高考文科数学集合专题讲解及高考真题精选 含答案

合集下载

2023届全国高考数学真题分类专项(集合与常用逻辑用语)汇编解析(附答案)

2023届全国高考数学真题分类专项(集合与常用逻辑用语)汇编解析(附答案)

2023届全国高考数学真题分类专项(集合与常用逻辑用语)汇编解析第一节 集合1.(2023全国甲卷理科1)设集合 31,A x x k k Z ,32,B x x k k Z ,U 为整数集,则 U A B ð( )A. 3,x x k k ZB. 31,x x k k ZC. 32,x x k k ZD.【要点分析】根据整数集的分类,以及补集的运算即可解出.【过程解析】因为整数集 3,3+1,3+2,x x k k x x k k x x k k Z Z Z Z ,=U Z ,所以 3,U A B x x k k Z ð. 故选A .2.(2023全国甲卷文科1)设全集 1,2,3,4,5U ,集合 1,4M , 2,5N ,则U N M ð( )A. 2,3,5B. 1,3,4C. 1,2,4,5D. 2,3,4,5 【要点分析】利用集合的交并补运算即可得解.【过程解析】因为全集{1,2,3,4,5}U ,集合{1,4}M ,所以 2,3,5U M ð, 又{2,5}N ,所以{2,3,5}U N M ð.故选A.3.(2023全国乙卷理科2)设集合U R ,集合 1M x x , 12N x x ,则 2x x …( )A. U M N ðB.U N M ðC. U M N ðD.U M N ð 【要点分析】由题意逐一考查所给的选项运算结果是否为 2x x …即可.【过程解析】由题意可得 2M N x x ,则 2U M N x x ð…,选项A 正确; 1U M x x ð…,则 1U N M x x ð ,选项B 错误;11M N x x ,则 11U M N x x x 或ð剠,选项C 错误;12U N x x x 或ð剠,则 12U M N x x x 或ð…,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集 0,1,2,4,6,8U ,集合 0,4,6M , 0,1,6N ,则U M N ð( )A. 0,2,4,6,8B. 0,1,4,6,8C. 1,2,4,6,8D.U 【要点分析】由题意可得U N ð的值,然后计算U M N ð即可. 【过程解析】由题意可得 2,4,8U N ð,则 0,2,4,6,8U M N ð. 故选A.5.(2023新高考I 卷1)已知集合 2,1,0,1,2M ,260N x x x ,则M N( ) A. 2,1,0,1B. 0,1,2C. 2D. 2【过程解析】260,23,N x x x ,所以 2M N ,故选C.6.(2023新高考II 卷2)2.设集合 0,,1,2,22A a B a a ,若A B ,则a ( ) A. 2 B. 1 C.23D.1 【过程解析】因为A B ,所以必有20a 或220a ,解得2a 或1a . 当2a 时, 0,2,1,0,2A B ,不满足A B ; 当1a 时, 0,1,1,1,0A B ,符合题意.所以1a . 故选B.7.(2023北京卷1)已知集合 20M x x …, 10N x x ,则M N ( ) A. 21x x … B. 21x x … C. 2x x … D. 1x x【要点分析】先化简集合,M N ,然后根据交集的定义计算.【过程解析】由题意,{20}{|2}M xx x x ∣,{10}{|1}N x x x x ∣, 根据交集的运算可知,{|21}M N x x .故选A.8.(2023天津卷1)已知集合 1,2,3,4,5,1,3,1,2,4U A B ,则U B A ð( ) A . 1,3,5B . 1,3C . 1,2,4D . 1,2,4,5【要点分析】对集合B 求补集,应用集合的并运算求结果;【过程解析】由{3,5}U B ð,而{1,3}A ,所以{1,3,5}U B A ð. 故选A.第二节 充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1 ”是“sin cos 0 ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【要点分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解. 【过程解析】当2,0 时,有22sin sin 1 ,但sin cos 0 , 即22sin sin 1 推不出sin cos 0 ;当sin cos 0 时, 2222sin sin cos sin 1 ,即sin cos 0 能推出22sin sin 1 .综上可知,22sin sin 1 是sin cos 0 成立的必要不充分条件. 故选B.2.(2023新高考I 卷7)已记n S 为数列 n a 的前n 项和,设甲: n a 为等差数列;乙:n S n为等差数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【过程解析】 n a 为等差数列,设首项为1a 公差为d ,则112n n n S na d,111222n S n d d a d n a n ,所以n S n为等差数列,所以甲是乙的充分条件. n S n为等差数列,即 1111111n n n n n n nS n S S S na S n n n n n n 为常数, 设为t ,即11n nna S t n n ,故 11n n S na tn n , 1112n n S n a t n n n ,两式相减得 1112n n n n n a S S na n a tn ,12n n a a t 为常数,对1n 也成立,所以 n a 为等差数列,所以甲是乙的必要条件. 所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ,则“0x y ”是“2x yy x”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【要点分析】解法一:证明充分性可由0x y 得到x y ,代入x yy x化简即可,证明必要性可由2x y y x 去分母,再用完全平方公式即可;解法二:由x y y x通分后用配凑法得到完全平方公式,证明充分性可把0x y 代入即可;证明必要性把2x yy x代入,解方程即可.【过程解析】解法一:充分性:因为0xy ,且0x y ,所以x y , 所以112x y y y y x y y,所以充分性成立; 必要性:因为0xy ,且2x yy x, 所以222x y xy ,即2220x y xy ,即 20x y ,所以0x y .所以必要性成立.所以“0x y ”是“2x yy x”的充要条件.故选C. 解法二:充分性:因为0xy ,且0x y ,所以 2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy,所以充分性成立; 必要性:因为0xy ,且2x yy x, 所以 22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy, 所以20x y xy,所以 20x y ,所以0x y ,所以必要性成立.所以“0x y ”是“2x yy x”的充要条件. 故选C.4.(2023天津卷2)“22a b ”是“222a b ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件【要点分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【过程解析】由22a b ,则a b ,当0a b 时222a b ab 不成立,充分性不成立; 由222a b ab ,则2()0a b ,即a b ,显然22a b 成立,必要性成立; 所以22a b 是222a b ab 的必要不充分条件. 故选B.。

高考文科数学专题一:集合题型总结含解析(20200618080634)

高考文科数学专题一:集合题型总结含解析(20200618080634)
解析: 由题意知 , x2 £a 有解 , 故 a 3 0 . 答案: a 3 0
3.已知集合 A = { y | y = x2 - 2x - 1,x ? R} , 集合 B= { x | - 2 # x 8} , 则集合 A 与 B
的关系是 ________. 解析: y= x2- 2x-1= (x - 1)2- 2≥ -2, ∴ A = {y|y ≥ - 2}, ∴ B A . 答案: B A
必要不充分条件
8.设集合 M ={ m|m= 2n, n∈ N, 且 m<500}, 则 M 中所有元素的和为 ________. 解析: ∵ 2n<500, ∴ n= 0, 1, 2, 3, 4, 5, 6, 7, 8. ∴ M 中所有元素的和
+2+ 22+ … + 28=511. 答案: 511
b∈ Q}, 若 P= {0, 2, 注意到集合元素的互异
4.已知集合 M = { x|x2= 1}, 集合 N= { x|ax= 1}, 若 N M ,
解析: M ={ x|x= 1 或 x=- 1}, N M, 所以 N=?时 ,
或- 1, ∴a= 1 或- 1. 答案: 0, 1, - 1
那么 a 的值是 ________. a=0;当 a≠ 0 时 , x=1= 1
{ } 4.已知全集 U= R, 则正确表示集合 M = { - 1, 0, 1} 和 N= x | x2 + x = 0 关系的韦恩
(Venn)图是 ________.
{ } 解析: 由 N= x | x2 + x = 0 , 得 N={-1, 0}, 则 N M. 答案: ②
5 知集合 A= { x | x > 5} , 集合 B= { x | x > a} , 若命题“ x∈ A”是命题“ x∈ B”的充分

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。

高考文科数学专题一:集合题型总结含解析

高考文科数学专题一:集合题型总结含解析

第一章 集合第一节 集合的含义、表示及基本关系练习一组1.已知A ={1, 2}, B ={}|x x A Î, 则集合A 与B 的关系为________. 解析:由集合B ={}|x x A Î知, B ={1, 2}.答案:A =B2.若{}2,|a a R x x NÆØ, 则实数a 的取值范围是________.解析:由题意知, 2x a £有解, 故0a ³.答案:0a ³3.已知集合A ={}2|21,y y x x x R =--?, 集合B ={}|28x x-#, 则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2, ∴A ={y|y ≥-2}, ∴BA . 答案:BA4.已知全集U =R , 则正确表示集合M ={-1, 0, 1}和N ={}2|0x x x +=关系的韦恩(Venn)图是________.解析:由N={}2|0x x x +=, 得N ={-1, 0}, 则N M .答案:②5知集合A ={}|5x x >, 集合B ={}|x x a >, 若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件, 则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件, ∴A B , ∴a <5. 答案:a <56.已知m ∈A , n ∈B , 且集合A ={x |x =2a , a ∈Z }, B ={x |x =2a +1, a ∈Z }, 又C ={x |x =4a +1, a ∈Z }, 判断m +n 属于哪一个集合?解:∵m ∈A , ∴设m =2a 1, a 1∈Z , 又∵n ∈B , ∴设n =2a 2+1, a 2∈Z , ∴m +n =2(a 1+a 2)+1, 而a 1+a 2∈Z , ∴m +n ∈B .练习二组1.设a , b 都是非零实数, y =a |a |+b |b |+ab |ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0, 讨论得y =3或y =-1.答案:{3, -1}2.已知集合A ={-1, 3, 2m -1}, 集合B ={3, m 2}.若B ⊆A , 则实数m =________. 解析:∵B ⊆A , 显然m 2≠-1且m 2≠3, 故m 2=2m -1, 即(m -1)2=0, ∴m =1.答案:1 3.设P , Q 为两个非空实数集合, 定义集合P +Q ={a +b |a ∈P , b ∈Q }, 若P ={0, 2, 5}, Q ={1, 2, 6}, 则P +Q 中元素的个数是________个.解析:依次分别取a =0, 2, 5;b =1, 2, 6, 并分别求和, 注意到集合元素的互异性, ∴P +Q ={1, 2, 6, 3, 4, 8, 7, 11}.答案:84.已知集合M ={x |x 2=1}, 集合N ={x |ax =1}, 若N M , 那么a 的值是________.解析:M ={x |x =1或x =-1}, N M , 所以N =∅时, a =0;当a ≠0时, x =1a=1或-1, ∴a =1或-1.答案:0, 1, -15.满足{1}A ⊆{1, 2, 3}的集合A 的个数是________个.解析:A 中一定有元素1, 所以A 有{1, 2}, {1, 3}, {1, 2, 3}.答案:36.已知集合A ={x |x =a +16, a ∈Z }, B ={x |x =b 2-13, b ∈Z }, C ={x |x =c 2+16, c ∈Z }, 则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4, x ∈R }, B ={x |x <a }, 则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4, 故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.设集合M ={m |m =2n , n ∈N , 且m <500}, 则M 中所有元素的和为________.解析:∵2n <500, ∴n =0, 1, 2, 3, 4, 5, 6, 7, 8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.设A 是整数集的一个非空子集, 对于k ∈A , 如果k -1∉A , 且k +1∉A , 那么称k 是A 的一个“孤立元”.给定S ={1, 2, 3, 4, 5, 6, 7, 8}, 由S 的3个元素构成的所有集合中, 不含“孤立元”的集合共有________个.解析:依题可知, 由S 的3个元素构成的所有集合中, 不含“孤立元”, 这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x , xy , lg(xy )}, B ={0, |x |, y }, 且A =B , 试求x , y 的值.解:由lg(xy )知, xy >0, 故x ≠0, xy ≠0, 于是由A =B 得lg(xy )=0, xy =1.∴A ={x , 1, 0}, B ={0, |x |, 1x}. 于是必有|x |=1, 1x=x ≠1, 故x =-1, 从而y =-1.11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A , B ={x |m +1≤x ≤2m -1}, 求实数m 的取值范围;(2)若A ⊆B , B ={x |m -6≤x ≤2m -1}, 求实数m 的取值范围;(3)若A =B , B ={x |m -6≤x ≤2m -1}, 求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0}, 得A ={x |-2≤x ≤5},(1)∵B ⊆A , ∴①若B =∅, 则m +1>2m -1, 即m <2, 此时满足B ⊆A .②若B ≠∅, 则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得, m 的取值范围是(-∞, 3].(2)若A ⊆B , 则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3, 4].(3)若A =B , 则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅., 即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0}, B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集, 求a 的取值范围;(2)若B 是A 的子集, 求a 的取值范围;(3)若A =B , 求a 的取值范围.解:由x 2-3x +2≤0, 即(x -1)(x -2)≤0, 得1≤x ≤2, 故A ={x |1≤x ≤2}, 而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集, 即A B , 则此时B ={x |1≤x ≤ a }, 故a >2.(2)若B 是A 的子集, 即B ⊆A , 由数轴可知1≤a ≤2.(3)若A =B , 则必有a =2第二节 集合的基本运算练习一组1.设U =R , A ={}|0x x >, B ={}|1x x >, 则A ∩∁U B =____.解析:∁U B ={x |x ≤1}, ∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.设集合A ={4, 5, 7, 9}, B ={3, 4, 7, 8, 9}, 全集U =A ∪B , 则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4, 7, 9}, A ∪B ={3, 4, 5, 7, 8, 9}, ∁U (A ∩B )={3, 5, 8}.答案:33.已知集合M ={0, 1, 2}, N ={}|2,x x a a M =?, 则集合M ∩N =________.解析:由题意知, N ={0, 2, 4}, 故M ∩N ={0, 2}.答案:{0, 2}4.设A , B 是非空集合, 定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B }, 已知A ={x |0≤x ≤2}, B ={y |y ≥0}, 则A ⓐB =________.解析:A ∪B =[0, +∞), A ∩B =[0, 2], 所以A ⓐB =(2, +∞).答案:(2, +∞)5.某班共30人, 其中15人喜爱篮球运动, 10人喜爱乒乓球运动, 8人对这两项运动都不喜爱, 则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x , 画出韦恩图得到方程15-x +x +10-x +8=30x =3, ∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.已知集合A ={x |x >1}, 集合B ={x |m ≤x ≤m +3}.(1)当m =-1时, 求A ∩B , A ∪B ;(2)若B ⊆A , 求m 的取值范围.解:(1)当1m =-时, B ={x |-1≤x ≤2}, ∴A ∩B ={x |1<x ≤2}, A ∪B ={x |x ≥-1}.(2)若B ⊆A , 则1m >, 即m 的取值范围为(1, +∞)练习二1.若集合M ={x ∈R |-3<x <1}, N ={x ∈Z |-1≤x ≤2}, 则M ∩N =________.解析:因为集合N ={-1, 0, 1, 2}, 所以M ∩N ={-1, 0}.答案:{-1, 0}2.已知全集U ={-1, 0, 1, 2}, 集合A ={-1, 2}, B ={0, 2}, 则(∁U A )∩B =________.解析:∁U A ={0, 1}, 故(∁U A )∩B ={0}.答案:{0}3.若全集U =R , 集合M ={x |-2≤x ≤2}, N ={x |x 2-3x ≤0}, 则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3, log 2a }, B ={a , b }, 若A ∩B ={2}, 则A ∪B =________.解析:由A ∩B ={2}得log 2a =2, ∴a =4, 从而b =2, ∴A ∪B ={2, 3, 4}. 答案:{2, 3, 4}5.已知全集U =A ∪B 中有m 个元素, (∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空, 则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素, ∴A ∩B 中有m -n 个元素.答案:m -n6.设U ={n |n 是小于9的正整数}, A ={n ∈U |n 是奇数}, B ={n ∈U |n是3的倍数}, 则∁U (A ∪B )=________.解析:U ={1, 2, 3, 4, 5, 6, 7, 8}, A ={1, 3, 5, 7}, B ={3, 6}, ∴A ∪B ={1, 3, 5, 6, 7},得∁U (A ∪B )={2, 4, 8}.答案:{2, 4, 8}7.定义A ⊗B ={z |z =xy +x y, x ∈A , y ∈B }.设集合A ={0, 2}, B ={1, 2}, C ={1}, 则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0, 4, 5, 则(A ⊗B )⊗C 中所含的元素有0, 8, 10, 故所有元素之和为18.答案:188.若集合{(x , y )|x +y -2=0且x -2y +4=0}{(x , y )|y =3x +b }, 则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0, 2)在y =3x +b 上, ∴b =2.9.设全集I ={2, 3, a 2+2a -3}, A ={2, |a +1|}, ∁I A ={5}, M ={x |x =log 2|a |}, 则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I , ∴{2, 3, a 2+2a -3}={2, 5, |a +1|}, ∴|a +1|=3, 且a 2+2a -3=5, 解得a =-4或a =2, ∴M ={log 22, log 2|-4|}={1, 2}.答案:∅, {1}, {2}, {1, 2}10.设集合A ={x |x 2-3x +2=0}, B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A∩B={2},求实数a的值;(1)若A=∅,求实数a的取值范围;(2)若A是单元素集,求a的值及集合A;11.已知函数f(x)=6x+1-1的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|-1<x<4},求实数m的值.解:A={x|-1<x≤5}.(1)当m=3时,B={x|-1<x<3},则∁R B={x|x≤-1或x≥3},∴A∩(∁R B)={x|3≤x≤5}.(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},∴有-42+2×4+m=0,解得m=8,此时B={x|-2<x<4},符合题意.。

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( ) A .{}1,3,4 B .{}2,3,4 C .{}1,2,3,4 D .{}0,1,2,3,4,93.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1-- B .{}0,1,2 C .{}2- D .{}25.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}- 6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T?( )A .∅B .SC .TD .Z10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( ) A .{}1,4,9 B .{}3,4,9 C .{}1,2,3 D .{}2,3,52.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( )A .()U M N ðB .U N M ðC .()U M N ðD .U M N ⋃ð4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a c C .{},b d D .{},,,a b c d考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥ ”的充分条件D .“1x =-”是“//a b ”的充分条件2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-= ”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2yxx y +=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}n S n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥参考答案考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-【答案】B【详细分析】根据包含关系分20a -=和220a -=两种情况讨论,运算求解即可.【答案详解】因为A B ⊆,则有:若20a -=,解得2a =,此时{}0,2A =-,{}1,0,2B =,不符合题意;若220a -=,解得1a =,此时{}0,1A =-,{}1,1,0B =-,符合题意;综上所述:1a =.故选:B.2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详细分析】根据充分条件和必要条件的定义即可求解.【答案详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,9【答案】C 【详细分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【答案详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C3.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 【答案】A【详细分析】先化简集合,M N ,然后根据交集的定义计算.【答案详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣, 根据交集的运算可知,{|21}M N x x =-≤< .故选:A4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C 【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出. 【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--, 所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .5.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}- 【答案】B【详细分析】方法一:求出集合B 后可求A B ⋂.【答案详解】[方法一]:直接法因为{}|02B x x =≤≤,故{}1,2A B = ,故选:B.[方法二]:【最优解】代入排除法=1x -代入集合{}11B x x =-≤,可得21≤,不满足,排除A 、D ;4x =代入集合{}11B x x =-≤,可得31≤,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【详细分析】求出集合,M N 后可求M N ⋂. 【答案详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z【答案】C【详细分析】详细分析可得T S ⊆,由此可得出结论.【答案详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【详细分析】求出集合N 后可求M N ⋂. 【答案详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.11.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【详细分析】根据交集定义运算即可 【答案详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【名师点评】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【详细分析】利用交集的定义可求A B ⋂.【答案详解】由题设有{}2,3A B ⋂=,故选:B .考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <【答案】C【详细分析】直接根据并集含义即可得到答案.【答案详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【详细分析】利用并集的定义可得正确的选项.【答案详解】{}1,2,4,6A B = ,故选:D.3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【详细分析】结合题意利用并集的定义计算即可.【答案详解】由题意可得:{}|12A B x x =-<≤ .故选:B.4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【详细分析】根据集合并集概念求解.【答案详解】[1,3](2,4)[1,4)A B ==U U故选:C【名师点评】本题考查集合并集,考查基本详细分析求解能力,属基础题.考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【答案】D【详细分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【答案详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =, 则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D 2.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U【答案】A【详细分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【答案详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( ) A .()U M N ð B .U N M ðC .()U M N ðD .U M N ⋃ð【答案】A【详细分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【答案详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确; {}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( ) A .2M ∈ B .3M ∈ C .4M ∉ D .5M ∉【答案】A【详细分析】先写出集合M ,然后逐项验证即可【答案详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--【答案】D【详细分析】利用补集的定义可得正确的选项.【答案详解】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【详细分析】根据交集、补集的定义可求()U A B ⋂ð.【答案详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a cC .{},b dD .{},,,a b c d【答案】C【详细分析】利用补集概念求解即可. 【答案详解】{},U M b d =ð. 故选:C考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b ”的充分条件 【答案】C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【答案详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-=”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件详细分析判断.【答案详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- , 例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】解法一:由2xyy x +=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可. 【答案详解】解法一: 因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-, 所以112x y y yy x y y -+=+=--=--, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以必要性成立.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+-+++--+=====-, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2xyy x +=-”的充要条件. 故选:C5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【答案详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详细分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【答案详解】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【详细分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【答案详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >,所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题 D .p ⌝和q ⌝都是真命题【答案】B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【答案详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x > D .x ∀∈R ,20x ≥【答案】D【详细分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果. 【答案详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45<易知B 错误; C 项:由余弦函数性质易知cos 1≤x ,C 错误; D 项:2x 恒大于等于0,D 正确, 故选:D.。

2023年高考真题及答案解析《数学文》(全国乙卷)

2023年高考真题及答案解析《数学文》(全国乙卷)

A .24B .264.在ABC 中,内角,,A B C 的对边分别是()A .10πB .5π5.已知e ()e 1xax x f x =-是偶函数,则a(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P 20.已知函数()(1ln 1f x a x ⎛⎫=++ ⎪⎝⎭(1)当1a =-时,求曲线()y f x =在点(2)若函数()f x 在()0,∞+单调递增,求21.已知椭圆2222:1(C b b x a a y +>=(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线线段MN 的中点为定点.【选修4-4】(10分)该几何体的表面积和原来的长方体的表面积相比少7.C【分析】根据题意分析区域的几何意义,结合几何概型运算求解【详解】因为区域(){}22,|14x y x y ≤+≤表示以的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,结合对称性可得所求概率π2142π4P ⨯==.故选:C.8.B【分析】写出2()3f x x a '=+,并求出极值点,转化为极大值大于【详解】3()2f x x ax =++,则f '若()f x 要存在3个零点,则()f x 令2()30f x x a '=+=,解得x =-且当,,33a ax ⎛⎫⎛⎫--∈-∞-+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 当,33a a x ⎛⎫--∈- ⎪ ⎪⎝⎭,()0f x '<,故()f x 的极大值为3f a ⎛⎫⎪ ⎪-⎭-⎝,极小值为若()f x 要存在3个零点,则f f ⎧⎛-⎪ ⎪⎝⎨⎛⎪ ⎪ ⎝⎩故选:B.9.A【分析】根据古典概率模型求出所有情况以及满足题意得情况,即可得到概率【详解】甲有6种选择,乙也有6若甲、乙抽到的主题不同,则共有则其概率为305366=,故选:A.16.2【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解【详解】如图,将三棱锥S ABC -转化为直三棱柱设ABC 的外接圆圆心为1O ,半径为r ,则3223sin 32AB r ACB ===∠,可得3r =,设三棱锥S ABC -的外接球球心为O ,连接OA 因为22211OA OO O A =+,即21434SA =+,解得故答案为:2.【点睛】方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点或线作截面,把空间问题转化为平面问题求解;来源:高三答案公众号(2)若球面上四点P 、A 、B 、C 构成的三条线段b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据61=3320.(1)()ln 2ln 20x y +-=;(2)1|2a a ⎧⎫≥⎨⎬⎩⎭.【分析】(1)由题意首先求得导函数的解析式,点坐标,最后求解切线方程即可;(2)原问题即()0f x '≥在区间(0,()()()21ln 10g x ax x x x =+-++≥【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,些变量)无关;也可令系数等于零,得出定值;(3)得出结论.22.(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),022,-∞+∞-;23.(1)[2,2](2)6.【分析】(1)分段去绝对值符号求解不等式作答(2)作出不等式组表示的平面区域,再求出面积作答由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -所以ABC 的面积12ABC S =。

高考数学试题解析 分项专题01 集合 文 试题

高考数学试题解析 分项专题01 集合 文 试题

智才艺州攀枝花市创界学校集合2021年高考试题2021年高考数学试题分类汇编——集合一、选择题:〔2021年高考卷文科1)设集合M={x|(x+3)(x-2)<0},N={x|1≤x ≤3},那么M ∩N= 〔A 〕[1,2)(B)[1,2](C)(2,3](D)[2,3] 【答案】A 【解析】因为{}|32Mx x =-<<,所以{}|12M N x x ⋂=≤<,应选A.〔2021年高考卷文科1)集合{}0,1,2,3,4M=,{}1,3,5N =,P M N =⋂,那么P 的子集一共有()【解析】方法一:由题得⎩⎨⎧==⎩⎨⎧==∴⎩⎨⎧=+=+10011122y x y x y x y x 或,)}1,0(),0,1(|),{(y x B A = ,所以选C.方法二:直接作出单位圆221xy +=和直线1=+y x ,观察得两曲线有两个交点,所以选C.〔2021年高考卷文科2)假设全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,那么集合{5,6}等于〔〕 A.MN ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂〔2021年高考卷文科1)U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},那么()C AB =A.{6,8}B.{5,7}C.{4,6,7}D.{1,3,5,6,8}答案:A 解析:因为{1,2,3,4,5,7}AB =,故(){6,8}uC AB =,所以选A.〔2021年高考卷文科1)假设全集M={}1,2,3,4,5,N={}2,4,M C N =〔〕〔A 〕∅(B){}1,3,5(C){}2,4(D){}1,2,3,4,5答案:B【解析】:∵P=}{1≥X X ∴P ⊆Q ,应选C(2021年高考卷文科4)设集合{}|20,A x R x =∈->{}|0,B x R x =∈<{}|(2)0,C x R x x =∈->那么“x A B ∈⋃〞是“x C ∈〞的 【答案】C【解析】由两个集合并集的含义知,选项C 正确. 〔2021年高考卷文科1)集合A={x 1x >},B={x 2x 1-<<}},那么A B=〔〕〔A 〕{x2x 1-<<}}〔B 〕{x 1-x >}〔C 〕{x 1x 1-<<}}〔D 〕{x 2x 1<<}答案:D解析:利用数轴可以得到A B={x 1x 2<<}。

历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

A. {0}
B. {1}
【解析】∵ A {x | x 1} ,∴ A B {1,2} .
C. {1, 2}
D. {0,1, 2}
【答案】C
7(2017 全国 I 卷文 1)已知集合 A= x|x 2 ,B=x|3 2x 0 ,则
A.
A
B=
x|x
3
2
B. A B
C.
A
B
x|x
a
|
0、| b
|
0
.

D.
6

(a
b)
b
,∴
(a
b)
b
a
b
|
b
|2
0
,即
a
b
|
b
|2
.

a
与b
之间的夹角为
,则
cos
|
aa||bb
|
|
|b |2 a || b
|
| |
ba
| |
,∵ |
a
|
2|
b
| ,∴
cos
1 2
.
∵ 0 π ,∴ π . 3
【答案】B 3.(2019 全国 II 卷文 3)已知向量 a=(2,3),b=(3,2),则|a-b|=
【解析】 (1 i)(2 i) 3 i .
C. 3 i D. 3 i
【答案】D 7.(2017 全国 I 卷文 3)下列各式的运算结果为纯虚数的是
A. i(1 i)2
B. i2 (1 i)
C. (1 i)2
D. i(1 i)
【解析】A: i(1 i)2 i 2i 2 ,B: i2 (1 i) (1 i) i 1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合、简易逻辑
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.
(3)集合与元素间的关系
对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).
(6)子集、真子集、集合相等
(7)已知集合
A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22
n -非空真子集.
集合的基本运算
1. 集合运算:交、并、补.
2. 主要性质和运算律 (1) 包含关系:
,,,,
,;,;,.
U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇I I U U C
(2) 等价关系:U A B A B A A B B A B U ⊆⇔=⇔=⇔=I U U C
原命题
若p 则q 否命题若┐p 则┐q
逆命题若q 则p
逆否命题若┐q 则┐p
互为逆否互逆否互为逆否

互逆

互(3) 集合的运算律:
交换律:.;A B B A A B B A Y Y I I ==
结合律:)()();()(C B A C B A C B A C B A Y Y Y Y I I I I == 分配律:.)()()();()()(C A B A C B A C A B A C B A Y I Y I Y I Y I Y I == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===I U I U 等幂律:.,A A A A A A ==Y I
求补律:A ∩C U A =φ A ∪C U A =U ?C U U =φ ?C U φ=U
反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B ) 简易逻辑
1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题:
“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。

3、“或”、 “且”、 “非”的真值判断 (1)“非p ”形式复合命题的真假与F 的真假相反;
(2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假;
(3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.
4、四种命题的形式:
原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

(1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 5、四种命题之间的相互关系:
一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题)
①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p?q. 09-13高考真题
09.3.“sin α=2
1”是“2
12cos =α”的
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件 【答案】A
09.13. 设集合A=(x ∣log 2x<1), B=(X ∣2
1
+-X X <1), 则A B I = . 【答案】{}|01x x <<
【解析】易得A={}|02x x << B={}|21x x -<< ∴A ∩B={}|01x x <<.
10.1设集合M={1,2,4,8},N={x|x 是2的倍数},则M ∩N=C A.{2,4}
B.{1,2,4}
C.{2,4,8}
D{1,2,8}
10.10.记实数12,,x x …n x 中的最大数为max {12,,x x …n x },最小数为min{12,,x x …n x }.已知ABC ∆的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为
max{,,}min{,,},a b c a b c
t b c a b c a
=•则“t=1”是“ABC ∆为等边三解形”的B
A,充分布不必要的条件 B.必要而不充分的条件 C.充要条件
D.既不充分也不必要的条件
11.1.已经}8,7,6,5,4,3,2,1{=U ,}7,5,3,1{=A ,}5,4,2{=B ,则C U )(B A Y =
A .}8,6{
B .}7,5{
C .}7,6,4{
D .}8,6,5,3,1{ 【详细解析】 先求出A B U ={1,2,3,4,5,7},再求 C U ()A B U 【考点定位】 考查集合的并集,补集的运算,属于简单题. 11.10.若实数
a
,b 满足0≥a ,0≥b ,且0=ab ,则称a 与b 互补.记
b a b a b a --+=22),(ϕ,那么0),(=b a ϕ是a 与b 互补的
A .必要而不充分的条件
B .充分而不必要的条件
C .充要条件
D .既不充分也不必要的条件
【详细解析】 若ϕ(a,b)= a b -(a+b )
两边平方解得ab=0,故a ,b 至少有一为0,不妨令a=0则可得|b|-b=0,
故b ≥0,即a 与b 互补,而当a 与b 互补时,易得ab=0,此时
a b -=0,
即ϕ(a,b)=0,故ϕ(a,b)=0是a 与b 互补的充要条件. 【考点定位】 本题考查的知识点是必要条件、充分条件与充要条件的,其中判断
φ(a ,b )=0?a 与b 互补与a 与b 互补?φ(a ,b )=0的真假,是解答本题的关键.属于中档题
12.1.已知集合{}{}2|320,,|05,A x x x x R B x x x R =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( D )
A.1
B.2
C.3
D.4
12.9.设,,a b c R ∈,则"1"abc =是"a b c
≤++的( A )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
13.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =I ð
A .{2}
B .{3,4}
C .{1,4,5}
D .{2,3,4,5}
1.B U B A =I ð}.4,3{}5,4,3{}4,3,2{=I
13.3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为
A .()p ⌝∨()q ⌝
B .p ∨()q ⌝
C .()p ⌝∧()q ⌝
D .p ∨q A 因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ .。

相关文档
最新文档