模拟量的输入输出讲解
第9章 PLC的模拟量输入与输出

绪论EXIT
9.1 欧姆龙PLC模拟量模块
一、CJ系列PLC模拟量输入模块及应用
• 模拟量输入模块的功能是将输入PLC的外 部模拟量转换为PLC所需的数字量
• 模拟量输入模块有2路、4路、8路等规格 • 当执行读模拟量指令时,指定输入通路中
• 本系统使用了1个16点输入 模块,1个16点输出模块和 1个8路模拟量输入模块
绪论EXIT
数据区参数的配置
CJ1W-AD081-V1对应CIO区通道分配
通道号
位号
I/O
(字号) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
输出(从 CPU到模
块)
输入(从 模块到 CPU)
n
n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8
n+9
未用
峰值保持功能(0:未用; 1:使用)
87654321
第1路输入经A/D转换后的数字量(二进制数)
第2路输入经A/D转换后的数字量(二进制数)
第3路输入经A/D转换后的数字量(二进制数)
第4路输入经A/D转换后的数字量(二进制数)
• 上电之前必须设置 好单元号
• 单元号与CIO区、 DM区通道有对应 关系
绪论EXIT
单元号与CIO区、DM区通道的对应关系
开关设置 单元号 CIO起始通道号n CIO区通道范围 DM起始通道号m
DM区通道范围
00
0#
01
1#
02
《模拟量的输入输出》课件

电压输出型设备可以将电 信号转换为电压模拟信号 ,常用于电压源的输出。
电流输出型设备可以将电 信号转换为电流模拟信号 ,常用于需要恒流源的场 合。
电阻输出型设备可以将电 信号转换为电阻模拟信号 ,常用于需要调节阻值的 场合。
模拟量输出的电路设计
放大电路可以将微弱的电信 号放大到足够的幅度,以满
足输出要求。
模拟量输出的电路设计需要 考虑信号的放大、滤波、隔
离和保护等方面。
01
02
03
滤波电路可以去除信号中的 噪声和干扰,提高信号的纯
净度。
隔离电路可以避免不同电路 之间的相互干扰,保护电路
的安全运行。
04
05
保护电路可以防止电路过载 、过流和过压等异常情况对
电路的损害。
04
模拟量输入输出转换
模拟量输入输出转换的原理
将物理量转换为模拟量信号的装置。
模拟量与数字量的区别
01 数字量
离散的量,如开关状态、二进制数等。
02 转换方式
模拟量通过连续变化表示物理量,数字量通过离 散状态表示信息。
03 传输方式
模拟量信号通过电缆传输,易受干扰;数字量信 号通过数字通信传输,抗干扰能力强。
模拟量的应用领域
工业控制
如温度、压力、流量等参 数的监测和控制。
模拟量输入的电路设计
模拟量输入的电路设计需要考虑信号 源、信号调理电路和测量设备的特性 。
信号调理电路的设计需要考虑噪声抑 制、抗干扰能力和线性范围等因素, 以确保测量结果的准确性和可靠性。
电路设计需要确保信号源与测量设备 之间的阻抗匹配,以减小信号损失和 失真。
03
模拟量输出
模拟量输出的原理
模拟量输入与输出

被测 控的 对象
传感器
采样保持
开关控制部件
A/D
单片 微机 应用 系统
模拟执行部件
D/A
图8-1 单片机应用系统
一 、A/D转换原理与接口
1 A/D转换器常用芯片简介 A/D转换器就是将模拟信号转换为数字信号得器件,种类繁
多,性能各异。与单片机得接口形式也不尽相同,但大致分为并 行接口和串行接口两种。
时钟频率高,A/D转换速度快。允许范围为10~1280KHz 。 通常由80C51 ALE端直接或分频后与0809 CLK端相连接。 ⑷ D0~D7:数字量输出端。 ⑸ OE:A/D转换结果输出允许控制端。 OE=1,允许将A/D转换结果从D0~D7端输出。通常由80C51得端与0809片选端(例如P2、0) 通过或非门与0809 OE端相连接。 ⑹ ALE:地址锁存允许信号输入端。
0809 ALE信号有效时将当前转换得通道地址锁存。 ⑺ START:启动A/D转换信号输入端。
当START端输入一个正脉冲时,立即启动0809进行A/D转换。START端与ALE端连在一 起,由80C51WR与0809片选端(例如P2、0)通过或非门相连。 ⑻ EOC:A/D转换结束信号输出端,高电平有效。 ⑼ UREF(+)、UREF(-):正负基准电压输入端。 ⑽ Vcc:正电源电压(+5V)。GND:接地端。
图8-6 ADC0832与单片机接口
[例2] 设图8-6接口电路用于一个模拟量输入得检测系统。Ui为待转换 得模拟输入电压,要求对Ui连续采样10次,每次采样值经串行A/D转换 电路(ADC0832)转换成数字量,并按顺序依次存于片内RAM得 30H~39H单元中。采样完10次后停止。
C语言数据采集串行A/D转换参考程序: #include<reg51、h> //包含单片机特殊功能寄存器得头文件 #define uchar unsigned char //定义uchar为无符号字符数据类型 static uchar data x[10]; //定义10个单元得数组,存放结果 sbit CS=P3^4; //将CS位定义为P3、4引脚 sbit CLK=P1^0; //将CLK位定义为P1、0引脚 sbit DIO=P1^1; //将DIO位定义为P1、1引脚 unsigned char A_D() //A_D转换函数。功能:将模拟信号转换成数字信 号
模拟量的输入输出原理

硬件设置
1).每个模拟量模块可以选着不同的测量类型和范围, 通过量程卡上的适配开关可以设定测量的类型和 范围。 2).没有量程卡的模块具有适应电压和电流测量的不 同接线端子,通过正确的连接可以设置测量的类 型。 3).设置类型:A(热电阻、热电偶) B(电压) C(四线制电流) D(二进制电流)
模拟量输入模块 SM331
1).用于将模拟量信号转换为CPU内部处理的 数字信号主要成分是A/D转换器。 2).输入的信号一般是模拟量变送器输出的标 准直流电压、电流信号。(0~5V,4~20mA) 3).可以直接与温度传感器相连,但这次试验 中为了显示当前温度采用了AI818变送及显 示功能。 4).外壳上有LED指示灯可以用于显示故障错 误且前面板有标签可以标注。
模拟量输出模块SM332
1).用于将CPU送给的数字信号转换为成比列 的电流信号或电压信号。 2).各通道均有模拟量输出都有故障指示灯, 可以读取诊断信息。 3).由负载和执行器提供器提供电流和电压。 4).额定负载电压均为DC24V,最大短路电流为 25mA,最大开路电压为18V。
模拟量输出模块接线图
模拟量的输入输出原理
制作人
PLC信号模块
模拟量: 在时间上或数值上都是连续的物理量称为, 模拟量 在时间上或数值上都是连续的物理量称为,一般模拟量
输入输出分别用AI/AO表示。 表示。 输入输出分别用 表示 通常用通道表示一路输入信号。 通常用通道表示一路输入信号。
模拟信号模块:输入模块 模拟信号模块:输入模块SM331 输出模块SM332 输出模块 输入输出SM334/SM335 输入输出 数字信号模块: 输入模块SM321 数字信号模块 输入模块 输出模块SM322 输出模块 输入输出SM323 输入输出
V20变频器如何使用模拟量输入、输出定标

V20变频器如何使用模拟量输入、输出定标V20变频器共有两个模拟量输入AI1,AI2和一个模拟量输出AO1。
模拟量输入有哪些类型?与AI相关的参数有哪些?如何实现AI定标?与AO相关的参数有哪些?如何实现AO定标?下面将分别介绍V20变频器的模拟量输入和模拟量输出功能,并通过举例来回答上述问题。
模拟量输入概述V20变频器共有两个模拟量输入:AI1和AI2。
AI1为单端双极性输入,可设置为0到10V电压输入、-10V到10V电压输入和0到20mA电流输入三种输入模式;AI2为单端单极性输入,可设置为0到10V电压输入和0到20mA电流输入两种输入模式。
模拟量输入相关参数如下表所示,从r0751到P0762的12个参数有in000和in001两个下标,其中下标0代表AI1,下标1代表AI2:说明参数号r0750 显示变频器具有的模拟量输入个数r0751 显示模拟量输入状态字,表示AI1、AI2信号是否丢失。
该参数为16位无符号数,可整体连接至CI参数或者按位连接至BI参数第0位为1:AI1信号丢失第1位为1:AI2信号丢失第8位为1:AI1信号未丢失第9位为1:AI2信号未丢失r0752 显示滤波之后、定标之前的模拟量输入实际值,单位为V 或mAP0753 模拟量输入的平滑滤波时间(ms),增大该值可以平滑模拟量输入,减少信号抖动,但响应时间也会相应延长。
设置为0表示禁用滤波器r0754 以百分数形式显示滤波之后、定标之后的模拟量输入值r0755 以十进制数形式显示滤波之后、定标之后的模拟量输入值,最大为16384P0756 设置模拟量输入类型和是否使能AI信号丢失监控功能:0:0V到10V电压输入1:0V到10V电压输入,带监控功能2:0mA到20mA电流输入3:0mA到20mA电流输入,带监控功能4:-10V到10V电压输入P0757 模拟量输入定标的X1值(V/mA),即定标直线第一个点的横坐标值P0758 模拟量输入定标的Y1值(%),即定标直线第一个点的纵坐标值P0759 模拟量输入定标的X2值(V/mA),即定标直线第二个点的横坐标值P0760 模拟量输入定标的Y2值(%),即定标直线第二个点的纵坐标值P0761 模拟量输入死区的宽度(V/mA)P0762 定义从模拟量设定值信号丢失到故障代码F80出现的延迟时间(ms)P2000 基准频率(Hz),百分数100%或十六进制数4000[Hex]对应的频率值模拟量输入定标模拟量输入定标的作用是生成一条直线,形成实际输入电压或电流与模拟量输入百分数之间的一一对应关系。
模拟量输入、输出通道

医疗设备
在医疗设备中,模拟量输入/输出通道用于监测患者 的生理参数和实现设备的控制,如监护仪、呼吸机 等。
模拟量输入/输出通道的重要性
80%
提高设备的控制精度
模拟量输入/输出通道能够实时、 准确地反映输入信号的变化,从 而提高设备的控制精度和稳定性 。
模拟量输入通道的参数与性能指标
01
02
03
04
分辨率
分辨率是指模拟量输入通道能 够识别的最小电压或电流值, 通常以位数或比特数表示。高 分辨率的模拟量输入通道能够 提供更精确的测量结果。
线性度
线性度是指模拟量输入通道的 输入与输出之间的线性关系。 理想的线性度应该是100%,但 实际中的线性度可能会受到多 种因素的影响而有所偏差。
根据接口类型,正确连接信号线,避免信号干扰或数据传输不稳定。
接地处理
为了减少电磁干扰和保护设备,应确保良好的接地措施。
接口保护
在接口电路中加入适当的保护元件,如瞬态抑制二极管、滤波电容等, 以防止过压、过流等异常情况对接口造成损坏。
05
模拟量输入/输出通道的调试与校准
调试步骤与注意事项
检查硬件连接
采样速率
精度
采样速率是指模拟量输入通道 每秒钟能够采样的次数,通常 以赫兹(Hz)或千赫兹(kHz) 表示。高采样速率的模拟量输 入通道能够提供更准确的实时 响应。
精度是指模拟量输入通道的实 际输出值与理论输出值之间的 最大偏差。精度越高,表示模 拟量输入通道的误差越小,测 量结果越准确。
03
模拟量输出通道
精度
模拟量输入输出模块参数

模拟量输入输出模块是工业自动化系统中常见的一种设备,用于实现模拟信号的输入和输出。
以下是模拟量输入输出模块的一些主要参数:
1.输入范围:模块的输入范围是指其可以接收的模拟信号的最大和最小值。
这
个范围通常是根据模块的规格和设计要求来确定的。
2.分辨率:分辨率是指模块在模拟信号转换过程中能够分辨的最小变化量。
它
通常用位数来表示,例如12位或16位等。
分辨率越高,模块对模拟信号的精度就越高。
3.采样速率:采样速率是指模块在单位时间内对模拟信号进行采样的次数。
采
样速率越高,模块对模拟信号的响应速度就越快。
4.输出类型:模块的输出类型是指其能够输出的模拟信号的类型。
常见的输出
类型有电压输出和电流输出等。
5.输出范围:模块的输出范围是指其可以输出的模拟信号的最大和最小值。
这
个范围通常是根据模块的规格和设计要求来确定的。
6.线性度:线性度是指模块在输入和输出之间保持线性关系的能力。
线性度越
高,模块对模拟信号的响应就越准确。
7.噪声和漂移:噪声和漂移是指模块在输入和输出过程中引入的误差。
这些误
差会对模拟信号的精度产生影响,因此需要控制在一定的范围内。
总之,模拟量输入输出模块的参数需要根据实际应用需求进行选择和配置,以确保其能够准确、快速地实现模拟信号的输入和输出。
7.4 模拟量的输入输出

模/数(A/D)转换器 (A/D)转换器
一、A/D转换器 一、A/D转换器
将连续变化的模拟信号转换为数字信号,以便于计算机进 行处理。
1、主要技术指标
1)精度:在A/D转换时,模拟量和数字量之间并不是一 一对应的,一般是某个范围的模拟量对应一个数字量,因 此,转换精度是指A/D转换器的实际输出数字量与理论输 出值接近程度。是由各种因素引起的误差共同决定,误差 包括:量化误差、非线性误差、其他误差。 2)转换时间:完成一次AD转换所需要的时间,即从发 出启动转换命令信号到转换结束信号有效时间的时间间隔。 3)输入的动态范围;即量程,是指能转换的模拟输入电 压的变化范围。分为单极性和双极性两种。
2、A/D转换器的工作原理
实现A/D转换的方法很多,基本转换原理可归纳为比较 比较和 比较 计算两个过程,根据转换方法,A/D转换器分为两大类: 计算 1)直接比较型:将被转换的模拟输入信号直接与一个特定 的基准源进行比较后得到数字量,如计数式和逐次逼近式。 2)间接比较型:输入的模拟信号不直接与基准源比较, 而是将其转换为中间物理量,如时间、频率等,再转换为数 字量,如双积分式A/D转换。
~
~
1) 首先CPU发出3位通道地址信号ADDC、ADDB、ADDA; 2) 在通道地址信号有效期间,使ALE引脚上产生一个由低到 高的电平变化,即脉冲上跳沿,它将输入的3位通道地址锁存到 内部地址锁存器; 3) 给START引脚加上一个由高到低变化的电平,启动A/D转 换; 4) 变换开始后,EOC引脚呈现低电平,一旦变换结束,EOC 又重新变为高电平; 5) CPU在检测到EOC变高后,输出一个正脉冲到OE端,将转 换结果取走。
2)单缓冲方式:就是使DAC0832内部的两个寄存器中, 一个处于直通方式,另一个处于锁存方式,输入数据只经过 一级缓冲器就送入D/A转换器,被转换为模拟量。 一般情况下是将 WR2 和 XFER 接地,使得DAC寄存器处于 直通方式,只需执行一次写操作,就可完成D/A转换。 3)双缓冲方式:是使输入寄存器和DAC寄存器均处于锁 存状态,数据要经过两级锁存后再送入D/A转换器,即要经 过两次写操作才能完成一次D/A转换。 将数据写入输入寄存器; 将输入寄存器的内容写入DAC寄存器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作时序
ADDA ~ ADDC
①
地 锁址 存② ALE/START
③ 启动
EOC
④
OE
转换时间
⑤
D0 ~ D7
3232
ADC0809的工作过程
根据时序图,ADC0809的工作过程如下:
① 把通道地址送到ADDA~ADDC上,选择模拟 输入;
② 在通道地址信号有效期间,ALE上的上升沿将 该地址锁存到内部地址锁存器;
/WR2=0、/XFER=0 优点:数据接收与D/A转换可异步进行;
可实现多个DAC同步转换输出——
分时写入、同步转换
8 12
VREF IOUT2
11
IOUT1
9 Rfb
3 AGND(模拟地) 20 VCC(+5V或+15V) 10 DGND(数字地)
1616
1717
输入 D0 数据 D7
5V/255=19.6mV 量化误差: 用数字(离散)量表示连续量时,由
于数字量字长有限而无法精确地表示连续量所造 成的误差。(字长越长,精度越高)
2727
主要技术指标(续)
绝对量化误差 = 量化间隔/2 = (满量程电压/(2n1))/2 相对量化误差 = 1/2 * 1/量化电平数目 * 100%
D0 ~ D7
写输入 寄存器
CS
WR1 ILE(高电平)
写DAC
WR2
寄存器 XFER
(模拟输出电流变化)
1414
工作方式
单缓冲方式
使输入锁存器或 DAC寄存器二者 之一处于直通。
CPU只需一次写 入即开始转换。 控制比较简单。
输入 D0 数据 D7
8位 4~ 7 输入 13 ~16 寄存
③ START引脚上的下降沿启动A/D变换; ④ 变换开始后,EOC引脚呈现低电平, EOC重
新变为高电平时表示转换结束; ⑤ OE信号打开输出锁存器的三态门送出结果 。
3333
ADC0809与系统的连接
模拟输入端INi 单路输入
模拟信号可固定连接到任何一 个输入端
地址线根据输入线编号固定连 接(高电平或低电平)
二进制数、十进制数
工业生产过程的闭环控制
传感器 模拟量 A/D 数字量 计算机 数字量 D/A 模拟量 执行元件
模拟量输入 (数据采集)
模拟量输出
(过程控制)
44
8.1 模拟量I/O通道的组成
工
传感
器
业
生 物理量
产
变换
过
执行
机构
程
放大 多路转换 A/D
滤波
& 采样保持
转换
信号 处理
放大 驱动
VREF:参考电压,-10V~+10V,一般为+5V或+10V
IOUT1、IOUT2:D/A转换差动电流输出,接运放的输入
Rfb:内部反馈电阻引脚,接运放输出
AGND、DGND:模拟地和数字地
1313
工作时序
D/A转换可分为两个阶段:
输入 D0 数据 D7
8位 4~ 7 输入 13 ~16 寄存
/CS=0、/WR1=0、ILE=1 /WR2=0、/XFER=0 特点:0832一直处于转换状态,模拟输出始终 跟踪数据输入的变化。
输入 D0
8位 4~ 7 输入
数据 D7
13 ~16 寄存
器0
ILE 19
LE1 &
8位 DAC 寄存
器0 LE2
CS 1 WR1 2 WR2 18
XFER 17
输入 D0 数据 D7
8位 4~ 7 输入 13 ~16 寄存
器
8位 DAC 寄存 器IL 19LE1 &LE2
CS 1 WR1 2 WR2 18
XFER 17
≥1
≥1
DAC0832框图
8位 D/A 转换 器
Rfb
8 12
VREF IOUT2
11
IOUT1
9 Rfb
3 AGND(模拟地) 20 VCC(+5V或+15V) 10 DGND(数字地)
放大、整形、滤波
多路转换开关(Multiplexer)
多选一
采样保持电路(Sample Holder,S/H)
保证变换时信号恒定不变
A/D变换器(A/D Converter)
模拟量转换为数字量 66
模拟量输出通道
D/A变换器(D/A Converter)
数字量转换为模拟量
地址线ADDA-ADDC
多路输入时,通过一个接口芯片与数据总线连接。接口 芯片可以选用: 锁存器74LS273,74LS373等(要占用一个I/O地址) 可编程并行接口8255(要占用四个I/O地址)
8位 4~ 7 输入 13 ~16 寄存
器
ILE 19
LE1 &
8位 DAC 寄存 器
LE2
CS 1 WR1 2 WR2 18
XFER 17
≥1
≥1
DAC0832框图
双缓冲方式(标准方式)
8位 D/A 转换 器
Rfb
转换要有两个步骤:
将数据写入输入寄存器
/CS=0、/WR1=0、ILE=1 将输入寄存器的内容写入DAC寄存器
Rfb
8 12
VREF IOUT2
11
IOUT1
9 Rfb
3 AGND(模拟地) 20 VCC(+5V或+15V) 10 DGND(数字地)
/WR1:写输入锁存器 上述三个信号用于把数据写入到输入锁存器
/WR2:写DAC寄存器 /XFER:允许输入锁存器的数据传送到DAC寄存器
上述二个信号用于启动转换
1212
引脚功能
D7~D0:输入数据线 ILE:输入锁存允许 /CS:片选信号
输入 D0 数据 D7
8位 4~ 7 输入 13 ~16 寄存
器
8位 DAC 寄存 器
ILE 19
LE1 &
LE2
CS 1 WR1 2 WR2 18
XFER 17
≥1
≥1
DAC0832框图
8位 D/A 转换 器
99
D/A转换器的主要技术指标
转换时间
从开始转换到与满量程值相差±1/2 LSB所对 应的模拟量所需要的时间
V VFULL
1/2 LSB
tC
t
1010
8.2.2 典型D/A转换器
DAC0832 8位电流输出型D/A
转换器 T型电阻网络 差动电流输出
1111
DAC0832内部结构
≥1
≥1
DAC0832框图
8位 D/A 转换 器
Rfb
8 12 11
VREF IOUT2
IOUT1
9 Rfb
3 AGND(模拟地) 20 VCC(+5V或+15V) 10 DGND(数字地)
2121
D/A转换器的应用
函数发生器——只要往D/A转换器写入按规 律变化的数据,即可在输出端获得正弦波、 三角波、锯齿波、方波、阶梯波、梯形波等 函数波形。
整形 滤波
信号 变换
D/A 转换
输入 10101100 微 接口
型
I/O
计
接口
算
输出 00101101 机 接口
模拟电路的任务
模拟接口电路的任务
55
模拟量输入通道
传感器(Transducer)
非电量→电压、电流
变送器(Transformer)
转换成标准的电信号
信号处理(Signal Processing)
3030
ADC0809内部结构
START EOC CLK
OE
8 IN7
个 模 拟 输 入
通 IN0
道
ADDC ADDB ADDA
ALE
8路模 拟开 8选1
关
比较器
时序与控制
逐位逼近寄存器 SAR
地址 锁存
及
译码
树状开关 D/A
电阻网络
三态 输出 锁存
器
VREF(+)
VREF(-)
D7 D0
3131
8位 4~ 7 输入 13 ~16 寄存
器
8位 DAC 寄存 器
ILE 19
LE1 &
LE2
CS 1 WR1 2 WR2 18
XFER 17
≥1
≥1
DAC0832框图
8位 D/A 转换 器
Rfb
8 12 11
VREF IOUT2
IOUT1
9 Rfb
3 AGND(模拟地)
20 VCC(+5V或+15V) 10 DGND(数字地)
多路输入 模拟信号按顺序分别连 接到输入端
要转换哪一路输入,将 其编号送到地址线上(动
ADC0809
IN4
输入
+5V
ADDC
ADDB
ADDA
单路输入时
ADC0809
IN0 IN1 IN2 IN3 IN4
CPU指定 通道号
ADDC ADDB ADDA
输入0 输入1 输入2 输入3 输入4
多路输入时 3434
器
8位 DAC 寄存 器
ILE 19
LE1 &
LE2
CS 1 WR1 2 WR2 18
XFER 17
≥1
≥1
DAC0832框图
8位 D/A 转换 器
Rfb
8 12 11
VREF IOUT2