关于公路测量中圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例

合集下载

缓和曲线圆曲线计算方法

缓和曲线圆曲线计算方法

缓和曲线计算方法(ZH~HY)中线首先计算直线段坐标方位角(即ZH~JD坐标方位角),及ZH点坐标。

备用偏角公式:{30*L2/(π*RL S)缓和曲线}●计算待求点偏角=((L/10)2 *(57296/(RL S))/60。

其中L=待求点至ZH距离、R=圆曲线半径、L S =缓和曲线长。

●待求点方位角=直线方位角±待求点偏角。

(曲线左转-偏角,曲线右转+偏角)●待求点至ZH点弦长=L—L5 /(90*R2 *L S 2),其中L=待求点至ZH距离(里程)、R=圆曲线半径。

●待求点坐标:X=ZH点X坐标+COS(待求点方位角)*弦长Y= ZH点Y坐标+SIN(待求点方位角)*弦长缓和曲线计算左右边线坐标(ZH~HY)1、左侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)—边线与中线夹角。

2、右侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)+边线与中线夹角。

3、左侧边线坐标:X=该点中线X坐标+COS(左侧方位角)*边线至中线距离Y=该点中线Y坐标+SIN(左侧方位角)*边线至中线距离4、右侧边线坐标:X=该点中线X坐标+COS(右侧方位角)*边线至中线距离Y=该点中线Y坐标+SIN(右侧方位角)*边线至中线距离圆曲线计算方法(HY~YH)中线注:(ZY-YZ)同理,方位角=用直线方位角-待求点偏角首先计算直线段坐标方位角(即Z H~JD坐标方位角),及HY点坐标。

求出缓圆点(HY)偏角=(L S*90)/(π* R)。

1、2、求待求点偏角=(L*90)/(π* R)。

其中:L=待求点至HY距离(里程)、R=圆曲线半径、L S =缓和曲线长。

3、待求点至HY点弦长=2* R*SIN(待求点偏角)。

4、待求点方位角=直线方位角±HY点偏角±待求点偏角,(曲线左转-偏角,曲线右转+偏角)。

5、待求点坐标:X=HY点X坐标+COS(待求点方位角)*弦长Y=HY点Y坐标+SIN(待求点方位角)*弦长圆曲线计算左右边线坐标1、左侧方位角=(待求点方位角±待求点偏角—边线与中线夹角)。

公路缓和曲线段原理及缓和曲线计算公式

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明Fx9750、9860系列程序包含内容介绍:程序共有24个,分别是:1、0XZJSCX2、1QXJSFY3、2GCJSFY4、3ZDJSFY5、4ZDGCJS6、5SPJSFY7、5ZDSPFY8、5ZXSPFY9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX17、PQX-FS 18、PQX-ZS 19、ZD-FS 20、ZD-PQX21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK其中,程序2-14为主程序,程序15-24为子程序。

每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。

刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。

程序1为调度2-8程序;程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序;程序3为主线路中边桩高程计算及路基抄平程序;程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序;程序5为匝道线路中边桩高程计算及路基抄平程序;程序6为任意线型开口线及填筑边线计算放样程序;程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序9为桥台锥坡计算放样程序;程序10为计算两点间的坐标正反算程序;程序11为距离后方交会计算测站坐标程序;程序12为任意多边形面积周长计算程序;程序13为导线近似平差计算程序;程序14为水准近似平差计算程序;程序2-8所用数据库采用的串列,匝道用的File 1;主线用的File 2。

第一步:先用Excel按照文字说明输入完整条线路对应数据;第二步:保存为CSV格式,然后设置单元格格式、数字格式、科学计数、小数位数设置10位以上并保存;第三步:用FA-124导入,匝道数据列表文件选择“File 1”,主线数据列表文件选择“File 2”。

测量道路圆缓曲线

测量道路圆缓曲线

测量道路圆缓曲线道路工程测量(圆曲线缓和曲线计算公式)一、主点(major point) 的测设1、曲线要素的计算若已知:转角α及半径R ,则:切线长:;曲线长:外距:;切曲差:2、主点的测设(1)主点里程的计算ZY 里程=JD 里程-T ;YZ 里程=ZY 里程+LQZ 里程=YZ 里程-L/2 ;JD 里程=QZ 里程+D/2 (用于校核)(2)测设步骤:1)JDi 架仪,照准JDi-1 ,量取T ,得ZY 点;照准JDi+1 ,量取T ,得YZ 点。

2)在分角线方向量取 E ,得QZ 点。

二、单圆曲线详细测设有整桩号法和整桩距法。

一般采用整桩号法。

1、切线支距法(tangent off-set method)(1) 以ZY 或YZ 为坐标原点,切线为X 轴,过原点的半径为Y 轴,建立坐标系。

(2) 计算出各桩点坐标后,再用方向架、钢尺去丈量。

特点:测点误差不积累;宜以QZ 为界,将曲线分两部分进行测设。

[ 例题] 设某单圆曲线偏角α=34°12′00″,R=200m ,主点桩号为ZY :K4+906.90 ,QZ :K4+966.59 ,YZ :K5+026.28 ,按每20m 一个桩号的整桩号法,计算各桩的切线支距法坐标。

(一)主点测设元素计算=61.53m ;=119.38m ;=9.25m ;=3.68m 。

(二)主点里程计算ZY=K4+906.90 ;QZ=K4+966.59 ;YZ=K5+026.28 ;JD= K4+968.43 (检查)(三)切线支距法(整桩号)各桩要素的计算表曲线桩号ZY(YZ )至桩圆心角φi 切线支距法坐标(m) 的曲线长(m) 小数度( °) X i (m) Yi (m) ZY K4+906.904906.9 0 0 0 0 K4+920 4920 13.1 3.752873558 13.090635 0.428871637 K4+940 4940 33.1 9.4 82451509 32.949104 2.732778823 K4+960 4960 53.1 15.21202946 52.478356 7.007714876 QZ K4+96 6.59 ———————————————————————K4+980 4980 46.28 13.25824338 45.868087 5.330745523 K5+000 5000 26.28 7.528665428 26.204441.724113151 K5+020 5020 6.28 1.799087477 6.2789681 0.098587899 YZ K5+026.28 5026.28 0 00 0 注:表中曲线长。

道路工程测量(圆曲线缓和曲线计算公式)

道路工程测量(圆曲线缓和曲线计算公式)

顶岗实习报告道路工程测量(圆曲线缓和曲线计算公式) 实习时间:2013年7月至2013年9月17日 工程项目名称:乌鲁木齐绕城高速公路(东线)WRDX-3实习报告内容:经过实习的一段时间发现道路测量与建筑测量之间有很大的差别,道路测量主要就是曲线上放样,而建筑测量中为直线直角放样。

因此道路测量人员必须掌握曲线放样的内容。

而曲线放样的内容主要就是圆曲线和缓和曲线,一般采用的方法就是交点放样法和偏角法下面就是我在这一段时间内学习到的关于曲线放样的基本内容。

重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。

交点转点转角及里程桩的测设一、 道路工程测量概述分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。

(一) 勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey) 1、 初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone)和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。

2、 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。

圆 缓和曲线中线上点位切线方位角计算

圆 缓和曲线中线上点位切线方位角计算

P
曲线左偏时:k -1 HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
圆曲线线路中线点位切线方位角计算
3、HY~HY段切线方切线方位角分析:
• k4+900点在JD3的曲线YH-HZ段上,由所给已知条件知:
• 本曲线为右偏,其HZ点切线方位角为 HZ切 9703526
(3)求k2+300点切线方位角
• k2+300点在JD3的圆+缓和曲线上,由所给已知条件知:
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解: l k p kZH K 2 300 K 2 206.253 93.747
l 2 180 001127 2Rl0
曲线右偏:k 1
• 本曲线为右偏,其ZH点切线方位角为 ZH切 7102635
解:
0
l0 2R
180
30 16 57
曲线右偏: k 1
K P K HY 180 104257
R
0 405954
p切 ZH切 k
7102635 405954 7602629
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(1)求p点切线的切偏角
l2 180 2Rl0
l kHZ kP
P切
P
HZ
HZ切 曲线左偏
P
曲线右偏
P切 HZ
HZ切
加入缓和曲线后的切线坐标系
4、YH~HZ段切线方位角计算
(2)求p点切线方位角 p切
p切 HZ切 k
曲线右偏时:k 1
P切
解:
l kHZ kP K4 946.780 K4 900 46.780

圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算程序

圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算程序

圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算培训1、圆曲线计算程序:“X0”?P 曲线起点X坐标“Y0”?Q 曲线起点Y坐标“X1”?X 曲线交点X坐标“Y1”?Y 曲线交点Y坐标“QDLC”?Z 曲线起点桩号“R”?R 曲线半径“L1R2”?O 曲线前进方向:左为1、右为2Lbl 0“1N-X,2X-N”?S 1为大转小、2为小转大Pol(P-X,Q-Y):ClsJ+180→K 曲线切线方位角计算If S=1:Then Goto 1:Else Goto 2:IfEndLbl 1“N”?U:“E”?V 测量的大坐标(U-P)cos(K)+(V-Q)sin(K)+Z→Z[1]:(V-Q)cos(K)-(U-P)sin(K)→Z[2] If O=1:Then -R→D:Else R→D:IfEndtan-1((Z[1]-Z)/Abs(D-Z[2]))→Z[3]Abs(D)sin(Z[3])+Z →Z[4]:Abs(D)(1-cos(Z[3])) →Z[5]If O=1:Then –Z[5]→Z[5]:Else Z[5]→Z[5]:IfEndPol(Z[4]-Z,Z[5]-D):ClsJ+180 →Z[6]Z+Z[3](Abs(D)π)/180→Z[7](Z[1]-Z[4])cos(Z[6])+(Z[2]-Z[5])sin(Z[6]) →Z[8]If O=1:Then –Z[8]→Z[8]:Else Z[8]→Z[8]:IfEnd“X=”:Z[7]◢计算后的X小坐标“Y=”:Z[8]◢计算后的X小坐标Goto 0Lbl 2“X”?U:“Y”?V 测量的小坐标180(U-Z)/(Rπ)→Z[1]:Rsin(Z[1])+Z→Z[2]:R(1-cos(Z[1]))→Z[3]If O=1:Then –Z[3]→Z[3]:–V→C:–R→D:Else Z[3]→Z[3]:V→C:R→D:IfEnd Pol(Z[2]-Z,Z[3]-D):ClsJ+180→Z[4]Z[2]+Ccos(Z[4])→Z[5]:Z[3]+Csin(Z[4])→Z[6]P+(Z[5]-Z)cos(K)-Z[6]sin(K)→Z[7]Q+(Z[5]-Z)sin(K)+Z[6]coc(K)→Z[8]“N=”:Z[7] ◢计算后的X大坐标“E=”:Z[8]◢计算后的Y大坐标Goto 02、缓和曲线计算程序:“X0”?P 曲线起点X坐标“Y0”?Q 曲线起点Y坐标“X1”?X 曲线交点X坐标“Y1”?Y 曲线交点Y坐标“ZHZH”?Z 曲线起点桩号“R”?R 圆曲线段半径“L”?L 缓和曲线单边曲线长度“L1R2”?O 曲线前进方向左为1右为2Lbl 0“LCZH”?F 测量里程Abs(F-Z)→BIf B<L:Then Goto 1:Else Goto 4:IfEnd 缓和段及圆曲线段计算转换Lbl 1180B2/(2RLπ)→A:RL/B→E:B-B5/(40R2L2)+B9/(3456R4L4)- B13/(599040R6L6)+ B17/(175472640R8L8)- B21/(7.80337152*1010R10L10)→C (红色的为计算小半径增加精度)B3/(6RL)-B7/(336R3L3)+B11/(42240R5L5)- B15/(9676800R7L7)+ B19/(3535596640R9L9)- B23/(1.8802409472*1012R11L11)→D:C-Esin(A) →G(红色的为计算小半径增加精度)If O=1:Then Goto 2:Else Goto3:IfEndLbl 2-D→D:D-Ecos(A) →HGoto 7D→D:D+Ecos(A) →HGoto 7Lbl 4180(B-L/2)/(Rπ)→A:L/2-L3/(240R2)→E:L2/(24R)-L4/(2688R3)→M E+Rsin(A) →C:C-Rsin(A) →GIf O=1:Then Goto 5:Else Goto 6:IfEndLbl 5-(M+R(1-cos(A)) →D:D-Rcos(A) →HGoto 7Lbl 6M+R(1-cos(A)) →D:D+Rcos(A) →HGoto 7Lbl 7Pol(P-X,Q-Y):ClsJ+180→KP+Ccos(K)-Dsin(K) →Z[2]:Q+Csin(K)+Dcos(K) →Z[3]P+Gcos(K)-Hsin(K) →Z[4]:Q+Gsin(K)+Hcos(K) →Z[5]Pol(Z[2]-Z[4],Z[3]-Z[5]):ClsJ+180→Z[1]“U”?U:“V”?V 测量所得大地坐标(U-Z[2])cos(Z[1])+(V-Z[3])sin(Z[1]) →Z[6](V-Z[3])cos(Z[1])-(U-Z[2])sin(Z[1]) →Z[7]If F>Z:Then Goto 9:Else Goto A:IfEndLbl 9If O=1:Then Z[7]→Z[7]:-Z[6]→Z[6]:Else –Z[7]→Z[7]:Z[6]→Z[6] IfEndGoto BLbl AIf O=1:Then –Z[7] →Z[7]:Z[6] →Z[6]:Else Z[7] →Z[7]:-Z[6] →Z[6] IfEndGoto BLbl B“X=”:Z[7] ◢计算后轴线X坐标“Y=”:Z[6] ◢计算后轴线X坐标“0→Goto 0,1→BZZB”?S 0为还回计算过程、1为进行轴线坐标计算大坐标If S=0:Then Goto 0Else Goto 8:IfEndLbl 8“X”?T:“Y”?WIf F>Z:Then Goto C:Else Goto D:IfEndLbl CIf O=1:Then T→Z[8]:-W→Z[11]:Else -T→Z[8]:W→Z[11]:IfEndGoto ELbl DIf O=1:Then -T→Z[8]:W→Z[11]:Else T→Z[8]:-W→Z[11]:IfEndGoto ELbl EZ[2]+Z[11]cos(Z[1])-Z[8]sin(Z[1]) →Z[9]Z[3]+Z[11]sin(Z[1])+Z[8]cos(Z[1]) →Z[10]“N=”:Z[9] ◢计算后X大坐标“E=”:Z[10] ◢计算后Y大坐标Goto 03、竖曲线计算程序:“ZH1”?A 交点1桩号“H1”?B 交点1高程“ZH2”?C 交点2桩号“H2”?D 交点2高程“ZH3”?E 交点3桩号“H3”?F 交点3高程“R”?R 曲线半径(D-B)/(C-A) →Z[1]:(F-D)/( E-C) →Z[2]:Z[2]-Z[1] →W:Abs(RW/2)→T Lbl 0“ZHC”?G:“HC”?H 测量桩号及高程If G≤(C-T):Then Goto 1:Else Goto 2:IfEndLbl 1H-(G-A) Z[1]-B →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 2If G≥(C+T):Then Goto 3:Else Goto 4:IfEnd Lbl 3H-(G-C) Z[2]-D→Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 4(G-(C-T))2/(2R) →Z[4](G-A) Z[1]+B →Z[5]If W>0:Then Goto 5:Else Goto 6:IfEndLbl 5H-(Z[5]+Z[4]) →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 6H-(Z[5]-Z[4]) →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0非完整缓和曲线计算起点和交点方向大坐标Lbl 0“X1”?A 非完整缓和曲线起点X坐标“Y1”?B 非完整缓和曲线起点Y坐标“X2”?C 非完整缓和曲线终点X坐标“Y2”?D 非完整缓和曲线终点Y坐标“A”?E 缓和曲线A值“R”?F 缓和曲线半径“L1”?G 图纸标注缓和曲线长度“L1R2”?R 方向左1右2E2÷F→H 缓和曲线完整计算长度H-G→K 缓和曲线打断长度K-K5÷(40×E4)+K9÷(3456×E8) -K13÷(599040×E12)+K17÷(175472640×E16)-K21÷(78033715200×E20) →LK3÷(6×E2)-K7÷(336×E6)+K11÷(42240×E10)-K15÷(9676800×E14)+K19÷(3530096640×E18)-K23÷(1880240947200×E22) →MH-H5÷(40×E4)+H9÷(3456×E8) -H13÷(599040×E12)+H17÷(175472640×E16)-H21÷(78033715200×E20) →NH3÷(6×E2)-H7÷(336×E6)+H11÷(42240×E10)-H15÷(9676800×E14)+H19÷(3530096640×E18)-H23÷(1880240947200×E22) →OTan-1((O-M)÷(N-L))→PPol(A-C,B-D)J+180→QIf R=1Then Q+P→SElse Q-P→SIfEndAbs(Lcos(S)-Msin(S)-A) →TAbs(Lsin(S)-Mcos(S)-B) →UT+100cos(S) →VU+100sin(S) →W“A0”:T◢完整缓和曲线原点X坐标计算值“B0”:U◢完整缓和曲线原点Y坐标计算值“A1”:V◢完整缓和曲线交点方向X坐标计算值“B1”:W◢完整缓和曲线交点方向Y坐标计算值Goto 0。

公路工程测量放线圆曲线、缓和曲线(完整缓和曲线、非完整缓和曲线)计算解析

公路工程测量放线圆曲线、缓和曲线(完整缓和曲线、非完整缓和曲线)计算解析

公路工程测量放线圆曲线、缓和曲线(包括完整缓和曲线、非完整缓和曲线)计算解析例:某道路桥梁中,A匝道线路。

已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。

SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。

由上面“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;1 / 11K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。

求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。

解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。

那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。

下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。

2 / 113 / 11y 轴。

过圆曲线上任意点P 的切线与ZY —JD 相交,夹角(切线角)为β,ZY —P 与ZY —JD 的夹角(弦切角)为α,ZY —P 的弧长为L ,ZY —P 的直线距离为d ,圆曲线的半径为R 。

缓和曲线、竖曲线、圆曲线、计算

缓和曲线、竖曲线、圆曲线、计算

速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R 2——曲线终点处的半径P——曲线起点处的曲率1——曲线终点处的曲率P2α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i(上坡为“+”,下坡为“-”)1(上坡为“+”,下坡为“-”)②第二坡度:i2③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K③曲线终点桩号:K1④曲线起点坐标:x0,y⑤曲线起点切线方位角:α⑥曲线起点处曲率:P(左转为“-”,右转为“+”)⑦曲线终点处曲率:P(左转为“-”,右转为“+”)1求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

非完整缓和曲线参数与坐标计算

非完整缓和曲线参数与坐标计算

道路工程测量中非完整缓和曲线参数与坐标计算中建八局第三建设有限公司张涛摘要:在道路工程测量中,非完整缓和曲线的参数、坐标计算和测设是一个常见的难点和重点,掌握其特性及公式推导原理,对从业者非常重要和必要。

关键词:非完整缓和曲线曲线参数计算公式八匝道互通式立交一、概论工程测量学科是一门应用科学,它直接为国民经济建设和国防建设服务,紧密与生产实践相结合。

在大中型建设项目中,工程测量是一项极其重要的、专业性较强的基础性工作。

特别是在道路工程建设中,经常会遇到道路线形较为复杂,线元变化较多的情况,而测量成果的精度高低,直接影响到工程质量的好坏,测量工作的任何一次失误,都可能导致工程施工出现较大的偏差,从而引起工程局部返工甚至报废,并会延误工期,造成巨大地工程损失。

因此,在施工过程中,如何控制好工程测量的施作质量,从而使工程建设顺利优质地完成,是每一个工程测量工作者的首要职责。

当前,全国各地基础设施工程建设快速发展。

在一些高等级公路建设时,既要保证行车的安全性、便捷性和舒适性,保证道路线形平滑流畅,保证道路景观效果,同时又受到地形条件限制,必须最大限度地节约土地资源,所以设计者经常采用较为复杂的平曲线、竖曲线线形设计。

如在作者近期参建的重庆市渝中区环道隧道工程和机场专用快速路工程中,设计者就采用了多条非对称、非完整缓和曲线线形。

特别是机场专用快速路工程的桃子湾互通式立交桥八条匝道(匝道A---匝道H),包含多个非完整缓和曲线线元及小半径(最小半径R=55m)回头曲线。

在上述较为复杂的线形测设中,作者结合非完整缓和曲线特性和理论计算,利用LEICA TS06全站仪后处理软件系统及CASIO fx-5800P计算器,较为精确地进行了施测,计算坐标值与设计逐桩坐标表给定值互差小于2mm。

二、非完整缓和曲线特性及参数计算在直线与圆曲线之间插入的一段半径由∞逐渐变化到R的曲线称做缓和曲线,它的形式有螺旋线(又称回旋线,我国普遍采用)、三次抛物线和双纽线。

高等级公路缓和曲线测量计算学习

高等级公路缓和曲线测量计算学习

1 缓和曲线的测设。缓和曲线可分为完整的 缓和曲线和不完整的缓和曲线 ( 又俗称卵形曲 线) 。 完整的缓和曲线的半径是从无穷大半径到有 限半径 ; 不完整的缓和曲线半径是从有限半径到 有限半径。缓和曲线的基本特征是: 几何特征: 回旋曲线随着曲线长度的增加 , 曲率按线性函数增加。起点处 L=0, 曲率 L/ρ =0, 终 点处 L=LF, 曲率 L/ρ =常数。 相似性 : 回旋曲线的形状只有一种 , 回旋曲 线参数 C 即为放大系数。 1.1 不完整缓和曲线 如图 1 所示, 在半径为 R1 和 R2 的两圆曲线 间嵌入一段缓和曲线 , 其切点分别为 YH 点和 HY 点 , 缓和曲线段长度为 LF, 根据缓和曲线的特性 , 其参数 C 为: 当 R1>R2 时:
(1- 9) (计算 AX 的值时, 同时要考虑 oe 在设计大地 坐标系中所处的象限) 在求出 δ 和 AX 的基础上 , 同时考虑到曲线 的偏向, 就可以得到弦线 oP 的方位角 Ap: 当曲线左偏时( 如图 1) : A = A +δ ( 1- 10)
( 1- 11) 最后得到 P 点在设计大地坐标系中的坐标 为: X = X + D cos A Y = Y + D sin A ( 1- 12) 如果想用偏角法放样 , 则可利用上面求出的 当曲线右偏时: A = A −δ
- 22-




水磨石地面的设计与施工
杨明钢 ( 大连市金州经济开发区开发建设总公司 , 辽宁 大连 116100 )
摘 要 : 水磨石是一种饰面美观大方 , 光滑平整、 竖硬耐用 , 易于保持清洁的装饰地面。 关键词 : 水磨石 ; 地面 ; 设计 ; 施工 水磨石是一种饰面美观大方 , 光滑平整、 竖 硬耐用, 易于保持清洁的装饰地面。 我在金州经济 开发区内观摩了几处外资车间水磨石地面施工工 艺, 总结了一些经验。 1 水磨石地面的设计方法 1.1 先规划车间布置, 后设计地面图案 设计时应根据车间的使用功能 , 先规划好设 指示线、 等地面图案 , 备的摆放位置, 再设计通道、 图案应放在没有被遮挡的部位 , 以达到设计和实 际使用的协调统一。 1.2 以天然彩色石子分格体现水磨石地面的 白石 优势 , 过去彩色水磨石地面大多使用白水泥、 子加彩色颜料而成。 通过了解知道, 白水泥大多为 425 号水泥 , 由于使用的地方少 , 大都积压时间较 长, 使用时因其本身的强度已达不到要求 , 再加上 现今市场上供应的矿物颜料 , 质量无法保证, 做成 的水磨石硬度不够、 容易出现掉粒、 光洁度不易保 持等缺陷。 实践证明, 使用彩色石子分格, 525 号以 上的普通水泥做出的水磨石硬度更好 , 光洁度高 , 越使用效果越好, 能更好地体现出水磨石的优势。 1.3 彩色地面分格的色彩, 宜少不宜多 如果为追求地面的图案和色彩的华丽 , 采用 多种颜料, 结果做出的地面与环境极不协调 , 显得 杂乱而无主次 , 没有一个明显的主题 , 既难施工 , 又效果不佳。最好采用两种基调 , 不宜超过 3 种。 对比明显的 这样的色彩分格, 会给人以清晰明了、 感觉。 1.4 地面的深浅色彩应根据采光条件确定 采光条件较差和间接采光的个别车间 , 地面 的彩色主基调应选用浅色为主 , 如白色、 浅红、 黄 色等。 自然采光条件好的房间, 可以根据车间的功 能特点, 在色彩的搭配上可使用黑色、 绿色等深基 调的分格。这样可以通过地面色彩的选择调节光 线的视觉效果。 2 水磨石地面施工质量的控制 根据施工经验, 水磨石存在的主要质量问题 有 : 表面粗糙 , 光洁度和亮度不够 ; 色泽可观性不 好; 分格条显露不一致; 地板蜡的耐久性差等。为 解决上述问题, 施工中可采用如下措施。 2.1 合理选用磨石, 3 遍成活, 解决光洁度问 题 一般地说 , 水磨石应 3 遍成活 , 第 1 遍为粗 磨, 磨到分格条全部显露, 石碴磨透磨平为止; 第 2 遍细磨, 主要是磨平磨光水泥石碴, 处理第 1 遍的 气眼等缺陷 ; 第 3 遍精磨 , 目的是磨光地坪 , 附带 处理第 2 遍没有解决完的气眼等。 3 遍所有的磨石 细度和机械各不相同 , 第 1 遍用快速金钢石磨石 子机, 磨石选用 60~ 80 号; 第 2 遍也可用快速金钢 石磨石子机, 但磨石应选用 100~ 200 号; 第 3 遍应 用普通慢速磨石子机, 磨石应选用 200~ 这 300 号。 样按不同的的程序进行控制水磨石地面施工可以 达到光洁、 无砂子眼等质量要求。 2.2 筛洗石碴、改变磨后清洗方法提高磨面 亮度 水磨石面的一个通病原因是磨面不亮 , 像有 一层雾一样 , 经过分析试验 , 有 2 个主要原因 : 石 碴中有石粉; 采用酸性清洗剂。市场出售的石碴 , 都含有少量石粉, 因此在使用前一定要冲洗筛净 , 否则拌入水泥后就会影响水泥的本身色泽和强 磨后清洗的传统方法 度, 使磨出的磨面暗淡无光。 是草酸人工清洗 , 草酸与水泥的酸碱化学反应会 清洗 形成一种盐附着在磨面, 影响磨面的透明度。 的最好办法是第 3 遍磨完后使用同样的机械用碱 性清洗剂 ( 家用洗衣粉 ) 立即进行清洗 , 这样水磨 石就会显得光亮。 2.3 采用合理配比, 提高彩色水磨石可观性 用彩色石子分格的水磨石 , 主要靠石子的颜 色, 这就要求石子尽可能密实, 石子基本上要覆盖 水泥浆, 其水泥石碴的配比为 1: 3~ 4 为好。 采用矿物颜料分格的水磨石 , 石子的比例要 适中, 石子过多则有喧宾夺主的感觉, 过少则不易 控制石子的均匀性, 观感不好, 一般水泥石碴的配 比为 1: 2~ 2.5; 颜料的掺入要进行试块的分析对比 确定 , 切忌凭经验或随用随加的坏习惯, 否则会出 现色泽不鲜艳、 不一致、 可视性差的问题。 ( 1- 9) 、 ( 1 - 10) 、 ( 1 - 11) 、 (1- ( 上接 22 页 ) 12) 相同, 这里就不再重复了。 1.1.2.2 计算缓和曲线段上任意一点 P 切线的 方位角 点切线方位角的计算方法和步骤与 ( 1- ρ ( 1- 14) 、 ( 1- 15) 相同。 13) 、 1.2 完整缓和曲线 上面推导了不完整缓和曲线段上任意一点 的坐标和方位角的计算公式。下面来对完整的缓 和曲线段上任意一点的坐标和方位角的计算公式 做一些简单的推导。参照前面不完整缓和曲线的 公式的推导。 1.2.1 缓和曲线段的正向测设 参照图 1, 我们可以假设此时完整的缓和曲 线段也是一个从大半径到小半径方向进行计算 , 只不过这里的 R1=∞ , R2 是一个固定的设计值 , 缓 和段长度为 LF。 1.2.1.1 计算缓和曲线段上任意一点 P 的大地 坐标 根据缓和曲线的特性, 此时其参数 C 为:

完整及不完整缓和曲线

完整及不完整缓和曲线

转载自测量空间!本帖最后由 wenyajun 于 2010-9-30 16:30 编辑关于不同类型缓和曲线的起点、终点曲率半径判断方法目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。

关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。

第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈.1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。

由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。

2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。

那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。

缓和曲线要素及公式介绍

缓和曲线要素及公式介绍

11.2.1 带缓和曲线的圆曲线的测设为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。

目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。

数学表达为:ρ∝1/l 或ρ·l = k ( k为常数)若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有:ρ·l = R·l0 = k目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R ,铁路缓和曲线的长度为:l0 = 0.09808V3/R 。

11.2.2 带缓和曲线的圆曲线的主点及主元素的计算带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。

带缓和曲线的圆曲线的主元素及计算公式:切线长 T h = q+(R+p)·tan(α/2)曲线长 L h = 2l0+R·(α-2β0)·π/180°外矢距 E h = (R+p)·sec(α/2)-R切线加长 q = l0/2-l03/(240R2)圆曲线相对切线内移量 p = l02/(24R)切曲差 D h = 2T h -L h式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。

11.2.3 缓和曲线参数推导dβ = dl/ρ = l/k·dl两边分别积分,得:β= l2/(2k) = l/(2ρ)当ρ = R时,则β =β0β0 = l0/(2R)若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则:dx = dl·cosβ = cos[l2/(2k)]·dldy = dl·sinβ = si n[l2/(2k)]·dl考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线长度l为参数的缓和曲线方程式:X = l-l5/(40R2l02)+……Y = l3/(6Rl0)+……通常应用上式时,只取前一、二项,即:X = l-l5/(40R2l02)Y = l3/(6Rl0)另外,由图可知,q = X HY-R·sinβ0p = Y HY-R(1-cosβ0)以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2)p = l02/(24R)若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为:Xi = R·sinψi+qYi = R·(1-cosψi)+p11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核ZH桩号 = JD桩号-T hHY桩号 = ZH桩号+l0QZ桩号 = HY桩号+L/2YH桩号 = QZ桩号+L/2 = HY桩号+L = ZH桩号+l0+LHZ桩号 = YH桩号+l0 = ZH桩号+L hJD桩号 = ZY桩号-T h+D h(检核)11.2.5 带缓和曲线的圆曲线的主点的测设过程:(1)在JD点安置经纬仪(对中、整平),用盘左瞄准直圆方向,将水平度盘的读数配到0°00′00″,在此方向量取T h,定出ZH点;(2)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出HY点;(3)倒转望远镜,转动照准部到度盘读数为α,量取T h,定出HZ点;(4)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出YH点;(5)继续转动照准部到度盘读数为(α+180°)/2,量取E h,定出QZ点。

公路缓和曲线段原理及缓和曲线计算公式Word版

公路缓和曲线段原理及缓和曲线计算公式Word版

公路缓和曲线段原理及缓和曲线计算公式一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。

1.缓和曲线的作用1)便于驾驶员操纵方向盘2)乘客的舒适与稳定,减小离心力变化3)满足超高、加宽缓和段的过渡,利于平稳行车4)与圆曲线配合得当,增加线形美观2.缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。

S=A2/ρ(A:与汽车有关的参数)ρ=C/sC=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。

3.回旋线基本方程即用回旋线作为缓和曲线的数学模型。

令:ρ=R,l h=s 则 l h=A2/R4.缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。

缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。

a1=0,a2=v2/ρ,a s=Δa/t≤0.62)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s)3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。

4)从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。

《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。

5.直角坐标及要素计算1)回旋线切线角(1)缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。

公路测量放样说明

公路测量放样说明

1切线长度:曲线长度:外矢距:切曲差:2ZY点里程YZ点里程QZ点里程JD点里程例如求圆曲线的元素和主点里程。

解:代入圆曲线要素公式,得圆曲线要素T=44.027m,L=88.474m,E=7.837m,D=3.670m 主点里程计算: JD K3+135.12-)T 44.07ZY K3+091.05+)L 84.47YZ K3+175.52-)L/2 42.24矢距E4(1)ϕ1ϕ⨯=R l ϕϕ1=i 2ii ϕδ=2i R C =(2外矢距 R P R E -+=2sec )(切曲差 D=2T -L2、综合曲线上HY 点和YH 点的直角坐标pR y m R x i i +-=+=)cos 1(sin 00ββ (*)3、曲线主点里程的计算 ZH 点里程=JD 里程-T HY 点里程=ZY 里程+0lQZ 点里程=HY 里程+(L /2-0l ) YH 点里程=QZ 里程+(L /2-0l ) HZ 点里程=YH 里程+0lHZ 点里程=JD 里程+T-D (校核)例如:已知某交点的里程为K5+324.00m ,测得偏角a 右=22°00†,圆曲线的半径R=500m ,缓和曲线长0l =60m ,求综合曲线的元素和主点里程。

解:代入综合曲线要素公式,得缓和曲线倾角0β=3°26.3†,圆曲线内移值P=0.3m ,切线外移量m=30.00m ,切线长度T=127.24m,曲线长度L=251.98m ,外矢距E=9.66m,切曲差D=2.5m主点里程计算: JD K5+324.00 - T 127.24 ZH K5+196.76+ 0l 60.00 HY K5+256.76 +(L-20l )/2 65.99 QZ K5+322.75 +(L-20l )/2 65.99 YH K5+388.74+ 0l 60.00HZ K5+448.74检核计算: JD K5+324.00 + T 127.24 - D 2.50HZ K5+448.744、综合曲线测设(1)综合曲线主点测设21④ 将仪器迁至HY 点,以ZH 点定向,读盘读数配置0002δδβ=-,纵转望远镜,转动照准部使水平度盘读数为零,此时望远镜的切线方向即为该点切线方向; ⑤ 其它与圆曲线测设相同,测至QZ 点; ⑥ 测设曲线另一半。

缓和曲线和圆曲线的有关计算

缓和曲线和圆曲线的有关计算

缓和曲线和圆曲线的计算与测设一、缓和曲线的性质缓和曲线是直线与圆曲线间的一种过渡曲线。

它与直线分界处半径为∞,与圆曲线相接处半径与圆曲线半径R 相等。

缓和曲线上任一点的曲率半径ρρ∝l1 或ρl=C式中,C 变更率。

当l =0l 时,ρ=R ,所以0Rl =C式中,0l 为缓和曲线总长。

ρl=C 是缓和曲线的必要条件,实用中能满足这一条件的曲线可以作为缓和曲线,如辐射螺旋线、三次抛物线等。

我国缓和曲线均采用辐射螺旋线。

二、缓和曲线方程式按照ρl=C 为必要条件导出的缓和曲线方程为:X=l -2540C l +493456C l +…Y=Cl 63-37336C l +51142240C l + (1)根据测设要求的精度,实际应用中可将高次项舍去,并顾及到0Rl =C ,则上式变为X=l -202540l R l +40493456l R lY=036Rl l -337336l R l (2)式中,x 、y 为缓和曲线上任一点的直角坐标,坐标原点为直缓点(ZH )或缓直点(HZ );通过该点的缓和曲线切线为x 轴,如图2:l 为缓和曲线上任一点P 到ZH (或HZ )的曲线长;0l 为缓和曲线总长度。

当l =0l 时,x=x 0,y=y 0,代入式(2)得:X 0=0l -23040R l+4503456R lY 0=Rl 62-340336Rl (3)式中,x 0 、y 0 为缓圆点(HY )或圆缓点(YH )的坐标。

三、缓和曲线常数计算β0、δ0、m 、p 、 x 0、y 0 等称为缓和曲线常数。

其物理意义及几何关系由下图,图3可得知:β0——缓和曲线的切线角,即HY (或YH )点的切线与ZH (或HZ )点切线的交角;亦即圆曲线一端延长部分所对应的圆心角。

δ0——缓和曲线的总偏角;m —切垂距,即ZH (或HZ )到由圆心O 向切线所作垂线垂足的距离; p —圆曲线内移量,为垂线长与圆曲线半径R 之差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于公路测量圆曲线、缓和曲线(完整缓和曲线和非完整缓和曲线)的计算示例新浪微博:爱疯记录仪例:某道路桥梁中,A匝道线路。

已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。

SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。

由图纸上“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。

求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。

解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。

那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。

下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。

附:A匝道直线、曲线及转角表。

】下载地址:/view/f0677e38cdbff121dd36a32d7375a417866fc18f1 / 102 / 10y 轴。

过圆曲线上任意点P 的切线与ZY —JD 相交,夹角(切线角)为β,ZY —P 与ZY —JD 的夹角(弦切角)为α,ZY —P 的弧长为L ,ZY —P 的直线距离为d ,圆曲线的半径为R 。

那么,α=RL2(弧度) 【注:这里计算出来的α是弧度,不是以度分秒表示的角度,转化为角度,需要换算,换算公式为,1(弧度)=π180︒(度)】 所以如果以度表示,那么α=R L 2×π180︒; 弦切角等于切线角的一半,所以β=2α; ZY 到P 的直线距离为:d =2Rsin α;ZYJDOPL d αβxyYZ3 / 10为y 轴。

过缓和曲线上任意点P 的切线与ZH —JD 相交,夹角(切线角)为β,ZH —P 与ZH —JD 的夹角(弦切角)为α,ZH —P 的弧长为L ,L s 为缓和曲线起点ZH —缓和曲线终点HY 的里程,ZH —P 的直线距离为d ,R 为缓和曲线终点HY 点处的圆曲线半径。

那么,缓和曲线参数:A=s ·L R ;β=s22RL L 转化为角度为β=s 22RL L ×π180︒;当L=L s 时,β=R L 2s ×π180︒;α=31β; 在完整的缓和曲线坐标系中,缓和曲线上任一点P 的坐标为(x ,y ),则缓和曲线的参数方程为:x =L -2s 2540L R L +4s 493456L R L-6s613599040L R L y =s 36RL L -3s37336L R L+5s 51142240L R L -7s 7159676800L R L 当L=L s 时,则缓和曲线终点HY 点或YH 点 坐标(x 0,y 0)为:x 0=s L -23s 40RL +45s 3456R L -67s599040R L y 0=R L 62s -34s 336R L +56s 42240R L -78s9676800R LZH 到P 的直线距离为:d =22y x +;ZHJDOPL dαβxyHY RK9935°17′20″K9+000X=2957714 Y=485768.936.391.7134 / 105 / 10分析:首先,从主线示意图上可以看出,这条线路是具有多段圆曲线和非完整缓和曲线组成的线路。

在计算时,需要分开推算,圆曲线段用圆曲线的推到公式计算,缓和曲线段用缓和曲线的推到公式计算。

我们需要计算的桩号为K9+130,K9+200,K9+230,K9+300,这四个桩号分别处于第一段缓和曲线,第二段圆曲线,第二段缓和曲线,第三段圆曲线上,需要注意的是,这里的缓和曲线是非完整缓和曲线。

【注意:一定要清楚,缓和曲线是从半径为+∞—R 。

】 解:① ,求K9+130的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。

K9+130在第一段非完整缓和曲线上,在第一段圆曲线,我们只需要计算出K9+116.282的中桩坐标和切线方位角。

由于是圆曲线,且已知起止桩号、半径、K9+000—JD 的方位角,K9+000的坐标,所以计算非常简单。

K9+000的坐标为(2957714.490,485768.924),L=116.282,R=385.75,K9+000—JD 的方位角为51°16′25″,由圆曲线的相关公式推导,α=R L 2×π180 =8°38′8.64″K9+000—K9+116.282的方位角为: F=51°16′25″+α =59°54′33.64″K9+000—K9+116.282的距离为: d=2Rsin α=115.842 K9+116.282的坐标为:X=2957714.490+d ×cosF=2957772.570 Y=485768.924+d ×sinF=485869.154【利用坐标正算公式直接计算即可,这里不在推导。

】 K9+116.282的切线方位角为: F 切=51°16′25″+β=51°16′25″+2α =68°32′42.28″【注:我们推导下一段缓和曲线的时候,需要用到K9+116.282的坐标和切线方位角。

】51°16′25″K9+000K9+116.282R=385.75βαL d6 / 10在完整缓和曲线的计算中,通常以直线线元与缓和曲线线元衔接点(ZH 点)为原点建立平面直角坐标系进行计算,而非完整缓和曲线只是完整缓和曲线中的一段,其与上一线元的衔接点并非是ZH 点,而是缓和曲线上的任意一点,也就是说它的起点半径不是∞,而是一个具体的数值,其曲率半径变化时由R 1到R 2(R 1>R 2),但是它仍然是回旋线,所以仍具有回旋线的一切特性。

要解决非完整缓和曲线的计算问题,可以将其一端延伸至曲率半径为∞的ZH 点处,将其转换为相对应的完整缓和曲线,然后通过相应的坐标转换,就可以计算出非完整缓和曲线上任意里程的坐标数据了。

如图1所示:已知第一段缓和曲线要素A1=217.335,起点曲率半径为R1=385.75,终点曲率半径为R2=300,且R1>R 2,非完整缓和曲线长Ls=35m ,将其曲率半径较大的一端O1(K9+116.282)端顺延至曲率半径为∞的O 处,形成完整缓和曲线,就可以完整缓和曲线公式来推导非完整缓和曲线计算公式了。

图中:eO 至O 1(K9+116.282)缓和曲线长为:L S1= A 2R 1=122.448O 至O 2(K9+151.282)缓和曲线长为:L S2= A 2R 2=157.448O 1至O 2非完整缓和曲线长为:L S = L S2− L S1=35我们要推算K9+130的中桩坐标,需要先推算出在完整缓和曲线中O 点的坐标和切线方位角。

所以需要先算出K9+116.282—O 点方位角和距离d1。

β1=s221s 2RL L ×π180︒=9°5′37.09″α1=31β1=3°1′52.36″K9+116.282—O 点方位角为: F=68°32′42.28″+180°-γ=68°32′42.28″+180°-(β1-α1) =242°28′57.55″K9+116.282—O 点距离d1为: d1=22y x +=122.31182.28″7 / 10(x ,y 可由缓和曲线的参数方程x =L -2s 2540L R L +4s 493456L R L -6s 613599040L R L ,y =s 36RL L -3s 37336L R L +5s 51142240L R L -7s7159676800L R L 推导出来) 所以:O 点的坐标为(2957716.060,485760.680),O 点的切线方位角为68°32′42.28″-β1=59°27′5.19″;要计算K9+130的中桩及边桩坐标,需要计算出O 点到K9+130的方位角和距离d2,以及K9+130的切线方位角。

O 点到K9+130的弧长为L=(9130-9116.282)β2=s222RL L ×π180︒=11°14′43.13″α2=31β2=3°44′54.38″O 点到K9+130的方位角为:F=59°27′5.19″+α2=63°11′59.57″ O 点到K9+130的距离d2为:d 2=22y x +=135.933(方法同上,此处不再列出计算过程) K9+130的中桩坐标为:(2957777.349,485882.012) K9+130的切线方位角为: F 切=59°27′5.19″+β2=70°41′48.32″【推算切线方位角,是为了后面推算边桩方位角做铺垫。

】 K9+130左侧5米边桩方位角为: F 左= F 切-90°=70°41′48.32″-90° =-19°18′11.68″这里计算出来的边桩方位角为负数,所以我们需要加上36082K9+130左侧5米边桩坐标为:(2957782.068,485880.359);K9+130右侧10米边桩方位角为:F右= F切+90°=70°41′48.32″+90°=160°41′48.32″K9+130右侧10米边桩坐标为:(2957767.911,485885.318)8 / 109 / 10②,求K9+200的中桩坐标,切线方位角,左5米边桩的坐标,右10K9+200在第二段圆曲线上,就是第一段非完整缓和曲线终点K9+151.282的坐标和切线方位角。

相关文档
最新文档