列车运行控制系统概述
简述列车控制系统组成及各部分的主要功能
简述列车控制系统组成及各部分的主要功能
列车控制系统是指用于控制列车运行的一种系统,它由多个组成部分组成,每个部分都有各自的主要功能。
以下是列车控制系统的主要组成部分及其功能的简要描述:
1. 信号系统:用于控制列车运行的信号系统主要包括信号机、信号灯和信号电路。
信号系统通过发送不同的信号指示列车是否可以行驶、减速或停车,并确保列车之间的安全距离。
2. 列车保护装置:列车保护装置主要用于监测列车的速度、位置和状态,并根据预设的安全规则提供相应的保护措施。
例如,它可以监测列车是否超速、是否存在障碍物等,如果发现异常情况,它会自动触发相应的紧急制动系统。
3. 列车控制中心:列车控制中心是整个列车控制系统的核心部分,它负责收集并处理来自信号系统和列车保护装置的数据,并根据输入的指令控制列车的运行。
列车控制中心还可以提供车辆跟踪、调度管理和通信等功能。
4. 列车驱动系统:列车驱动系统主要负责控制列车的速度和加减速。
它通过控制牵引力或制动力来实现列车的运行控制,并确保列车在不同速度区间内能够平稳运行。
5. 列车通信系统:列车通信系统用于实现列车之间以及列车与地面控制中心之间的通信。
它可以传递列车运行的实时数据、指令和报警信息,以确保信息的及时传递和处理。
6. 列车能量供应系统:列车能量供应系统负责为列车提供动力所需要的能量,例如电力或燃料。
它确保列车能够稳定运行并满足列车运行过程中的能量需求。
列车控制系统主要由信号系统、列车保护装置、列车控制中心、列车驱动系统、列车通信系统和列车能量供应系统等组成。
这些部分协调工作,确保列车的安全运行,并提供对列车运行的实时监测、控制和通信等功能。
CRH1型动车组列车控制系统概述
CRH1型动车组列车控制系统概述一、ATC列车运行自动控制系统概述。
1.是对列车运行全过程或一部分作业实现自动控制的系统。
2.其特征为:列车通过获取的地面信息和命令,控制列车运行,并调整与前行列车之间必须保持的距离。
3.列车运行自动控制系统(简称列控系统)是保证列车按照空间间隔制运行的技术方法,它是靠控制列车运行速度的方式来实现的。
4.列车运行自动控制系统ATC包括三个子系统:(1)ATP列车超速防护系统。
(2)ATO列车自动驾驶系统。
(3)ATS列车自动监控系统。
二、列车运行自动控制系统的控制原理1.采用速度一距离模式曲线控制,不再对每一个闭塞分区规定一个目标速度,而是向列车传送目标速度、列车距目标的距离(和TVM430不一样,它可以包括多个闭塞分区的长度)的信息。
2.列车实行一次制动控制方式。
列车追踪间隔可以根据列车制动性能、车速、线路条件调整,可以提高混跑线路的通过能力。
3.速度一距离模式曲线控制实现了一次制动方式,列控车载设备为智能型设备,它根据目标速度、目标距离、线路条件、列车性能生成的目标一距离模式曲线进行连续制动,缩短了运行问隔,提高了运输效率,增加了旅行舒适度。
4.为了实现这一方式,地面设备必须向列车发送前方列车的位置、限速条件等动态数据,以及线路条件等固定数据,地面设备以数据编码向列车传送信息,信息量明显增加,可靠性高。
三、列控系统的基本功能1.列控系统是在传统闭塞基础上增加列车自动控制功能的信号防护系统,由地面设备和车载设备组成。
2.列控系统包含专门设计的满足信号安全要求的模块和功能,附加功能和舒适性功能不要求安全设计。
四、车载设备功能1.开口速度计算;测速测距;列车定位。
2.行车许可及限制速度的监督和显示。
3.司机操作的监督;列车溜逸和退行的监督;列控信息的记录。
五、车载设备人机界面功能1.为机车乘务员提供数据输入及其他操作的手段。
2.为机车乘务员提供列车运行速度、允许速度、目标速度和目标距离,以及其他文本及图形方式的显示。
列车运行控制系统概述
• 自动列车防护系统由地面设备和车载设备构成
一、机车信号
• 机车信号的定义 机车信号又称机车自动信号是用设在机车司机室的机车信号机
自动反映运行条件指示司机运行的信号显示制度 为实现机车信号而装设的整套技术设备成为机车信号设备在机
车上应安装机车信号车载设备在线路上应安装机车信号地面设备使 得机车上能接收到反映地面信号的信息
站 场 工 程
供 电 系 统
变 电 系 统
接 触 网 系 统
电 力 系 统
远 程 监 控 系 统
列联 控锁 系系 统统
调 度 集 中 系 统
集 中 监 测
系 统
通 信 系 统
列
旅市客
总车转牵制车运运车供客综票客场运
向
引 系
动 系
网 络
输 计
行 管
辆 管
电 管
运 调
合 维
务 系
服 务
营 销
组 织
成体架统统系划理理理度修统系策管
规定的距离内及时瞭望前方的地面信号显示
• 在以地面信号为主体的信号系统中地面信号显示是行车凭证机车 信号为辅助信号
• 4.自动停车装置自动闭塞+地面主体信号+机车信号辅助信号+自动 停车
• 如何防止由于司机失去警惕而发生危及列车运行安全的事故
•
列车自动停车设备ATS:当地面信号的禁止命令未被司机接收
ETCS-3 铁路综合移动通信系统GSM-R 取消区间的轨道电路采用移动闭塞 车载设备发送列车数据RBC基于车载信息定位列车 RBC计算列车的移动授权凭证 列车完整性检查由列车完整性验证系统与地面RBC共同完 成 ETCS车载设备凭车载信号行车
CTCS标准的产生
列车运行自动控制系统—CBTC系统
2. 区域控制器 ZC
ZC接收其控制范围内列车车载设备无线传输的所有列车位置 信息;根据联锁系统报告的信号设备状态信息及所辖区域内轨道 障碍物的位置,为向所辖区域内后续的所有列车计算各自的移动 授权。 ZC同时对线路的临时限速进行管理控制。 ZC还负责对相邻ZC的移动授权请求做出响应,完成列车从一 个区域到另一个区域的交接。
列车定位过程分为两个:列车位置初始化和列车位置信息更新。
➢列车根据检测到第一个无源定位信标作为列车初始位置, 其中检测是通过信标检测列车上的天线位置实现。然后根据 第二个检测的无源定位信标确定列车的行进方向。即列车根 据检测到的两个连续无源定位信标建立列车位置和方向。 ➢列车根据测速测距功能计算出的列车位移,在列车先前建 立的位置基础上持续更新位置。 ➢列车会根据后续检测到的无源定位信标更新校准列车位置。
2. ZC切换原理
当列车正常运行到达当前 受控ZC管辖边界时,如确 认列车满足切换条件,开始 与相邻管辖区的ZC进行信 息交互,当列车越过边界后 将尝试与相邻ZC建立控制 关系,并与运行出清的ZC 解除控制关系。
ZC只能授予列车在其辖 区内活动的权限。当列车 MA延伸到地面ATP边界时, ZC会请求相邻的ZC为该列 车计算MA。
一种多系统融合的全自动列车运行控制系统及方法
一种多系统融合的全自动列车运行控制系统及方法一、背景介绍随着我国城市化进程的加快,轨道交通成为了城市交通的重要组成部分。
为了提高轨道交通的安全性、准时性和运营效率,全自动列车运行控制系统成为了研究热点。
本文主要介绍了一种多系统融合的全自动列车运行控制系统及方法。
二、多系统融合的全自动列车运行控制系统概述1.系统组成该系统由车载子系统、地面子系统、中心子系统三个部分组成。
车载子系统主要包括车载信号设备、车载通信设备、车载计算设备等;地面子系统主要包括无线通信设备、信号设备、数据处理设备等;中心子系统主要包括中心服务器、运营管理设备、调度设备等。
2.系统功能该系统具有以下功能:(1)自动列车驾驶:根据预设的运行计划,自动完成列车启动、加速、减速、停车等操作;(2)自动列车监控:实时监控列车运行状态,如速度、位置、信号等,确保列车安全运行;(3)自动故障诊断与处理:列车发生故障时,自动进行诊断并采取相应措施,如自动切换到备用系统等;(4)运营调度管理:实现列车运行计划的编制、调整、执行和监控等功能;(5)安全保障:采用高可靠性的安全控制系统,确保列车运行安全。
3.系统优势(1)提高运行效率:全自动运行可减少人为干预,提高列车运行频率和准时率;(2)降低运营成本:减少驾驶员、乘务员等人员配置,降低人力成本;(3)提高安全性:采用高可靠性的控制系统,降低事故发生率;(4)节省能源:优化列车运行策略,实现能耗降低。
三、全自动列车运行控制方法1.控制流程控制流程主要包括以下几个环节:(1)车载设备获取实时数据,如速度、位置等;(2)车载设备将实时数据发送至地面服务器;(3)地面服务器根据实时数据,生成列车运行控制策略;(4)车载设备接收地面服务器发送的控制指令,并执行。
2.关键技术(1)高精度定位技术:实现列车精确定位,保证列车运行的准确性;(2)车载通信技术:保证车载设备与地面服务器之间的高速、稳定数据传输;(3)自动控制技术:实现列车的自动控制,提高运行效率和安全性。
2024版CTCS列车运行控制系统ppt课件
2024/1/24
15
案例分析:某高铁线路运行控制实践
线路概况
介绍某高铁线路的基本情况,包括线路长度、 设计速度、车站数量等。
控制策略应用
阐述在该高铁线路上应用的列车运行控制策略,包括 基于速度曲线的控制、基于时间间隔的控制和节能优 化控制等。
实施效果评估
对该高铁线路应用上述控制策略后的实际效果 进行评估,包括运行安全性、准点率、能耗降 低等方面的指标。
时间间隔的动态调整
根据线路条件和列车运行状况,对时间间隔进行动态调整,以适 应不同运行场景和需求。
14
节能优化控制策略
牵引力优化
在保证列车安全、准点运行的前提下,通过优化牵引 力控制策略,降低列车运行能耗。
制动力回收
利用列车制动时产生的能量进行回收再利用,提高能 源利用效率。
空调系统节能控制
根据车厢内外温度和乘客舒适度需求,对空调系统进 行节能控制,减少不必要的能源消耗。
ATC
实现列车自动控制,包括速度控 制、定位、车门控制等。
ATP
确保列车运行安全,防止超速、 碰撞等危险情况。 2024/1/24
ATO
实现列车自动驾驶,减轻驾驶员 负担,提高运行效率。
ATS
监控列车运行状态,提供实时数 据和故障诊断。
20
系统架构设计与实现
系统架构设计
01
02
采用分布式架构,实现模块化、可扩展性。
2024/1/24
16
04
车载设备与系统架构
2024/1/24
17
车载设备组成及功能
车载设备主要组成
列车自动控制系统(ATC)
列车自动防护系统(ATP)
2024/1/24
第八章列车运行控制系统铁路信号基础
▪ 按照闭塞方式分类 • 固定闭塞列控系统:将线路划分为固定的闭塞 分区,前后列车的位置及间隔,均以闭塞分区 为单元来检测和表示。 • 移动闭塞列控系统:不存在固定的闭塞分区, 列车之间的安全追踪间隔随着列车运行而不断 移动且变化。
Company Logo
▪ 按照功能和自动化程度分类
Company Logo
8.1 列控系统概述
列车运行控制系统是由地面设备和车载设备构 成,用来控制列车运行速度,保证行车安全,提高 运输能力。
列车运行控制系统的功能是: 1)检测线路的空闲状态; 2)检测列车完整性; 3)列车运行授权; 4)指示列车安全运行速度; 5)监控列车安全运行。
Company Logo
德国LZB系统是基于轨道电缆传输的列控系统, 是世界上首次实现连续速度控制模式的列控系统, 技术上是成熟的。1965年在慕尼黑-奥斯堡间首次运 用,德国已装备了2000km铁路线,1992年开通了西 班牙马德里—塞维利亚471km高速线。
Company Logo
欧洲是世界轨道交通最发达的地区,欧洲现有 的列车运行控制系统种类繁多。为克服欧洲各国信 号制式复杂、互不兼容,保证高速列车在欧洲铁路 网内互通互行,在欧洲共同体的支持下,欧洲各信 号厂商联合制订ERTMS/ETCS技术规范。
在分级曲线控制方式下,列车在一个闭塞分 区中运行时,列控设备判定列车超速的目标速度不 再是一个常数,而是随着列车行驶不断变化,即 是距离的函数。
Company Logo
分段速度—距离控制模式基本原理
S1+S2 S4 S3
设备监督曲线
制动性能差的车 制动性能好的车
S 分段速度控制模式 S=(S1+S2+S3+S4)*n
中国列车运行控制系统
3
控制系统
控制系统是CTCS的核心组成部分,主要包括中央控制系统和区域控制系统。 中央控制系统负责全线列车的控制和监控,区域控制系统则负责某一区域 的列车控制和监控
中央控制系统通过无线通信网络与车载设备和轨旁设备进行信息交互,获 取列车的状态信息和轨旁设备的控制指令,同时向车载设备和轨旁设备发 送控制指令,调整列车的运行状态。区域控制系统则通过无线通信网络与 本区域的列车和轨旁设备进行信息交互,实现本区域列车的控制和监控
4
技术特点
CTCS具有以下 技术特点
技术特点
技术特点
总之,CTCS-中国列车运行控制系统是中国自主研发 的具有自主知识产权的列车运行控制系统,具有安全、 高效、可维护、可扩展等特点,为列车的安全运行提
供了重要保障
-
清新简约风
十分感谢大家观看
演示文稿是一种实用的工具,可以是演示,演讲,报告等。大部分时间,它们都是在为观众服务。演示文稿 是一种实用的工具,可以是演示,演讲,报告等。
限速信息等,为列车提供安全保障
2
轨旁设备
01.
轨旁设备是CTCS地面设备的组成部分,主要包括轨道电路、应答器、信号机等。这些设 备通过无线通信网络与车载设备进行信息交互,实现列车位置、进路信息、限速信息等 信息的传输和控制
02.
轨道电路是轨旁设备的基本组成部分,用于监测列车的占用情况。应答器则是传递信息的重要设备, 可以向列车发送进路信息、限速信息等。信号机则用于指示列车的运行方向和限速情况,确保列车安 全通过
汇报人:XXXX
1
车载设备
车载设备是CTCS的核心组成部分,主要 包括车载计算机、速度传感器、轴温传 感器、机车信号设备等。这些设备通过 无线通信网络与地面设备进行信息交互, 实现列车位置、速度等信息的实时监测
列车运行控制复习提纲
列车运行控制复习提纲第一章列车运行控制基础第一节列车运行控制系统概述列车控制系统就是对列车运行全过程或一部分作业实现调度指挥、防护与控制的系统。
其特征:调度指挥系统按照运行图计划发出列车运行指令,列车通过车站和线路设备获取地面行车信息和命令,车载设备控制列车运行。
列车运行自动控制系统ATC 包括三个子系统列车自动监控系统ATS列车超速防护系统ATP列车自动驾驶系统ATO 我国铁路列车运行自动控制系统(CTCS) 的高端技术平台,主要内容包括1) 以调度指挥系统TDCS 和调度集中系统CTC 为核心,构建调度指挥中心平台2) 以车站列控中心、联锁系统和区间信号设备为核心,构建区域控制中心平台3) 以列车速度防护和控制为核心,构建车载列车防护与控制平台4) 以铁路综合数字移动通信GSM-R 为传输平台,构建基于通信的列控系统CBTC 第二节闭塞技术基础闭塞线路可以是两站之间的整个区间线路,称为闭塞区间,也可以是区间中的一段线路,称为闭塞分区。
闭塞技术:为了保证列车运行安全,行车组织中,必须控制列车运行间隔的一种保障列车在区间行车安全的技术空间间隔法:把铁路线路划分为若干个区段(区间或闭塞分区) ,在每个区段内同时只准许一列列车运行,是前行列车和追踪列车之间必须保持一定距离的行车方法。
若某列车取得一个闭塞线路的行车许可凭证时,必须满足以下条件1.该闭塞分区空闲2.该闭塞分区未向其他列车授予行车许可凭证3.该闭塞分区的其他防护条件均满足当列车取得某闭塞分区的线路行车凭证,该闭塞线路表现特征为:防护该闭塞分区的信号机处于开放状态。
闭塞的防护逻辑特征为允许该闭塞分区禁止向其他列车授予行车许可凭证站间闭塞:就是以一个站间作为列车追踪运行空间间隔,两站之间的区间设置一个闭塞单位,称为闭塞区间,闭塞区间内只能运行一列列车,其列车的空间间隔为一个站间。
1.半自动站间闭塞半自动站间闭塞是人工办理闭塞手续,列车凭信号显示发车后,出站信号机自动关闭的闭塞方法。
CTCS-3级中国列车控制系统介绍
CTCS应用等级3(简称C3):是基于无线传输信 息并采用轨道电路等方式检查列车占用的列 车运行控制系统。点式设备主要传送定位信 息。
CTCS-3级列控系统概述
车载设备与地面设备的接口
►地面传递到车上的信息有三种方式,一种是 连续信息方式,另一种为点式信息方式。连 续信息主要通过地面轨道电路来发送,点式 信息主要通过地面应答器来发送,都为单向 信息。第三种是无线方式,无线方式可以实 现车地之间的实时信息交互。
►移频轨道电路有多种制式,有ZPW-2000、 UM71、国产4信息、8信息、18信息移频等。
►两种车载工作方式可选择:设备制动优先和 司机制动优先。
►无线信息接收与处理功能:无线子系统与 RIM配合来负责实现与地面无线系统的GSMR无线连接。RSS模块包含移动终端、电源和 滤波器,能够实现GSM-R调制解调器功能。 它与放置在轨道车辆车顶上的GSM-R天线相 连。
列控车载设备的构成
►安全计算机:安全计算机(VC)是列控车载 设备的控制核心,负责从其他各个子模块以 及相关地面设备获取信息,根据列车制动力, 线路信息,临时限速信息,生成制动模式曲 线;并把列车运行速度与模式曲线相比较, 输出相应制动,来保证列车的安全运行。
►人机界面:完成列控车载设备与司机的交互 功能。它具备图形,语音以及文本显示功能, 可以直观地提供给司机各种状态和控制信息。
►测速测距单元:通过安装在车轮上的速度传 感器获得速度信号,并将此信息发送到相关 各模块。
►司法记录单元:将列控车载设备的动作,状 态,以及司机的操作等信息进行记录,当故 障发生或进行数据分析时可以通过相应的下 载手段将数据下载下来,供技术人员进行分 析。
中国列车运行控制系统(CTCS)
CTCSCTCS是(Chinese Train Control System)的英文缩写.中文意为中国列车运行控制系统。
CTCS系统有两个子系统.即车载子系统和地面子系统。
CTCS根据功能要求和设配置划分应用等级.分为0~4级。
1. CTCS概述TDCS是铁路调度指挥信息管理系统.主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及计划的下达、行车日志自动生成等功能.换句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由TDCS自动完成。
中国铁路调度指挥系统参考欧洲ETCS规范.中国逐步形成了自己的CTCS(Chinese Train Control System)标准体系。
如何吸收ETCS规范并结合中国国情更好地再创新.是值得深入研究的课题。
铁路是国民经济的大动脉.是中国社会和经济发展的先行产业.是社会的基础设施.铁路运输部门又是国民经济中的一个重要部门.它肩负着国民经济各种物资运输的重任.对中国社会主义建设事业的发展有着举足轻重的作用。
为了满足国民对铁路运输的要求.进入二十一世纪以后.铁路部门致力于高速铁路和客运专线的建设.并取得了骄人的成绩。
为了适应中国高速铁路、客运专线的迅速发展和保证铁路运输安全的需要.铁道部有关部门研制成功了“CTCS系统”(即:铁路列车控制系统.是Chinese Train Control System的缩写“CTCS”)2. 产生背景由于早期欧洲铁路的列车运行控制系统种类繁多.且各国信号制式复杂、互不兼容.为有效解决各种列车控制系统之间的兼容性问题.保证高速列车在欧洲铁路网内跨线、跨国互通运行.1982年12月欧洲运输部长会议做出决定.就欧洲大陆铁路互联互通中的技术问题寻找解决方案。
2001年欧盟通过立法形式确定ETCS(European Train Control System)为强制性技术规范。
ETCS的主要目标是互通互用、安全高效、降低成本、扩展市场.在规范的设计上融入了欧洲各主要列控系统的功能.制定了比较丰富的互联互通接口。
中国铁路列车运行控制系统
200 45
驾驶曲线
监控曲线
• 目标-距离模式曲线
干预点
车载监控曲线 地面信号曲线 无保护闭塞分区
车载计算目标距离 TD(t)
TD (t) TD (t+Δt)
监控点 SL(t)
E(t)
地面计算区间 的占用
E(t) : 对测距误差、列车响应时间、列车制动等的补偿
2)CTCS-2级与CTCS-0级的切换原理
CTCS-2级列控系统结构示意图
BTM:应答器信息接收模块;STM:轨道电路信息接收模块
6.2.2 CTCS-2级列控系统基本工作原理
1)目标距离一速度控制原理
目标-距离(Distance to go)控制曲线,也称一次制动模式速度控制 曲线。列控系统车载设备通过对列车行车许可、线路参数、列车信息的综 合处理,生成目标距离模式曲线,监控列车安全运行。
6.1.2 CTCS系统的功能、结构与分级
1)CTCS系统的基本功能 包括2方面: 按照故障-安全原则,在任何情况下防止
列车无行车许可证运行; 防止列车超速运行,包括列车超过进路
运行速度、线路结构规定的速度。
2)CTCS系统体系结构(四层体系结构)
铁路运输管理层
行车指挥中心,以CTCS为行车安全保障基础,通过通信网络实现对列 车运行的集中控制和管理。
第六章 列车运行控制
320
320
300
270
230
170
35
000
红灯
320 300 270
230
170
列车实际运行曲线
ATP 防护曲线
限
制
速
度
区
35
320
320
300
270
230
170
35
000
未确定
第14页
二、曲线速度防护模式
2.目标—距离(DISTANCE TO GO)曲线控制模式
目标-距离模式曲线控制不再对每一个闭塞分区规定一个目标速度, 而是向列车传送目标速度、目标距离(可包含多个闭塞分区)。
Km/h 200
150
100
50
0
200
160
100
0
分段制动和一次制动方式示意图
分段制动需要多个空走距离和安全距离,若采用一次制动只需要一个空走距
离和安全距离。
第8页
二、曲线速度防护模式
1.分级曲线速度控制模式 每个闭塞分区仍然给定一个目标速度。
320
320
300
270
230
170
35
000
闭塞分区分界处绝缘节位置相对固定,且两边闭塞分区传输信息不同。 列车可以根据接收到信息的变化来了解通过绝缘节的时机,从而获得列 车位置信息。
甲站
乙站
f5
f1
f3
f5
f1
f3
f2
f4
f6
f2
f4
f6
分区1
分区2
分区3
分区4
第22页
三、列控系统关键技术
2>计轴器定位方法 计轴传感器安放也是固定的,通过计轴器检测列车占用或者出清对应计 轴区段也可以获得列车位置信息。
列车运行控制系统唐涛主编
列车运行控制系统唐涛主编列车运行控制系统是一种用于控制和管理列车运行的关键设备。
它负责监测列车的运行状态、调度列车的运行计划、控制列车的运行速度和方向,并保障列车运行的安全和高效。
列车运行控制系统是由多个子系统组成的复杂系统。
这些子系统包括信号系统、制动系统、牵引系统、通信系统等。
每个子系统都有自己的功能和特点,它们相互配合、相互作用,共同完成列车运行的任务。
信号系统是列车运行控制系统中最重要的子系统之一。
它通过信号灯、信号机等设备向列车驾驶员传递运行指令和信息,控制列车的运行速度和方向。
制动系统是保障列车运行安全的关键子系统,它能够对列车进行制动,控制列车的运行速度和停车距离。
牵引系统是控制列车加速和减速的子系统,它通过电力或机械力驱动列车运行。
通信系统是实现列车与列车之间、列车与指挥中心之间的信息交换和通信的子系统,它能够传递运行计划、指令和报警信息等。
列车运行控制系统具有高度的安全性和可靠性。
它能够实时监测列车的运行状态,及时发现并处理运行异常和故障。
当列车发生紧急情况时,列车运行控制系统能够迅速采取措施,保障乘客和列车的安全。
同时,列车运行控制系统还具有自我诊断和故障排除的功能,能够自动检测和修复一些常见故障,提高系统的可用性和可靠性。
列车运行控制系统还能够提高列车运行的效率和舒适性。
它能够优化列车的运行计划,减少列车的停车时间和运行时间,提高列车的运行速度和运载能力。
同时,列车运行控制系统还能够根据列车的载荷情况和乘客需求,自动调整列车的运行速度和停靠站点,提供更加舒适和便捷的乘车体验。
列车运行控制系统在未来的发展中还存在一些挑战和机遇。
随着科技的不断进步,列车运行控制系统将会更加智能化和自动化。
例如,人工智能技术的应用将使列车运行控制系统具有更强的决策能力和自学习能力,能够更好地适应复杂多变的运行环境。
同时,列车运行控制系统还将与其他交通系统进行无缝连接,实现更加高效和便捷的交通运输网络。
列车运行控制系统
列车运行控制系统定义:由列控中心、闭塞设备、地面信号设备、地车信息传输设备、车载速度控制设备构成的用于控制列车运行速度保证行车安全和提高运输能力的控制系统。
功能:1. 线路的空闲状态检测;2. 列车完整性检测3. 列车运行授权;4. 指示列车安全运行速度;5. 监控列车安全运行系统分类发达在列控系统研究方面已有较长发展历史,比较成功的列控系统主要有:日本新干线ATC系统,法国TGV铁路和韩国高速铁路的TVM30C及TVM430系统,德国及西班牙铁路采用的LZB系统,及瑞典铁路的EBICA900系统等。
上述列车控制系统都具有自己的特点、不同的技术条件和适应范围,因此,列控系统可以分成许多类型。
(1)按照地车信息传输方式分类:①连续式列控系统,如:德国LZB系统、法国TVM系统、日本数字ATC系统。
连续式列控系统的车载设备可连续接收到地面列控设备的车- 地通信信息,是列控技术应用及发展的主流。
采用连续式列车速度控制的日本新干线列车追踪间隔为 5min ,法国TGV北部线区间能力甚至达到 3 min。
连续式列控系统可细分为阶梯速度控制方式和曲线速度控制方式。
②点式列控系统,如:瑞典EBICAB系统。
点式列控系统接收地面信息不连续,但对列车运行与司机操纵的监督并不间断,因此也有很好的安全防护效能。
③ 点一连式列车运行控制系统,如: CTCS2级,轨道电路完成 列车占用检测及完整性检查,连续向列车传送控制信息。
点式 信息设备传输定位信息、进路参数、线路参数、限速和停车信 息。
( 2 )控制模式分,分为两种类型:① 阶梯控制方式出口速度检查方式,如:法国 TVM300系统入口速度检查方式,如: 日本新干线传统 ATC 系统② 速度—距离模式曲线控制方式速度-距离模式,如:德国LZB 系统,日本新干线数字 ATC 系统(3)按照人机关系来分类,分为两种类型:① 设备优先控制的方式。
如:日本新干线 ATC 系统。
列车运行控制系统概述
❖ 20世纪90年代后,世界上已有许多国家开发了各 自的列车运行控制系统,以移动闭塞为技术特征 的CBTC系统受到了日益广泛的重视。CBTC系统 是具有发展潜力的列车运行控制系统,正在日趋 完善。目前,该技术已经在20多个国家的城市轨 道交通中使用。
第1章 列车运行控制系统概述
1.2列车运行控制系统概述
❖ 国外列车运行控制系统的发展 ❖ 国内列车运行控制系统的发展
第1章 列车运行控制系统概述
❖ 我国城市轨道交通信号控制系统的发展大致经历 了三个阶段:
1. 初创阶段
2. 过渡阶段
3. 发展阶段
第1章 列车运行控制系统概述
1.初创阶段
❖ 我国的地铁信号系统是随北京地铁兴建而起步 的。1965年7月1日,我国第一条地下铁路—— 北京地铁一期工程动工兴建,1969年10月通车 。根据当时的国情,决定全部设备由国内自己 研制,同时要求设备必须具有较高的技术水平 。信号项目主要为复线自动闭塞(包括机车信 号和自动停车)、调度集中、列车自动驾驶和 继电联锁。通过这几项技术实现行车集中调度 、集中监控和列车运行自动化。
第1章 列车运行控制系统概述
❖ 90年代的城市轨道交通ATC系统采用数字化ATC 技术,以钢轨或轨道间交叉环线作为信息传输 媒体,采用信息编码传送目标速度、目标距离 和轨道电路长度等信息,实现列车与地面之间 的通信,因此列车运行的安全性得到增强,效 率得到提高,效益明显改善。
第1章 列车运行控制系统概述
❖ 第二阶段为电气控制阶段,是以继电器联锁系统 和色灯信号机为代表。
❖ 第三阶段为电子控制阶段,从上个世纪60年代开 始,电子器件和计算机开始应用于列车运行控制 系统之中
第1章 列车运行控制系统概述
中国列车运行控制系统CTCS
CTCS 是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。
CTCS 系统有两个子系统,即车载子系统和地面子系统。
CTCS 根据功能要求和设配置划分应用等级,分为 0~4 级。
TDCS 是铁路调度指挥信息管理系统,主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及方案的下达、行车日志自动生成等功能,换句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由 TDCS 自动完成。
中国铁路调度指挥系统参考欧洲 ETCS 规,中国逐步形成为了自己的 CTCS〔Chinese Train Control System〕标准体系。
如何吸收 ETCS 规并结合中国国情更好地再创新,是值得深入研究的课题。
铁路是国民经济的大动脉,是中国社会和经济开展的先行产业,是社会的根底设施,铁路运输部门又是国民经济中的一个重要部门,它肩负着国民经济各种物资运输的重任,对中国社会主义建立事业的开展有着举足轻重的作用。
为了满足国民对铁路运输的要求,进入二十一世纪以后,铁路部门致力于高速铁路和客运专线的建立,并取得了骄人的成绩。
为了适应中国高速铁路、客运专线的迅速开展和保证铁路运输安全的需要,铁道部有关部门研制成功了"CTCS 系统〞〔即:铁路列车控制系统,是 Chinese Train Control System 的缩写"CTCS〞〕由于早期欧洲铁路的列车运行控制系统种类繁多,且各国信号制式复杂、互不兼容,为有效解决各种列车控制系统之间的兼容性问题,保证高速列车在欧洲铁路网跨线、跨国互通运行, 1982 年 12 月欧洲运输部长会议做出决定,就欧洲大陆铁路互联互通中的技术问题寻觅解决方案。
2001 年欧盟通过立法形式确定 ETCS〔European Train Control System〕为强制性技术规。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 进入20世纪90年代以后,大量引进国外先进的地铁信号 设备。北京地铁1号线于1989年从英国西屋公司引进 ATC系统。复八线由于要与前期的一号线贯通,为了便 于既有信号系统兼容,复八线也大量引进了英国西屋公 司的列车自动控制系统(ATC)。同时,配套了国产的 继电联锁设备、车站计算机联锁设备和信号微机联锁监 测设备等。
❖ 要保证任何一个运行过程中的列车是安全的。 ❖ 在保证行车安全的前提下,还要使行车有更高的效率。
作为轨道交通系统,安全和高效是其追求的两大目标。 轨道交通系统能否安全高效运行,首先取决于列车运行控制 系统的性能。
第1章 列车运行控制系统概述
列车运行控制系统的三个发展阶段
❖ 第一阶段称为机械装置控制阶段,是以机械锁闭 器和臂板信号机为代表的时代。
❖ 第二阶段为电气控制阶段,是以继电器联锁系统 和色灯信号机为代表。
❖ 第三阶段为电子控制阶段,从上个世纪60年代开 始,电子器件和计算机开始应用于列车运行控制 系统之中
第1章 列车运行控制系统概述
1.2列车运行控制系统概述
❖ 列车运行控制系统的基本认识 ❖ 国外列车运行控制系统的发展 ❖ 国内列车运行控制系统的发展
❖ 上海地铁1号线1989年引进阿尔斯通美国公司的ATC系
统,为了节省投资,在正线道岔联锁区域和车辆段采用
国产6502电气集中。
第1章 列车运行控制系统概述
❖ ATC系统的大量引进拉近了我国地铁信号装配 水平与国际上的差距,取得了较好的效果。我 国地铁的整体技术水平上了一个台阶,列车运 行呈现出全新的面貌。此后不久,我国又对部 分设备实施国产化,取得了较好的效果。
第1章 列车运行控制系统概述
❖ 90年代的城市轨道交通ATC系统采用数字化ATC 技术,以钢轨或轨道间交叉环线作为信息传输 媒体,采用信息编码传送目标速度、目标距离 和轨道电路长度等信息,实现列车与地面之间 的通信,因此列车运行的安全性得到增强,效 率得到提高,效益明显改善。
第1章 列车运行控制系统概述
❖ 国外列车运行控制系统的发展 ❖ 国内列车运行控制系统的发展
第1章 列车运行控制系统概述
❖ 我国城市轨道交通信号控制系统的发展大致经历 了三个阶段:
1. 初创阶段
2. 过渡阶段
3. 发展阶段
第1章 列车运行控制系统概述
1.初创阶段
❖ 我国的地铁信号系统是随北京地铁兴建而起步 的。1965年7月1日,我国第一条地下铁路—— 北京地铁一期工程动工兴建,1969年10月通车 。根据当时的国情,决定全部设备由国内自己 研制,同时要求设备必须具有较高的技术水平 。信号项目主要为复线自动闭塞(包括机车信 号和自动停车)、调度集中、列车自动驾驶和 继电联锁。通过这几项技术实现行车集中调度 、集中监控和列车运行自动化。
❖ 20世纪90年代后,世界上已有许多国家开发了各 自的列车运行控制系统,以移动闭塞为技术特征 的CBTC系统受到了日益广泛的重视。CBTC系统 是具有发展潜力的列车运行控制系统,正在日趋 完善。目前,该技术已经在20多个国家的城市轨 道交通中使用。
第1章 列车运行控制系统概述
1.2列车运行控制系统概述
市轨道交通设备的 国产化政策。其主要目的在于降低建设投资,使 国家及地方在财力上能够承受。另一个目的是充 分吸收借鉴国外的先进技术,同时研制开发具有 自主知识产权的城市轨道交通相关技术并进行本 土化生产制造,大大提升中国城市轨道交通行业 的技术水平并逐步减少对国外产品的依赖。
第1章 列车运行控制系统概述
❖列车自动控制(Automatic Train Control,简称 ATC)系统早在20世纪60年代就已经开始被研制 和试用。日本于1964年交付使用了世界上第一条 高速铁路——东海道新干线,其以机控为主、设 备优先的列车控制系统,使列车在高速度、高密 度运行的条件下,安全运行30多年。
城市轨道交通列车运行控制
第1章 列车运行控制系统概述
1.1
城市轨道交通的发展历史
1.2
列车运行控制系统概述
1.3
列车运行控制系统的发展方向
1.2列车运行控制系统概述
❖ 列车运行控制系统的认识 ❖ 国外列车运行控制系统的发展 ❖ 国内列车运行控制系统的发展
第1章 列车运行控制系统概述
列车运行控制系统最基本的问题 有下列两方面:
第1章 列车运行控制系统概述
❖ 2010年12月30日北京五条轨道交通新线正式开通,这其中 就包括国内首条具有完全自主知识产权CBTC列车控制系统 示范工程——亦庄线。亦庄线是按照政府首套政策实施的 信号系统核心技术示范工程,是由北京交通大学研发的具 有完全自主知识产权的CBTC核心技术及系统装备经历实验 室研制、试车线试验、运营线中试后的正式工程应用。其 开通对推动北京市和我国城市轨道交通运行控制系统国产 化和产业化具有重要意义。
第1章 列车运行控制系统概述
❖ 进入20世纪70年代之后,列车速度的提高对列 车运行控制系统在安全和效率方面提出了更高 的要求,随着地面信息传输技术(应答器、轨 道电路和轨间环线电缆等)和列车信息接收技 术的不断完善,出现了点式ATC系统、点连式 ATC系统
第1章 列车运行控制系统概述
❖ 在80年代,随着信息传输量的增加、自动控制 技术的完善和微电子技术的发展,使得列车运 行控制系统的车载设备功能不断扩大,如实时 计算距离-速度模式曲线、自动实施常用制动 和紧急制动、自动驾驶、节能运行等。
第1章 列车运行控制系统概述
3.发展阶段
❖ 从1994年至今,我国城市轨道交通建设进入 了 快速发展期,随之而来的是信号设备的大 规模引进。
❖ 采用引进设备后,大大缩短了运行间隔,提 高了安全程度和通过能力,但由于国内外的 电源质量、道岔结构、轨道施工工艺等存在 差异,所以引进的ATC系统在我国的应用效 果不像在国外那么好。而且,引进的设备也 会带来后续的诸多问题。
第1章 列车运行控制系统概述
2.过渡阶段
❖ 1971年,北京地铁二期工程(即二号环线) 开始建设,要求采用“行车指挥与列车运行 自动化”系统,即ATC系统。1986年,北京地 铁通过引进消化,研制出一套机车信号系统 ,并用这套系统替换了环线全部机车信号, 从而提高了车载设备的可靠性。
第1章 列车运行控制系统概述