数学教学中发散思维的培养

合集下载

数学教学中发散思维能力的培养

数学教学中发散思维能力的培养

数学教学中发散思维能力的培养新的课程标准注重学生能力的培养,特别重视学生发散思维能力的培养。

发散思维就是对给出的材料、信息从不同角度,向不同方向,用不同方法或途径进行分析和解决问题的一种思维方式。

传统的小学数学教学中,学生习惯于按照教师教的方式去思考问题,用符合常规的思路和方法解决问题,这对于基础知识、基本技能的掌握是必要的,但对于小学生学习数学兴趣的激发、智力能力的发展,特别是创造性思维的发展,显然是不够的。

而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多种解决问题方案”的特点,因而成为创造性思维的一种主要形式。

因此,小学数学教学在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。

一、教师要让学生乐于求异发散思维能以乐于求异的心理倾向作为一种重要的内驱力。

教师要善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。

对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真正体验到自己求异成果的价值。

对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会主动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。

事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。

二、教师要注重诱导与变通相结合在对学生进行诱导的同时,教师还要注重诱导与变通的结合。

让学生在摆脱习惯性思考方式的束缚,不受固定模式的制约。

在学生较好地掌握了一般方法后,要注意诱导学生离开原有思维轨道,从多方面思考问题,进行思维变通。

当学生思维闭塞时,教师要善于调度原型帮助学生接通与有关旧知识和解题经验的联系,作出转换、假设、化归、逆反等变通,产生多种解决问题的设想。

比如教授下面的应用题:王师傅做一批零件,8天做了这批零件的2/5,这样,剩下的工作还要几天可以完成?学生一般都能根据题意作出(1-2/5)÷(2/5÷8)的习惯解答。

初中数学教学中如何培养学生的发散思维能力

初中数学教学中如何培养学生的发散思维能力

初中数学教学中如何培养学生的发散思维能力发散思维是从同一来源材料中探求不同答案的思维过程,思维方向分散于不同方面,它表现为思维开阔,富于联想,善于分解组合,引申推导,敢于创新。

培养这种思维能力,有利于提高学生学习的主动性、积极性、求异性、创新性。

要提高学生的数学成绩,就必须提高学生的数学素养,就得在数学教学中培养学生的发散思维。

因此在初中数学教学中,要加强对学生发散思维的培养。

一、营造愉悦的氛围,创设发散思维的情境给学生提供独立思考问题、自己提问题的条件与机会,为发散思维的培养创造良好的内、外部环境。

在课堂教学中应该适当给予学生思考的习惯与能力,在课堂上善于创设思维情境,引导学生积极思维,运用已学过知识去解决新问题。

教师应训练学生创新能力为目的,发散学生思维为根本,保留学生自己的空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生在教育教学中能够与教师一起参与教和学中,真正做学习的主人,形成一种宽松和谐的教育环境。

只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力。

其中组织课堂讨论是一种使用较普遍的有效方法,这样培养的学生敢于提问题、敢于批判、敢于质疑、思维敏捷,不受老师讲解的束缚,有利于学生之间的多向交流,取长补短。

课堂教学中有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论,差缺互补,分组操作等内容,锻炼学生的合作能力。

学生在轻松环境下,畅所欲言,各抒己见,学生敢于发表独立的见解,或修正他人的想法,将几个想法组合为一个最佳的想法,从而在学习过程中,培养学生发散思维能力。

如在探索三角形全等的条件时,我大胆让学生去主动探索和发现,在学生分析、研究的过程中,我始终参与他们的分析与讨论,做到尊重学生的人格,认真听取他们发表新意见,提出新见解,尊重学生差异,充分解放学生的创造力,为各层次、类型的学生创造性思维能力的培养提供理想空间。

教学过程的开放,为学生积极参与教学过程,充分发挥聪明才智提供了很大的空间,大大激活了学生的思维,培养了学生的创新精神和实践能力。

数学教学中学生发散思维能力的培养

数学教学中学生发散思维能力的培养
识。
弃它 。 实 判 断 题 隐含 着 基 本 的数 学 思 想 和 数学 规 律 确 结 论 其 正
的得 到 , 运 用 所 掌 握 的 知 识 进 行 推理 或 运 算 等 , 不仅 能拓 展 要 这
那 么 , 何 培 养 学 生 的 发散 思维 能 力 呢 ? 合 新 课 改 北 师 大 如 结 版 教 材 的 教 学 , 总 结 了 以下 一 些 渠 道和 方 法 : 我
僵 化 。 时 , 多 老 师 只 是 口 口声 声 要求 学生 做 题 目要 举 一 反三 平 很
常 。 学 教 学 以 集 中 思 维 为 主要 思维 方 式 , 数 学 学 习 中 集 中 思 数 在
甚 至 责 怪 他 们 , 没 有 一 些 相 关 的 措施 , 是 不 行 的 。 学 习 的过 却 这
题:
() 1 一7的 平方 根 是 4 9; ( ) 9的平 方是 ± 24 7;

c ( 1 图 )
aA BC 中 , AB 和 ACB C
() 4 3 一 9的 平 方根 是± ; 7
( )( 7 2 有 平 方 根 : 4 ± )没
的 平 分 线 交 于 。 点 , 。 点 过
教学 。

题 多 问 , 于 善

举 一 反 三
同一道题 , 样 的条件 , 同 从 不 同 的 角 度 出 发 ,可 以提 出不 同 的 问题 。例 如 , 一 道 有 这 样 的 题 目: 如 图 1 ,在
例 如 ,在 学 完 平 方 根 的 概念 以 后 ,我 设计 了如 下 几 道 判 断
散 思 维 能 力 的 目的 。
思 维 往 往 在 教 学 中 容 易被 忽 视 。 实 上 , 散 性 思维 可 以 帮助 学 事 发

数学教学如何培养学生的发散思维能力

数学教学如何培养学生的发散思维能力

数学教学如何培养学生的发散思维能力数学教学是培养学生发散思维能力的重要途径之一、发散思维能力是指学生能够从不同角度、多种方法思考问题,产生新的观点或解决问题的能力。

发散思维能力的培养对学生的创新能力、解决问题能力和综合应用能力的提升具有重要意义。

以下是一些培养学生发散思维能力的教学策略。

首先,提供多样化的问题和解题方法。

数学教学应该注重培养学生的解决问题的能力,而非仅仅追求答案的正确性。

老师可以设计一些开放性问题,激发学生思考问题的兴趣,并鼓励他们从不同的角度去思考问题。

此外,老师还可以引导学生运用不同的策略来解决问题,如逆向思维、创造性思维等,激发学生的发散思维。

其次,鼓励学生提出自己的猜想和推理。

在数学教学中,老师可以引导学生通过观察、分析和归纳,提出自己的猜想,并帮助他们用严密的逻辑进行推理和验证。

这种积极的学习方式可以培养学生的发散思维能力,使他们能够从已知的事实和条件中发现潜在的规律和关系,进而解决更复杂的问题。

此外,鼓励学生进行数学思维的交流和合作。

合作学习是培养学生发散思维能力的有效途径之一、学生可以通过讨论、互相启发和合作来解决问题,相互推动对方的思维发展。

在数学教学中,老师可以设计一些合作探究活动,让学生进行小组讨论、交流和合作,激发学生的思维活力。

此外,数学教学应该充分关注学生的思维情绪。

学生在解决数学问题的过程中可能会遇到困惑、焦虑和挫败感等负面情绪。

为了培养学生发散思维能力,老师应该教导学生正确面对挫折和困难,鼓励他们保持积极向上的心态,培养他们的坚韧性和毅力。

最后,数学教学还可以通过丰富多样的数学活动和游戏来培养学生的发散思维能力。

数学游戏和数学竞赛可以激发学生的学习兴趣和动力,增强他们的思维敏锐度和创新能力。

同时,数学教学还可以结合现实生活和实际问题,培养学生将数学知识应用到实际情境中的能力,从而提高他们的发散思维能力。

总之,数学教学是培养学生发散思维能力的重要途径之一、通过提供多样化的问题和解题方法,鼓励学生提出猜想和推理,培养合作学习和交流,关注学生的思维情绪,以及通过丰富多样的数学活动和游戏,可以有效地培养学生的发散思维能力。

在小学数学教学中培养学生发散思维能力

在小学数学教学中培养学生发散思维能力

在小学数学教学中培养学生发散思维能力在教学中,有意识地让学生探讨问题解决的各种可能的途径,或把命题适当变化后,让学生探讨有什么结论出现,这会有利于发散思维能力培养。

转换课堂角色,培养学生发散思维能力。

建立新型的师生关系,创设宽松氛围、竞争合作的班风,营造思维活动的环境。

首先,要使学生积极主动地探求知识,发挥创造性,必须克服那些课堂上老师是主角,少数学生是配角,大多数学生是观众、听众的旧教学模式。

因为这种课堂教学往往过多地发挥教师的主导作用,限制了学生思维开发。

教师应以训练学生创新能力为目的,发散学生思维为根本,保留学生自己的空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生在教育教学中能够与教师一起参与教和学,真正做学习的主人,形成一种宽松和谐的教育环境。

只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力,从而在学习过程中,培养学生的发散思维能力。

一题多解、一题多变,培养学生发散思维能力。

反复进行“一题多解”、“一题多变”的训练,是帮助学生克服思维狭窄性的有效途径。

可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养思维能力。

如:一个服装厂要做720套衣服,2天做了120套。

照这样计算,剩下的衣服还需要多少天才能做完?先让学生思考:要求“工作时间”得先求出“2天的工作效率”。

即“总工作量÷工作效率-已用时间”或者是“剩下的工作量÷工作效率”,这样就可以有不同的解法。

解法一:720÷(120÷2)-2=10(天),解法二:(720-120)÷(120÷2)=10(天)。

还可以进一步提醒学生,从1套衣服用的时间来思考得出:解法三:2÷120×720-2=10(天),解法四:2÷120×(720-120)=10(天),还可以从求倍比的思路进行思考得:解法五:2×(720÷120)-2=10(天)。

试谈数学教学中学生发散性思维能力的培养

试谈数学教学中学生发散性思维能力的培养


保 护好 奇 心 , 发 求 知欲 , 养发 散 性 思维 激 培
行变通。当学生思维闭塞 时, 教师要善 于调度原型帮助学 生接通与有关 旧知识和解题经验的联系 , 出转换 、 做 假设 、 化归 、 逆反等变通 , 产生多种解决问题的设想 。 三、 鼓励学生“ 出心裁” 在独创中培养发散性思维 别 , 在分析和解决问题的过程 中, 学生能别出心裁地提 出
句 空话 。
创从 总体 上看是处 于低 层次的 ,但它蕴育 着未来的大发
明、 大创造 , 教师应满腔热情地鼓励他们别 出心裁地思考 问题 , 大胆地提 出与众不 同的意见 和质疑 , 独辟 蹊径地解 决 问题 , 这样才能使学生思维从求异 、 发散向创新推进。
四 、 强 “ 基 ” 练 。 养 学生 发 散 性 思维 加 双 训 培
的巩固程度 , 而且 要 理 解 知 识 问 的 纵 横 联 系 , 握 形 式 与 把
以乐于求异 的心理倾向作为一种重要 的内驱力 。 对于学生 在思维过程 中时不时 出现 的求异 因素要 及时给予肯定 和
热 情 表 扬 , 记 上 优 分 以 资 鼓 励 , 学 生 真 切 体 验 到 自己 并 使
举 一 反 三 , 化思 维 。 深
要的思维形式 , 也是测定创造力的重要标志之一 。中学阶 段, 培养学生的创造 力主要是通过培 养发散性思维能力来 实现的。 既然发散性思维能力的培养对学生的成长极为重 要, 那么教师在教学实践 中应如何培养学 生的发散性思维
能 力 呢?

三 、 意 诱导 。 变通 中培 养 发 散性 思 维 注 在
新 异 的想 法 和解 法 , 是 思 维 独 创 的 表 现 。尽 管 学 生 的独 这

浅谈数学教学中学生发散性思维的培养

浅谈数学教学中学生发散性思维的培养
交 流 平 台
酶 姆



~ - .

浅 谈数学 教学中 发 学生 散性思 培养 维的
◎黄 海 霞 ( 苏省 海 门职 业教 育 中心 校 2 6 0 ) 江 2 1 0
【 要 】 中 学 数 学 教 学 中 , 师 应 充 分 发 掘 数 学教 学 摘 在 教
内容 中 的 发 散 点 , 导 学 生 不 拘 泥 于 常 规 思 维 模 式 , 同 引 对
通 过 上 述 三 种 解 法 的 教 学 , 效 地 调 动 了 学 生 的思 维 有 积 极 性 . 练 了学 生 思 维 的 流 畅 性 . 训 二 、 换 思 考 角 度 , 养 思 维 的变 通 性 变 培 思 维 的 变 通 性 是 指 不 受 思 维 定 式 的 束 缚 , 运 用 常规 当 思 维 思 考 某 一 问 题 而 不 能 找 到 问 题 的答 案 时 , 及 时 转 换 能 思 考 角 度 , 于 深 入 地 思 考 问 题 , 纷 繁 复 杂 的 现 象 中抓 善 从 住 发 现 事 物 的本 质 规 律 . 数 学 教 学 中对 例 题 、习 题 形 式 在 的不 断 变 化 , 通 过 改 变 条 件 、 变 结 论 , 导 学 生 解 答 , 如 改 引 使 学 生 在 思 考 解 答 问题 过 程 中 , 断 变 换 思 考 角 度 , 而 不 从 有效地克服思维定式的惰性 , 练学生变通能力的提高. 训 例 2 如 果 直 线 Y=k x~1与 曲线 一 =4没 有 公 共 。 点 , k的取 值 范 围? 求
角 度 、对 同一 问题 寻 求 多 种 答 案 的 思 维 方 式 . 具 有 三个 它 基 本 特 性 : 是 思 维 的 流 畅 性 , 是 思 维 的变 通 性 , 是 思 一 二 三 维 的 独 特 性 . 散 性 思 维 是 创 造 性 思 维 中 重 要 的思 维 方 发 法. 任何 发 明 、 何 科 学 理 论 的创 立 , 先 建 立 在 发 散 思 维 任 首 的 基 础 上 , 有 “ 散 ” 无 所 “ 新 ” 可 见 教 学 中 如 果 没 没 发 就 创 . 有 发 散 思 维 训 练 ,学 生 就 不 能 形 成 创 造 性 思 维 . 中学 数 学

初中数学教学中发散思维的培养

初中数学教学中发散思维的培养

初中数学教学中发散思维的培养许多发明创造者都是借助于发散思维获得成功的,可以说,发散思维是创造的发源地。

发散思维应用于学习,有利于深刻理解知识点(即概念、理、定律等)的内在要素,有助于全面把握相关知识点的相互体系,形成网络,实现知识的高层次理解和有效存贮。

发散思维应用于解题,有助于充分发现条件(显现的和隐含的),迅速理清“已知”和“未知”的内在关系,找到解题的不同方法和途径,获得最佳思路。

1重视双基,巩固思维我们在平时的数学教学中,要求学生正确理解各种概念、定理、公式、技能技巧,且会熟练运用。

这是思维定势形成的过程,其中“熟练”就是比较“牢固”的思维定势。

一般地说,我们在解决一个新问题时,总要联想一个已经解决的类似问题,或转化为一个更简单的问题,其目的无非是为了在当前问题与头脑中已有的知识、经验之间建立联系,以诱发积极的思维定势。

如果学生对基本知识、基本技能不好或还未能掌握,思维定势还未形成时,就对学生进行发散性思维训练,其结果是学生不但不能掌握灵活性,就连基本知识、基本技能也难以掌握。

因此,在教学工作中,要重视“双基”,使学生切实掌握基本知识和技能,应用时可随时提取,为发散思维的培养奠定基础。

2归纳类比、启发思维中学教学知识内容广泛,具有高度的抽象性,学生学习数学时,感到比较困难。

因此学生学习数学有必要采用比较、归纳总结的方法。

通过归纳类比,可以启发思维,开阔思路对概念、定理、公式以及技能技巧的认识更准确、更深刻,有利于提高数学能力。

比如,在相似三角形中,要研究线段之间比的相等关系。

前面研究线段相等转化为研究线段成比例,对学生来说,在认识上要有一个适应过程,此时教学时可以与相等情况类比。

在证明线段相等时,常常去证明它们分别与第三量相等。

通过“等量代换”得到所需要的结论;证明线段成比例时,如果把每个比看成一个整体,分别证明它们与第三个比相等,通过这个比来过渡。

这样类比,学生就可以把他们不熟悉的问题,转化为它们已熟悉的问题。

数学教学中学生发散性思维的培养

数学教学中学生发散性思维的培养

数学教学中学生发散性思维的培养数学思维品质是学生思维能力发展的关键.初中生的抽象思维正在由经验型转为理论型.初中阶段正是提升他们思维能力的最佳时期,采取各种有效的方法培养学生的数学思维品质已成为数学教学的必然要求.发散思维又称辐射思维、多向思维或求异思维,是指从一个目标或思维出发,沿不同的方向,顺应各个角度,提出各种设想,寻找各种途径,解决具体问题的思维方法.这种思维方法,具有流畅性、变通性、独创性的特征,可使人有目的、有条理、有步骤、有秩序地开阔思路,不断突破,从多方面达到梳理知识、解决问题的目的.因此,在教学中,要加强对学生发散思维的培养.下面谈谈我的几点看法.一、发掘教材中的“发散”素材,培养发散思维的积极性课堂教学是教师有目的、有意识地对学生进行传授知识、培养能力的主要活动.课前,教师必须精心钻研教材,掌握教材的重点、难点,发掘教材中的“发散”素材,明确教材在哪些地方要引导和培养学生的发散思维能力,灵活创设思维情境,激发学生的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪积极从事学习和思考.二、转换角度思考,训练思维的求异性发散思维的求异性是指数学思维活动中的随机应变、举一反三或触类旁通.在数学解题教学中,力求多角度、多变化、多层次沟通知识的纵横联系,引导学生寻求探索途径,让学生探讨、争论,突破知识的固有范围,促使学生知识升华,完善知识结构的重建.例如,对二次函数的一般式转化为顶点式的探求时,我是这样设计的:写出图像几个顶点在y轴上的二次函数.你还能写出图像顶点在哪的二次函数?顶点在x轴,顶点在各个象限的二次函数呢?这些函数能转化成一般式吗?如何把一般式转化了顶点式呢?顺向、逆向思考,学生在发散思维中理清二次函数的顶点式与一般式的关系和互化的方法,更深层次地理解二次函数的解析式与图像的性质.用转化方法,迁移深化,由此及彼,有利于学生联想思维的训练. 三、一题多解、变式引申,训练思维的广阔性思维的广阔性是发散思维的又一特征.思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云.反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法.可通过讨论,启迪学生的思维,开拓解题思路.在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力.教师在教学过程中,不能只重视计算结果,更重要的是让学生展示解题思路,追问学生第二种、第三种不同的解法.要针对教学的重难点,有层次、有坡度,要求明确、题型多变的练习题.要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展.要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境.四、激励学生联想、猜想,培养学生的发散思维能力数学家发现数学规律的过程,往往是先有一个猜想,而后对猜想进行验证或修正的过程,而猜想又往往是以联想为中介的.通过题目所提供的结构特征,鼓励、引导学生大胆猜想,充分发挥想象能力.例如,探索圆与圆的位置关系时,可以从已学的直线和圆的位置关系的分类方法入手,从公共点的变化切入,联想到从公共点的个数划分圆与圆的位置关系与相应的名称,通过讨论,加以修正与完善,进而探究如何用数量关系确定位置关系.通过实践操作归纳,验证猜想,形成新的知识体系.五、利用逆向思维,培养学生思维的灵活性逆向思维是相对于习惯思维的另一种思维方式,它的基本特点是,从已有思路的反方向去思考问题.逆向思维与顺向思维是思维训练的主要的基本形式,也是思维形式上的一对矛盾.中学教材中存在着大量的互逆关系.如互逆定理、互逆公式、互逆运算、互逆变换、互逆对应等.对几何图形的性质和判定尤为重要.如,对特殊的四边形的性质与判定的探究,顺向思维与逆向思维结合运用,学生掌握得更快捷.在分析、解答问题时,正确地进行顺向思维或逆向思维,对开拓解题思路,促进思维的灵活性,都会起到积极的作用.总之,在中学数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题能力,提高数学思维品质,又达到培养能力、发展智力的目的.(责任编辑黄桂坚)。

在数学教学中如何培养学生的发散思维

在数学教学中如何培养学生的发散思维


分析 二 :因A B∥D C,过F 作D C的平 行线 ,由AAMF , -  ̄
AA C D 及 AF MG ,  ̄AE A G, 即 可证 明本 题 . 如图( 2 ) , 证 明略.
C C
像这样通过建立联 系、 学会纵横思维 。 就 可 以很 快 解 决 问 题. 在课 堂上还可 采用小组 讨论 、 竞赛 、 自学 等 。 反复训 练 , 逐 步 发 展 学 生 的数 学 思 维 能 力 . 二、 打破正向思维 。 培 养 逆 向思 维 心 理 学 研 究 表 明 :每 一个 思 维 过 程 都 有 一 个 与 之 相 反 的 思维过程 , 在这个互逆过程 中 , 存在 正 、 逆 思维的联结. 正 向 思 维 是从 题 目给 的 已 知 条 件 出 发 ,按 题 目给 的 已知 条 件 顺 利 去 研究、 推 导 未 知 结 论 的思 维 方 式 . 所 谓 逆 向思 维 . 是指 和正 向 思 维方 向 相 反而 又相 互联 系 的 思 维 过 程 . 即我 们 通 常 所 说 的


例: 已知在口A B C D中 , E为A B 边 的中点 , A F = F D, F E 与 A C 相 交 于G。 求证 : A G : 1 G C

‘ a = 3. b = 一 5. e = - |
5 + - 5- +
= — —

XV= 一
2 ̄3
. . .


例: 分 解 因式 : 3 x 。 y ' - 5 x y 一1
分析 : 本题将3 x y  ̄ - 5 x y 一 1 转 化 为关 于x v 的 二 次 三项 式 . 实
际 上 是 利 用 换 元 的方 法进 行分 解 : 方程a x + b x + c = 0 ( a ≠O ) 的 根

提高小学一年级数学发散性思维的五种方法

提高小学一年级数学发散性思维的五种方法

提高小学一年级数学发散性思维的五种方法数学是一门需要发散性思维的学科,在小学一年级,培养孩子的发散性思维对于他们数学学习的长远发展至关重要。

发散性思维是指从一个问题或者一个点出发,能够产生多个不同的解决方法或者思路。

本文将介绍五种提高小学一年级数学发散性思维的方法。

一、多角度思考问题在培养小学一年级学生的发散性思维时,我们可以引导他们从不同的角度思考问题。

比如,在解决加法问题时,可以鼓励他们使用不同的计算方法,例如,拆分法、调整法、逆运算法等。

同时,还可以让他们尝试不同的解题思路,例如通过图形、图表、故事情节等不同的方式进行思考和解答。

通过多角度思考问题,可以培养学生的创新思维和解决问题的能力。

二、开展数学探究活动数学探究活动是培养小学一年级学生发散性思维的有效方法。

通过组织一些有趣且富含探究性质的数学活动,可以激发学生的求知欲和探索欲望。

比如,在课堂上可以组织学生进行数学游戏,让他们通过游戏的方式发散思考问题,寻找和探究解决问题的不同方法。

通过数学探究活动,可以提高学生的思维灵活性和创造力。

三、启发性问题引导在教学中,教师可以通过提问的方式引导学生更加主动地思考问题。

通过提出一些有启发性的问题,可以激发学生的思维,鼓励他们从不同的角度考虑问题。

比如,教师可以提出这样一个问题:“在一个果园里,有10个苹果树,每个苹果树上都结了5个苹果,那么一共有多少个苹果?”这个问题可以引导学生思考用加法、乘法或者其他方法来解答。

通过启发性问题的引导,可以培养学生的发散性思维和解决问题的能力。

四、开展数学创造性活动数学创造性活动是培养小学一年级学生发散性思维的一种有效方式。

通过组织学生进行数学创造性活动,可以让他们自由地展示和运用他们的数学知识和技能。

比如,可以让学生设计一个数学游戏,或者编写一篇有趣的数学故事。

通过这些活动,学生可以发散思考问题,运用创造性的方法解决问题,培养他们的创新思维和解决问题的能力。

五、注重数学思维的培养除了注重数学知识的学习外,我们还应该注重培养小学一年级学生的数学思维。

数学启发式教学培养学生发散性思维和创新能力的教案

数学启发式教学培养学生发散性思维和创新能力的教案

数学启发式教学培养学生发散性思维和创新能力的教案教学目标:通过数学启发式教学,培养学生的发散性思维和创新能力,提高他们的问题解决能力和自主学习能力。

教学步骤:第一步:导入教师通过引发学生的思考来导入数学启发式教学。

可以采用提问的方式,激发学生对数学问题的兴趣,引发他们思考问题的方法。

第二步:示范解题教师以一个具体的数学问题为例,展示解题的思路和方法。

通过向学生展示问题的多个解法,引导他们理解问题可以有不同的解决路径,培养他们的发散性思维。

第三步:小组讨论将学生分成小组,让他们在小组内讨论和探索给定的数学问题。

教师可以在每个小组中起到指导和引导的作用,鼓励学生表达自己的观点和解题思路。

第四步:学生展示每个小组选择一名代表,向全班展示他们的解题过程和思路。

其他学生可以提问和讨论,促进互动和交流,同时激发更多的创新思维。

第五步:总结归纳在学生展示完毕后,教师对整个解题过程进行总结和归纳。

指出每种解法的优缺点,鼓励学生思考不同解法的适用场景,并引导他们探索更多的解题方法。

第六步:拓展练习教师给予学生更多的类似问题进行拓展练习。

要求学生在解题过程中发散思维,用不同的方法来解决问题,并鼓励他们尝试自己发现新的解题思路。

第七步:课堂反思教师和学生一起回顾整个教学过程,分享他们的收获和感悟。

教师可以针对学生在解题过程中的思考和表现进行评价,鼓励他们不断探索和创新。

教学评价:通过数学启发式教学,学生能够从传统的固定解题模式中解脱出来,培养发散性思维和创新能力。

教师的指导和引导起到了关键作用,通过合理的问题设置和引导,激发学生的思考欲望和求知欲望。

学生在小组讨论和展示中,学会了倾听和尊重他人的意见,培养了团队合作精神和口头表达能力。

在教学过程中,教师要注重发现和引导学生的问题解决思路,而不是简单地给出答案。

通过适当的引导,学生可以从不同的角度思考和解决问题,提高他们的问题解决能力和创新能力。

通过数学启发式教学的实施,学生在数学学习中不再追求唯一正确的答案,而是关注解决问题的思路和过程。

数学教学中怎样培养学生发散思维

数学教学中怎样培养学生发散思维

数学教学中怎样培养学生的发散思维发散思维是一种不依常规、寻求变异、从多方面寻求答案的思维方式。

发散思维是提高思维灵活性和敏捷性的必要手段。

长期以来,学生习惯于按照课本或老师教给的方法思考问题,这对于学生数学兴趣的培养,智力潜能的激发,创造思维能力的培养都存在局限性。

因此,教学中老师应有意识地培养学生的发散思维。

下面就在小学数学教学中怎样培养学生的发散思维,谈一谈自己的看法。

一、激发求知欲,培养学生思维的积极主动性。

培养思维的积极性是培养发散思维的关键,为此,在教学中,我始终十分注意激起学生强烈的学习兴趣和求知欲,使他们永保一种高涨的情绪投入到学习和思考。

例如:在四年级《除法》一课中,我先出示几道简单除法,让学生演算。

由于有除法意义的基础,虽然是四年级小学生,仍能较顺畅地完成了上述练习。

而后,600÷200,6000÷20,6000÷200,让学生思考、讨论能否演算出来,经过学生的讨论与教师及时予以点拨,学生能说出60÷20,算理是根据乘法2×3=6,也有的说算理是被除数与除数同时去掉一个0,从而算成6÷2=3。

虽然课堂费时间多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。

我们在数学教学中还经常利用“问题性引入”、“趣味性引入”“讲小故事引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。

在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。

例如,在学习“平行四边形”的认识时,学生列举了生活中见过的平行四边形,当提到楼梯时出现了不同的看法。

到底如何认识呢?我让学生带着这个“问题”学完了平行四边形的概念后,再来讨论认识家里的“平行四边形”可从几个方向来看,从而使学生的学习情绪在获得新知处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。

二、转换角度思考,训练思维的求异性。

在数学教学中培养学生的发散思维

在数学教学中培养学生的发散思维

密的逻辑 思维能力的特点 ; 学阅读的具有教育功能 ; 重点研 究培养数 学阅读 能力的策略 。本 文就培养 学生数 学阅 数 要 读 能力的重要性 、 学 阅读能力培养 的特 点、 学阅读能力培养 的策略 、 学 阅读 能力培养 的创 新意 义及 价值 等 四个 数 数 数
方面进行 了一 些有益 的探 索。

的广 阔性 得 到 不 断 发 展 。要 通 过 多次 的渐 进 式 的拓 展 训

在诱 导 乐 于求 异 的心 理倾 向 中培 养学 生
练, 使学生进入广阔思维 的佳境 。

的发 散思 维能 力
赞 可夫说过 :凡是没有发 自内心求知欲 和兴趣 的东 “ 西, 是很容易从记忆 中挥发掉的。” 赞可夫 的这句话说 明 为一种重要 的内驱力。 教师要善于选择具体题例 , 创设 问
三、 集体讨 论
在课 堂教 学中 ,有 时也可以采取 集体讨论 的方 法来
培养学生的发散性思维 。集体讨论可分 为 2人小组 、 4人
获得成功 , 使学生渐渐生成 自觉的求异意识 , 日渐发展 小组或全班讨 论 , 并 这样 的讨论没有老师 的介入 , 有利于学
为稳定的心理倾 向。 在面临具体问题时 , 就会能动地作 出 生畅所欲言 、集思广益 ,从 而引发创造性思维的产 生。

改 革 创 新
在数 学教
发散思 维是不依 常规 , 寻求 变异 , 对给 出的材料 、 信 其二 , 稍有变化 , 就不知所 云。 反复进行一题多解 、 一题多
息从不 同角度 , 向不 同方 向 , 用不 同方法或途径进行分析 变的训练 , 是帮助学生克服思维狭窄性的有效办法 。 可通
质定理等 , 结果往往是学生 回答不出来或表述不 到位 , 包 概念 的理解 印象不深 , 时间一长容易 忘记 , 样也就缺乏 这 括班里 的数学尖 子生 。这种情况在 同行 所教 的班里也存 阅读数 学教 材的能力和习惯 。 近年来 , 阅读理解题成 了中 在, 引起了我的思考 。 我认为 , 中一个很 重要的原因是 , 考 中的新亮 点 , 多学生对此类题难 以下 手 , 其 很 因为看了题 长期 以来数学教 师在 备课时对 教材 内容进行 了提炼 , 在

数学教学中重视学生发散思维能力的培养

数学教学中重视学生发散思维能力的培养

一 滨海 2 4 0 25 0
数 学 知 识之 间 的联 系往 往 不 是 十 分 明显 , 常 隐藏 于 经
例 题 或 习题 之 中 , 学 中如 果重 视 对课 本 例题 和 习题 的“ 教 改 装 ” 引 申, 行 必 要 的挖 掘 , 或 进 即通 过 一 个 典型 的例题 进 行 拓 展 , 大 可 能 的覆 盖 知 识 点 , 分 散 的知 识 点 串 成一 条 最 把


2 1年 第 1期 ( 02 5 总第 13 ) 8期
数学 教 学 中 重视 学 生 发 散 思 维 能 力的培 养
郑兆文 滨海县第三 中学,江苏
《 学课 程 标准 》 数 明确 指 出: 数学 在 提 高人 的推 理 能力 、 抽 象 能 力 、 像 力和 创造 力 等 方面 有着 独 特 的 作用 ; 学是 想 数 人 类 的一 种 文 化 , 的 内容 、 它 思想 、 法 和 语 言 是现 代 文 明 方 的重 要 组 成 部 分 。 人 的创 造 力主 要 依 靠 发 散 思 维 , 是 创 “ 它 造 思 维 的 主 要 成 分 。 发 散 思维 对 已知 信 息进 行 多 方 向、 ” 多 角 度 的思 考 , 局 限 于 既 定 的理 解 , 而提 出新 问题 、 索 不 从 探
三、 激励 质疑 , 启迪思维 质疑 问难是学生 自主学习的重要表现 , 优化语文课堂 结构, 激活学生 的主体意识, 必须鼓励学生质疑问难 。 教师
要创 造 和 谐 融 洽 的课 堂 气氛 , 允许 学 生随 时“ 嘴 ” 提 问 、 插 、
是惊呆, 无言 以待。后来我坦诚地说 :你这个 问题 问得很 “ 好, 但老师也没有看见过这种鱼, 我们同学中谁见过这样 的 跳鱼儿?” 这一 问学生们立刻趣味盎然 , 纷纷发言。 由于我

数学教学中发散思维能力的培养

数学教学中发散思维能力的培养

浅谈数学教学中发散思维能力的培养摘要:初中数学学生发散思维能力的培养:1.深化概念、公式、定理的教学,强化知识网络;2.肯定和鼓励学生的发散思维;3.为培养学生发散思维创设情境和条件;4.启发、引导学生多角度分析问题,运用不同解题方法培养学生发散思维。

关键词:重视培养;发散思维能力所谓发散思维是指从同一来源材料探索不同答案的思维过程。

在数学学习中,发散思维表现为依据定义、定理、公式和已知条件,思维朝着各种可能的方向扩散前进。

发散思维富于联想,思路开阔,最基本的特色是:从多方面、多思路去思考问题。

近年来,我在自己的数学实践中,通过和其他老师的探讨和研究,在这方面做了一些尝试,总结如下:一、深化概念、公式、定理的教学,强化知识网络基础知识是思考的依据,也是解决问题的起点。

若不熟悉基本概念、公式、定理和法则,培养学生的发散思维能力就将是一句空话。

因此,在概念教学中,学生对基础概念理解的深浅,掌握得透彻与否,将直接影响其在解题过程中思维的准确性和广阔性。

所以,在教学中,要求学生对概念的掌握必须做到“四要”,即:一要了解概念的产生过程和背景;二要明确表述概念的内容(其中包括文字表述,符号表述,图形表述);三要深刻挖掘概念的内涵和外延(即条件限制的挖掘,特殊情形的挖掘,思想方法的挖掘);四要学会普遍联系,揭示规律,明确概念所带来的解题中思维的关键点(也即思维发散的关键点)。

在数学公式、定理的教学中,不能仅仅把这些公式、定理看做是解题的工具,而只停留于记忆阶段,还要教给学生如何推导公式、定理,掌握这些公式、定理与教学其他内容的联系,从而使学生的思维能力得到提高。

另外,应从“纵”“横”两个方面实现对教材基础知识和基本方法的系统化、网络化。

从“纵”——统揽全局,巩固知识。

“横”——突出联系,提示方法。

“纵”的方面,引导学生按教材章节从整体上把知识划分为四部分,并以此为主要内容详细分解出知识结构示意图。

“横”的方面,让学生根据知识的共性和用途进行归纳联系,要求学生对基本思想方法进行总结。

数学教学中发散思维培养

数学教学中发散思维培养

浅谈数学教学中发散思维的培养发散思维是从同一来源材料中探求不同答案的思维过程,思维方向分散于不同方面,它表现为思维开阔、富于联想、善于分解组合、引申推导、敢于创新。

培养这种思维能力,有利于提高学生学习的主动性、积极性、求异性、创新性。

因此在教学中,要加强对学生发散思维的培养。

下面谈谈我的几点看法。

一、激发求知欲,训练思维的积极性培养思维的积极性是培养发散思维的机器重要的基础。

在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。

我们在数学教学中还经常利用“障碍性引入”“冲突性引入”“问题性引入”“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。

在学生不断解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。

例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。

到底该如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可以从几方面来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探求。

二、转换角度思考,训练思维的求异性发展思维活动的展开,其重要的一点是要能改变已习惯了的思维定式,从而多方位、多角度——即从新的思维角度去思考问题,以求得问题的解决,这样也就是思维的求异性。

从认知心理学的角度来看,小学生在进行抽象的思维活动中由于年龄的特征往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定式往往影响了对新问题的解决,以至于产生错觉。

所以要培养与发展小学生的抽象思维能力,就必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。

在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。

在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。

在数学教学中培养学生“发散思维”

在数学教学中培养学生“发散思维”

在数学教学中培养学生的“发散思维”发散思维即求异思维,它是从一点出发沿着多个方向达到思维目标的思维方式。

美国心理学家吉尔福特则把发散思维定义为一种不依常规、寻求变异、从多方面寻求问题答案的思维形式。

从发散思维展开的方式来看,一般可以分为横向拓广式、纵向深入式、多向联合式。

发散思维是素质教育中创造性思维的主导成份。

因此,我们教师在平时的教学过程中应有意识、有目的、有计划地培养学生的发散思维。

有意提供一些多种解答方法的习题、探索性习题,激励学生用多种方法去解决问题,允许学生大胆提出对问题的看法和独特的见解等等。

本文从以下几方面谈培养发散思维的途径和主要方法:1、问中发散问中发散是运用适当的设问技巧, 培养学生思维的灵活性, 教师要多设计一些“为什么”、“是什么”之类的问题,例如:解方程由3x - 5 = 2x + 16 到x = 21 的依据是什么, 对顶角为什么相等?同时教师提出问题后要有极大的耐心, 给学生充足的时间, 使学生有一种松弛感, 无拘无束地思考, 这样学生的思维才能得到有效的发展。

2、题中发散题中发散就是教师根据课本中的练习题, 设计一些开放性题型, 增强思维的敏锐性。

2.1、条件开放条件开放是指改变已知条件, 结论不变, 这种练习可锻炼学生从不同的条件变化过程, 找到结论成立的实质。

例如, 在学习了全等三角形的判定后, 我们设计了这样一道条件开放型试题: “同学们知道, 只有两边和一角对应相等的两个三角形不一定全等, 你如何处理和安排这三个条件, 使两上三角形全等, 你依照方案(1) 还可以写出几个方案。

解两边和一角对应相等的两个三角形, 方案(1) 若这个角的对边恰好是这两边中的大边, 则这两个三角形全等, 学生分组讨论后, 写出了如下九个方案来, 即方案(2) 若这个角是这两边的夹角,则这个三角形全等。

方案(3) 若这个角是直角,则这两个三角形全等。

方案(4) 若这两边相等,则这两个三角形全等。

培养高中生数学发散性思维的四种策略

培养高中生数学发散性思维的四种策略

培养高中生数学发散性思维的四种策略【摘要】本文主要介绍了培养高中生数学发散性思维的四种策略。

首先通过多样化的教学方法来激发学生的兴趣,例如通过案例分析、游戏化教学等方式让学生更加积极参与学习。

开展实践活动可以帮助学生将数学知识应用到实际生活中,加深他们对数学的理解。

接着,提供挑战性问题可以激发学生的求知欲,并培养他们的解决问题能力。

通过综合性的培训和指导,学生的数学发散性思维将得到更好的发展。

在总结了这四种策略的重要性,展望了培养高中生数学发散性思维的前景,并强调了这些策略对学生发展的重要性。

通过这些策略的实施,有助于提高学生的数学思维能力和解决问题的能力,为他们未来的学习和发展奠定基础。

【关键词】高中生、数学、发散性思维、培养、策略、多样化教学方法、兴趣、实践活动、挑战性问题、解决问题能力、总结、展望、重要性。

1. 引言1.1 介绍在高中数学教育中,培养学生发散性思维是非常重要的。

发散性思维是指能够在面对问题时不受限制地产生各种想法和解决途径的思维方式,是培养学生创新能力和解决问题能力的关键。

在当今社会,解决实际问题和面对挑战需要具备发散性思维,而数学正是一门培养学生发散性思维的重要学科。

通过对高中生进行数学教育,我们不仅仅是传授他们知识,更重要的是培养他们的思维方式和解决问题的能力。

如何有效地培养高中生的数学发散性思维成为了教育教学中的一项重要任务。

在本文中,我们将介绍四种策略来帮助培养高中生的数学发散性思维,包括多样化的教学方法、激发学生的兴趣、开展实践活动和提供挑战性问题。

通过这些策略的实施,我们有信心能够有效地帮助学生提升自己的发散性思维能力,为他们未来的学习和生活奠定坚实的基础。

1.2 意义数统计等。

数学发散性思维是指在解决问题时,能够通过不同的角度、方法或思路,得出多个解决方案或思考路径的能力。

这种思维方式不仅可以帮助高中生在数学学习中更加灵活和富有创造力,更可以训练其解决问题的能力,培养其综合运用知识的能力,提高其逻辑推理和数学思维的能力。

初中数学课堂教学中学生发散性思维培养

初中数学课堂教学中学生发散性思维培养

初中数学课堂教学中学生发散性思维的培养发散性思维亦称扩散思维、辐射思维,是指在创造和解决问题的思考过程中,从已有的信息出发,尽可能向各个方向扩展,不受已知的或现存的方式、方法、规则和范畴的约束,并且从这种扩散、辐射和求异式的思考中,求得多种不同的解决办法,衍生出各种不同的结果。

为了有效地培养学生的发散性思维,我们应该不断地优化课堂教学,始终把培养发散性思维作为每节课的教学目标。

那么,如何在数学课堂教学中培养学生的发散性思维呢?一、营造愉悦的氛围,创设发散地思维的情境义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。

这就要求教师在课堂教学中要尊重学生的人格,认真听取学生发表新意见,提出新见解,尊重学生的差异,保护学生的自尊心,树立学生的自信心,让课堂教学始终保持积极愉悦的学习氛围,充分激发学生的主动性和创造性,不断培养学生的创造能力,让学生乐学、会学、想学。

人处于轻松的情境中可以产生愉悦,处于悲愤的情境中会产生痛苦,处于快乐的情境中可以更好地学习。

数学课不可避免地存在一些缺乏趣味性的内容,这就需要教师认真备课,精心挖掘教材中带有趣味性的内容,把课上得生动活泼,使学生在轻松愉悦中掌握知识。

二、以学生已有经验为基础,开启学生的发散性思维《数学课程标准》基本理念认为:数学教学活动必须建立在学生的认知水平和已有的知识经验基础之上。

教师应向学生提供数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。

因此,学生发散性思维的培养,不能凭空想象,要联系学生已经掌握的知识内容,要根据学生已有的认知水平。

三、引导学生掌握一般性的基础的学习方法,激活发散性思维发散性思维的形成与发展,离不开一般性的基础的学习方法。

一般性的学习方法越扎实,发散性思维的培养空间就越宽广。

学习数学的一般性方法有阅读、观察、实验、猜测、验证、推理与交流等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教学中发散思维的培养
【摘要】:要能改变已习惯了的思维定向,从而多方位多角度,即从新的思维角度去思考问题,以求得问题的解决,这样也就是思维的求异性。

【关键词】:积极思考探知思维积极开展
现代社会需要全面型人才,要求学生能够全方位地思考问题,因而要从小注重对学生发散思维的训练。

思维的积极性、求异性、广阔性、联想性等是发散思维的特性,要求教师在数学教学中要有意识地抓住这些特殊性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。

一、激发求知欲,训练思维的积极性
在教学中,教师要激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。

例如在五年级《分数乘法应用题》一课中,我出事了“甲乙两班共有学生109人,甲班男生占6/11,乙班女生占4/9,两班的男生共有多少人?”两班各有多少人不知道,按照常规的解法是无法解决的,如果帮助学生分析矛盾的特殊性,即甲班人数一定是11的倍数,乙班的人数一定是9的倍数就能用排列的方法得出109=55+54。

这样54×(1-4/9)+55×6/11=60(人)。

这样的训练能有效地激发了学生寻求新方法的积极情绪。

我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知
欲。

在学生不断的解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。

例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。

到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可以从几方向来看,从而是学生的学习情绪在获得新知中始终处于兴奋状态,这样有利与思维活动的积极开展与深入探求。

二、转换角度思考,训练思维的求异性
发展思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,从而多方位多角度,即从新的思维角度去思考问题,以求得问题的解决,这样也就是思维的求异性。

从认知心理学的角度来看,小学生在进行抽象的思维活动中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。

所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度多方位的思维方法与能力。

例如,四则运算之间是有其内在的联系的。

减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。

当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。

加减、乘除、加乘之间都有内在的联系。

如189-7可以连续减多少个7?应要求学生变换角度思考。

从减与除的关系去考虑。

这道题可以看作189里包含几个7,问题就迎刃而解了。

这样的训练,既防止了片面、孤立、静
止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。

在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。

在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。

更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。

如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。

逆向思维的变式训练则更为重要。

三、一题多解、变式引伸,训练思维的广阔性
思维的广阔性是发散思维的又一特征。

思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。

反复进行一题多解、一题多变的训练,实际帮助学生克服思维狭窄性的有效办法。

可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。

教师在教学过程中,不能只重视计算结果,要针对教学的重难点,尽心甚至有层次、有坡度,要求明确、题形多变的练习题。

要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。

要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。

四、转换思想,训练思维的联想性
联想思维是一种表现想象力的思维,是发展思维的显著标志。

联想思维的过程是由此及彼,由表及里。

通过广阔思维的训练,学生的思维可达到一定广度,而通过联想思维的训练,学生的思维可达
到一定深度,例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。

让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。

“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。

在应用题解题中,用转化方法,迁移深化,由此及彼,有利于学生联想思维的训练。

总之,在数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。

作者简介:张红霞,河北省藁城市兴安镇董家庄小学数学教师。

相关文档
最新文档