垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图c第22讲与圆有关的位置关系内切圆半径与三角形边的关系:)任意三角形的内切圆(如图a),设例:已知△ABC的三边长则它的外切圆半径是2.5.第23讲与圆有关的计算二十一、知识清单梳理(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOC为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2知识点二:与圆有关的计算公式n第七单元图形与变换第24讲平移、对称、旋转与位似第25讲视图与投影第八单元统计与概率第26讲统计第27讲概率。
初三数学 下学期(实数,代数式,整式,分式,一次方程组)共10页
第一章数与式 第一节实数考点一、实数的概念及分类1.实数及其分类按定义分类:按正负性分类:2.无理数:无限不循环的小数叫无理数,有理数和无理数统称实数。
常见的无理数有以下几种形式:(1)字母型:如π是无理数,等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(3…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等考点二、实数的其它概念1.数轴规定了 、 和 的直线叫做数轴。
实数和数轴上的点是一一对应的。
2.相反数只有 的两个数互为相反数。
实数a 和-a 叫做互为相反数。
零的相反数是零。
数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的 。
如果a 和b 互为相反数,那么a+b = ;反过来,如果a+b =0,那么 。
3.绝对值一个实数的绝对值就是数轴上表示这个数的点与 。
一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|= ;如果a <0,那么|a|= ;如果a =0,那么|a|= .从绝对值的定义可以知道,一个实数的绝对值是一个 数。
4.倒数乘积为 的两个数互为倒数。
a 和b 互为倒数,则ab=5.零指数幂的意义:a 0=1(a ≠0)6.科学计数法:把一个数表示成±a ×10n的形式(其中n 是整数,1≤|a|<10)这种方法叫做科学计数法。
考点三、平方根、算术平方根和立方根7.平方根如果一个正数x 的平方等于a ,即x 2=a ,那么 就叫做 的平方根(也叫做二次方根)。
24ππ、正数的平方根有两个,它们互为 ;零的平方根是零;负数没有平方根。
8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零。
(算术平方根是非负数。
)9.立方根:如果一个数x 的立方等于a ,即x 3=a, 那么 就叫做 的立方根(也叫做三次方根)考点四、实数的大小比较: 利用正负性比较、利用数轴比较、利用绝对值比较、利用平方比较、求差或求商比较、计算近似值等方法比较。
九年级中考总复习之1实数与代数式
九年级中考总复习(1)实数& 代数式内容概要1.1 实数1.2 代数式1.3 因式分解1.4 分式1.5 二次根式正分数复习笔记1、实数的分类(1)实数的常见两种分类如下:①实数 ②实数(2)无理数:无限不循环小数即为无理数.2、相关概念(1)相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数.0的相反数为0. (a ,b 互为相反数,则a b =-或0a b +=)(2)倒数:如果两个数乘积为1,那么称其中一个数为另一个数的倒数.(a ,b 互为倒数,则1a b=或1a b ⋅=)(3)平方根:如果一个数的平方等于a ,那么这个数叫做a 的平方根.正数的平方根有两个,0的平方根为0.(4)算术平方根:正数的正平方根和0的平方根,统称算术平方根. (5)立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.3、数轴与绝对值(1)数轴:规定了原点、单位长度和正方向的直线叫做数轴.实数与数轴上的点一、一对应. 数轴三要素:原点、正方向和单位长度.整数负无理数负分数自然数正实数 0 负实数(2)绝对值:绝对值的几何意义:x 表示数轴上x 到原点的距离.绝对值的代数意义:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值为0.即:0||000x x x x xx ⎧>⎪⎪==⎨⎪⎪-<⎩. (3)数轴上A 、B 两点之间的距离公式:||||AB a b =-.4、准确数与近似数(1)与实际完全符合的数称为准确数.例如,班里有50名同学,50是一个准确数.与实际接近的数称为近似数.例如,化学老师体重为100公斤,100是一个近似数. (2)科学计数法:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.(3)有效数字:从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字.(4)精确到**位: 例如,6045.012这个近似数各个数位如下,最后一位是千分位,即精确到到千分位.(注意“带单位”题型)5、实数运算六则运算运算顺序:先乘方、开方,再乘除,最后加减.同级运算从左向右.有括号的先算括号里面的,绝对值运算优先级等同于括号.课堂例题1、现有以下五个结论:①有理数包括所有正数、负数和0;②若两个数互为相反数,则它们相除的商等于-1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数则乘积为负数.其中正确的有__________个.2、如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列式子中成立的是( ) A .m −1 < n −1 B .−m < −n C .|m |−|n | > 0 D .m +n < 03、实数a 满足||0a a +=,且1a ≠-,那么11a a -+的值等于__________.4、已知a ,b ,c 为有理数,且0a b c +-=,0abc <,则b c a c a ba b c--+++的值为__________.5、PM 2.5是指大气中直径小于或等于32.510-⨯毫米的颗粒物,也称为可入肺颗粒物,把32.510-⨯用小数形式表示正确的是( )A .0.000025B .0.00025C .0.0025D .0.0256、关于近似数32.410⨯,下列说法正确的是( )A .精确到十分位,有2个有效数字B .精确到百位,有4个有效数字C .精确到百位,有2个有效数字D .精确到十分位,有4个有效数字7、如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数,例如,6的不包括自身的所有因数为1,2,3,且6=1+2+3,所以6是完全数;大约2200多年前,欧几里德提出:若2n -1是质数,则2n -1(2n -1)是一个完全数(n 为正整数),请根据这个结论写出6之后的下一个完全数是__________.8、一般的,如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:由于23=8,所以3是以2为底8的对数,记作log 28=3;由于a 1=a ,所以1是以a 为底a 的对数,记作log a a =1. 对数作为一种运算,有如下的运算性质:如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M •N )=log a M +log a N ; (2)log aMN=log a M -log a N ; (3)log a M n =nlog a M .根据上面的运算性质,计算log 2(47×25)+log 26-log 23的结果是__________.9、下列说法中:①1的算术平方根是±1;②只有正数才有平方根;③任何数都有立方根;④正数a 的算术平方根一定小于a ;⑤a 的立方根与a 的乘积一定是非负数.其中正确的是__________.(填写正确结论的序号)10=__________.11、已知实数a ,b ,c 满足b -c 的平方根等于它本身,则a __________.12232,小数部分为2). (1a ,那么a =__________;(2)如果10b c -=+,其中b 是整数,且01c <<,那么b =__________,c =__________.13、我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果(30a b -+=,其中a 、b 为有理数,那么a =__________,b =__________;(2)如果(2(15a b -=,其中a 、b 为有理数,求a+2b 的值.14、定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3-5i )=(2+3)+(1-5)i =5-4i ; (1+i )×(2-i )=1×2-i +2×i -i 2=2+(-1+2)i +1=3+i ; 根据以上信息,下列各式:①i 3=-1; ②i 4=1; ③(1+i )×(3-4i )=-1-i ; ④i +i 2+i 3+i 4+……+i 2019=-1. 其中正确的是__________(填上所有正确答案的序号).课堂练习1、数轴上A 、B 、C 三点所代表的数分别是a ,1,c 且|1||1|||c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为( ) A .B .C .D .2、受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是( ) A .28×105B .2.8×106C .2.8×105D .0.28×1053、我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .13264、十进制数278,记作278(10),其实278(10)=2×102+7×101+8×100,二进制数101(2)=1×22+0×21+1×20.有一个k (0<k ≤10为整数)进制数165(k ),把它的三个数字顺序颠倒得到的k 进制数561(k )是原数的3倍,则k =__________.5、取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有__________.6、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若AM 2=BM •AB ,BN 2=AN •AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b −a =2时,a ,b 的大黄金数与小黄金数之差m −n =__________.7、根据下列材料,解答问题. 等比数列求和:概念:对于一列数a 1,a 2,a 3,…a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即1k k aa -=q (常数),那么这一列数a 1,a 2,a 3,…a n ,…成等比数列,这一常数q 叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和, 解:令S =1+3+32+33+…+3100 则3S =3+32+33+…+3100+3101因此,3S -S =3101-1,所以S =101312-即1+3+32+33…+3100=101312- 仿照例题,等比数列1,5,52,53,…,52018的和为__________.8、把下列各数分别填入相应的集合里:3.1415926,3.131331333133331…(每两个1之间依次多一个3),2270.1010010001……0.3,2π-,0. 有理数集合:{ }; 无理数集合:{ }; 正实数集合:{ }; 整数集合: { }.9、以下四个命题:①若aaa 是整数,a__________.(填写正确结论的序号)10、已知a -1=20172+20182=__________.11、在平面直角坐标系中,任意两点A (a ,b ),B (c ,d ),定义一种运算:A *B =[(3-c ,若A (9,-1),且A *B =(12,-2),则点B 的坐标是__________.12、b 2的整数部分,若关于x 的方程3(x +4)=2a +5的解大于x 的方程(41)(34)43a x a x +-=的解,求a +b 的取值范围是__________.13、若a 、b 均为整数,当x 1时,代数式x 2+ax +b 的值为0,则a b 的算术平方根为__________.14、小数可分为有限小数和无限小数.无限小数中有循环小数和不循环小数,其中无限不循环小数即为无理数,那么无限循环小数又是什么呢?其实所有的循环小数都是可以化为分数的. 下面提供一种方法:比如0.40.44444....∙=,令0.4x ∙=,那么10 4.4 4.44444....x ∙==,104x x -=,那么94x =,49x =. 请你用类似的方法解决,把下列循环小数化为分数. (1)0.13∙∙(2)1.24∙复习笔记1、代数式(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把__________或表示__________连接而成的式子叫做代数式.(2)代数式的值:用__________代替代数式里的字母,按照代数式里的运算关系,计算后所得的叫做代数式的值.2、整式(1)单项式:由数与字母的__________组成的代数式叫做单项式(单独一个数或__________也是单项式).单项式中的__________叫做这个单项式的系数;单项式中的所有字母的__________叫做这个单项式的次数.(2)多项式:几个单项式的__________叫做多项式.在多项式中,每个单项式叫做多项式的__________,其中次数最高的项的__________叫做这个多项式的次数.不含字母的项叫做__________. (3)整式:__________与__________统称整式.(4)同类项:在一个多项式中,所含__________相同并且相同字母的__________也分别相等的项叫做同类项.合并同类项的法则是____________________.3、整式的乘法&除法(1)单项式乘以单项式:把单项式的系数和字母分别相乘.(2)单项式乘以多项式/多项式乘以多项式:根据乘法分配律,分别进行单项式乘以单项式的运算,最后把所得的积相加.(3)单项式除以单项式:把__________、__________分别相除后,作为商的因式;对于只在被除数里含有的字母,则连同它的指数一起作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加. (5)乘法公式:平方差: ()()a b a b +-=____________________. 完全平方: 2()a b +=____________________;2()a b -=____________________.4、幂的运算幂:求几个相同因数的积的运算叫做乘方;n个a相乘表示为n a,乘方的结果叫做幂.在n a中,a叫做底数,n叫做指数.课堂例题1、如果21(2)213axy a y xy ---+是三次三项式,则a =__________,最高次项是__________,常数项是__________,二次项系数是__________.2、若322255(21)()3x ax x x ax x b --+=+--+,其中a ,b 为整数,则a b +之值为__________.3、若关于x 的多项式22251x ax bx x -++--的值与x 无关,则a b +的值__________.4、当1x =时,代数式31342ax bx -+的值是7,则当1x =-时,这个代数式的值是__________.5、若x ,y 满足224250x y x y +--+=,则23x y x -的值是__________.6、(1)若25n a =,216n b =,则()n ab =__________;(2)已知9n +1−32n =72,则n =__________; (3)(3+x )2-x =1,则x =__________;(4)已知6x =192,32y =192,则(-2017)(x -1)(y -1)-2=__________.7、灵活运用完全平方公式222()2a b a ab b +=++和222()2a b a ab b -=-+等,可以实现ab ,a b +,a b -,22a b +的转换(知二得四):比如,已知m 为正实数,且13m m -=,则221m m+=__________.8、(1)若x +y =10,xy =1,则x 3y +xy 3的值是__________;(2)已知(2019)(2018)2017a a --=,则22(2019)(2018)a a -+-=__________.9、如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =10,ab =20.则图中阴影部分的面积为__________.10、已知x =,y =,求代数式226x xy y ++的值.11、当多项式x 2-4xy +5y 2-6y +13取最小值时,代数式(-x -y )2-(-y +x )(x +y )-2xy 的值为__________.12、一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:m =n =0时,我们称使得2323m n m n++=+成立的一对数m ,n 为“相伴数对”,记为(m ,n ). (1)若(m ,1)是“相伴数对”,则m =__________; (2)若(m ,n )是“相伴数对”,则代数式154m -[n +12(6-12n -15m )]的值为__________.13、设52345012345(1)x a a x a x a x a x a x -=+++++.求下列式子的值: (1)0a ;(2)12345a a a a a ++++; (3)135a a a ++.14、把四张形状、大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为m,宽为n的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含n的式子表示出图②中两块阴影部分的周长和?__________(填“能”或“不能”);(2)若能,请你用只含n的式子表示出图②中两块阴影部分的周长和,若不能,请说明理由.15、观察下列算式,尝试问题解决:杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5..)的计算结果中的各项系数:(1)请根据上题中的杨辉三角系数集,仔细观察下列各式中系数的规律,并填空:(a+b)1=a+b各项系数之和1+1=2=21(a+b)2=a2+2ab+b2各项系数之和1+2+1=4=22(a+b)3=a3+3a2b+3ab2+b3各项系数之和1+3+3+1=8=23.①请补全下面展开式的系数:(a-b)6=a6+_____a5b+15a4b2+_____a3b3+15a2b4-6ab5+b6;②请写出(a+b)10各项系数之和:__________;(2)设(x+1)17=a17x17+a16x16+…+a1x+a0,求a1+a2+a3+…+a16+a17的值;(3)你能在(2)的基础上求出a2+a4+a6+…+a14+a16的值吗?若能,请写出过程.课堂练习1、在下列各式的变形中,正确的是( )A .22()()x y y x x y ---+=--B .2223(1)4x x x --=--C .111x x-=- D .1()x y y x --=-2、已知当32x =时,代数式53ax bx cx x +++的值为1,那么当32x =-时,该代数式的值是__________.3、若237a b -=,2ab =,则代数式23a b +的值是__________.4、若实数x 满足x 2−−1=0,则221x x +=__________.5、若13x x +=,则221x x+=__________,2421x x x ++=__________.6、已知x =,y =,则22x xy y ++的值为__________.7、若关于x 的多项式26x px --含有因式3x -,则实数p 的值为__________.8、在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):____________________________________________________________,证明上述速算方法的正确性.上课笔记1、因式分解的定义:就是把一个多项式化为几个整式的__________的形式.分解因式要进行到每一个因式都不能再分解为止.2、因式分解的方法: 示例提公因式法: ()ma mb mc m a b c ++=++公 式 法: 22()()a b a b a b -=+- 2222()a ab b a b ±+=±分组分解法: 1()(1)(1)(1)(1)(1)ab a b ab a b a b b a b +++=+++=+++=++十字相乘法: 2()()()11x p q x pq x p x q q p+++=++3、因式分解的步骤:一般来说,因式分解的步骤为一提(公因式),二用(公式),三分组(分组分解). 对于形如二次三项式的可以考虑十字相乘法进行因式分解.课堂例题1、对下列各式进行因式分解:21222x x ++=__________; 44x -=__________(实数范围内); 4244x x -+=__________; 2222x y x y -++=__________;2221x y x -++=__________; 232793a a a +--=__________.2、已知29x mx -+是完全平方式,则m =__________.3、若a =2019x +2017,b =2019x +2018,c =2019x +2019,则a 2+b 2+c 2-ab -bc -ca 的值为__________.4、设219918a =⨯,2288830b =-,221053747c =-,则数a ,b ,c 按从小到大的顺序排列,结果是__________.5、若多项式x 2-mx +n (m 、n 是常数)分解因式后,有一个因式是x -3,则3m -n 的值为__________.6、若a 3+3a 2+a =0,则363261a a a ++=__________.7、已知a ,b ,c 分别是∆ABC 的三边长,且满足2a 4+2b 4+c 4=2a 2c 2+2b 2c 2,则∆ABC 是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .等腰三角形或直角三角形8、给出三个多项式:①2x2+4x−4 ;②2x2+12x+4 ;③2x2−4x,请把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.9、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2−(a−b)2,则下列结论:①若a@b=0,则a=0或b=0;②a@(b+c)=a@b+a@c;③不存在实数a,b,满足a@b=a2+5b2;④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③课堂练习1、若2916x ax ++是完全平方式,则a =__________.2、若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是__________.(写出一个即可)3、已知x 2+x =3,则2018+2x +x 2-2x 3-x 4=__________.4、已知∆ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足等式3(a 2+b 2+c 2)=(a +b +c )2,则该三角形是__________三角形.5、已知x 、y 均为实数,且满足xy +x +y =17,x 2y +xy 2=66,则x 4+x 3y +x 2y 2+xy 3+y 4=__________.6、设y =kx ,是否存在实数k ,使得代数式2222222(43)4()x y x y x x y +--)(-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.7、设681×2019−681×2018=a ,2015×2016−2013×2018=b c ,则a ,b ,c 的大小关系是( )A .b <c <aB .a <c <bC .b <a <cD .c <b <a8、发现与探索.(1)根据小明的解答将下列各式因式分解小明的解答:a2-6a+5=a2-6a+9-9+5=(a-3)2-4=(a-5)(a-1)①a2-12a+20=__________________________________________________________________________;②(a-1)2-8(a-1)+7=______________________________________________________________;③a2-6ab+5b2=__________________________________________________________________________.(2)根据小丽的思考解决下列问题:小丽的思考:代数式(a-3)2+4无论a取何值(a-3)2都大于等于0,再加上4,则代数式(a-3)2+4大于等于4,则(a-3)2+4有最小值为4.①说明:代数式a2-12a+20的最小值为-16.②请仿照小丽的思考解释代数式-(a+1)2+8的最大值为8,并求代数式-a2+12a-8的最大值.复习笔记1、分式的定义:(1)分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含__________,那么称AB 为分式. (2)分式有无意义:若__________,则A B 有意义;若__________,则AB无意义;若__________,则AB =0.2、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的___________. 用式子表示为______________________________.约分:把一个分式的分子和分母的__________约去,这种变形称为分式的约分.公分母:通分时一般取各分母的系数的最小公倍数与各分母所有字母的最高次幂的积为公分母. 通分:根据分式的基本性质,把异分母的分式化为__________的分式,这一过程称为分式的通分.3、分式的基本运算:分式的运算类似于分数的运算.分式的加减:①同分母分式加减:分母不变,分子相加减;②异分母分式加减:找公分母,化为同分母,再进行①同分母的运算. 分式的乘除:①分式相乘,分子、分母分别相乘;②分式相除,化为乘法——乘以除数的倒数,再进行①的运算.4、比例:成比例:若::a b c d =,则称a 、b 、c 、d 成比例.其中,a 、d 叫比例外项,b 、c 叫做比例內项,d 叫做第四比例项.基本性质:两内项之积等与两外项之积.合比性质:若a c b d =,则有a kb c kd b d ++=,特别地,有a b c d b d ++=和a b c d b d --=. 等比性质:若==a c e k b d f ==,则有+e a c a ck b d f b d++===++(其中0b d f +++≠),特别地, 若a c b d =,则有a c ab d b+=+(其中0b d +≠).课堂例题1、已知关于x 的分式235x x x a--+,当x =2时,分式无意义,则a =__________,当6a <时,使分式无意义的x 的值共有__________个.2、当11112,3,4......,2018,,,,......,2342018x =时,可分别算出代数式221x x +的值,则所得的结果的和是__________.3、已知a ,b ,c 满足a +b +c =0,abc =8,那么1a +1b +1c的值是( )A .正数B .零C .负数D .正、负不能确定4、a ,b ,c 均不为0,若x y a -=y z b -=z xc-=abc <0,则P (ab ,bc )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5、先化简分式22222936931a a a a a a a a a ---÷-+++-,然后在0、1、2、3中选一个你喜欢的a 值,代入求值.6、已知a b c a b d a c d b c dm d c b a++++++++====,则m 值为__________.7、在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如1112323=-⨯,5112323=+⨯.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如111(1)1x x x x =-++,仿照上述方法,若分式232xx x --可以拆分成12A B x x ++-的形式,那么(B +1)-(A +1)=__________.8、阅读下面材料,并解答问题.材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b =-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b )∵对应任意x ,上述等式均成立,∴113a a b -=⎧⎨+=⎩,∴a =2,b =1.∴42231x x x --+-+=222(1)(2)11x x x -+++-+=2222(1)(2)111x x x x -+++-+-+=x 2+2+211x -+. 这样,分式42231x x x --+-+被拆分成了一个整式(x 2+2)与一个分式211x -+的和.解答:(1)将分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试求422681x x x --+-+( | x |<1 )的最小值;(3)如果211x x -+的值为整数,求x 的整数值.课堂练习1、化简:221()4a ab b a b -÷=__________.2、化简求值:22421441a a a a a -+÷--++,并选择一个自己喜欢的数代入求值.3、已知123x y -=,分式4322x xy yx xy y+-+-的值为__________.4、若实数a ,b ,c 满足条件1a +1b +1c =1a b c++,则a ,b ,c 中( )A .必有两个数相等B .必有两个数互为相反的数C .必有两个数互为倒数D .每两个数都不等5、已知22(1)20(1)(2)x xy x y -+-=++,则1xy +1(1)(1)x y +++……+1(2018)(2018)x y ++的值是__________. 6、已知x b c a +-=y c a b +-=za b c+-,则(b -c )x +(c -a )y +(a -b )z 的值为__________.7、已知a ,b ,c 为非零实数,且a +b +c ≠0,当a b c a b c a b c c b a +--+-++==时,求()()()a b b c c a abc+++的值.8、(1)已知A =11a ++11b +,B =1a a ++1b b +,若A =B ,求a 、b 之间的关系式; (2)已知a 、b 、c 都是正数,P =11a ++11b ++11c +,Q =1bc bc ++1ac ac ++1abab +,若P =Q ,那么a 、b 、c之间有什么关系?试证明你的结论.复习笔记1、二次根式的定义:0)a ≥,a 可以是数也可以是式子.2、二次根式的性质:(1)2a =;(2(0)(0)aa a aa ≥⎧==⎨-<⎩.3、最简二次根式:、不含开的尽方的因数或因式的二同类二次根式:化为最简二次根式后,根号内的部分相同,则为同类二次根式.0)a ≥等.4、二次根式的计算:(1)乘除计算:=0a ≥,0b >); ②步骤:定符号→内乘内,外乘外→化简(目标最简二次根式). (2)加减计算:步骤:化为最简二次根式→合并同类二次根式.5、2(),||,三个“非负”的式子.显然,若2()||0+,那么每一项必定为0.课堂例题1a 的值是__________.2、无论x m 的取值范围为__________.3、(1)当-1<a <0时,则=__________;(2)若a b =0且ab ≠0,则ab的值为__________.42=__________.5、已知m ,n 是两个连续自然数(m <n ),且q =mn .设p p ( ) A .总是奇数 B .总是偶数C .有时是奇数,有时是偶数D .有时是有理数,有时是无理数6、若实数a ,b ,c |2|a b +-=abc =__________.7、已知a 、b 3a =+1a b =-+,则ab 的值为__________.8、若|2017-m m ,则m -20172=__________.9=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是__________.10、如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =2,DE =1,BD =8,设CD =x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小;(3)根据(211m 、n ,是m 2+n 2=x 且mnx ±变成m 2+n 2±2mn =(m ±n )2解:∵3+2+)2+2×1=(2请你仿照上面的方法,化简下列各式:(1;(2.12、公元3ra +得到近似值.他的算法是:先131212≈+=⨯,由近似值公式得到131********-≈+=⨯; (577)408时,近似公式中的a 是__________,r 是__________.课堂练习1、已知∆ABC 的三边a ,b ,c 满足2|2|1025a a =+,则∆ABC 为( ) A .等腰三角形 B .正三角形 C .直角三角形 D .等腰直角三角形2、(121440b b -+=,则221a b ++=__________; (2)已知x ,y 都是有理数,并且满足2217x y +=-__________.3__________.4、已知:2x __________.5、已知非零实数a ,b 满足24242a b a -++=,求a b +的值为__________.6、设正整数a ,m ,n a ,m ,n 的取值( ) A .有一组 B .有二组 C .多于二组 D .不存在7、若x >0,y >0=的值是__________.8、古希腊的几何学家海伦(约公元50年)在研究中发现:如果一个三角形的三边长分别为a ,b ,c ,那么三角形的面积S 与a ,b ,c 之间的关系式是S P =+2a b c+.若三角形的三边长分别为4,6,8,则该三角形的面积为__________.20181)≥⨯的n 可以取得的最小整数是__________.。
【人教版】2019年春九年级数学下册:全册中考知识点梳理(共27讲)-精校.doc
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程二次方程解应用题(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.根,则必须要根据题意检验根是否有意义.第7讲分式方程知识点一:分式方程及其解法关键点拨及对应举例1.定义分母中含有未知数的方程叫做分式方程.例:在下列方程中,①210x+=;②4x y+=-;③11xx=-,其中是分式方程的是③.2.解分式方程基本思路:分式方程整式方程例:将方程12211x x+=--转化为整式方程可得:1-2=2(x-1).解法步骤:(1)去分母,将分式方程化为整式方程;(2)解所得的整式方程;(3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程11x=-有增根,则增根为1.知识点二:分式方程的应用4.列分式方程解应用题的一般步骤(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答.在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a方程两边同乘以最简公分母约去分母知识点三 :一元一次不等式组的定义及其解法5.定义 由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示. (2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a的解集是x >-1,则a 的取值范围是a <1. 6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b≤⎧⎨≤⎩ x ≤a 小小取小 x a x b≥⎧⎨≤⎩ a ≤x ≤b 大小,小大中间找 x a x b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0.(2)坐标轴上点的坐标特征: ①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x=0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ).(5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限. (2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决. 3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |.(2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|;点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数xy第四象限(+,-)第三象限 (-,-)第二象限 (-,+)第一象限 (+,+)–1–2–3123–1–2–3123O4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0 (1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=07.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系y=k2x+by=k1x+b数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围. 数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7 .开口向上向下对称轴x=2ba-顶点坐标24,24b ac ba a⎛⎫--⎪⎝⎭增减性当x>2ba-时,y随x的增大而增大;当x<2ba-时,y随x的增大而减小.当x>2ba-时,y随x的增大而减小;当x<2ba-时,y随x的增大而增大.最值x=2ba-,y最小=244ac ba-. x=2ba-,y最大=244ac ba-.3.系数a、b、c a决定抛物线的开口方向及开口大小当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.某些特殊形式代数式的符号:①a±b+c即为x=±1时,y的值;②4a±2b+c即为x=±2时,y的值.③2a+b的符号,需判断对称轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.a、b 决定对称轴(x=-b/2a)的位置当a,b同号,-b/2a<0,对称轴在y轴左边;当b=0时, -b/2a=0,对称轴为y轴;当a,b异号,-b/2a>0,对称轴在y轴右边.c 决定抛物线与y轴的交点的位置当c>0时,抛物线与y轴的交点在正半轴上;当c=0时,抛物线经过原点;当c<0时,抛物线与y轴的交点在负半轴上.b2-4ac决定抛物线与x轴的交点个数b2-4ac>0时,抛物线与x轴有2个交点;b2-4ac=0时,抛物线与x轴有1个交点;b2-4ac<0时,抛物线与x轴没有交点第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质角与角平分线的规律总结∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°; 如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC⇒∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形十六、知识清单梳理知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.21P COBAPCO BADABC abcDABC abc2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0) (2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b +=85. 3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC =. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方. (3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.F E D CBA l 5l 4l 3l 2l 1ODCBAED CBAFE DC BAFE DC B AFE DC B A。
人教版九年级数学下册全册中考知识点梳理(共27讲)
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲 一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例 1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子. (2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a 与b 的差不大于1”用不等式表示为a -b≤1. 2.不等式的基本性质 性质1:若a >b,则 a ±c >b ±c ;性质2:若a >b,c >0,则ac >bc ,a c >b c ;性质3:若a >b,c <0,则ac <bc ,a c <b c. 牢记不等式性质3,注意变号. 如:在不等式-2x >4中,若将不等式两边同时除以-2,可得x <2.知识点二 :一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230m mx ++>是关于x 的一元一次不等式,则m 的值为-1. 4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x ≥a x >a x ≤a x <a知识点三 :一元一次不等式组的定义及其解法5.定义 由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示. (2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a的解集是x >-1,则a 的取值范围是a <1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b≤⎧⎨≤⎩ x ≤a 小小取小 x a x b≥⎧⎨≤⎩ a ≤x ≤b 大小,小大中间找 x a x b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0.(2)坐标轴上点的坐标特征: ①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x=0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ).(5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限. (2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决. 3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |.(2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|;点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一确定的值与其对应,那么就称x 是自变量,y 是x 的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35x x +-中自变量的取值范围是x ≥-3且x ≠5. 5.函数的图象 (1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点; ②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法: ①设时间为t (或线段长为x ),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y 随x 的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y 值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x 轴的线段.第10讲 一次函数知识点一 :一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念 (1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b/k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.例:当k =1时,函数y =kx +k -1是正比例函数,2.一次函数k ,b K >0, K >0, K >0,b=0 k <0, k <0, k <0,(1)一次函数y=kx+b 中,k 确定xy第四象限(+,-)第三象限 (-,-)第二象限 (-,+)第一象限 (+,+)–1–2–3123–1–2–3123O的性质 符号 b >0 b <0b >0b <0 b =0了倾斜方向和倾斜程度,b 确定了与y 轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法. 例:已知函数y =-2x +b ,函数值y 随x 的增大而减小(填“增大”或“减小”).大致 图象经过象限 一、二、三 一、三、四 一、三 一、二、四 二、三、四 二、四 图象性质y 随x 的增大而增大 y 随x 的增大而减小 3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x 轴的交点,只需令y=0,解出x 即可;求与y 轴的交点,只需令x=0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是⎝⎛⎭⎫-b k ,0,与y 轴的交点是(0,b );(2)正比例函数y =kx (k ≠0)的图象恒过点(0,0).例:一次函数y =x +2与x 轴交点的坐标是(-2,0),与y 轴交点的坐标是(0,2). 知识点二 :确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为: ①设:设函数表达式为y =kx +b (k ≠0); ②代:将已知点的坐标代入函数表达式,解方程或方程组; ③解:求出k 与b 的值,得到函数表达式. (2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式; ③平移转化型:如已知函数是由y=2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可. (2)只要给出一次函数与y 轴交点坐标即可得出b 的值,b 值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2. 5.一次函数图象的平移 规律:①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同.②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h. 例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三 :一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.例:(1)已知关于x 的方程ax+b=0的解为x=1,则函数y=ax+b 与x 轴的交点坐标为(1,0). (2)一次函数y=-3x+12中,当x>4时,y 的值为负数.7.一次函数与方程组二元一次方程组 的解⇔两个一次函数y=k 1x+b 和y=k 2x+b 图象的交点坐标. 8.一次函数与不等式 (1)函数y=kx+b 的函数值y >0时,自变量x 的取值范围就是不等式kx+b >0的解集(2)函数y=kx+b 的函数值y <0时,自变量x 的取值范围就是不等式kx+b <0的解集知识点四 :一次函数的实际应用9.一般步骤 (1)设出实际问题中的变量;(2)建立一次函数关系式; (3)利用待定系数法求出一次函数关系式; (4)确定自变量的取值范围; (5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义; (6)做答.一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲 反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例y=k 2x+by=k 1x+b1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例13讲二次函数的应用第第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°;如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形 (1)性质①边角关系:三边相等,三角都相等且都等于60°. 即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴. (2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形. (1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二 :角平分线和垂直平分线3.角平分线 (1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB. (2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=6.4.垂直平分线图形 (1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上. 知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A +∠B =90°; (2) 30°角所对的直角边等于斜边的一半.即若∠B =30°则AC =12AB ;(3)斜边上的中线长等于斜边长的一半.即若CD 是中线,则CD =12AB. (4)勾股定理:两直角边a 、b 的平方和等于斜边c 的平方.即 a 2+b 2=c 2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b 为直角边,c 为斜边,h 是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定 (1) 有一个角是直角的三角形是直角三角形.即若∠C =90°,则△ABC 是Rt △; (2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD =BD =CD ,则△ABC 是Rt △(3) 勾股定理的逆定理:若a 2+b 2=c 2,则△ABC 是Rt △.第17讲 相似三角形十六、 知识清单梳理知识点一:比例线段关键点拨与对应举例21P COBAPC OBAD ABCa bc DABCa bc1. 比例线段 在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC =. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方. (3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.F E D CBA l 5l 4l 3l 2l 1ODCBAED CBAFE DC BAFE DC B AFE DC B A7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式角(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O 出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤 (1)弄清题中名词、术语,根据题意画出图形,建立数学模型; (2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元 四边形第19讲 多边形与平行四边形知识点一:多边形关键点拨与对应举例 1.多边形的相关概念 (1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n 边形的一个顶点可以引(n -3)条对角线,并且这些对角线把多边形分成了(n -2)个三角形;n 边形对角线条数为()32n n -. 多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解. 例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和 ( 1 ) 内角和:n 边形内角和公式为(n -2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n 边形的每个内角为()2180n n -⋅,每一个外角为360°/n.( 3 ) 正n 边形有n 条对称轴.(4)对于正n 边形,当n 为奇数时,是轴对称图形;当n 为偶数时,既是轴对称图形,又是中心对称图形.知识点二 :平行四边形的性质4.平行四边形的定义 两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法: (1)平行四边形相邻两边之和等于周长的一半. (2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题. (3)过平行四边形对5.平行四边形的性质(1) 边:两组对边分别平行且相等.即AB ∥CD 且AB =CD ,BC ∥AD 且AD =BC.(2)角:对角相等,邻角互补.即∠BAD =∠BCD ,∠ABC =∠ADC , ∠ABC +∠BCD =180°,∠BAD +∠ADC =180°.(3)对角线:互相平分.即OA =OC ,OB =OD(4)对称性:中心对称但不是轴对称.ODCBA。
【人教版】2019年春九年级数学下册:全册中考知识点梳理(共27讲)-推荐
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程二次方程解应用题(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.根,则必须要根据题意检验根是否有意义.第7讲分式方程知识点一:分式方程及其解法关键点拨及对应举例1.定义分母中含有未知数的方程叫做分式方程.例:在下列方程中,①210x+=;②4x y+=-;③11xx=-,其中是分式方程的是③.2.解分式方程基本思路:分式方程整式方程例:将方程12211x x+=--转化为整式方程可得:1-2=2(x-1).解法步骤:(1)去分母,将分式方程化为整式方程;(2)解所得的整式方程;(3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程11x=-有增根,则增根为1.知识点二:分式方程的应用4.列分式方程解应用题的一般步骤(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答.在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a方程两边同乘以最简公分母约去分母知识点三 :一元一次不等式组的定义及其解法5.定义 由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示. (2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a的解集是x >-1,则a 的取值范围是a <1. 6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b≤⎧⎨≤⎩ x ≤a 小小取小 x a x b≥⎧⎨≤⎩ a ≤x ≤b 大小,小大中间找 x a x b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0.(2)坐标轴上点的坐标特征: ①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x=0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ).(5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限. (2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决. 3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |.(2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|;点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数xy第四象限(+,-)第三象限 (-,-)第二象限 (-,+)第一象限 (+,+)–1–2–3123–1–2–3123O4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0 (1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=07.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系y=k2x+by=k1x+b数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围. 数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7 .开口向上向下对称轴x=2ba-顶点坐标24,24b ac ba a⎛⎫--⎪⎝⎭增减性当x>2ba-时,y随x的增大而增大;当x<2ba-时,y随x的增大而减小.当x>2ba-时,y随x的增大而减小;当x<2ba-时,y随x的增大而增大.最值x=2ba-,y最小=244ac ba-. x=2ba-,y最大=244ac ba-.3.系数a、b、c a决定抛物线的开口方向及开口大小当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.某些特殊形式代数式的符号:①a±b+c即为x=±1时,y的值;②4a±2b+c即为x=±2时,y的值.③2a+b的符号,需判断对称轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.a、b 决定对称轴(x=-b/2a)的位置当a,b同号,-b/2a<0,对称轴在y轴左边;当b=0时, -b/2a=0,对称轴为y轴;当a,b异号,-b/2a>0,对称轴在y轴右边.c 决定抛物线与y轴的交点的位置当c>0时,抛物线与y轴的交点在正半轴上;当c=0时,抛物线经过原点;当c<0时,抛物线与y轴的交点在负半轴上.b2-4ac决定抛物线与x轴的交点个数b2-4ac>0时,抛物线与x轴有2个交点;b2-4ac=0时,抛物线与x轴有1个交点;b2-4ac<0时,抛物线与x轴没有交点第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质角与角平分线的规律总结∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°; 如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC⇒∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形十六、知识清单梳理知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.21P COBAPCO BADABC abcDABC abc2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0) (2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b +=85. 3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC =. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方. (3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.F E D CBA l 5l 4l 3l 2l 1ODCBAED CBAFE DC BAFE DC B AFE DC B A。
人教版九年级数学下册:全册中考知识点梳理(共27讲)-优质
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解一、知识清单梳理第3讲分式二、知识清单梳理第4讲二次根式三、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组) 四、知识清单梳理第6讲一元二次方程五、知识清单梳理第7讲分式方程六、知识清单梳理第8讲一元一次不等式(组)七、知识清单梳理知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲平面直角坐标系与函数八、知识清单梳理知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x 轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y)M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O九、知识清单梳理知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0 (1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x >4时,y的值为负数.7.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;一次函数本身并没有最值,但在实际问题中,自变量的取值y=k2x+b y=k1x+b(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质十、知识清单梳理知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围. 例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE >S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质十一、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7 .开口向上向下对称轴x=2ba-顶点坐标24,24b ac ba a⎛⎫--⎪⎝⎭增减性当x>2ba-时,y随x的增大而增大;当x<2ba-时,y随x的增大而减小.当x>2ba-时,y随x的增大而减小;当x<2ba-时,y随x的增大而增大.最值x=2ba-,y最小=244ac ba-. x=2ba-,y最大=244ac ba-.3.系数a、a决定抛物线的开口方当a>0时,抛物线开口向上;某些特殊形式代数式的符号:第13讲二次函数的应用十二、知识清单梳理第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线十三、知识清单梳理第15讲一般三角形及其性质十四、知识清单梳理知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角. 7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示 如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形十五、 知识清单梳理知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.21P COBAPCO BADABC abcDABC abc第17讲 相似三角形十六、 知识清单梳理知识点一:比例线段关键点拨与对应举例1. 比例 线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a cb d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理 (1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OB OD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. F E D CB A l 5l 4l 3l 2l 1ODCBAEDCBAFEDC BAFE DC B AFE DC B A6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形十七、知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;。
【精品】【人教版】2019年春九年级数学下册:全册中考知识点梳理(共27讲)
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数1一、知识清单梳理2第3讲分式3第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)4第6讲一元二次方程5第7讲分式方程6第8讲一元一次不等式(组) x≥a x>a x≤a x<a第9讲平面直角坐标系与函数7)M(a,b)到x轴,y轴的距离:到轴的距离为|b|;)到y第10讲一次函数89第11讲反比例函数的图象和性质(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解..三个阴影部分的面积按从小到大的顺=S△OPE>S△BOD.10第12讲二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质第16讲等腰、等边及直角三角形°)的三角形是等边三角形;第17讲相似三角形十六、知识清单梳理D cD c的比叫做黄金比.10cm的线段进行黄金分割,那么较长线段长为5(5-2.EC第18讲解直角三角形这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;第五单元四边形第19讲多边形与平行四边形,每一个外角为例:如图四边形第20讲特殊的平行四边形如图,四边形(变式:如图④,四边形ABCD第六单元圆第21讲圆的基本性质垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图c第22讲与圆有关的位置关系21内切圆半径与三角形边的关系:)任意三角形的内切圆(如图a),设例:已知△ABC的三边长则它的外切圆半径是2.5.第23讲与圆有关的计算二十一、知识清单梳理(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOC为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2知识点二:与圆有关的计算公式n22第七单元图形与变换第24讲平移、对称、旋转与位似23第25讲视图与投影第八单元统计与概率第26讲统计24第27讲概率2526。
【人教版】2019年春九年级数学下册:全册中考知识点梳理(共27讲)-精编.doc
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程二次方程解应用题(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.根,则必须要根据题意检验根是否有意义.第7讲分式方程知识点一:分式方程及其解法关键点拨及对应举例1.定义分母中含有未知数的方程叫做分式方程.例:在下列方程中,①210x+=;②4x y+=-;③11xx=-,其中是分式方程的是③.2.解分式方程基本思路:分式方程整式方程例:将方程12211x x+=--转化为整式方程可得:1-2=2(x-1).解法步骤:(1)去分母,将分式方程化为整式方程;(2)解所得的整式方程;(3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程11x=-有增根,则增根为1.知识点二:分式方程的应用4.列分式方程解应用题的一般步骤(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答.在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a方程两边同乘以最简公分母约去分母知识点三 :一元一次不等式组的定义及其解法5.定义 由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示. (2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a的解集是x >-1,则a 的取值范围是a <1. 6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b≤⎧⎨≤⎩ x ≤a 小小取小 x a x b≥⎧⎨≤⎩ a ≤x ≤b 大小,小大中间找 x a x b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0.(2)坐标轴上点的坐标特征: ①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x=0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ).(5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限. (2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决. 3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |.(2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|;点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数xy第四象限(+,-)第三象限 (-,-)第二象限 (-,+)第一象限 (+,+)–1–2–3123–1–2–3123O4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0 (1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=07.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系y=k2x+by=k1x+b数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围. 数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7 .开口向上向下对称轴x=2ba-顶点坐标24,24b ac ba a⎛⎫--⎪⎝⎭增减性当x>2ba-时,y随x的增大而增大;当x<2ba-时,y随x的增大而减小.当x>2ba-时,y随x的增大而减小;当x<2ba-时,y随x的增大而增大.最值x=2ba-,y最小=244ac ba-. x=2ba-,y最大=244ac ba-.3.系数a、b、c a决定抛物线的开口方向及开口大小当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.某些特殊形式代数式的符号:①a±b+c即为x=±1时,y的值;②4a±2b+c即为x=±2时,y的值.③2a+b的符号,需判断对称轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.a、b 决定对称轴(x=-b/2a)的位置当a,b同号,-b/2a<0,对称轴在y轴左边;当b=0时, -b/2a=0,对称轴为y轴;当a,b异号,-b/2a>0,对称轴在y轴右边.c 决定抛物线与y轴的交点的位置当c>0时,抛物线与y轴的交点在正半轴上;当c=0时,抛物线经过原点;当c<0时,抛物线与y轴的交点在负半轴上.b2-4ac决定抛物线与x轴的交点个数b2-4ac>0时,抛物线与x轴有2个交点;b2-4ac=0时,抛物线与x轴有1个交点;b2-4ac<0时,抛物线与x轴没有交点第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质角与角平分线的规律总结∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°; 如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC⇒∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形十六、知识清单梳理知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.21P COBAPCO BADABC abcDABC abc2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0) (2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b +=85. 3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC =. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方. (3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.F E D CBA l 5l 4l 3l 2l 1ODCBAED CBAFE DC BAFE DC B AFE DC B A。
九年级考数学集训第一部分数与式第1课时实数的相关概念
A. a
B. b
C. c
D. d
B
B
14.[2023·黄冈、孝感、咸宁]2023 年全国普通高校毕业生规模
预计达到1 158 万人,数11 580 000 用科学记数法表示为
(A ) A. 1.158×107
B. 1.158×108
C. 1.158×103
D. 1 158×104
15.2023 年5 月17 日10 时49 分,我国在西昌卫星发射中心成
18.[2023·河北]光年是天文学上的一种距离单位,一光年是指 光在一年内走过的路程,约等于9.46×1012 km.下列正确的 是( D ) A. 9.46×1012-10=9.46×1011 B. 9.46×1012-0.46=9×1012 C. 9.46×1012是一个12位数 D. 9.46×1012是一个13位数
功发射第五十六颗北斗导航卫星,北斗系统作为国家重要
基础设施,深刻改变着人们的生产生活方式. 目前,某地图
软件调用的北斗卫星日定位量超3 000 亿次.将数据3 000
亿用科学记数法表示为( D )
A. 3×108
B. 3×109
C. 3×1010
D. 3×1011
16.[2023·眉山]生物学家发现了某种花粉的直径约为0.0 000 021
19.常言道:失之毫厘,谬以千里. 当人们向太空发射火箭或者
描述星际位置时,需要非常准确的数据.1″的角真的很小,
把整个圆等分成360 份,每份这样的弧所对的圆心角的度数
是1°,1°=60′=3 600″. 若一个等腰三角形的腰长为1 千
米,底边长为4.848 毫米,则其顶角的度数就是1″. 太阳到地
A. 运出30 吨粮食
中考数学试题分类汇编及解析 实数与代数式 新课标 人教版
中考数学试题分类汇编及解析 实数与代数式 新课标 人教版1、(2006山东济南)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , ,[解析] 例1:2249a b - (23)(23)a b a b =+-.2()1x y +-;22()4x y a +-;22()9x y b +-;21()x y -+;224()a x y -+;229()b x y -+ 例2:21()x y -+[][]1()1()x y x y =++-+(1)(1)x y x y =++--.2、(2006辽宁大连)A 玉米试验田是边长为米的正方形减去边长为1米的蓄水池后余下部分;B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克。
⑴哪种玉米田的单位面积产量高?⑵高的单位面积产量是低的单位面积产量的多少倍?[解析] (1)A 玉米试验田面积是(a 2-1)米2,单位面积产量是15002-a 千克/米2; B 玉米试验田面积是(a -1)2米2,单位面积产量是2)1(500-a 千克/米2; ∵a 2-1-(a -1)2=2(a -1),∵a -1>0,∴0<(a -1)2<a 2-1 ∴15002-a <2)1(500-a ∴B 玉米的单位面积产量高. (2)2)1(500-a ÷15002-a =2)1(500-a ×50012-a =2)1()1)(1(--+a a a =11-+a a ∴高的单位面积产量是低的单位面积产量的11-+a a 倍。
3、(2006江苏常州)将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余); 第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;本题考查运用作差法来比较代数式的大小,检测对基础知识的应用能力。
9年级(下)实数与代数式以及方程、不等式的复习(学生版)
初三数学基础复习一实数与代数式以及方程、不等式的复习基础知识要点1.__________和__________统称有理数。
2.______________________叫做无理数。
3._________和_________统称实数。
4.只有相反数没有倒数的数是_______.5.倒数是本身的数是___________.6.a与b是互为相反数,则a+b=_______,a与b互为倒数,则ab=_____.7.a与b互为负倒数,则ab=____________.8.,则=_____________;,则a___________.9.分类讨论:=____________,=______________.10.称a的____________,,则a的平方根表示为__________.11.乘法展开,乘法公式①________;②___________;③_______________;④______________;⑤_________.12.因式分解公式①________________;②_________;③______________;④______________________;⑤______________________.13.分式运算只能___________分,不能____________分母。
14.求分式的值为零,则应使分子_________,分母__________.15._________________________叫做分母有理化. 16.的有理化因式为__________;的有理化因式为_________; 的有理化因式为_______;的有理化因式为_________.17._______;________;_________;_________;_______.18.科学记数法是指把一个数表示为_______________________________的形式。
19.=_____;=_______;12a=________;1ma=________;nma=________;nma-=__________.20.在一个近似数中,从_____________________起,到精确到的位数为止,这中间所以的数字都叫做这个近似数的_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级下中考分类集训1实数与代数式学校:___________姓名:___________班级:___________考号:___________一、单选题1.3的相反数是( )A .3-BC .3D .3± 2.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km 3.实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +> 4.某商品打七折后价格为a 元,则原价为( )A .a 元B .107a 元C .30%a 元D .710a 元 5.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .96.当m =-1时,代数式2m+3的值是( )A .-1B .0C .1D .27.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==, 8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-9.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±110.若代数式13x x +-有意义,则实数x 的取值范围是( ) A .1x =- B .3x = C .1x ≠- D .3x ≠11.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④12.下列二次根式是最简二次根式的是( )A B C D13.下列运算正确的是( )A =B =C 2=-D = 14.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .192二、填空题 15.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-;2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.16.若21x x +=,则433331x x x +++的值为_____.17.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m =_____;(2)当y =﹣2时,n 的值为_____.18.因式分解:2()4()a a b a b ---=___.19.若a+b=4,ab=1,则a 2b+ab 2=________.20.计算:111x x x+=--_____.21__________.22有意义时,x 应满足的条件是______. 23.观察下列等式:①3﹣=﹣1)2,②5﹣=)2,③7﹣=2,…请你根据以上规律,写出第6个等式____________.三、解答题24.(1)计算:202|3|π+-.(2)计算:22()()19(6)2-+--+-÷.25.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-. 26.阅读下列题目的解题过程: 已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状. 解:∵a 2c 2﹣b 2c 2=a 4﹣b 4 (A )∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2) (B )∴c 2=a 2+b 2 (C )∴△ABC 是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: ;(3)本题正确的结论为: .27.(1)分解因式:()()2125x x -+-.(2)分解因式:3256x x x ++.28.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中2m =参考答案1.A【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】,解:3的相反数是3故选:A.【点睛】本题主要考查相反数的定义,这是中考的必考点,必须熟练掌握.2.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【分析】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.【详解】利用数轴得m<0<1<n,所以-m>0,1-m>1,mn<0,m+1<0.故选B.【点睛】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.4.B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x 元,∵某商品打七折后价格为a 元,∴原价为:0.7x=a ,则x=107a (元), 故选B .【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 5.C【解析】分析:首先可判断单项式a m-1b 2与12a 2b n 是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.详解:∵单项式a m-1b 2与12a 2b n 的和仍是单项式, ∴单项式a m-1b 2与12a 2b n 是同类项, ∴m-1=2,n=2,∴m=3,n=2,∴n m =8.故选C .点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同. 6.C【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=⨯-+=;故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.7.D【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n-1=-1;C 选项满足m≤n ,则y=2m-1=3;D 选项不满足m≤n ,则y=2n-1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.8.C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.B【解析】【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式2x1x1-+的值为零,∴21010xx-=⎧⎨+≠⎩,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.10.D【分析】分式有意义的条件是分母不为0.【详解】代数式13xx+-有意义,∴30x-≠,∴3x≠故选D.【点睛】本题运用了分式有意义的条件知识点,关键要知道分母不为0是分式有意义的条件.11.B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.12.D【分析】根据最简二次根式的概念逐一进行判断即可.【详解】=,故A选项不符合题意;A.2B. =,故B选项不符合题意;C. =C选项不符合题意;D.故选D.【点睛】本题考查了最简二次根式的识别,熟练掌握二次根式的化简以及最简二次根式的概念是解题的关键.13.D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A2,所以A选项错误;B、原式=B选项错误;C、原式=2,所以C选项错误;=,所以D选项正确.D故选D.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.A【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =. ∴56792p ++==,∴ABC ∆的面积S ==故选A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.15.7i -【解析】【分析】根据题目材料,可得复数计算方法,先去括号,再进行加减运算.【详解】解:222(12)(2)(2)24244i i i i i i i i +-+-=-+-++- 26i i =--61i =-+7i =-.故答案为:7i -.【点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.16.4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.17.3x ; 1【分析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,直接写出m 即可;(2)先转换成加法形式,表示出m ,n ,y ,再把y=-2代入解出x ,即可求出n.【详解】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m=x+2x=3x ;(2)由题知m=3x ,n=2x+3,y=m+n ,则y=3x+2x+3=5x+3,把y=-2代入,-2=5x+3,解得x=-1,则n=2×(-1)+3=1.【点睛】本题是对新定义的考查,熟练理解题上新定义内容和一元一次方程是解决本题的关键. 18.()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键. 19.4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.20.1【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】 解:原式111x x x =--- 11x x -=- 1=.故答案为:1.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.3【分析】根据二次根式的除法计算即可.【详解】,故答案为3【点睛】本题考查了二次根式的除法,熟练掌握运算法则是解题关键.22.8x >.【解析】【分析】直接利用二次根式的定义和分数有意义求出x的取值范围.【详解】有意义,可得:80x->,所以8x>,故答案为:8x>.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.23.213-=【分析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为)2(n≥1的整数).【详解】∵①3﹣﹣1)2,②5﹣=)2,③7﹣=﹣)2,…,∴第n个等式为:)2,∴第6个等式为:213-=,故答案为213-=.【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键.24.(1)6;(2)13【分析】(1)从左至右先进行乘方运算、绝对值化简、开平方运算以及0次幂的运算,再进行加减运算即可;(2)从左至右先进行平方运算、二次根式的运算以及除法运算,最后进行加减运算即可.【详解】解:(1)原式43216=+-+=;(2)原式169313=++-=.【点睛】本题考查实数的运算,熟练掌握实数的运算法则是解题的关键.25.1【分析】注意到23a +()可以利用完全平方公式进行展开,11a a +()(﹣)利润平方差公式可化为21a (﹣),,则将各项合并即可化简,最后代入12a =-进行计算. 【详解】解:原式2269148a a a a ++-=(﹣)-﹣22a += 将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭【点睛】考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.26.(1)C ;(2)没有考虑a=b 的情况;(3)△ABC 是等腰三角形或直角三角形.【解析】【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B 到C 可知没有考虑a=b 的情况;(3)根据题意可以写出正确的结论.【详解】(1)由题目中的解答步骤可得,错误步骤的代号为:C ,故答案为C ;(2)错误的原因为:没有考虑a=b 的情况,故答案为没有考虑a=b 的情况;(3)本题正确的结论为:△ABC 是等腰三角形或直角三角形,故答案为△ABC 是等腰三角形或直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.(1)()()33x x +-;(2)()()23x x x ++【分析】(1)先利用完全平方公式化简,进而利用平方差公式分解因式即可;(2)先提公因式x ,然后根据十字相乘法的分解方法和特点分解因式.【详解】解:(1)原式()()2221210933x x x x x x =-++-=-=+-; (2)原式()()()25623x x x x x x =++=++. 【点睛】此题主要考查了公式法以及十字相乘法分解因式,正确运用公式是解题关键.运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.28【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.【详解】 原式=()()2m 1m 21m 2m 22m 1++⎛⎫-÷ ⎪+++⎝⎭ m 12=m 2m 1+⋅++ =2m 2+,当m 2=时,原式=【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.。